

UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Computer Science

Computer Science Curriculum

Careelika Liisi Kuik

Multimodal Route Planning Algorithm for Encouraging

the Usage of Different Means of Public

Transportation

Master’s Thesis (30 ECTS)

Supervisor(s): Amnir Hadachi, PhD

 Tartu 2019

2

Multimodal Route Planning Algorithm for Encouraging the Usage of Different

Means of Public Transportation

Abstract:

The ongoing urbanization and the growth of the cities is leading to the increase of complexity of the

route planning in urban areas. Often it is not possible or feasible to travel from one location to another

using only one mode of transportation. Moreover, in case of specific preferences like taking a

wheelchair, baby carriage or a bicycle in the mean of public transport, a specific type of mean of

transport (e.g. wheelchair-accessible bus) is needed. However, the existing routing engines tend to

heavily prefer the first public transport trip of any mean of public transport that meets the spatiotemporal

conditions instead of sticking to user’s selected modes.

The aim of this thesis is to propose an alternative method for multimodal route planning, using only the

modes and means of public transport that are allowed by the user.

 In this thesis work an alternative method for multimodal fastest pathfinding with use of public

transportation is developed. It is able to propose competitive alternatives to the results of the existing

routing engines at the same time using only the modes and means of public transport that are allowed

by the user.

Keywords:

Multimodal routing, transportation systems, public transport

CERCS: P 170

3

Multimodaalne teekonnaplaneerimise algoritm erisuguste

ühistranspordivahendite kasutamise soodustamiseks

Lühikokkuvõte:

Jätkuv linnastumine ja linnade kasv muudab ka linnasisese teekonna planeerimise aina keerulisemaks..

Tihti pole võimalik reisida ühest pubktist teise, kasutades ainult üht transpordiliiki. Veelgi enam, juhul,

kui kasutajal on spetsiifilisi eelistusi, nagu soov võtta ühistransporti kaasa ratastool, lapsevanker või

jalgratas, kindlat tüüpi ühistranspordivahendi kasutamine (näiteks ratastoolisõbralik buss) on tarvilik.

Sellest olenemata kalduvad olemasolevad teekonnaplaneerimise mootorid suurel määral eelistama

esimest suvalist tüüpi ühistranspordi reisi, kui see vastab aegruumilistele nõudmistele, selle asemel, et

kinni pidada kasutaja poolt valitud ühistranspordi liikidest.

Käesoleva lõputöö eesmärk on pakkuda välja alternatiivne meetod multimodaalseks

teekonnaplaneerimiseks, mis kasutaks ainult neid ühistranspordiliike, mis on kasutaja poolt lubatud.

Selles lõputöösalternatiivne kiireima multimodaalse teekonna leidmise meetod, mis kasutab

ühistransporti, on arendatud. See on võimelinepakkuma konkurentsivõimelisi alternative olemasolevate

teekonnaleidmise otsingumootorite poolt pakutud lahendustele, samal ajal kasutades vaid neid

ühistranspordiliike, mis on kasutaja poolt lubatud.

Võtmesõnad:

Multimodaalse teekonna leidmine, transpordisüsteemid, ühistransport

CERCS: P 170

4

Table of Contents

1. Introduction .. 7

1.1 General view ... 7

1.2 Objectives .. 8

1.3 Contributions ... 8

1.4 Road Map .. 8

2. Background and Related Work .. 10

2.1 Introduction ... 10

2.2 Key Terms – Definitions ... 10

2.3 Related Work... 10

2.3.1 Multimodal pathfinding ... 10

2.3.2 Conclusion ... 12

3. System Architecture ... 13

3.1 Introduction ... 13

3.2 The General Overview of the Architecture ... 13

3.3 Pathfinding in Private Mode ... 14

3.3.1 Pre-Processing OSM Data ... 14

3.3.2 Storing the Data for Private Modes ... 15

3.3.3 The Algorithm for Pathfinding in Private Mode.. 16

3.4 Pathfinding in Public Mode... 19

3.4.1 GTFS Data and Its Structure .. 19

3.4.2 The Algorithm for Pathfinding in Public Mode ... 21

3.4.3 Constructing Multimodal Trajectories ... 23

3.4.4 Visualization Process ... 23

4. Testing, Results and Analyses ... 25

4.1 Introduction ... 25

4.2 Test Strategy .. 25

5

4.3 Test Results ... 25

4.3.1 The Average Calculation Time .. 25

4.3.2 Comparison with Google, OSRM and GraphHopper .. 26

4.3.3 Testing in the real environment ... 30

4.3.4 Multimodality Comparison .. 31

5. Conclusion and Future Work ... 34

References .. 35

Appendix 1 ... 37

Appendix 2 ... 38

I. License .. 40

6

List of Abbreviations

ITS

OSM

SQL

XML

API

URL

CSV

PL/SQL

GTFS

Intelligent Transportation Systems

OpenStreetMap

Structured Query Language

Extensible Markup Language

Application Programming Interface

Uniform Resource Locator

Comma Separated Values

Procedural Language/Structured Query

Language

General Transit Feed Specification

7

1. Introduction

1.1 General view

With the ever increasing urbanization and the growth of the size of the cities and their

population, finding fastest and the most comfortable traveling trajectory from one location to

another has become more important than ever before. The more complex is the infrastructure

of the environment, the more choices for planning the trajectory there are. Often it is not

possible or feasible to travel from one location to another using only one mode of

transportation. Moreover, in case of specific preferences like taking a wheelchair, baby carriage

or a bicycle in the mean of public transport, a specific type of mean of transport (e.g.

wheelchair-accessible bus) is needed. However, routing engines tend to heavily prefer the first

public transport trip of any mean of public transport that meets the spatiotemporal conditions

instead of sticking to user’s selected modes. For example, user can select train as preferred

mean of transport while searching for a route using Google’s routing, but if according to

Google’s routing’s calculations a trip of some other mean of transport (e.g. a bus) seems to be

faster, the faster trip will be displayed to the user. Having the fastest trip is the most important

in most cases, however, in case people have a strong need to use a certain type of mean of

transport (e.g. need for a wheelchair-accessible mean of transport), they are ready to wait for

the first trip of the preferred public transport mean instead. For example, in the case of Estonia,

all the trains used by Elron are wheelchair-accessible and also easily accessible for people with

baby carriers and bicycles [1]. Thus trains are a secure choice for people with such needs

whereas no bus, tram nor trolley line in Tallinn can guarantee the same. In this case the user

who for some reason needed to travel in train, still needs to make alternative queries or plan

the trip manually in order to achieve the desired result. For this reason, there is a need for a

routing service, that instead of modifying user’s input in the way suitable for the routing engine,

would give the user the results for the exact query made. Furthermore, when using public

transport, the best paths between the start location and end locations of the journey and the

public transport stops also need to be found. Also here the modes preferred by the user need to

be taken into account in order to provide the user with the most suitable solution for the current

situation. This converts the problem into multimodal routing problem. The challenge of finding

the fastest path with the closest public transport trip between the start and the end location at

the same time using only the modes and means of public transport that allowed by the user, is

the topic of this thesis.

8

1.2 Objectives

The main purpose of this thesis is to provide an alternative method for multimodal fastest

pathfinding with use of public transportation.

To achieve the main objective of this thesis, there is a need to extract and process the source

data for private and public transportation modes and create an algorithm that can compose

multimodal trajectories. In order to do that, it uses several algorithms:

 An algorithm for pathfinding in private modes

 An algorithm for pathfinding in public modes

 An algorithm for combining the unimodal trajectories into multimodal trajectories

In the process of finding the best trajectory user preferences are taken into account as

restrictions for the trajectory to be found.

1.3 Contributions

The contributions of this thesis can be resumed as follows:

 Providing a good practice for parsing, processing and inserting the road data from OSM

files to the database

 Creation of a modified algorithm based on A Star for pathfinding in private modes

 Creation of an algorithm for finding the best public transport trip in the modes allowed

by the user

 Creation of an algorithm for combining and merging the unimodal trajectories into

multimodal trajectories

As a result, the method finds the best multimodal trajectory for the given source and end

location, taking into account the data provided by the user.

1.4 Road Map

This paper begins with an introductory chapter 1. Firstly, its purpose is to introduce and give a

general view of the topic. Secondly, the objectives and limitations of the current work are listed.

Next, the contribution made by this thesis to the general topic is described. The chapter

concludes with a road map listing all the parts of this paper.

The second chapter of this paper aims to describe the state-of-art of the current topic and the

related works that have been performed until the current moment. Additionally, the list of the

9

definitions used in this paper is given. The sub-chapters of the second paragraph are

introduction, key terms-definitions, related work and conclusion.

The third chapter consists of the description of system architecture and contribution. More

precisely this chapter firstly states the particular problem covered in this paper, describes the

system design and architecture and describes the methodology in details.

The fourth chapter presents the results of using the proposed methodology and provides an

analyses to the results.

The final, fifth chapter makes a conclusion of the work and states the perspectives for possible

future work.

Additionally, abstract, table of contents, acknowledgement, bibliography, appendix and licence

are added to the paper.

10

2. Background and Related Work

2.1 Introduction

This chapter covers state of the art related to the thesis topic. Therefore, the chapter is divided

into two sections. Firstly, the key terms and definitions used in the context of this work are

provided. Secondly, the related work concerning multimodal pathfinding is described. As there

are many more algorithms for pathfinding in general than described in this section, only the

ones that have similar traits to the method proposed in this thesis, are introduced.

2.2 Key Terms – Definitions

Next, key terms and definitions are listed:

a) Node: is defined as a pair of x and y coordinates (longitude and latitude) on planar

graph and is used to provide localization on the map.

b) Way: is defined as an edge that connects two nodes (source and target) on planar graph

and is used to depict a road segment in form of polyline on the map.

c) Trajectory (also path): is defined as a collection of one or more ways in a sequential

order. It starts with the source node and ends with the target node on planar graph. It is

used to depict directed sequence of ways on a map.

d) Multitrajectory: is defined as a collection of one or more trajectories in a sequential

order. It starts with the source node and ends with the target node on planar graph. It is

used to depict sequence of trajectories on a map.

2.3 Related Work

2.3.1 Multimodal pathfinding

Finding shortest path in graph where each edge has got a distance and a cost is considered a

NP-hard problem. [2] This also applies to finding the fastest path in graph. Tsolkas et al. [3]

used short-time history and estimators in their multimodal dynamic routing algorithm. [4] and

[3] use historical statistics data for estimating car mode travel time. However, this kind of

information is not freely available and can result costly as it needs to be kept updated in order

to stay timely. Besides, collecting and storing travelling history can be complicated for various

reasons. For this reason, in our proposed method, no historical data is used. [3] uses Bayesian

learning techniques to analyze the data from users. However, users have to fill in a profile

before starting to use the service. Additionally, this approach only performs significantly better

in cold start. [3] There are some approaches described in [4], [6] and [3] that require filling in

11

a profile before usage. [6] takes into account user preferences like the number of modal

transfers, preferred modes, expected travel time, delays at mode and arc switching points,

viability of the sequence of the used modes are taken into account in this multimodal shortest

path algorithm. Using small amount of user preferences like preferred modes helps to decrease

the overall computing time and simplifies finding the most suitable trajectories for the user.

For this reason, user inserted allowed modes are used in our proposed method as well. In this

aforementioned approach a network consisting of subnetworks in different modes, a

multimodal graph, needs to be constructed before executing the algorithm. The approach of

multimodal graph is also used in [7] and [8]. However, constructing a multimodal graph

decreases the speed of algorithm and demands more storage space. Moreover, performing

large-scale construction of multimodal graph justifies itself only if the effort of finding

neighbouring nodes and ways and computing their costs only on demand is greater than pre-

constructing all the graph. However, more often using user preferences and decreasing the

bounds of the network to be processed instead of extracting the data for e.g. of all the city leads

to decrease of the computing time. For these reason, combining different network layers into

one multimodal network is not used in our proposed method. Secondly, in [6] no pre-processing

for the data is done. This leads to a bottle neck in data reading and compiling that increases

drastically with addition of each additional mode. To avoid this downside, pre/processing of

the data is done in our proposed method. There are many approaches like [7], [8], [9], [10],

[11] and [12], where Dijkstra’s algorithm or a modified version of it is used. However, while

ensuring the answer with the best cost, using Dijkstra’s algorithm can lead to unreasonably

high computing time due to the number of processed nodes. To avoid this downside, Dijkstra’s

algorithm is not used in our proposed method. There are also some approaches like [13] that

use A Star algorithm or its modification. A Star takes into account not only the cost of the path

from source node to the current node, but also the remaining estimated cost from the current

node to the target node. By doing so, using A Star with competent heuristics leads to decreasing

the amount of nodes to be processed while still finding the answer that has the smallest cost.

For this reason, a modification of A Star algorithm is used in our proposed method. [14] uses

dynamic programming-based algorithm with nested itinerary planning. Nested public transport

trips are also used by [12]. While this kind of approach is rather fast and compact for finding

intermediate trips, this approach depends greatly on the timeliness of the public transport. For

e.g. if bus on one trip arrives 5 minutes late, it is probable that the user misses the bus of the

subsequent trip, etc. For example, in Tallinn the departure times in the reality are officially

allowed to differ up to 5 minutes from the scheduled departure times. As a consequence,

12

ensuring the necessary buffer between the subsequent trips immensely decreases the accuracy

of the estimated travel time making it pointless providing the expected travel time in case of

shorter distances. For this reason, in our proposed method, instead of using the approach of

nested subsequent public transport trips, only one public transport trip is allowed per trajectory.

There are also approaches that take into account vehicles’ driving events, train models with the

gathered data and later use the modes to make estimations more precise. This kind of approach

is used by [15]. However, such models cover only the most frequent cases and the results for

corner cases tend to be inaccurate. Furthermore, as discussed earlier, the problem of the

availability of the data arises. For these reasons, using trainable models are not used in our

proposed method.

2.3.2 Conclusion

There is a number of works related to the current topic, but all of them have downsides that

can be surmounted. The method described in the current paper aims to propose a solution that

uses both public network data from peatus.ee and private network data from OSM to find the

fastest feasible multimodal path between source and target locations. Furthermore, for this

method an alternative algorithm for finding the closest public transport trip is developed. In

addition, multimodal combinations that are not offered in the related works, like using precisely

only the means of public transport that are allowed by the user, without using any hierarchy,

replacement or nesting of subsequent trips, are provided.

13

3. System Architecture

3.1 Introduction

In the following chapter the system design and architecture of our proposed method is

described. The chapter is divided into subchapters, so that each logical part is described in a

separate subsection. In each subchapter the purpose and structure of the logical part is

described. Furthermore, the architectural choices, challenges and constraints are described.

3.2 The General Overview of the Architecture

To begin with, the general schema of the system architecture is shown on figure 1.

Figure 1. The system architecture.

The architecture of the system consists of data sources, an algorithm for extracting and

converting the necessary data from OSM, Additionally, an algorithm for pathfinding in

14

private mode and an algorithm for pathfinding in public mode are included. Multimodal

trajectories are combined and constructed using a separate algorithm. Finally, there is an

algorithm for writing results to a GeoJSON file and an algorithm for visualization on a web

map.

3.3 Pathfinding in Private Mode

3.3.1 Pre-Processing OSM Data

For pathfinding in private mode, data from OSM is used. OSM provides free and open data

that is freely accessible for anybody for downloading, modification and use. [16] The data can

be downloaded from OSM database in OSM XML format. OSM XML format is a data format

derived from XML that has objects like nodes, ways and relations to effectively store the road

data. [17] The structure of a sample OSM file can be seen on figure 2.

There are several tools for extracting and pre-processing OSM files freely available. JOSM is

an open source extensible editor for OSM files that supports loading and editing OSM data.

[18] However, JOSM is too slow and heavy weight if only the extraction of data is needed.

Osmosis is a command line Java application that processes OSM data. However, using Osmosis

is uncomfortable as for installing Osmosis in Windows operating system a manual fix needs to

be added. [19] Additionally, for processing the data the configuration should be modified in

order to avoid having unnecessary data included or excluded during the process. When using

PostgreSQL database with PostGIS and pgrouting a few more options are available.

Osm2postgresql, Osm2pgrouting and Osm2pgsql all enable converting OSM data into a

database that is compatible with PostgreSQL. [20][21][22] However, all of them are open

source projects that lack necessary updated documentation for configuring the configuration

15

file and contain unfixed bugs that result in inaccurate data, data loss and mistakes.

Figure 2. An example of an OSM file.

Additionally, osm2pgsql, osm2pgrouting and osm2postgresql are only meant for usage with

Linux operating system. For these reasons, a separate algorithm named XMLParser was created

for extracting OSM data and inserting it to the database for our proposed method.

XMLParser takes an OSM file, database name and credentials as an input. It iterates over the

XML object tree using dom4j framework. Dom4j is an open source XML framework for Java

that enables reading, writing and parsing XML documents. [23] Next, it detects the types of

the XML elements and creates the corresponding suitable objects for insertion in the database.

Finally, it inserts the objects into the database.

3.3.2 Storing the Data for Private Modes

The data for private modes is stored in a set of PostgreSQL database tables. XMLParser does

not distinguish modes and inserts the data for all modes in common tables. In order to optimize

16

the workload and size of the database tables and simplify the queries made to the database

tables, there are separate tables for each mode. The scripts used for creating the database tables

and distributing the data for each mode can be found in appendix 1.

3.3.3 The Algorithm for Pathfinding in Private Mode

The algorithm for finding the fastest path in private mode takes start location and destination

location, time of departure and mode as an input. The input location data are two pairs

formatted as latitude, longitude. If no time of departure is given, the current date and time is

used.

Firstly, the modes inserted by the user are detected. For each private mode a query to extract

the road data for the mode is executed. The inserted start and end latitude and longitude pairs

are taken into account as the bounds of the queried region. The minimum and maximum latitude

and longitude bounds are widened by 0.02 to each direction in order to include the most

probable roads for the shortest path. The data extracted from the database is located in arrays

and maps as nodes, ways and restrictions.

Secondly, Haversine distance between the source and target location is calculated and

analyzed. Haversine formula is used when calculating the distance between two points on the

Earth’s surface specified in longitude and latitude [24]. The Haversine formula can be seen on

figure 3.

Figure 3. The Haversine formula. D = distance between two points (󠇈Ψ, φ), r = Earth’s radius [24]

 For each of the private modes there are constraints about the minimal allowed length of the

trajectory travelled using this mode. The shortest path for car mode is only computed if

Haversine distance between the two points is at least 1000 meters. The shortest path in bicycle

mode is computed if Haversine distance between the two points is at least 500 meters. If

Haversine distance between the two points is shorter than 100 meters the direct shortcut using

dotted line is given instead of using the algorithm for searching the shortest path. The reason

for this action is that as the road data in the database is a sparse data and does not include every

possible path, the probability of finding a suitable feasible path for a distance shorter than 100

meters is quite low. Instead, in most cases it is possible to traverse this path directly without

using any marked road. The direct shortcut with dotted line is used between the source and

17

target location inserted by the user and correspondingly the closest start and end points of the

trajectory computed by the shortest path algorithm as well to give the user as accurate estimated

trajectory and travel time as possible. In all cases the path marked with dotted line is considered

to be of freestyle mode that is a type of pedestrian mode without using roads. The speed for

traversing segments in this mode is estimated to be 3 km/h.

If Haversine distance between the source and target locations is feasible, the shortest path

between the two locations is found using a special algorithm. In order to find the fastest path

between the start and end locations, a modified version of A Star algorithm is used with the

extracted data. The pseudo code for the original A Star algorithm can be seen in figure 4.

Figure 4. The pseudo code for A Star algorithm. [25]

The pseudo code for the algorithm can be seen in figure 5.

18

Figure 5. The pseudo code for finding best path in private transport mode.

 A Star algorithm uses two different costs in finding the path with the smallest cost. As the first

cost it uses the cost from the source location of the path to the current node under the

consideration. For each processed node it keeps in a separate map the cost from the source

location. As the second cost it uses an estimated cost from the current node under the

consideration to the target location of the path. At every iteration the corresponding costs are

updated.

In the modified version of A Star used in our proposed method, the search starts with extracting

all road segments that have the start node as their starting point. Next, the segments that are not

allowed to be traversed due to some kind of restriction are filtered out. However, restrictions

are not applied in pedestrian mode as they are intended for marking traffic regulations for

vehicles. For each of the remaining segments in this result set the cost from start to the target

node of the segment is calculated. In case car mode is used, the cost is defined as following:

travel time of the segment is extracted from the list of travel times calculated taking into

account the speed limits of the roads. Next, the estimated travel time to the target node of the

path to be found is calculated. These two costs summed into one mark the priority of the

candidate path. In other cases, the distance between the two nodes is used in calculating the

costs to boost the performance. This way the algorithm uses the main core of A Star algorithm

19

described earlier. In all cases it is clear that the smaller the cost, the shorter the estimated travel

time.

At each iteration the algorithm extends the path that minimizes the cost of the path between the

source and the current node and the estimated cost between the current node and the target

node. The cost in this case is the estimated travel time for this path. If the algorithm reaches

dead end and there are no candidate paths left in the priority queue, it returns null value and

the next pair of the nearest source and target nodes are fed to the algorithm. If the algorithm

reaches to the target node, it returns the path and in case of car mode also the list of the way

segments. This is important for the visualization process. As one pair of source and target node

can define multiple different road segments, the correct way needs to be specified. Moreover,

in case the road segment consists of several smaller segments, the correct way needs to be

specified for extracting the right set of intermediate segments in order to visualize the road

segment in its correct form, e.g. as a curve instead of a straight line.

3.4 Pathfinding in Public Mode

3.4.1 GTFS Data and Its Structure

Although, some amount of public transport data (stops, routes, service IDs) could be extracted

from OSM server, it is not enough for time-dependent routing. For this reason, GTFS (General

Transit Feed Specification) [26] data is used for finding trajectories in public mode in our

proposed method. GTFS is an open standard format for exchanging public transportation

schedule, geographic and fare information. [26] GTFS standard was developed by Google. [27]

GTFS standard has become a generally approved format for publishing public transport data.

It can be published by public transport agencies as a feed that can be used in web applications

such as web maps. GTFS format consists of two formats: GTFS static that has data about

scheduled service and GTFS Realtime that can be used for arrival predictions, vehicle positions

and service advisories. [26] In this thesis paper GTFS static is used as GTFS static data for

Estonia is provided for free by peatus.ee. [28]

The GTFS provided by Public Transport Information System on website peatus.ee is described

in a document called “The Specification of the Open Data of the Registry of the Public

Transport” (Ühistranspordiregistri avaandmete spetsifikatsioon) published by Republic of

Estonia Road Administration (Maanteeamet).

20

The open data of the public transport register is downloadable in form of ZIP-file from the web

page peatus.ee/gtfs. The data on the webpage is updated every day 6 AM (GMT +2) time. It is

open and free to use for anybody. However, it is demanded that whenever using the data on

any web application, web page, etc, the data shall not be older than 7 days from the moment of

the data being published on the previously mentioned web page. [27] After unpacking this ZIP-

file one can find 11 TXT-format files in it. The description of the files can be seen in table 1.

Table 1. The description of the files included in GTFS ZIP-file. [27]

agency.txt The data of the conveyor.

calendar.txt The data about the service dates of the trips.

calendar_dates.txt The exceptions for the service dates of the

trips.

feed_info.txt The information about the provider of the

GTFS data, Republic of Estonia Road

Administration.

routes.txt The data of the public transport routes.

stop_times.txt The departure times of the trips from the

stops.

stops.txt The data of the public transport stops.

trips.txt The data of the public transport trips.

fare_rules.txt The rules for connecting the fares from the

table of fare_attributes to the trips.

fare_attributes.txt The fares used in the system.

shapes.txt Describes the geometrical shapes of the trips.

21

Importing Data from GTFS to Database

For storing the GTFS data in tables, PostgreSQL database is used. The data is exported to

multiple tables following the structure of the allocation of the data in the GTFS TXT-format

files. The data is not exported from the files agency.txt, feed_info.txt, fare_rules.txt and

fare_attributes.txt as the data in these files is not necessary for the algorithm. Additionally, to

boost the performance of the database, separate tables are created for different public transport

modes: train, bus, tram and trolley. The SQL commands used for creating the corresponding

tables are shown in appendix 2. The entity relationship diagram of the database can be seen in

figure 6.

Figure 6. The entity relationship diagram of GTFS database tables and views.

3.4.2 The Algorithm for Pathfinding in Public Mode

The algorithm for pathfinding in public mode takes time, date and day of the departure, start

and end location and the preferred means of public transport as parameters. In case time, date

and day are not given, the current timestamp is used. In case the preferred public transport

means are not specified, the algorithm includes all of the means of transport currently available

in the database. The algorithm distinguishes 4 modes of public transportation: bus, trolleybus,

22

train and tram. Both intercity buses and transit buses are included in the bus mode. In case bus

is specified as the preferred mean of public transport, only the data related to the bus mode is

extracted from the database. If no suitable result is found among the available bus trips, no

other mean of public transport will be considered. In case several means of public transport are

given as preferred modes of public transport, the data of all these modes of public transport is

extracted from the database. Taking into account the departure time, the source and target

location and the preferred modes of public transport, the algorithm makes a queries to extract

the necessary data for processing. Firstly, all the stops of the selected modes in the specified

region are retrieved from the database. From this set the closest stop to the source location is

found. Secondly, all the trips connected to this stop and currently in service are retrieved. The

trips that do not belong to the suitable timeframe are filtered out. In this filtering process it is

take into account that the departure times in the public transport timetable can differ up to 5

minutes from the reality. Next, from the remaining trips the trip reaching closest to the target

location is found. No matter how long is the distance remaining from the end point to the target

location of the trajectory, the algorithm always returns one public transport trip as maximum.

No search for the subsequent trips is performed. This architectural choice has again been done

due to the possible difference between the departure times in the timetable and the departure

times in the reality. It would be highly likely that any of the trips would depart or arrive on a

different time than in the timetable. If the suitable trip is found, the additional details about the

trip e.g. route shape are extracted from the database. If the distance between the source and the

target distance is less than 300 meters, no search for the public transport trip will be performed

as such short distance would be unfeasible to travel using public transport. Thus, a route in

pedestrian mode is returned instead The pseudo code for finding the best path in public

transport mode can be seen on figure 7.

Figure 7. The pseudo code for finding the best path in public transport mode.

23

3.4.3 Constructing Multimodal Trajectories

Firstly, the allowed modes inserted by the user are examined. The private modes are added to

a separate list for later use. Next, public transport routes are extracted from the database, the

best public transport trip is found and the public mode trajectory is compound in the way

described earlier. After finding the public mode trajectory the source and the target point of the

trajectory are analyzed and compared to the source and the target location inserted by the user.

If the source location of the trajectory differs from the location of the source point of the public

transport trip adding a subtrajectory in private mode is considered. If the remaining route is

long enough to feasibly change the mode, a subtrajectory in private mode is added. The missing

intermediate path is found in the way described earlier under pathfinding in private mode. For

each private mode that is allowed by the user the shortest path between these two locations is

found. The same applies for the target location of the trajectory and the target point of the

public transport trip as well. Next, the start and end points of all the found trajectories are

analyzed and combined. If in the process of combining multimodal trajectories two segments

of freestyle mode happen to be placed subsequently, the two segments are united into one

segment of freestyle mode. Finally, from all the generated combinations, the trajectory with

the shortest expected travel time is returned as the result. The pseudo code for finding best

multimodal trajectories can be seen on figure 8.

Figure 8. The pseudo code for finding best multimodal trajectories.

3.4.4 Visualization Process

The data is stored in GeoJSON format. GeoJSON is a format that enables encoding a variety

of geographic data structures. GeoJSON supports among others geometry types like Point,

LineString, MultiLineString and Feature that are suitable for displaying trajectories on the map.

[29] The results are visualized using a web map and OSM map tiles. The web map uses

24

Leaflet.js and jQuery libraries to display the data of the trajectories. Trajectories are displayed

as MultiLineStrings.

25

4. Testing, Results and Analyses

4.1 Introduction

In this chapter the testing, results and analyses of our proposed method is described. The

chapter is divided into subsections according to the type of testing done. Testing includes

computation times comparison, the comparison of the results with three other routing engines

(Google, OSRM and GraphHopper) and multimodal results comparison for different mode

sets.

For testing the public transport and road network data for the city of Tallinn is used.

The pedestrian network includes 483604 ways, the bicycle network includes 345952 ways and

the car network includes 121249 ways. In terms of the public transport network, there are 1756

stops (1477 bus stops, 75 tram stops, 72 trolley stops and 44 train stops), 33131 trips and 1982

routes in the database.

The details of the test environment are as follows: CPU Intel Core i5-6200U, RAM: 16.0GB,

operating system: 64-bit Windows 10 Enterprise, database: PostgreSQL 10, IDE: IntelliJ IDEA

2017.3, programming language: Java.

4.2 Test Strategy

For testing three types of tests were executed. Firstly, the computation times for 14 different

mode sets were measured. Each time the source and target coordinates of the trajectory were

randomly generated. Secondly, 15 pairs of source and target coordinates were chosen randomly

and for each of them trajectories were computed using our proposed method, Google,

GraphHopper, OSRM. The similarity of the results was compared and analysed. Next, in order

to test our proposed algorithm, 10 multimodal trajectories were selected. For each of them the

corresponding multimodal trajectories were found using Google’s routing and our proposed

method. Lastly, some examples of multimodal trajectories using different mode sets are

presented.

4.3 Test Results

4.3.1 The Average Calculation Time

The computation times for different modes and mode combinations can be seen in table 2.

“Average calculation time” refers to complete computation time including reading in the

26

necessary data from databases, running the algorithm(s), putting together the information for

the presentation to the user, converting the result into GeoJSON format and writing the result

into the result file.

As can be seen from the table, the computation times increases with the number of modes. The

average computation time is smaller when instead of selecting one mean of public

transportation, like bus, all means of public transportation are allowed. This is probably due to

the fact that computing times are by great extent smaller when any other mean of public

transportation but bus is chosen. This occurs due to the fact that the amount of the data in the

database tables related to the bus is at least about 20 times bigger than in the tables related to

other means of public transport and thus the queries take more time to run and the processing

of the data is slower as well.

Table 2. The computation times for different modes and mode combinations.

4.3.2 Comparison with Google, OSRM and GraphHopper

As the next testing method, 15 pairs of source and target coordinates were chosen randomly

and for each of them trajectories were computed using our proposed method, Google, OSRM

and GraphHopper.

Google’s routing algorithm allows to find trajectories in pedestrian mode, car mode and in

public transport mode. Besides having pedestrian mode as the connecting mode of different

trajectory segments, if needed, multimodality is not used. It is not possible to select suitable

means of public transport for public transport mode. Bicycle mode is currently not available

for Tallinn. In car mode both historical statistics and current situation of the road is taken into

27

account in path calculation. If source and target locations are inserted as pairs of latitude and

longitude coordinates, Google replaces them with the nearest point it has in its database. This

factor also needs to be taken into account while analysing the results as in many cases it can

visibly change the result. One of the examples of such behaviour can be seen on figure 9.

GraphHopper allows to find trajectories in pedestrian mode, bicycle mode and car mode. Here

it is used with road network data from OSM. [30]

OSRM is a routing server that provides route instructions for pedestrian, bicycle and car mode.

[31] Both GraphHopper and OSRM use additional weights like U-turn penalty, traffic light

penalty, etc in their calculations. [32][33]

28

Figure 9. When inserting 59.440894, 24.793906 (upper white dot on the figure) as start point location in Google,

it was automatically changed to 59.438057, 24.798133 (A. Weisenbergi street 45) which is more than 400 meters

from the inserted start point.

Table 3. The percentages of the average similarity of the result trajectories between the results of the proposed

algorithm and Google, GraphHopper and OSRM.

In table 3 the similarity percent of the result trajectories of the algorithm proposed in this thesis

and the corresponding trajectories computed by Google, GraphHopper and OSRM are

presented. The similarity percent has been found by comparing 15 result trajectories with the

corresponding result trajectories computed by Google, GraphHopper and OSRM. The more

29

similar segments were found, the bigger is the similarity percent. As can be seen, the most

similar are the results in pedestrian mode. This is due to the fact that in other modes, where

traffic is taken into account, the penalties for U-turns, traffic lights, etc have more impact on

the results.

Table 4. The percentages of the average difference of the distances of the result trajectories between the results

of our proposed method and Google, GraphHopper and OSRM.

In table 4 the average difference of the distances of the result trajectories are compared. As can

be seen, the difference is minimal, only up to +/-3%. In addition, the difference is not similar

in all cases. If the distances of trajectories in bicycle mode are on average 3% longer in

GraphHopper than in the corresponding results of the proposed algorithm, then for OSRM it is

exactly the opposite – the distances of the result trajectories in bicycle mode are on average 3%

shorter than in the corresponding results of our proposed method. Thus, it appears that there is

no certain similarity between the results of different comparison routers. In case of car mode,

however, in all comparisons the average distance is slightly greater in the result trajectories of

our proposed method.

Table 5. The percentages of the average difference of the durations of the result trajectories between the results

of our proposed method and Google, GraphHopper and OSRM.

In table 5 the average difference of the durations of the result trajectories are compared. As can

be seen the difference is the biggest for results in car mode. This occurs due to the fact that all

of the three – Google, GraphHopper and OSRM use additional costs for trajectories besides

the average speed. Google greatly relies on the historical data and the current state of the roads.

Thus, as expected the durations computed differ on average up to 29 % from the durations

computed by our proposed method. In case of public mode, the durations differ mostly due to

the differences of the algorithms. Mostly the durations differ in public mode when instead of

30

using one trip, multiple trips are included in the result trajectory. Thus, the first trip is mostly

the same, but the second part of the trajectory is different: in case of our proposed method the

trajectory continues in one of the public modes and in case of Google another public transport

trip is added in combination with the pedestrian mode.

4.3.3 Testing in the real environment

In order to test our proposed algorithm, 10 multimodal trajectories were selected. For each of

them the corresponding multimodal trajectories were found using Google’s routing and our

proposed algorithm. As multimodal routing is not available in OSRM and in GraphHopper,

they were not included in the comparison. Next, the travel time of all 10 trajectories were

measured in real life. The results have been compared in the table 6.

Table 6. The comparison of the estimated travel time calculated by our proposed method, Google’s routing and

the travel time in reality.

As can be seen from the table, the real travel time differs from both the estimated travel time

of Google’s routing and from the estimated travel time of our proposed method. In some

extreme cases the difference between the estimated travel time and the real travel time was up

to 37%. These kind of differences occurred mostly in longer pedestrian mode distances. In

most cases the estimated travel times are shorter than the travel time in reality. This could be

mostly due to the difference of the speed of the traveller in the estimation and in the reality.

Our proposed method assumes that the average speed in pedestrian mode is 5 km/h on the roads

and 3 km/h on undefined path. The average speed that Google’s routing uses in its computation

in pedestrian mode depends on the route. For example, for Google’s routing the speed for

31

walking uphill differs from the speed for walking downhill 1[34]. The average pedestrian speed

for these 10 trajectories computed by Google’s routing was 4-6 km/h. As a result, the real travel

time of 3 of 10 trajectories was more similar to the estimated travel time computed by Google’s

routing and for the remaining 7 cases the estimated travel time by our proposed method proved

to be closer to the reality.

4.3.4 Multimodality Comparison

Our proposed method enables selecting different mode combinations as user input. The results

are computed taking into account the selected modes and the result trajectories are either

unimodal or multimodal trajectories that include only the selected modes. Figure 10 and figure

11 show different mode combinations in different trajectories. Our proposed method finds the

results among the allowed modes inserted by the user. If user does not select the mode, it does

not appear in the results. The only exception is pedestrian mode, that is always present. By

doing this, user either receives the trajectory composed by the selected modes or, if there is no

answer available among the selected modes, no answer is given. This behaviour can be seen

on figure 10 and figure 11, For figure 10 the allowed modes are pedestrian, bicycle and train

and for the result on the figure 11 the allowed modes are pedestrian, car and train. In these

queries using train as the only mean of public transport is guaranteed. Even if there would be

a faster trip in some other public transport mode, train would still be chosen as user’s input is

more important than the expected travel time.

32

Figure 10. A multimodal trajectory combining public and bicycle mode.

33

Figure 11. A multimodal trajectory combining public and car modes.

34

5. Conclusion and Future Work

The ongoing growth of urbanization and the growth of the cities is leading to the increase of

complexity of the route planning in urban areas. At the same time people’s expectancies to the

speed, comfort, flexibility and variety of different choices keeps increasing as well. People are

conscious about the possibility to travel in public transport in a wheelchair, with a baby carriage

or with a bicycle. However, finding a trip that would be the fastest possible at the same time

allowing user to set constraints for the used modes, is rather time consuming. Hence, there is a

need for flexible route planning algorithms that would easily allow user to find suitable

trajectories taking into account user’s preferences about the transport modes used in the journey

to get the most of the possibilities of using public transport.

The aim of this thesis was to propose an alternative method for multimodal fastest pathfinding

with use of public transportation. The method uses three algorithms in a subsequent way to

compute the subtrajectories for the fastest path and compose a multimodal trajectory of them.

In finding the best path, the method takes into account the data inserted by the user as well, to

provide the best possible solution in accordance with the needs of the user.

In this thesis work an alternative method for multimodal fastest pathfinding with use of public

transportation was developed. Firstly, the real data of the city of Tallinn both for private and

public modes was extracted from the sources, processed and inserted into the databases. After

that, the data from the databases was used for multimodal pathfinding with the developed

method containing the algorithm for pathfinding in private modes, the algorithm for

pathfinding in public modes and an algorithm for combining and constructing multimodal

trajectories. All in all, the aim of this thesis was met and our proposed method was able to

propose competitive alternatives to the results of the existing routing engines at the same time

taking into account user’s preferences about the transport modes used in the journey.

However, in future work several improvements could be done. Firstly, instead of using Java to

implement the trajectory reconstruction, the algorithm could be written in Python. The database

tables could be rearranged and additional views and indexes can be created. This would help

to make the code less memory and time consuming. Another improvement would be to try to

use a combination of graph database and relational database instead of regular relational

database. The combination of the two could help to speed up the computation and minimize

the complexity of the algorithm.

35

 References

[1] Elron webpage https://elron.ee/teenused/teenused-rongides/mugavus/ (16.05.2019)

[2] Safer, Hershel & Orlin, James & B, James. “Fast Approximation Schemes for Multi-

Criteria Combinatorial Optimization” (1995)

[3] Tsolkas, D., Passas, N., Xenakis, C., Papataxiarhis, V., Tsetsos, V. “Busfinder: a

personalized multimodal transportation guide with dynamic routing” 2012 16th Panhellenic

Conference on Informatics: 25-30, (2012)

[4] Liu, L. “Data Model and Algorithms for Multimodal Route Planning with Transportation

Networks” Lehrstuhl für Kartographie, Technische Universität München (2010)

[5] Campigotto, P., Rudloff, C., Leodolter, M., Bauer, D. “Personalized and Situation-Aware

Multimodal Route Recommendations: The FAVOUR Algorithm”, IEEE Transactions on

Intelligent Transportation Systems: 92-102 (2017)

[6] Mouncif, H., Rida, M., Boulmakoul, A. “An Efficient Multimodal Path Computation

Integrated Within Location based Service for Transportation Networks System (Multimodal

Path Computation within LBS)”, Journal of Applied Sciences 11 (1): 1-15 (2011)

[7] Zhang, J., Liao, F., Arentze, T., Timmermans, H. “A Multimodal Transport Network Model

of Advanced Traveler Information Systems”, Procedia Social and Behavioral Sciences 20: 313-

322 (2011)

[8] Chondrogiannis, T., Cavaliere, R., Gamper, J., Ohnewein, P. “MoTrIS: A Framework for

Route Planning on Multimodal Transportation Networks” (2016)

[9] Guo, C., Li, D., Zhang, G., Cui, Z. "Data delivery delay estimation based on left-turn in

vehicular ad hoc networks," 2016 International Conference on Progress in Informatics and

Computing (PIC), Shanghai, 2016, pp. 550-554.

[10] Kirchler, Dominik et al. “Efficient Computation of Shortest Paths in Time-Dependent

Multi-Modal Networks.” ACM Journal of Experimental Algorithmics 19 (2014)

[11] Pajor, T. “Multi-Modal Route Planning” Institut für Teoretische Informatik, Universität

Karlsruhe (2009)

[12] Dibbelt, J., Pajor, T., Wagner, D. 2015. User-Constrained Multimodal Route Planning. J.

Exp. Algorithmics 19, Article 3.2 (2015)

[13] Ma, T.-Y. “On-demand Dynamic Bi-/multi-modal Ride-sharing using Optimal Passenger-

vehicle Assignments”, 2017 IEEE International Conference on Environment and Electrical

Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC /

I&CPS Europe): 1-5 (2017)

[14] K. G. Zografos and K. N. Androutsopoulos, "Algorithms for Itinerary Planning

in Multimodal Transportation Networks," in IEEE Transactions on Intelligent

Transportation Systems, vol. 9, no. 1, pp. 175-184, (2008)

[15] Elbery, Ahmed & Dvorak, Filip & Du, Jianhe & Rakha, Hesham & Klenk, Matthew

Large-scale Agent-based Multi-modal Modeling of Transportation Networks - System Model

and Preliminary Results. 103-112 (2018)

[16] OpenStreetMap webpage osm.org (02.05.2019)

36

[17] OSM XML webpage https://wiki.openstreetmap.org/wiki/OSM_XML (02.05.2019)

[18] JOSM webpage https://josm.openstreetmap.de/ (02.05.2019)

[19] Osmosis webpage https://wiki.openstreetmap.org/wiki/Osmosis (02.05.2019)

[20] osm2postgresql webpage https://sourceforge.net/projects/osm2postgresql/ (02.05.2019)

[21] osm2pgrouting webpage http://pgrouting.org/docs/tools/osm2pgrouting.html

(02.05.2019)

[22] osm2pgsql webpage https://wiki.openstreetmap.org/wiki/Osm2pgsql (02.05.2019)

[23] dom4j webpage https://github.com/dom4j/dom4j/wiki/FAQ (02.05.2019)

[24] Chopde, Nitin R., and M. Nichat. "Landmark based shortest path detection by using A*

and Haversine formula." International Journal of Innovative Research in Computer and

Communication Engineering 1.2 (2013): 298-302.

[25] W. Seo, S. Ok, J. Ahn, S. Kang and B. Moon, "An Efficient Hardware Architecture of the

A-star Algorithm for the Shortest Path Search Engine," 2009 Fifth International Joint

Conference on INC, IMS and IDC, Seoul, 2009, pp. 1499-1502.

[26] GTFS webpage http://gtfs.org/ (02.05.2019)

[27] Public Transport Information System

https://www.mnt.ee/eng/public-transportation/public-transport-information-system

(08.02.2018)

[28] peatus.ee webpage http://peatus.ee/ (02.05.2019)

[29] GeoJson webpage https://geojson.org/ (07.05.2019)

[30] GraphHopper webpage https://www.graphhopper.com/open-source/ (20.04.2019)

[31] OpenStreetMap webpage https://routing.openstreetmap.de/about.html (20.04.2019)

[32] GraphHopper webpage https://github.com/graphhopper (20.04.2019)

[33] FossGIS routing server webpage https://github.com/fossgis-routing-server (20.04.2019)

[34] Google Maps Help

https://support.google.com/maps/forum/AAAAQuUrST8PHwS75mwUiY/?hl=en&gpf=%23!

topic%2Fmaps%2FPHwS75mwUiY (27.04.2019)

https://sourceforge.net/projects/osm2postgresql/
http://pgrouting.org/docs/tools/osm2pgrouting.html
https://wiki.openstreetmap.org/wiki/Osm2pgsql
https://github.com/dom4j/dom4j/wiki/FAQ
http://gtfs.org/
https://www.mnt.ee/eng/public-transportation/public-transport-information-system
http://peatus.ee/
https://www.graphhopper.com/open-source/
https://routing.openstreetmap.de/about.html
https://github.com/graphhopper
https://support.google.com/maps/forum/AAAAQuUrST8PHwS75mwUiY/?hl=en&gpf=%23!topic%2Fmaps%2FPHwS75mwUiY
https://support.google.com/maps/forum/AAAAQuUrST8PHwS75mwUiY/?hl=en&gpf=%23!topic%2Fmaps%2FPHwS75mwUiY

37

Appendix 1

The SQL commands for creating database tables for private routing data:

38

Appendix 2

The SQL commands for creating database tables for public transport data:

39

The ‘delete’ query is run in order to only keep the stops that are in selected (󠇈Tallinn) area.

40

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Careelika Liisi Kuik,

 (author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital archives

until the expiry of the term of copyright,

Multimodal Route Planning Algorithm for Encouraging the Usage of Different Means of

Public Transportation,

 (title of thesis)

supervised by Amnir Hadachi

 (supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the

public via the web environment of the University of Tartu, including via the DSpace digital

archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by

giving appropriate credit to the author, to reproduce, distribute the work and communicate

it to the public, and prohibits the creation of derivative works and any commercial use of

the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection legislation.

Careelika Liisi Kuik

17/05/2019

