
UNIVERSITY OF TARTU
Institute of Computer Science

Cybersecurity Curriculum

Sander Mikelsaar

Empirical Study of Asynchronous Batch
Codes

Master’s Thesis (30 ECTS)

Supervisor: Vitaly Skachek, PhD

Co-supervisor: Eldho K. Thomas, PhD

Tartu 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Empirical Study of Asynchronous Batch Codes

Abstract: Batch codes were introduced by Y. Ishai, E. Kushilevitz, R. Ostrovsky and
A. Sahai in 2004 for load balancing in distributed storage systems. As it is observed
in a paper by A.-E. Riet, V. Skachek and E. K. Thomas, varying service times for
the user requests could cause long waiting times in the system based on batch code,
thus leading to a suboptimal performance. The asynchronous batch code model was
introduced as a solution to this problem. In this thesis, to compare the two models, a
system prototype was developed which was used to estimate the performance of these
models. The constructed system model is described in detail. The thesis introduces a
new parameter to the asynchronous system model, which is called "skip distance". The
system performance can be improved by optimizing the value of this parameter. The
results of the simulations are visualized and explained in detail.

Keywords:
Coding theory, storage system, load balancing, batch codes, asynchronous batch codes,
system simulations

CERCS: P170, Computer science, numerical analysis, systems, control

Asünkroonsete Partiikoodide Empiiriline Uuring
Lühikokkuvõte: Partiikoodid esitleti Y. Ishai, E. Kushilevitz, R. Ostrovsky ja A. Sahai
poolt aastal 2004 hajusfailisüsteemide koormusjaotuseks. A.-E. Riet, V. Skachek ja E. K.
Thomas demonstreerisid artiklis, et erinevate kestvusega päringud partiikoode kasuta-
vale failisüsteemile põhjustavad ooteaegu. Samas artiklis esitleti ooteaegade probleemi
lahendamiseks asünkroonse partiikoodi mudel. Käesoleva lõputöö raames loodi kahe par-
tiikoodimudeli võrdlemiseks süsteemi prototüüp, mille abil simuleeriti mõlemat mudelit
kasutavaid failisüsteeme. Simulatsioonide töökäiku kirjeldatakse detailselt. Lõputöös
võeti kasutusele asünkroonsel süsteemimudelil uus parameeter, mille abil suurendati süs-
teemi poolt saavutatavat täidetavat päringumahtu. Teostatud simulatsioonide tulemused
visualiseeriti ning tulemusi kirjeldatakse detailselt.

Võtmesõnad:
Kodeerimisteooria, failisüsteem, koormusjaotus, partiikoodid, asünkroonsed partiikoodid,
süsteemisimulatsioonid

CERCS: P170, Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)

2

Contents
1 Introduction 4

2 Background 5
2.1 Notation . 5
2.2 Batch Codes . 5
2.3 Linear Batch Codes . 5
2.4 Asynchronous Batch Codes . 6
2.5 Simplex Codes . 7
2.6 Statistical Distributions . 8

2.6.1 Poisson Distribution . 9
2.6.2 Exponential Distribution . 9
2.6.3 Normal (Gaussian) Distribution 9

3 Implementation 10
3.1 Codes . 13

3.1.1 Matrix . 13
3.1.2 Recovery Sets . 13
3.1.3 Batch Table . 16
3.1.4 Request Lifetime and Gap Distributions 19

3.2 Requests . 20
3.3 Running Simulations . 20
3.4 System Prototype and Methods for Analysis 21

4 Results 25
4.1 Skip Distance . 25
4.2 Constant Request Lifetime . 29
4.3 Increased Variance of Request Lifetimes 30
4.4 Exponential Distribution . 33
4.5 Requested File Distribution . 34
4.6 Summary of the Analysis . 36

5 Conclusion 38

6 Acknowledgements 39

7 Licence 41

3

1 Introduction
Batch codes were first introduced by Ishai, Kushilevitz, Ostrovsky and Sahai in [1] for
the purpose of load-balancing in storage applications and amortizing computational costs
in cryptographic protocols, such as private information retrieval (PIR) protocols. A class
of batch codes - linear (computational) batch codes, studied in [2], [3], [4], [5], led to the
introduction of asynchronous batch codes in [6].

In a large database of k items, using regular batch codes to distribute the items among
n devices, a user chooses a batch of t distinct items to be retrieved from the storage
devices. For this reason, however, the model has some limitations, as it always requires a
user to choose a full batch of t items to be served. In most storage scenarios, databases
contain a large number of files with users only being interested in retrieving a small
number of them. For these scenarios, multiset batch codes provide a solution by creating
a batch of t items by combining the queries of t users. Whereas regular multiset batch
codes would require users to wait until a full batch of t items is requested from the
database before serving the requests, as well as all of the requests from a previous batch
to be finished before serving the next batch, the asynchronous model would be able to
serve an incoming request for any of the k items in the database, with up to a total of t
concurrent requests, as soon as a request has been served, without waiting for an entire
batch to finish serving. This change to the batch code model can offer increased service
rates if the requests served by a storage system have varied durations.

In this thesis, the asynchronous batch code model defined in [6] is studied and
compared to the original batch code model. The main focus of the thesis is the comparison
of batch codes, formed by using simplex codes, and asynchronous batch codes formed
by the same codes. For the purpose of comparing the batch code models, a system
prototype was developed which was used to run simulations of both models under varying
conditions, such as different distributions of the requested items and the durations of
the requests. The system prototype is described in the thesis as the methodology of
studying the problem. To improve the service rates achieved by the asynchronous model,
a new parameter, skip distance, is introduced to the model. Comparisons are also made
to replication based storage models. Finally, the results and findings are presented and
visualized, accompanied by the analysis of the applicability of the different system
models.

4

2 Background
In this section, different batch code models are defined and described, along with
definitions for simplex codes and statistical distributions used in the implementation of
the system prototype used to run the simulations of batch codes using those models.

2.1 Notation
A finite (Galois) field over q is denoted as Fq.
A space of vectors of length n over Fq is denoted as Fnq .
Definitions of basic notions in coding theory, as defined in [12]:

Definition 2.1. An (n,M) code over a finite alphabet Σ is a nonempty subset C of size
M of Σn. The parameter n is called the code length and M is the code size.

Definition 2.2. An (n,M, d) code C over a field Fq is called linear if C is a linear
subspace of Fnq .

Definition 2.3. A generator matrix of a linear [n, k, d] code C is a k × n matrix whose
rows form a basis of the code.

2.2 Batch Codes
Definition of batch codes, as given in [6]:

Definition 2.4. An (n, k, t) batch code C over a finite alphabet Σ is defined by an
encoding mapping C : Σk −→ Σn and a decoding mapping D such that:

• For any x ∈ Σk and i1, i2, ..., it ∈ [k],

D(y = C(x), i1, i2, ..., it) = (xi1 , xi2 , ..., xit)

• The symbols in the query (xi1 , xi2 , ..., xit) can be reconstructed from t respective
pairwise disjoint recovery sets of symbols of y (the symbol xi` is reconstructed
from the `-th recovery set for each `, 1 ≤ ` ≤ t).

2.3 Linear Batch Codes
Definition of linear batch codes, as given in [3]:

Definition 2.5. An (n, k, t) batch code is linear, if the content of each server is a linear
combination of original database elements.

Definition 2.6. A linear combination of n vectors v1, v2, ..., vn over the field Fq is any
vector of the form a1v1 + a2v2 + ...+ anvn, where the scalars ai ∈ Fq.

5

2.4 Asynchronous Batch Codes
Definition of asynchronous batch codes, as given in [6]:

Definition 2.7. An asynchronous (linear primitive multiset) [n, k, t] batch code C is a
(linear primitive multiset) batch code with the additional property that for any legal
query (x`1 , x`2 , ..., x`t), for all `i ∈ [k], it is always possible to replace x`j by some
x`t+1 , `t+1 ∈ [k], such that x`t+1 is retrieved from the servers not used for retrieval of
(x`1 , x`2 , ..., x`j−1

, x`j+1
, ..., x`t) without reading more than one symbol from each server.

Example 2.1. To demonstrate the differences between the asynchronous and regular
batch code models, the following example from [6] could be used:

Consider the systematic [8, 4, 3]2 batch code C generated by the following matrix:

G =

s1 s2 s3 s4 s5 s6 s7 s8

f1 1 0 0 0 1 0 1 0
f2 0 1 0 0 1 0 0 1
f3 0 0 1 0 0 1 1 0
f4 0 0 0 1 0 1 0 1

The query (f1, f1, f1) can be retrieved from the following disjoint sets of symbols:

Batch (f1, f1, f1)
f1 (s1)
f1 (s2 ⊕ s5)
f1 (s3 ⊕ s7)

Assume that the first queried file f1 has been retrieved, while the last two queries are
still being served, and a new query for the file f2 has arrived. Then, in the asynchronous
model, the recovery set f2 = (s4 ⊕ s8) could be used to serve the incoming request for
the file f2 immediately after the first queried file f1 had finished, without affecting the
recovery sets of the other two remaining active queries f1, f1.

While the example 2.1 demonstrates how the code given by the matrix G could
be used to achieve the same amount of concurrent requests using the asynchronous
batch code model as the regular batch code model in the given specific situation, using
G to generate an asynchronous batch code does not result in a [8, 4, 3]2 asynchronous
batch code. It can be shown, however, that for any initial selection of the recovery sets,
and for any finished query and new incoming query, there is always a way to select
disjoint recovery sets for a total of two concurrent requests, meaning that the code C is
an asynchronous [8, 4, 2]2 batch code.

From the example though, the difference between the regular and asynchronous batch
code models can be clearly seen. If a storage system using the code C was operating

6

under the regular batch code model, the new incoming request for f2 would have to wait
until the two remaining active requests f1, f1 also finished serving, and a new batch of
three requests could be served. Using the asynchronous model of the code C, however,
would reduce the time that f2 would have to wait by serving it immediately after the first
request for f1 was finished.

2.5 Simplex Codes
Definition of simplex codes, as given in [11]:

Definition 2.8. A [2k − 1, k] simplex code is a linear code of length n = 2k − 1 and
dimension k whose k × n generator matrix G contains each nonzero column vector z of
length r exactly once as a column.

Example 2.2. Generator matrix G of a [7, 3] simplex code:

G =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

Example 2.3. As it is shown in [6] that the code C formed by the matrix G given in
example 2.2 is a [7, 3, 4]2 batch code, it is not a [7, 3, 4]2 asynchronous batch code. In [6]
it is shown by the following example:

Assume that the query (f1, f1, f1, f1) was submitted by the users. Then, one copy
of f1 is retrieved from s1, and for each of the remaining three copies of f1, at least two
symbols of s have to be used. If the next query f2 arrives, it is impossible to serve it
without accessing one of the servers containing s2, ..., s7 at least twice. Therefore, C is
not an asynchronous [7, 3, 4]2 batch code.

As this example proves that using simplex codes to construct asynchronous batch
codes does not guarantee the same amount of concurrent requests supported by the two
models, the skip distance parameter, as defined below, is introduced to improve the
performance of the asynchronous batch code model.

Definition 2.9. Assume that a storage system has a request queue X (with |X| ≥ d) of
requests submitted by users waiting to be served. Then, the skip distance d defines the
size of the subset X

′ ⊆ X containing the first d requests of X, which will be attempted
to be served by the storage system if the first request in the queue X does not have an
available recovery set.

While it was shown in example 2.3 that using the [7, 3] simplex matrix to generate
asynchronous and regular batch codes Ca and Cb does not yield the same amount of
guaranteed concurrent requests for Ca and Cb (ta 6= tb), the main object of study in this

7

thesis is the comparison of regular and asynchronous batch codes generated by various
[n, k] simplex codes.

By introducing the skip distance d, it is shown in simulations that the mean amount
of concurrent requests for Ca will approach the batch size ta of Cb for the codes Ca and
Cb generated by the same [n, k] simplex code matrix G. In addition to this, it is shown
that even when not using the addition of skip distance, the asynchronous model will
outperform the regular batch code model in most simulated scenarios.

2.6 Statistical Distributions
In this thesis, for the purpose of analyzing differences between the regular and asyn-
chronous batch code models, various statistical distributions were used. Below, defini-
tions and descriptions of statistical distributions are provided, as given in [10]:

Definition 2.10. The set of possible outcomes of a probabilistic experiment is called the
sample, event, or possibility space.

Definition 2.11. A random variable is a function that maps events defined on a sample
space into a set of values.

Definition 2.12. A variate is a generalization of the idea of a random variable and has
similar probabilistic properties but is defined without reference to a particular type of
probabilistic experiment. A variate is the set of all random variables that obey a given
probabilistic law.

Definition 2.13. Let X denote a variate and let RX be the set of all (real number) values
that the variate can take. The set RX is the range of X

Definition 2.14. Let X = x mean "the value realized by the variate X is x". Let the
probability statement Pr[X ≤ x] mean "the probability that the value realized by the
variate X is less than or equal to x".

Definition 2.15. The distribution function F (or more specifically FX) associated with a
variate X maps from the range RX into the probability domain Rα

X or [0, 1] and is such
that:

F (x) = Pr[X ≤ x] = α, x ∈ RX, α ∈ Rα
X (1)

Definition 2.16. A probability density function, f(x), is the first derivative coefficient of
a distribution function, FX, with respect to x (where this derivative exists):

f(x) =
d(F (x))

dx
(2)

A discrete variate takes discrete values x with finite probabilities f(x). In this case
f(x) is the probability function, also called the probability mass function.

8

2.6.1 Poisson Distribution

A discrete probability distribution, used, for example to represent the number of arrivals
in a specific interval.
Range 0 ≤ x <∞, where x is an integer
Parameter λ > 0
The parameter λ is also the mean and the variance of the distribution.

Distribution function F (x) =
x∑
i=1

λi exp(−λ)
i!

Probability function f(x) = λx exp(−λ)
x!

2.6.2 Exponential Distribution

A continuous distribution, used, for example in queue theory.
Range 0 ≤ x <∞
Scale parameter b > 0
Alternative parameter λ = 1

b

The parameter b is also the mean of the distribution.
Distribution function F (x) = 1− exp(−x

b
)

Probability distribution function f(x) = 1
b

exp(−x
b

) = λ exp(−λx)

2.6.3 Normal (Gaussian) Distribution

A continuous distribution.
Range −∞ < x <∞
Location parameter µ
Scale parameter σ > 0
The parameter µ is also the mean, and σ the standard deviation of the distribution
Probability density function f(x) =

√
2πσ

exp(
−(x−µ)2

2σ2
)

9

3 Implementation
For analyzing the differences in performance between the asynchronous and regular
batch code models, a system prototype was built which was used to run simulations of the
code models under varying setups. The simulations were run with millisecond accuracy
to provide results as accurate as possible while keeping the option of running multiple
simultaneous simulations. The general process of running simulations can be seen in
figures 1 and 2 depicting storage systems using both the regular, and asynchronous batch
code models defined by the [7, 3] simplex matrix G given in example 2.2.

While the main objective of the system prototype was to evaluate performance of
systems based on regular and asynchronous batch codes, yet this prototype can be
used for testing systems employing a wide range of codes. For example, to simulate a
replication based storage system, where k = 3 files are stored on a total of n = 6 servers,
with a total of 2 servers storing each file f1, f2, f3, the matrix given in the following
example could be used:

Example 3.1. Matrix used to generate a code emulating a replication based storage
system with k = 3 files and n = 6 servers

G =

s1 s2 s3 s4 s5 s6

f1 1 1 0 0 0 0
f2 0 0 1 1 0 0
f3 0 0 0 0 1 1

In figures 1 and 2 the process of running simulations of both batch code models can

be seen. Both storage systems in the figures are defined by the [7, 3] simplex matrix,
resulting in 7 servers distributing 3 files as shown in the figures. The differences in
running simulations of the two batch code models can be seen by the regular batch code
model in fig. 1 using the batch table (given in table 2) to assign servers to a batch of
t = 4 requests each time a previous batch is finished serving, and the asynchronous
model in fig. 2 using recovery sets (table 1) to assign servers to any request that can be
served from the first d requests in the queue as soon as a request is finished serving. In
both figures 1 and 2, the index i of each request xi in the request queue X represents the
index of the requested file fi.

In this section, key algorithms and the overall design of the system prototype are
presented by providing code examples, accompanied by more detailed explanations of
the design decisions.

10

Figure 1. System overview for the regular batch code model

11

Figure 2. System overview for the asynchronous batch code model

12

3.1 Codes
The system models (hereafter referred to as codes) used to run the simulations were
defined by the following key variables:

1. matrix

2. server combinations

3. batch table

4. request lifetime distribution

5. request gap scales

6. server capacity

7. skip distance

3.1.1 Matrix

A generator matrix G was used to define the amount of servers and files for running the
simulations, as well as the files or the combinations of files that any server would serve.
A k × n matrix would result in a code, in which n servers were used to host a total of k
files. For each server, the corresponding column in the matrix would define what data
is stored in the corresponding server. For example, a server server corresponding to the
column (1, 0, 0)> would only contain f1, whereas the column (1, 1, 0)> would result in
the server containing f1 ⊕ f2 (the bitwise XOR of f1 and f2).

3.1.2 Recovery Sets

In order to run the simulations, it was necessary to calculate all the possible recovery
sets (combinations of servers) that could be used to retrieve any of the k files. For a code
defined by a k × n matrix G, this would be done using the following algorithm:
Setup:
servers = [x for x in range(n)]
files = [x for x in range(k)]

files_as_integers = { } #(1)
for f in files:

file_binary = [0] * k
file_binary[f] = 1
files_as_integers[f] = binary_to_int(file_binary)

servers_as_integers = { } #(2)
for s in servers:

server_binary = G.column(s)
servers_as_integers[s] = binary_to_int(server_binary)

13

combinations = { }
for depth in [x for x in range(k+1)]: #(3)

for f in files:
combinations[f]. append(recursive_search(f, depth , combinations , servers ,

files_as_integers , servers_as_integers , [], 0))

The recursive function to find combinations up to a depth limit #(4)
def recursive_search(f, depth_limit , existing_combinations , servers , files_as_integers ,

servers_as_integers , used_servers , current_state):
for combination in existing_combinations:

if combination.issubset(used_servers):
return []

if current_state == files_as_integers[f]:
return [used_servers]

combinations = []
if depth_limit != len(used_servers):

for s in servers:
new_state = XOR(current_state , servers_as_integers[s])
new_servers = servers.copy()
new_servers.remove(s)
new_used_servers = used_servers + [s]
combinations += recursive_search(f, depth_limit , existing_combinations ,

new_servers , files_as_integers , servers_as_integers , new_used_servers ,
new_state)

else:
return []

return combinations

(1–2) As the total number on recursive function calls is relatively high, it is important
to make each call as efficient as possible. For this reason, the files and servers
are associated with unique integer numbers to make comparisons between the
recursion states and calculations of new states more efficient. For this reason, each
file fi for i ∈ [1, k] is represented as the integer value of a binary string where only
the i-th bit is equal to 1. Similarly, each server sj with j ∈ [1, n] is represented as
the integer value of a binary string equal to the j-th column of the code-defining
generator matrix G.

(3) To minimize the maximum recursion depth, where the depth can take any value
in the range [1, k]. This can be done as any set of k + 1 columns of the matrix G
would be linearly dependent and thus makes generating server combinations of
size larger than k redundant.

The recursion depth needs to be iterated over an increasing depth limit because it
is necessary to always find the smallest possible combinations of servers capable
of serving any file f . As the recursive function terminates the recursion branch
when a smaller subset of its current server combinations is already a recognized
server combination for finding the given file, it is essential that the search for the
combinations is conducted breadth-first and in increasing size.

14

(4) The recursive function itself is a rather basic loop over all possible server combi-
nations, limited by the depth limit which is iterated over in the main algorithm.
The function checks whether its given server combination has a smaller subset
already defined as a viable server combination for its given file and terminates if
true, returns the given server combination as a viable combination if its given state
matches the given file, or continues the recursion for all possible remaining servers
if the depth limit has not been reached.

For each of the depth limits iterated over in the main algorithm, the recursion starts
from the beginning, while terminating any of the recursion branches as soon as they
prove to be useless. While it would be possible to save the current states of the recursion
when the function terminates due to the depth limit being reached, so that on the next
iteration, when the depth limit is increased, could be resumed without repeating any of
the steps performed by the recursive function in a previous iteration, this proved to be
very expensive in its memory usage.

Example 3.2. Generation of recovery sets for a batch code defined by the matrix G of a
[7, 3] simplex code:

To start off, both the files and servers need to be assigned integer values. This is
done as described above in the algorithm description (3.1.2) steps 1 and 2. The resulting
integer representations are:

f1 f2 f3

4 2 1

s1 s2 s3 s4 s5 s6 s7

4 2 1 6 5 3 7

To find all the server combinations capable of serving the files f1, f2, f3, sets of size
1 (single servers) are looked at first. This is done simply by comparing the integer values
of the servers si to the values assigned to files fj and if the values match, the si is added
as a valid server combination for fj for all i ∈ [1, 7] and j ∈ 1, 2, 3:

Size 1
f1 (s1)
f2 (s2)
f3 (s3)

Next, to find server combinations of size 2, for example, for f1, all possible pairs of
servers that do not include s1 are tried. Pairs including s1 are excluded as there already
exists a smaller subset (s1 by itself) capable of serving f1. Bitwise XOR is then applied
to the integer values of all the other server pairs and if the resulting value equals the

15

integer value of f1, the pair is added as a valid server combination for f1. This search is
then repeated for f2 and f3, resulting in the following server combinations being added
to the set of valid combinations:

Size 2
f1 (s2 ⊕ s4), (s3 ⊕ s5), (s6 ⊕ s7)
f2 (s1 ⊕ s4), (s3 ⊕ s6), (s5 ⊕ s7)
f3 (s1 ⊕ s5), (s2 ⊕ s6), (s4 ⊕ s7)

Finally, combinations of size 3 are searched for and added in a similar fashion to
what was done previously for sets of size 2, resulting in the complete server combination
table for the [7, 3] simplex code given in table 1

Recovery sets
f1 (s1), (s2 ⊕ s4), (s3 ⊕ s5), (s6 ⊕ s7), (s2 ⊕ s3 ⊕ s7), (s2 ⊕ s5 ⊕ s6), (s3 ⊕ s4 ⊕ s6), (s4 ⊕ s5 ⊕ s7)
f2 (s2), (s1 ⊕ s4), (s3 ⊕ s6), (s5 ⊕ s7), (s1 ⊕ s3 ⊕ s7), (s1 ⊕ s5 ⊕ s6), (s3 ⊕ s4 ⊕ s5), (s4 ⊕ s6 ⊕ s7)
f3 (s3), (s1 ⊕ s5), (s2 ⊕ s6), (s4 ⊕ s7), (s1 ⊕ s2 ⊕ s7), (s1 ⊕ s4 ⊕ s6), (s2 ⊕ s4 ⊕ s5), (s5 ⊕ s6 ⊕ s7)

Table 1. Recovery sets for the [7, 3] simplex code

3.1.3 Batch Table

For running codes as regular batch codes, the most efficient solution is to generate all
possible unique combinations of t requests, where t is the batch size of the code. For a
k × n simplex code, the batch size t is given as follows [7]:

t = 2k−1

The batch table is used to define which servers are used to serve each of the incoming
requests when simulating regular batch codes. The table consists of all unique sets of
length t of k files and the server combinations used to serve each file in the request batch.

For generating the batch table, the following algorithm was used:
t = 2**(k-1)
unique_sets = combinations_with_replacement ([x for x in range(k)], t) #(1)
server_combinations = code.server_combinations #(2)
batch_table = { }

for uset in unique_sets:
success = False
while not success:

used_servers = []
combinations = []

for f in uset:
combination = get_server_combination(used_servers , f, server_combinations)
if combination:

for s in combination:

16

used_servers += [s]
combinations += [combination]

else:
shuffle(set) #(3)

if len(combinations) == k:
success = True
batch_table[set] = combinations

def get_server_combination(used_servers , f, server_combinations):
for combination in server_combinations[f]:

valid = True
for s in combination:

if s in used_servers:
valid = False

if valid:
return combination

else:
return False

1. To generate all possible unique sets of length t for k files, combinations with
replacement from the Python itertools library, as given in [8], was used.

2. Server combinations is the dictionary of all the possible recovery sets able to serve
any of the k files, as given by the algorithm defined in section 3.1.2.

3. As the sets generated by combinations with replacement are emitted in lexico-
graphic sort order, it can happen that by trying to assign servers to files of the
requests in the sorted order, using the first unused server combination for the files,
as given by the algorithm defined in section 3.1.2, a successful combination for
the entire batch cannot be found. If this happens, shuffling the order of the batch
and retrying until a successful order is found, proved to be a much more efficient
approach than using a recursive function to find a successful combination without
shuffling.

Example 3.3. Batch table generation for a batch code defined by the matrix G of a [7, 3]
simplex code, using the recovery sets from example 3.2.

First of all, the batch size k must be calculated:

t = 2k−1 = 22 = 4

Next, all unique sets of size t = 4 of the files f1, f2, f3 are found, of which there
is a total of 15. Then, for each of the sets, servers are assigned based on the server
combinations. For example, the batch (f1, f1, f2, f3) is assigned the following servers:

Batch (f1, f1, f2, f3)
f1 (s1)
f1 (s3 ⊕ s5)
f2 (s2)
f3 (s4 ⊕ s7)

17

When assigning server combinations to the files in a batch, the combinations are
chosen in the order that they were defined in the recovery sets table 1. While this means
that smaller sets are prioritized, it does not take into account the servers of the files yet to
be assigned, meaning that not all sets can be assigned valid server combinations using
this method of selecting combinations for the files. This can be seen using the batch
(f1, f1, f1, f2):

Batch (f1, f1, f1, f2)
f1 (s1)
f1 (s2 ⊕ s4)
f1 (s3 ⊕ s5)
f2 None

This problem was solved by randomizing the order (shuffling) of the batch, as
it proved to be a much more efficient approach than "intelligently" assigning server
combinations to files in a batch, by taking into account all the files that follow in the
batch, especially when generating batch tables for codes defined by larger simplex
codes, for example the [31, 5] simplex code. For an example of the shuffling, the batch
(f1, f1, f1, f2) can be reordered as (f2, f1, f1, f1), which yields the following server
combination assignment using the same method as before:

Batch (f2, f1, f1, f1)
f2 (s2)
f1 (s1)
f1 (s3 ⊕ s5)
f1 (s6 ⊕ s7)

This method of assigning server combinations is repeated for all the 15 unique
batches, resulting in the batch table given in table 2.

Example 3.4. The exact sizes of the recovery set and batch tables for various batch
codes defined by [n, k] simplex codes can be seen in the table 3.

[n, k] Total recovery sets Sets per file Batch size Unique batches
[3, 2] 4 2 2 3
[7, 3] 24 8 4 15
[15, 4] 368 92 8 165
[31, 5] 18420 3684 16 4845

Table 3. Sizes of batch and recovery set tables for [n, k] simplex codes

18

Batch table for the [7, 3] simplex code
(fi, fj, fk, fl) fi fj fk fl

(f1, f1, f1, f1) (s1) (s2 ⊕ s4) (s3 ⊕ s5) (s6 ⊕ s7)
(f1, f1, f1, f2) (s1) (s3 ⊕ s5) (s6 ⊕ s7) (s2)
(f1, f1, f1, f3) (s1) (s2 ⊕ s4) (s6 ⊕ s7) (s3)
(f1, f1, f2, f2) (s1) (s2 ⊕ s4) (s3 ⊕ s6) (s5 ⊕ s7)
(f1, f1, f2, f3) (s1) (s2 ⊕ s4) (s5 ⊕ s7) (s3)
(f1, f1, f3, f3) (s1) (s2 ⊕ s4) (s3) (s6 ⊕ s5 ⊕ s7)
(f1, f2, f2, f2) (s1) (s2) (s3 ⊕ s6) (s5 ⊕ s7)
(f1, f2, f2, f3) (s1) (s2) (s3 ⊕ s6) (s4 ⊕ s7)
(f1, f2, f3, f3) (s1) (s2) (s3) (s4 ⊕ s7)
(f1, f3, f3, f3) (s1) (s3) (s2 ⊕ s6) (s4 ⊕ s7)
(f2, f2, f2, f2) (s2) (s1 ⊕ s4) (s3 ⊕ s6) (s5 ⊕ s7)
(f2, f2, f2, f3) (s2) (s1 ⊕ s4) (s5 ⊕ s7) (s3)
(f2, f2, f3, f3) (s2) (s1 ⊕ s4) (s3) (s6 ⊕ s5 ⊕ s7)
(f2, f3, f3, f3) (s2) (s3) (s1 ⊕ s5) (s4 ⊕ s7)
(f3, f3, f3, f3) (s3) (s1 ⊕ s5) (s2 ⊕ s6) (s4 ⊕ s7)

Table 2. Batch table for the [7, 3] simplex code

3.1.4 Request Lifetime and Gap Distributions

One of the key differences studied when comparing the asynchronous and regular batch
code models was how they handled requests of varying durations. For this reason, a
defining parameter for running a code was the distribution of the lifetime (duration) of the
requests. The system prototype supports the use of the following statistical distributions
for defining the lifetimes:

• uniform(min, max)

• exponential(b)

• Poisson(λ)

• normal(µ, σ) (Gaussian distribution)

The distributions used were imported from the numpy.random library of Python,
described in [9].

To determine the time between incoming requests, gap scales (bf1 , bf2 , ..., bfk) were
used. Each file fi for i ∈ [1, k] in the code simulation was assigned an exponential
distribution variate b (scale) bfi , using which a gap duration was generated after each
incoming request for the requested file fi. The duration of the gap determined how long

19

it would take for another request for the file fi to arrive. This, in turn, determined the
total incoming rate rincfi for each file in the simulation, with a mean rate rincfi = 1

bfi
for

each file fi for i ∈ [1, k] and a total incoming request rate rinct =
k∑
i=1

rincfi

3.2 Requests
The incoming requests of the simulations were defined by Python dictionaries, which
contained the following:

Requested file defined by an integer f ∈ [1, k]

Lifetime duration of the request, generated using one of the distributions listed in section
3.1.4

Assigned servers an array containing the recovery set used to serve the request, assigned
when the request is added to active requests from the queue

Time in queue time the request has spent in the queue, used for statistics when analyzing
code performance

3.3 Running Simulations
For running the simulations, each code object has a number of variables which are used
to store information necessary for the simulation:

Request queue a deque object from the collections Python standard library

Current requests an array of active requests

Completed requests a counter keeping track of the total number of requests completed
during the simulation

Servers a dictionary of servers and their current load

Remaining gap times a dictionary of files and the remaining time until a new request
for any of the files will be generated

Running time a counter used to keep track of how long the simulation has been running

Statistics a collection of data collected about the performance of the simulated code:

• request queue size

20

• amount of active requests

• completed requests

• requests per second (mean)

• servers in use

• mean queue time

• maximum queue time

The simulations of running codes were performed in 1 millisecond steps. In each
step, the following operations are performed:

1. Add 1ms to code running time

2. Terminate any request which has been active for its predetermined duration (life-
time)

3. If able, add new requests from the request queue to active requests

4. Calculate statistics for the code and write them to file

5. Subtract 1ms from remaining gap times for each file and if the request gap time
for any file was reached, generate a new request

3.4 System Prototype and Methods for Analysis
The system prototype designed to run the simulations offers information about the current
state of the running simulations, such as graphs displaying any of the collected statistics
for all the running codes for the last minute, specific statistics values for the running
code simulations, as well as information about the request queue, active requests and
state of the servers in the simulation. These functionalities were implemented to provide
an overview of the testing process and to quickly test hypothesis of how the defining
variables affect running simulations.

Further analysis of the system model was performed using the collected statistical data.
For achieving this, an automated process of testing large numbers of codes with a specific
range of defining variables based on the test was set up. These automated processes were
repeated until a large enough sample size, sufficient to provide a meaningful overview of
the specific model under the conditions being tested, was achieved.

21

Example 3.5. To provide an overview of the complete process of running the simulations,
assume that an asynchronous code Ca and a regular batch code Cb are being simulated.
Both Ca and Cb are defined by the matrix G of a [7, 3] simplex code:

G =

s1 s2 s3 s4 s5 s6 s7

f1 1 0 0 1 1 0 1
f2 0 1 0 1 0 1 1
f3 0 0 1 0 1 1 1

While the regular batch code Cb is using the batch table, as given in table 2, to assign
server combinations to incoming requests, the asynchronous code Ca only uses the
recovery sets as given in example 3.2.

Assume that both of the codes Ca and Cb have the request lifetimes defined by the
exponential distribution variate b = 1, meaning that the average request lifetime is one
second, and gap scales (bf1 , bf2 , bf3) = (0.75, 0.75, 0.75). These gap scales result in an
incoming rate rincfi = 1

bfi
= 1

0.75
= 11

3
for each file fi for i ∈ 1, 2, 3 and a total incoming

request rate rinctotal =
3∑
i=1

rincfi = 4. As the gap times are defined generated using the

exponential distribution, the total number of incoming requests per second will follow
the Poisson distribution with the variate λ = rinct = 4.

In addition to the code-defining parameters above, the system simulation of the
asynchronous code Ca has a skip distance parameter set as d = 2.

For simplicity, assume that both Ca and Cb have matching incoming request queues
Xa = Xb = [x1, x2, x3, x4] where the incoming request objects xi have the following
values:

Request queues Xa and Xb

xi Requested file Lifetime
x1 f2 0.5s
x2 f1 1.2s
x3 f1 1.0s
x4 f1 0.9s

Also, for simplicity, assume that the codes Ca and Cb have matching values for
their remaining gap times (gf1 , gf2 , gf3) = (1.1s, 0.8s, 1.2s), and have matching active
requests Aa = Ab = [a1, a2, a3, a4] such that:

Active requests Aa and Ab

ai Requested file Remaining lifetime Recovery set
a1 f1 0.5s (s1)
a2 f1 0.7s (s2 ⊕ s4)
a3 f1 1.0s (s3 ⊕ s5)
a4 f1 1.0s (s6 ⊕ s7)

22

After 0.5s of the simulation has passed, the request a1 is finished serving, meaning
that the server s1 is no longer in use. While the regular batch code Cb takes no action
here, the simulation of Ca attempts to serve the first request in the queue Xa. As the
request x1 can not be served, as there is no available recovery set for f2, a subset X

′

a

of size d of the first d = 2 requests in the request queue Xa is searched for a servable
request. The second request x2 is looked at and, as its requested file f1 can be served, it
is added to the list of active requests Aa.

After another 0.2s of the simulation pass, the request a2 is completed, freeing up the
servers s2 and s4. While the code Cb still takes no action, Ca adds the request x1 for f2,
which was skipped over during the previous attempt, to Aa, as the server s2 is a possible
recovery set for f2.

A further 0.1s into the simulation, the gap times (gf1 , gf2 , gf3) = (0.3s, 0.0s, 0.4s).
As the gap time gf2 = 0, a new request x5 for f3, with a lifetime of, for example 1.6s,
is added to the request queues and a new gap time is generated (using the exponential
variable bf2) for gf2 , equal to 1.0s. At this point, the states of the codes are as follows:

Request queue Xa

xi Requested file Lifetime
x3 f1 1.0s
x4 f1 0.9s
x5 f3 1.6s

Request queue Xb

xi Requested file Lifetime
x1 f2 0.5s
x2 f1 1.2s
x3 f1 1.0s
x4 f1 0.9s
x5 f3 1.6s

Active requests Aa

ai Requested file Remaining lifetime Recovery set
a3 f1 0.2s (s3 ⊕ s5)
a4 f1 0.2s (s6 ⊕ s7)
a5 f1 0.9s (s1)
a6 f2 0.4s (s2)

Active requests Ab

ai Requested file Remaining lifetime Recovery set
a3 f1 0.2s (s3 ⊕ s5)
a4 f1 0.2s (s6 ⊕ s7)

After another 0.2s of the simulations has passed, the requests a3 and a4 are complete.
As now |Ab| = 0 (the entire batch has been served), the regular batch code Cb creates

23

a new batch of four requests from the request queue Xb. This results in a batch of
requests for the files (f2, f1, f1, f1), which is then sorted by increasing indices of the
requested files and for which the recovery sets are taken from the batch table (given in
table 2). As a result, the batch is served using the recovery sets for each of the files fi:
f1 = (s1), f1 = (s3 ⊕ s5), f1 = (s6 ⊕ s7), f2 = (s2).

At the same time, the code Ca also adds the requests x3 and x4 from Xa to Aa,
resulting in the following final state of this example:

Request queue Xa

xi Requested file Lifetime
x5 f3 1.6s

Request queue Xb

xi Requested file Lifetime
x5 f3 1.6s

Active requests Aa

ai Requested file Remaining lifetime Recovery set
a5 f1 0.7s (s1)
a6 f2 0.2s (s2)
a7 f1 1.0s (s3 ⊕ s5)
a8 f1 0.9s (s6 ⊕ s7)

Active requests Ab

ai Requested file Remaining lifetime Recovery set
a5 f1 1.2s (s1)
a6 f1 1.0s (s3 ⊕ s5)
a7 f1 0.9s (s6 ⊕ s7)
a8 f2 0.5s (s2)

24

4 Results
To provide a comprehensive overview of differences in performance of the regular and
asynchronous batch code models, simulations were run using a wide range of defining
variables for the codes described in section 3.1. Throughout this section, the following
notation is used to represent the statistics collected from the simulations:

Definition 4.1. The service rate rs is the amount of requests a system model serves in
one second and is calculated as the mean amount of requests completed by the system
each second.

Definition 4.2. Concurrent requests cr is the amount of active requests being served
by a system model, calculated as the mean amount of active requests for each (one
millisecond) step of the simulation.

Definition 4.3. Queue time tq is the mean time a request spends in queue, waiting to be
served by a system model. During each step i of a simulation, a (local) mean queue time
tqi is calculated from the time spent in queue by each request during the step i of the
simulation. The (global) queue time tq is the mean of all tqi .

4.1 Skip Distance
In this section, the asynchronous model is analyzed in terms of its ability to serve an
incoming request for any file as soon as an active request is finished. In the theoretical
model this is stated to be the defining property of the model. As became apparent
when generating the batch tables for regular batch codes defined by simplex codes in
section 3.1.3, there are some orderings of batches, when assigned servers using server
combinations in the order of increasing size, for which a valid set of server combinations
could not be found. In section 3.1.3, the solution proposed for finding a valid combination
was to shuffle the order of the batch and retry the server assignment.

As a similar issue of blocking request configurations can happen when running codes
in the asynchronous model, the skip distance parameter was introduced. Skip distance d
is used to define the depth of the queue up to which servable requests are searched for
when trying to add new active requests during a code step.

To demonstrate the effects of an increased skip distance d, the following simulations
for the asynchronous code Ca defined by the [7, 3] simplex matrix were made. The simu-
lations used a constant lifetime l = 1 for all the requests, uniformly distributed amounts
of incoming files f1, f2, f3 defined by the incoming request gap times (gf1 , gf2 , gf3) =
(0.75s, 0.75s, 0.75s), resulting in a total incoming request rate rinctotal = 4. A total of 10
simulations were performed for each skip distance d ∈ 0, 1, ..., 10 using these parameters,
results of which are visualized in gray on the figures 3a and 3b, and the mean values of

25

the simulations for the collected statistics, visualized in red, were calculated. Each of the
simulations had a duration of 5 minutes.

(a) Service rate rs (b) Concurrent requests cr

Figure 3. Mean service rate rs and mean concurrent requests cr using constant lifetime
with increased skip distance d

The mean values for the service rate rs, concurrent requests cr and request queue
times tq can be seen in table 4.

d rs cr tq

0 3.801 3.811 5.118
1 3.791 3.798 4.627
2 3.831 3.839 3.364
3 3.881 3.888 3.062
4 3.906 3.913 3.329
5 3.916 3.924 4.150
6 3.922 3.931 2.980
7 3.906 3.915 2.897
8 3.914 3.922 2.477
9 3.906 3.913 2.874
10 3.932 3.939 3.389

Table 4. Mean rs, cr and tq for increased skip distance d using constant request lifetime

As can be seen from fig. 3 and table 4, using constant request lifetimes when running
the simulations, the addition of a skip distance d does provide a small increase in the

26

performance of the code in terms of mean service rate rs, mean concurrent requests cr
and the mean queue time ts for the requests.

To more clearly demonstrate the increase in performance, simulations were performed
again for the asynchronous code Ca defined by the [7, 3] simplex matrix with rinctotal = 4
and incoming request gap scales (gf1 , gf2 , gf3) = (0.75s, 0.75s, 0.75s). Instead of using
a constant lifetime for the incoming requests, as in the simulations of fig. 3, request
lifetimes were determined by the exponential distribution using b = 1. A total of 10
simulations with a duration of 5 minutes each were performed using skip distances
d ∈ 0, 1, ..., 10. The results of these simulations are given in fig. 4 and table 5.

(a) Service rate rs (b) Concurrent requests cr

Figure 4. Mean service rate rs and mean concurrent requests cr using exponential lifetime
with increased skip distance d

The mean values for the service rate rs, concurrent requests cr and request queue
times tq for the simulations from fig. 4 can be seen in table 5.

27

d rs cr tq

0 3.382 3.371 12.385
1 3.404 3.379 12.852
2 3.522 3.547 9.340
3 3.695 3.633 6.579
4 3.706 3.670 5.834
5 3.785 3.752 4.498
6 3.766 3.757 4.434
7 3.857 3.813 4.275
8 3.782 3.827 4.950
9 3.819 3.836 4.772
10 3.822 3.835 4.811

Table 5. Mean rs, cr and tq for increased skip distance d with exponential request lifetime

The effect of using a different distribution to generate incoming request lifetimes is
clear when comparing the graphs of fig. 3 and 4. While the graphs in figures 3a and
3b using a constant request lifetime l = 1 are nearly identical, the increased volatility
caused by the large variance of the exponential distribution is clearly reflected in the
service rates visualized in fig. 4a.

From the results of the second round of simulations (fig. 4), the positive effects of
increased skip distance d can more easily be seen. While using constant lifetimes of
requests, adding a skip distance d = 10 only offered a 3.4% increase in the service rate
rs compared to a skip distance of d = 0. In the second round of simulations, simulating
exponential request lifetimes with b = 1, skip distance d = 10 resulted in a 13.0%
increase in the mean service rate compared to d = 0.

The difference in increased performance provided by the skip distance d in the two
rounds of simulations (fig. 3 and 4) is likely caused by the beneficial effects of using
constant request lifetimes in first round of simulations. To explain this, simulations using
both incoming request types were observed. If request lifetimes are set to l = 1 second,
the served requests naturally tend to form batches, and as a result, are finished serving
simultaneously. Then, when assigning recovery sets to new requests, smaller recovery
sets can be used, resulting in higher amounts of concurrent requests. In comparison,
when using exponential lifetimes, as in fig. 4, requests are finished serving at different
times, resulting in higher chances of recovery sets of size three being assigned to new
requests. As this is the case, the probability of blocking incoming request configurations
increases, which leads to situations where the amount of concurrent requests drops to
two. In comparison, with constant request lifetimes, the minimum amount of concurrent
requests observed was three.

As the addition of skip distance d offered a clear improvement to the performance of

28

the asynchronous model in terms of the service rate rs and concurrent requests cr, all of
the following simulations of asynchronous batch codes used a skip distance of d = 8.
This value was chosen, as from the results of this section, it was apparent that d = 8
was sufficient to provide an increase in service rates for the asynchronous model, while
requiring low enough simulation time.

4.2 Constant Request Lifetime
The following simulations were run with request lifetimes l = 1 second, with no variance,
for both the regular and asynchronous batch code models. Under these conditions, every
request in a batch is finished serving at the same time, resulting in no waiting for requests
with longer duration to be finished until a new batch can be served for the regular batch
code model. In table 6, the mean results of 10 simulations for each code, with a duration
of 5 minutes, can be seen. Each code in the simulations uses a constant lifetime l = 1 of
the requests. All of the simulations have uniformly distributed rates of incoming files
f1, ..., fk, with a total incoming request rate rinctotal = t, where t = 2k−1 is the batch size
of a regular batch code Cb generated by the [n, k] generator matrix of a simplex code,
resulting in gap scales gfi = 1

t
k for i ∈ 1, ..., k.

The simulations were performed for both the regular and asynchronous batch code
models using 3 different simplex code matrices to generate the codes. Simulations for
the asynchronous models also used a skip distance property of d = 8, as described in
section 4.1.

The mean values for the service rate rs, concurrent requests cr and request queue
times tq for each [n, k] matrix used to generate the codes can be seen in table 6.

Regular batch codes Asynchronous batch codes
[n, k] rs cr tq rs cr tq

[7, 3] 3.879 3.887 1.892 3.918 3.924 3.291
[15, 4] 7.896 7.907 2.491 7.742 7.760 4.657
[31, 5] 15.840 15.859 1.826 14.944 14.978 6.230

Table 6. Mean rs, cr and tq for regular and asynchronous batch codes using constant
request lifetimes

While the asynchronous batch code model does outperform the regular batch code
when using the [7, 3] simplex code matrix to generate the codes in these simulations, this
is likely due to the high variance of gap times between incoming requests, which follow
the exponential distribution using the gap scales (gf1 , gf2 , gf3). While the exponential
distribution is the most realistic distribution to use when simulating arrival gaps between
requests, it results in occasions where the simulated regular batch code has to wait for
additional requests to arrive before it can start serving a batch of requests.

29

For the other two sizes of codes however, the regular batch code model is able
to achieve higher service rates compared to the asynchronous model. For the codes
generated using the [15, 4] simplex matrix, the regular batch code had a 2% greater service
rate rs and the [31, 5] code had a 6% greater rs, when compared to the corresponding
asynchronous codes.

4.3 Increased Variance of Request Lifetimes
While the regular batch code model works well in the idealized setup described in section
4.2, these are not indicative of a real-world storage system, on which the models would
applied. To study the effects of request incoming request lifetime variance on both
models, simulations were run using the normal (Gaussian) distribution with increasing
variance. In this round of simulations, request lifetimes were generated using the normal
distribution with µ = 1 and σ ∈ 0, 0.1, ..., 1.0 for both models. It should be noted that
using µ = 1 and σ > 0.3 to generate the lifetimes of the requests can result in negative
values. In the system model, the requests assigned with negative lifetime values are
converted into positive values of one millisecond.

To validate the trends shown in the simulations, codes generated by both the [7, 3] and
[15, 4] simplex code matrices were tested. The incoming request rates for each file were
uniformly distributed with a total incoming request rate rinctotal = t, where t = 2k−1, for
both codes.

The graphs in figure 5 show the mean service rates rs and concurrent requests cr
of 10 simulations for each σ ∈ 0, 0.1, ..., 1.0, with a duration of 5 minutes for each
simulation. Both the regular and asynchronous batch code models were generated by
the [7, 3] simplex matrix, using gap time scales gfi = 0.75 for i ∈ 1, 2, 3, resulting in a
total incoming request rate rinctotal = t = 2k−1 = 4. The asynchronous models in the
simulations had a skip distance of d = 8.

While it can be seen from figure 5 that the regular batch code model had a significant
drop in its service rate rsb , which was to be expected due to some requests in a batch
finishing sooner than others, the asynchronous model also displayed a drop in the mean
rate of requests served per second rsa . As previously stated, using the normal distribution
to generate lifetimes can result in negative lifetime values when σ > 0.3. This, in turn,
effects the real mean lifetime of the requests, shifting it from µ = 1, which should be
the mean using normal distribution, to a larger value, as noted by "Mean lifetime" in
table 7. This directly affects the rate of requests served that the models could achieve
if they supported mean concurrent requests equal to the total rate of incoming requests
(cr = rinctotal). This theoretical limit can be seen in the figure 5a and table 7, denoted
as "Expected". The increased performance in service rates for the asynchronous model
compared to the regular batch code model is denoted in table 7 as "Ratio", calculated as
rsa
rsb

.

30

(a) Service rate rs (b) Concurrent requests cr

Figure 5. Mean service rate rs and mean concurrent requests cr with increased σ

σ Mean lifetime Expected rsa rsb Ratio (%)
0.0 1.0 4.0 3.935 3.904 101%
0.1 1.0 4.0 3.887 3.628 107%
0.2 1.0 4.0 3.921 3.305 119%
0.3 1.0 4.0 3.932 3.071 128%
0.4 1.0007 3.997 3.905 2.829 138%
0.5 1.0045 3.982 3.848 2.627 146%
0.6 1.0121 3.952 3.810 2.499 152%
0.7 1.025 3.902 3.801 2.299 165%
0.8 1.0415 3.841 3.769 2.230 169%
0.9 1.0622 3.766 3.701 2.073 179%
1.0 1.0856 3.685 3.601 1.946 185%

Table 7. Service rates per increased σ for both models generated by the [7, 3] simplex
matrix

The same simulations were repeated using the [15, 4] simplex matrix to generate the
codes, with a gap time scales gfi = 0.5 for i ∈ 1, 2, 3, 4, resulting in a total incoming
rate rinctotal = 8 for the requests. The asynchronous also had an assigned a skip distance
of d = 8. A total of 10 simulations with a duration of 5 minutes each were run again
using the normal distribution with µ = 1 for each σ ∈ 0, 0.1, ..., 1.0 to generate request
lifetimes.

31

(a) Service rate rs (b) Concurrent requests cr

Figure 6. Mean service rate rs and mean concurrent requests cr using constant lifetime
with increased σ

σ Mean lifetime Expected rsa rsb Ratio (%)
0.0 1.0 8.0 7.739 7.872 98%
0.1 1.0 8.0 7.759 6.998 111%
0.2 1.0 8.0 7.752 6.247 124%
0.3 1.0 8.0 7.722 5.599 138%
0.4 1.0007 7.994 7.709 5.059 152%
0.5 1.0045 7.964 7.620 4.673 163%
0.6 1.0121 7.904 7.554 4.291 176%
0.7 1.025 7.805 7.423 3.979 187%
0.8 1.0415 7.681 7.394 3.747 197%
0.9 1.0622 7.532 7.152 3.542 202%
1.0 1.0856 7.369 7.075 3.319 213%

Table 8. Service rates per increased σ for both models generated by the [15, 4] simplex
matrix

As can be seen from the graphs (figures 5 and 6), when the variance of incoming
request lifetimes increases, the asynchronous model greatly outperforms the regular
batch code model. This is most obvious when comparing the amount of mean concurrent
requests cra and crb supported by the models. While the mean values of cra do not show
a significant change as the σ increases, the concurrent requests crb for the regular batch
codes show a significant drop. The exact values for cra and crb and the ratio cra

crb
for both

rounds of simulations are given in table 9.

32

[7, 3] [15, 4]
σ cra crb Ratio (%) cra crb Ratio (%)

0.0 3.943 3.910 101% 7.755 7.885 98%
0.1 3.878 3.612 107% 7.728 6.972 111%
0.2 3.899 3.300 118% 7.703 6.225 124%
0.3 3.909 3.042 129% 7.691 5.597 137%
0.4 3.884 2.823 138% 7.672 5.077 151%
0.5 3.860 2.633 147% 7.676 4.670 164%
0.6 3.857 2.515 153% 7.664 4.342 177%
0.7 3.865 2.361 164% 7.630 4.070 187%
0.8 3.902 2.288 171% 7.611 3.917 194%
0.9 3.903 2.197 178% 7.612 3.721 205%
1.0 3.911 2.157 181% 7.636 3.563 214%

Table 9. Current requests for both batch code models generated by the [7, 3] and [15, 4]
simplex matrices

4.4 Exponential Distribution
We also simulate a system where the lifetime of the requests is given by the exponential
distribution. Such a distribution better describes the real-life behavior of the storage
systems. The following simulations were made using the same setups as in section
4.2, with the exception of the request lifetime l, which was generated for each request
using the exponential distribution with b = 1. As in section 4.2, the simulated codes
were generated by [n, k] simplex matrices, used request gap time scales gfi = 1

t
k for

i ∈ 1, ..., k, where t = 2k−1, resulting in rinctotal = t. The asynchronous model also used
a skip distance of d = 8.

The mean values for the service rate rs, concurrent requests cr and request queue
times tq of 10 simulations, with a duration of 5 minutes each, of each code can be seen
in table 10.

Regular batch codes Asynchronous batch codes
[n, k] rs cr tq rs cr tq

[7, 3] 1.933 1.915 39.580 3.829 3.820 4.292
[15, 4] 2.951 2.954 47.937 7.616 7.550 4.445
[31, 5] 4.789 4.754 52.564 14.183 14.042 8.978

Table 10. Mean rs, cr and tq for both batch code models using exponential request
lifetimes

33

As can be seen from table 10, when generating request lifetimes using the exponential
distribution, the difference in performance of the code models is significant. It can be
seen that when using the smaller [7, 3] simplex matrix to generate the code models, the
asynchronous model offers a 98% increase in the mean service rate rs compared to
the regular batch code model, but using the [31, 5] simplex matrix to generate larger
codes, the improvement of service rates increases to 196%. This can be explained by
the increased batch size t of the [31, 5, 16] batch code, which increases the probability
of having requests with greatly varied lifetimes in the same batch, as can be seen in the
following example 4.1.

Example 4.1. The maximum lifetime difference l∆ of two request lifetimes in a batch,
when using the exponential distribution with b = 1. Calculated for regular batch codes
generated by [n, k] simplex codes as the mean maximum l∆ of 100000 batches:

[n, k] Batch size l∆

[7, 3] 4 1.8349s
[15, 4] 8 2.5835s
[31, 5] 16 3.3203s

The lifetime difference l∆ can be used to explain the significant drop in the service
rate rs of the regular batch code model as seen in table 10. l∆ shows the mean time that
is spent waiting for the entire batch to be finished serving while a recovery set, which
could be immediately used to serve another request in the asynchronous model, remains
unused by the regular batch code model.

While it can also be seen that using larger simplex codes for the asynchronous
model causes an increased difference between the mean concurrent requests rs and the
theoretical maximum concurrent requests t = 2k−1, this is likely due to the increased
amount of blocking configurations of requests. The difference t− rs could possibly be
reduced by using a skip distance d > 8, which was used for these simulations.

4.5 Requested File Distribution
To visualize the differences between both the regular and asynchronous batch code
models and the regular replication based storage models, as well as test the effects of all
possible distributions of incoming request rates per file, simulations of the regular and
asynchronous batch codes generated by the [7, 3] simplex code matrix were made. The
batch code models were compared to a replication based storage model, defined by the
matrix G given in example 3.1, which uses a total of n = 6 servers to store k = 3 files
by replicating each file on two servers.

For both batch code models, the total incoming rate of requests is rinctotal = 4 with
individual incoming rates rincfi for i ∈ 1, 2, 3 taken from the range 0, 0.5, 1, ..., 4. In

34

other words, all individual incoming rate configurations per file rincfi , which add up to
a total incoming rate rinctotal = 4, were simulated for both the batch code models. As
the replication based storage model can support up to 2 concurrent requests for any file
f1, f2, f3, the incoming rates rincfi for each file in the replication model are taken from
the range 0, 0.5, ..., 2, with a total incoming rate rinctotal ∈ 2, 2.5, ..., 6.

For all of the simulations, the request lifetimes were generated using the exponential
distribution with b = 1, as this is most indicative of a real-world scenario.

In the following figures 7a and 7b, each axis represents the individual service rates
rsfi for each file, and the position (p1, p2, p3) of each dot is calculated as pi = rincfi · re
for i ∈ 1, 2, 3 for each code model, where re is the service efficiency rate re = rs

rinctotal
.

The values for (p1, p2, p3) are calculated using the mean rates of a total of 10 simulations,
with a duration of 5 minutes, for each incoming file rate configuration for each code and
are colored based on the model they represent, blue for the asynchronous, red for regular
batch and green for the replication model.

(a) Angled view (b) Side view

Figure 7. Requested file distributions for the replication (green), asynchronous (blue)
and regular batch code (red) models

It can be seen in the figure 7 that the distribution of incoming request rates per file
does not have any significant effect on the performance of either batch code model in
terms of the service rate rs. This is apparent from figure 7b, as the dots representing the
models form nearly perfectly flat plains in the graph. If there were certain configurations
of incoming request rates rincfi that caused a drop in the service rate rs, regions matching
those configurations would display some curvature in the figure 7b.

As the position of each dot in the graphs (fig. 7) is determined by the service efficiency
rate re, the distance of any dot from the point (0, 0, 0) is indicative of the service rate rs

35

that the codes achieve using their given incoming request rates per file rincfi . As is visible
from the graphs, using exponential request lifetimes for the simulations, the replication
model outperforms the regular batch code model in each configuration of the incoming
request rates rincfi . This is due to the replication model always using one server to serve
a request, unlike the batch code models, and not suffering from the performance drop
caused by the variance of request lifetimes, as the regular batch code model does.

Similarly, the positions of the two plains connecting the dots which represent both
the batch code models shows that the 98% increase in performance in favor of the
asynchronous model, as shown in section 4.4, holds for all configurations of incoming
request rates.

Comparing the replication model to the asynchronous batch code model indicates
that if the rates rincfi are more uniformly distributed, then the replication based model
does offer an increased service rate rs compared to the asynchronous model while using
one less server for the storage system. However it can be seen from the figures 7a, 7b
that there are large regions depicting areas where the incoming rates are in the range
4 ≥ rincfi > 2 for any file f1, f2, f3, where the asynchronous model outperforms the
replication based storage model.

4.6 Summary of the Analysis
As it was observed in [6], varied lifetimes of requests to storage systems using the regular
batch code model will lead to a suboptimal performance of the storage system. This
is demonstrated by the drops in the mean service rates rs, concurrent requests cr and
increased mean queue times tq for the incoming requests as shown in section 4.3. The
only two cases in which the regular batch code model displayed an increased service
rate rs compared to the corresponding asynchronous models, were the codes generated
by the [15, 4] and [31, 5] simplex matrices with a constant incoming request lifetime
of l = 1, as demonstrated in section 4.2. However, as constant request lifetimes are
not indicative of a real-world storage system, the results of section 4.4, where request
lifetimes follow the exponential distribution using b = 1, should be used to compare the
two batch code models. From these results it can be seen that in a more realistic scenario,
the asynchronous batch code model will always be, by a vast margin, superior to the
regular model in regards to the service rates achieved by the two models.

From the results of section 4.5 it can be seen from the nearly perfectly flat plains
representing the regular and asynchronous batch code models generated by the [7, 3]
simplex matrix in the graph in fig. 7b, that the distribution of incoming request rates
rincfi for the files f1, f2, f3 does not affect the service rates of either batch code model.

As noted in section 4.5, if the incoming rates are in the range 4 ≥ rincfi > 2 for
any file f1, f2, f3, the asynchronous batch code model has an increased service rate rs
compared to the replication model used in the simulations of section 4.5. As this is the
case, it can be said that if a storage system experiences periods of increased incoming

36

rates for any of the stored files, the asynchronous batch code model could also be a
superior alternative to the replication based storage model used in the simulations.

37

5 Conclusion
The asynchronous batch code model for storage systems was introduced as an variation
of the regular batch code model, which allows for parallel recovery of items from a
coded database in an asynchronous manner, increasing the service rate of the system
when dealing with requests of varying duration. In this thesis, to study the differences in
performance of the two models, a system prototype was developed which was used to
run simulations of both models. A detailed description of the prototype is provided in
the thesis, including algorithms and examples of the simulation processes, highlighting
the differences of the models.

To compare the two models, simulations of storage systems generated by the same
[n, k] simplex matrices using either the regular or asynchronous batch code model
were performed. The models were analyzed using multiple distributions of request
service time, as well as varying rates for incoming requests. In addition, to improve
the achievable service rates by increasing the average amount of concurrent requests
achieved by the asynchronous model, the skip distance parameter was introduced. The
effects on performance of this modification of the model were analyzed.

Finally, comparisons are made to a non-coded, replication based storage model,
providing examples of conditions, under which the asynchronous model would be an
advantageous alternative to the replication based storage system.

38

6 Acknowledgements
First and foremost, I would like to thank my supervisors Vitaly Skachek and Eldho
Kuppamala Puthenpurayil Thomas for their patience, support and guidance throughout
the making of this thesis.

The work on this thesis was supported by the Estonian Research Council grant
PRG49 and the European Regional Development Fund through Mobilitas Pluss grant
MOBJD246. I am also grateful to the IT Academy for the specialization stipend which
was incredibly helpful throughout my Master’s studies.

39

References
[1] Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai “Batch codes and their applications,”

in Proceedings of the 36th ACM Symposium on Theory of Computing (STOC), June
2004, Chicago, IL.

[2] V. Skachek “Batch and PIR Codes and Their Connections to Locally Repairable
Codes” in Network Coding and Subspace Designs, Editors: M. Greferath, M.
Pavcevic, M.A. Vazquez-Castro, N. Silberstein, Springer 2018.

[3] H. Lipmaa, V. Skachek “Linear Batch Codes” in Proceedings 4th International
Castle Meeting on Coding Theory and Applications (ICMCTA), Palmela, Portugal,
Sept. 2014

[4] H. Zhang, V. Skachek “Bounds for Batch Codes with Restricted Query Size” in Pro-
ceedings IEEE International Symposium on Information Theory (ISIT), Barcelona,
Spain, July 2016

[5] A. Vardy, E. Yaakobi “Constructions of batch codes with near-optimal redundancy”
in IEEE International Symposium on Information Theory, Barcelona, Spain, Aug.
2016

[6] A.-E. Riet, V. Skachek, E. K. Thomas “Asynchronous Batch and PIR Codes
from Hypergraphs” in Proceedings IEEE Information Theory Workshop (ITW),
Guangzhou, China, Sept. 2018

[7] Z. Wang, H. M. Kiah, Y. Cassuto “Optimal Binary Switch Codes with Small Query
Size” in IEEE International Symposium on Information Theory (ISIT), Hong Kong,
China, Oct. 2015

[8] The Python Standard Library Documentation itertools https://docs.
python.org/2/library/itertools.html#itertools.combinations_with_
replacement, Aug. 2019

[9] NumPy Python Library Documentation numpy.random https://docs.scipy.
org/doc/numpy-1.14.1/reference/routines.random.html, Aug. 2019

[10] C. Forbes, M. Evans, N. Hastings, B. Peacock “Statistical Distributions Fourth
Edition” , May 2011

[11] Y. Zhang, E. Yaakobi, T. Etzion “Bounds on the Length of Functional PIR and
Batch codes” arXiv:1901.01605v2, Apr. 2019

[12] R. M. Roth “Introduction to Coding Theory ” Cambridge University Press, March
2006

40

https://docs.python.org/2/library/itertools.html#itertools.combinations_with_replacement
https://docs.python.org/2/library/itertools.html#itertools.combinations_with_replacement
https://docs.python.org/2/library/itertools.html#itertools.combinations_with_replacement
https://docs.scipy.org/doc/numpy-1.14.1/reference/routines.random.html
https://docs.scipy.org/doc/numpy-1.14.1/reference/routines.random.html

7 Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Sander Mikelsaar,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Empirical Study of Asynchronous Batch Codes,

supervised by Vitaly Skachek and Eldho Kuppamala Puthenpurayil Thomas.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Sander Mikelsaar 14/08/2019

41

	Introduction
	Background
	Notation
	Batch Codes
	Linear Batch Codes
	Asynchronous Batch Codes
	Simplex Codes
	Statistical Distributions
	Poisson Distribution
	Exponential Distribution
	Normal (Gaussian) Distribution

	Implementation
	Codes
	Matrix
	Recovery Sets
	Batch Table
	Request Lifetime and Gap Distributions

	Requests
	Running Simulations
	System Prototype and Methods for Analysis

	Results
	Skip Distance
	Constant Request Lifetime
	Increased Variance of Request Lifetimes
	Exponential Distribution
	Requested File Distribution
	Summary of the Analysis

	Conclusion
	Acknowledgements
	Licence

