
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Marek Pagel

Performance Testing Bulletin Board
Implementations for Online Voting

Bachelor’s Thesis (9 ECTS)

Supervisor: Sven Heiberg, MSc

Supervisor: Janno Siim, MSc

Tartu 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Performance Testing Bulletin Board Implementations for Online Vot-
ing

Abstract:
Online voting is an electronic voting method in which the process of casting a vote is
done using the Internet as its communication medium. One component of some online
voting systems is a public bulletin board (PBB), used to provide election transparency
and correctness verifiability. PBB is a component for publishing data in a way that
makes modifying or deleting already published data very difficult without leaving evi-
dence of such actions. The security and liveness of this component has to be ensured.
This means that implementing PBB is a machine replication problem at its core with
some specific requirements inherited from the context of online voting. This work takes
a look at two software solutions that can be used for such purpose and analyses their
performance in testing environment imitating real election workload.

Keywords: Public Bulletin Board, Online Voting, Distributed System, State Machine
Replication, Performance Testing

CERCS: P170 Computer science, numerical analysis, systems, control

Teadetetahvlite jõudlustestimine internetivalimiste kontekstis

Lühikokkuvõte:
Internetihääletamine (i-hääletamine) on hääletamisviis, mille puhul hääl liigub valija
seadmest urni Interneti vahendusel. I-hääletamise süsteemide sagedaseks komponen-
diks on avalik teadetetahvel, kuhu registreeritud andmete abil tagatakse valimiste läbi-
paistvus ja auditeeritavus. Avalik teadetetahvel on komponent, mis võimaldab registree-
rida andmeid viisil, mis muudab nende hilisema muutmise või kustutamise keeruliseks.
Teadetetahvli puhul on oluline teenuse tagatud kättesaadavus ja toimimine. Sellest tu-
lenevalt on avaliku teadetetahvli implementeerimise tuumküsimuseks korrektne masi-
nate kordistamine, mille muudab keerulisemaks i-hääletamise spetsiifilised lisanõuded.
Selle töö käigus käsitletakse kahte olemasolevat tarkvaralahendust, mida saab kasuta-
da teadetetahvli realiseerimisel, uurides nende jõudlust testkeskkonnas, mis imiteerib
pärisvalimiste töökoormust.

Võtmesõnad: Avalik teadetetahvel, i-hääletamine, Hajussüsteem, Olekumasina kordis-
tamine, Jõudlustestimine

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

2

Contents
1 Introduction 4

2 Tested PBB Implementations 5
2.1 Peered Bulletin Board . 5

2.1.1 Posting and Acknowledgment 5
2.1.2 Publishing the Bulletin Board 6

2.2 BFT-SMaRt . 8

3 Testing Setup 11
3.1 Testing-Related Software . 11

3.1.1 Docker . 11
3.1.2 cAdvisor . 12
3.1.3 InfluxDB . 12
3.1.4 Grafana . 12

3.2 Testing Process . 12

4 Testing Results 14
4.1 vVote PBB . 14
4.2 BFT-SMaRt . 16

5 Conclusion 19

References 21

Appendix 22
I. Repository . 22
II. Testing Instructions . 23
III. Licence . 27

3

1 Introduction
Electronic systems have steadily been replacing, changing and modernizing more tra-
ditional nondigital process models on individual and governmental scales. One such
traditional process is the process of elections, in which votes are most commonly cast
on paper. Online voting is becoming a viable and more widespread alternative to the
paper voting. For example, online voting has been used in Estonia for more than 10
years with the proportion of votes cast electronically rising steadily. Now more gov-
ernments are looking into the technology in hopes of reducing costs, reaching remote
voters and speeding up the process. This means online voting systems must be ready to
accommodate the increasing number of voters.

Bulletin board is one of the possible components in an online voting system. The
main idea behind the concept of bulletin board is to provide a way to publish some data
and be assured that the data can’t be deleted or modified at a later time without leaving
evidence of such actions to the public. Its purpose is to ensure that the electronic ballot
box is consistent and correct throughout the election in a way that provides election
verifiability for third parties. As such, the security and liveness of the bulletin board
has to be guaranteed throughout the election period. This can be achieved with machine
replication, but due to inherited complexity of online voting, most traditional replication
methods are not suitable for this task.

Goal of this work is to introduce and test two readily available software solutions for
this use case. In order to successfully carry out the performance testing, proper testing
environment has to be defined and set up. Finally, the test results are assessed in the
context of system requirements and usability in online voting.

The first section of this work introduces the software solutions and their commu-
nication protocols. The second section describes the testing environment, various tools
and the setup used in this work. The third section presents and analyses the performance
results gathered during the testing.

4

2 Tested PBB Implementations
This section gives an overview of the software solutions to be tested with a focus on the
communication protocols involved in processing new requests.

2.1 Peered Bulletin Board
Bulletin board described in [CS14] was developed as part of the vVote system for Vic-
torian State election 2014 [BCH+12]. The Victorian State election has a two-week-long
early voting period followed by the election day.

The bulletin board consists of robust system of multiple peers, all of which receive
items, provide receipts and publish information. Throughout the day peers might have
different internal states but synchronization protocol is ran at the end of the day. This
is done at an off peak time (to ensure liveness) right before publishing. Each day is
considered one period. This system is stated to work correctly under the assumption
that a threshold of peers is honest and operational at any given time. The threshold t
required to achieve correctness must be greater than two-thirds of the total number n
of peers: t > 2n/3. As long as a threshold of peers remains operational the system
tolerates communication failures, individual peer failures and even malicious peers.

The article states that the key properties required of this implementation are:

• only items that have been posted to the bulletin board may appear on it;

• any item that has a receipt issued must appear on the published bulletin board;

• two clashing items must not both appear on the bulletin board;

• items cannot be removed from the bulletin board once they are published.

The bulletin board has two main protocols: one for posting items and the other for
publishing the bulletin board, which consists of an optimistic scenario and a fallback
protocol. This system is developed in Java programming language.

2.1.1 Posting and Acknowledgment

To post an item x in period p on the bulletin board the following steps are taken:

1. Client sends x to each peer;

2. Each peer checks that x doesn’t clash with any previous posts;

3. Each peer signs (p, x) and sends the result to every other peer;

5

Figure 1. Posting Protocol [CS14]

4. When peer has received threshold of signatures (including its own) it sends its
share of threshold signature on (p, x) back to client

5. Client combines threshold of signature parts into signature and verifies it.

Threshold signature scheme is a protocol that allows any subset of K parties out
of L to generate a cryptographic signature equivalent to more traditional cryptographic
signature, but disallows creation of such signature if fewer than K parties participate in
the protocol. K and L are integers fixed before key generation protocol. [Sho00]

All necessary persistent data, including client messages and different signatures,
is kept in a local database. This protocol is visualized on Figure 1. Sigsk(·) denotes
generation of traditional cryptographic signature with key sk, while sigssk(·) denotes
generation of cryptographic signature share with key ssk.

2.1.2 Publishing the Bulletin Board

The bulletin board is published at the end of the period. Before it can be published
a threshold of the peers must agree on the final version of the bulletin board. Peer i’s

6

Figure 2. Optimistic Protocol [CS14]

local record of bulletin board Bi,p consists of items it has received a threshold number of
signatures on. Peers try to run an optimistic protocol first and follow up with a fallback
protocol if necessary.

The optimistic protocol will succeed if at least a threshold of peers were properly
working throughout the period and consequently have all the items to be published. The
peers each sign the hash of their local bulletin board and broadcast it. If a threshold
agrees on the hash then they can issue the bulletin board and their part of threshold
signature to the publicly visible bulletin board service. This protocol is visualized on
Figure 2. H(·) denotes cryptographic hash function.

If the optimistic protocol does not produce consensus, then the fallback protocol
is ran at least once. This involves peers sharing their bulletin board information with
each other. Each peer broadcasts its database of signatures Di,p and update their own
database with missing signatures from other peers’ databases. They then recalculate
their bulletin board and run the optimistic protocol again. Under some reasonable live-

7

Figure 3. Fallback Protocol [CS14]

ness assumptions, only one round of fallback protocol is ever needed. This protocol is
visualized on Figure 3.

2.2 BFT-SMaRt
BFT-SMaRt (Byzantine Fault-Tolerant State Machine Replication) is a robust Java-
based BFT SMR library which aims to be high-performance and simple to use depen-
dency for other services and protocols to build upon. [BSA14]

In this work a very simple service was built upon the BFT-SMaRt library. The ser-
vice is accepting client requests and stores them in a MongoDB instance. Such service
is too simple for any real life application, but the main goal is to test the underlying
replication protocol.

Byzantine fault tolerance characterizes distributed system’s tolerance against class
of failures named after Byzantine General’s Problem, first described in [LSP82]. Byzan-
tine fault is a fault that presents itself with different symptoms to different observers. In
practice, this means an arbitrary deviation from expected behavior, which can be caused
by system failure, connection delays or even malicious activity.[DHSZ03] Furthermore,
Byzantine fault tolerance is becoming increasingly important on one hand due to grow-
ing reliance of industry and government online services and on the other hand due to

8

the growth in size and complexity of software. As a result, system failures of any
kind are becoming less acceptable, but eliminating their possibility is becoming more
difficult.[CL+99]

State machine replication is a popular replication method that enables a set of peers
to execute the same sequence of operations for a service even if a number of them are
faulty. The core of state machine replication is the consensus problem, which is how to
come to an agreement on one result in a distributed system. [SB12]

Consensus algorithm used in BFT-SMaRt is an extension of the leader-driven Byzan-
tine consensus algorithm described in [Cac09], which in turn is based on the very fa-
mous Paxos consensus algorithm first introduced in [Lam98]. The system tolerates f
faulty nodes in a n-node system where n ≥ 3f + 1. [BSA14]. This means both vVote
and BFT-SMaRt both tolerate the same number of faulty nodes in a n-node system.

The communication protocol of BFT-SMaRt involves more rounds and messages
compared to the bulletin board described before. On the other hand, practical opti-
mizations could lead to better overall performance. One such optimization is handling
multiple client requests in a batch.

To post an item x on bulletin board the following steps are taken:

1. Client sends x to each peer;

2. Elected leader proposes the value to all peers by sending them PROPOSE message
(n, x) where n is the consensus index;

3. Each peer checks that they are able to accept the value;

4. Each peer sends WRITE message (n,H(x)) to every other peer;

5. Upon receiving threshold number of WRITE messages, each peer sends ACCEPT
message (n,H(x) to ever other peer;

6. Upon receiving threshold number of ACCEPT messages, value is accepted

7. Accepted value is processed and response is sent to the client

Checking whether a peer is able to accept a value is not actually very relevant in
properly working system. Leader is proposing values with monotonically increasing
indexes and it is required for a peer to decline the proposal, if it has already accepted a
value for given index. This becomes relevant if more than one peer considers themselves
the leader and they start sending out competing proposals.

Leader election in this system is solved in a very simple manner. Namely, each
peer is given an integer identification number and the peer with the smallest id among
reachable replicas is considered to be the leader. Under normal conditions, leader never
has to change.[BSA14]

9

client

peer1− leader

peer2

peer3

peer4

propose write accept

Figure 4. Byzantine Consensus

This protocol is visualized on Figure 4. Source code and more info about the library
can be found at [bft].

10

vCPU count 4
Memory 16 GiB
Physical Processor Intel Xeon E5-2676 v3 with a footnote "may launch on an

Intel Xeon E5-2686 v4 (Broadwell) Processor"
Clock Speed 2.4 GHz

Figure 5. m4.xlarge system statistics

3 Testing Setup
Services are set up on Amazon Web Services (AWS) platform.[AWS] All nodes of a
system are ran on the same system, eliminating possibly significant network latency
and simplifying system load observations. M4.xlarge instances are used as they are the
smallest instances with high network performance and subjectively reasonable hardware
specifications for the task. M4 instances are defined as general purpose instances that
provide a balance of computation, memory and network resources. See Figure 5 for
more detailed m4.xlarge machine definition based on AWS homepage information. The
same instance class is used for both server and client side to assure that client machine
is capable of generating enough load on the server.

Required machines are the following:

• Server machine - used to host the system under testing;

• Client machine - used to stress the system under testing;

• Collection machine - used to collect and visualize performance data.

Both implementations are written in the programming language Java, so neither
can have a significant edge in that regard. For all code and configuration files used to
conduct the testing see appendix.

3.1 Testing-Related Software
In addition to the software of the systems to be tested, multiple other software solutions
are required to make the testing environment easier to setup and to collect necessary
performance data.

3.1.1 Docker

Docker1 is an open-source project that automates application deployment inside iso-
lated containers. Unlike machine virtualization, containers do not include full operating

1https://www.docker.com/

11

https://www.docker.com/

system, but only the bare minimums required for each particular application. This tech-
nology allows for easier system setup and more importantly clear resource isolation for
accurate data collection. In addition we use Docker-Compose tool for easier manage-
ment of multi-container systems. Docker is required in every machine.

Using Docker requires creation of the Dockerfile, which tells Docker how to build
and run our container. In addition docker-compose configuration file is required to
configure and launch multiple containers at once.

3.1.2 cAdvisor

cAdvisor2 is used to gather data about resource usage and performance characteristics
of running containers. It has native support for Docker containers. All the collected
data is exported to the collection machine, in order minimize performance impact on
the server machine. cAdvisor is required in the server machine.

3.1.3 InfluxDB

InfluxDB3 is a time-series database. As cAdvisor only displays real-time information,
InfluxDB is required to store that information in order to analyze data over longer time
range. InfluxDB is required in the collection machine.

3.1.4 Grafana

Grafana4 is an open-source tool for data querying, visualization and analysis. This
tool is used to query InfluxDB and export visualized performance results. Grafana is
required in the collection machine.

3.2 Testing Process
Systems were tested with periodically increasing load. Test started with load of 60
requests per minute and the number of requests doubled every five minutes. There were
ten phases in total, which means the final load was 30720 requests per minute or 512
requests per second. The testing limit was loosely derived from Estonian Online Voting
statistics. According to [vvk] in the 2015 Riigikogu Elections the most online votes cast
in a single day was 39039. If making the assumption that most of the votes were cast
during a period of 10 hours, it comes to average load of 39039/10/60 ' 65 votes per
minute. This gives the starting point of the load configuration. The upper limit of load
is more arbitrary, but given the fact that a system under such load could accept a little

2https://github.com/google/cadvisor
3https://www.influxdata.com/products/open-source/#influxdb
4https://grafana.com/

12

https://github.com/google/cadvisor
https://www.influxdata.com/products/open-source/#influxdb
https://grafana.com/

over 300 million votes in a 7 day period, it is very likely well above requirements for
most elections.

13

4 Testing Results
Testing results are presented by stating the overall outcome of the test, followed by more
detailed analysis of different system resource based on Grafana produced graphs where
applicable. The graphs feature resource usage of all peers separately on one graph. Sum
of resource usage of all containers could be more readable, but it may also hide possible
differences between each container.

It should be noted that although AWS m4.xlarge instance according to Figure 5 has
clock speed of 2.4 GHz, the real maximum system load is clock speed times vCPU
count, which in this case is 9.6 GHz.

4.1 vVote PBB
According to manual found in vVote documentation repository5 the system is rated at 80
votes per second on benchmark system. It is unclear how benchmark system is defined.
During tests conducted here, no such performance was achieved.

During the first test, around 20 minutes into the process, a sudden drop in CPU usage
can be noted, as seen on Figure 6. Upon taking a look at system logs, it shows that at
around the same time, large amount of timed out requests start to appear. On the other
hand, Figure 6 does not indicate significant amount of CPU usage.

RAM usage, as seen on Figure 7, is also relatively small compared to total system
memory availability. Network usage is insignificant in amount and couldn’t possibly be
the limiting factor. Network usage is quite similar to BFT-SMaRt’s network usage in
the respective phases, if not even a little smaller.

The test was carried out for a second time while manually monitoring system re-
source usage directly on the server machine in real-time. This monitoring indicated
system to be under 100% CPU load around 20 minutes into to process and the logs con-
firmed request timeouts again. Yet, collection machine still showed insignificant CPU
usage. RAM usage was reported similarly on server and benchmark machines. A third
test was conducted, this time all 4 peers were started in the same container, to try a dif-
ferent setup and further remove possible network related issues. Still, exactly the same
behavior was observed in every aspect. One possible explanation to this phenomenon
could be that cAdvisor was unable to properly work under loaded system.

All three tests have very similar time of failure - the start of fifth phase, in which 16
votes per second are transmitted. By the time of failure, peers had successfully accepted
little over 5000 votes, which is an expected number considering the timeline. Derived
from these tests, system is rated at somewhere between 8-16 votes per second. It can
also be stated that the system is primarily CPU intensive.

5https://bitbucket.org/vvote/doco/src

14

https://bitbucket.org/vvote/doco/src

Figure 6. vVote CPU usage graph

Figure 7. vVote RAM usage graph

15

Figure 8. BFT-SMaRt network usage graph. Test 1 on the left and Test 2 on the right.

Large discrepancy between expected and resulting performance leaves possibility
for further work to more closely study the underlying causes for such discrepancy. This
could involve more direct contact and collaboration with original system authors.

4.2 BFT-SMaRt
BFT-SMaRt successfully managed to work properly throughout the test. To further
study the system, another test was ran with twice the client request size. This imitates
the increase in the cryptographic key size used to encrypt ballots. The second test did not
finish successfully as one of the containers crashed due to java virtual machine running
out of heap space. This was caused by the system running out of memory.

The graphs included in the analysis are taken from the first test as the results between
the two tests are very similar. Exception to this is the network graph which differs
significantly between the two tests. The graphs include the whole period of the test,
which is 10 phases or 50 minutes for the first one and 9 phases or 45 minutes for the
second.

Figure 8 represents network usage graph. There is one peer standing out by having
clearly different network usage compared to the rest. This is due to Peer0 being the
consensus leader, who is responsible of transmitting the PROPOSE messages as shown
in Figure 4. Consequently the leader has higher transmission rate but lower receiving
rate. Even further, it can be seen that the amount of data the leader peer has transmitted
more than non-leader peers equals the amount of data non-leader peers as a group have
received more than the leader.

Network usage difference between the two tests is evident. If comparing the respec-
tive phases, test 2 uses an average of about 25% more network resources. The peak
network bandwidth usage of single peer was about 30 MBps.

CPU usage of containers is visible on Figure 9. First of all, it is clear that CPU

16

Figure 9. BFT-SMaRt CPU usage graph

usage is in strong correlation with the number of incoming requests. In general, it could
be said that doubling the load causes CPU usage to double. Interestingly enough, the
transition final phase shows a smaller jump in CPU usage than earlier phases. The
peak CPU usage of single container was about 2 GHz and the peak system load was
2GHz ∗ 4/9GHz ' 83%.

RAM usage of containers is visible on Figure 10. BFT-SMaRt system baseline RAM
usage is very low compared to Vvote system’s. RAM usage does start to grow signifi-
cantly in phase 8 and reaches close to system limits in the very end of the test. Given
the fact that one of the containers crashed in test 2 due to lack of memory, it is clear
that RAM becomes the system bottleneck if load increases indefinitely. BFT-SMaRt
holds copy of vote database in memory for snapshotting and peer restoring purposes.
This could explain as to why RAM usage increased faster in test 2 with bigger vote
sizes. To see how big of an impact this snapshotting bears on RAM usage, it is required
to calculate its size. At the end of test 1, each peer had received 306931 votes, each
vote about 750 bytes in size. This means the total size of the in-memory snapshots was
4 ∗ 306931 ∗ 750 ' 920MB . In test two, at the time of crash each peer had received
189435 votes, each vote about 1500 bytes in size. This gives the respective size of
4 ∗ 189435 ∗ 1500 ' 1140MB . Calculations confirm that higher RAM usage in test 2
is at least partially caused by larger vote files. Still, snapshot consumes relatively small
percentage of total RAM.

It is clear that BFT-SMaRt has potential to be used as a public bulletin board. Imple-
mentation of server side application for this project was most likely too simple for any
real life applications, but it gives a clear starting point. According to [CS14], trying to
reach consensus every time an item is posted creates too much of an overhead. It may
be true in their protocol, but it seems to be doable in general.

17

Figure 10. BFT-SMaRt RAM usage graph

18

5 Conclusion
The aim of present work was to find feasible software solutions for use as a public
bulletin board in electronic voting systems. The approach to measuring such feasibility
was testing the performance of readily available software implementation as opposed
to studying the theoretical performance characteristics of underlying algorithms. Two
such software solutions were chosen: one part of a complete voting system actually
used in practice and another more general consensus library that could be used as a core
for more specific system. Testing environment and scenario were defined and necessary
tools configured. Finally the systems’ hardware resource usage was monitored under
periodically increasing constant load and the results studied.

The robust peered bulletin board used in the vVote system showed unexpectedly low
performance compared to statements from system’s manual. Requests started to timeout
under load of 16 requests per second, rating the system between 8 to 16 requests per
second. There were also issues with collection of performance statistics during the test
that persisted over multiple test attempts. Because of this, results can’t be considered
conclusive and future work could include collaboration with original vVote developers
in an attempt to find out the cause of low performance observed in this work.

The Byzantine fault tolerant state machine replication library BFT-SMaRt showed
very promising results. The application had quite well rounded hardware usage statis-
tics with memory being the limiting resource for the machine instance used in this work.
The application managed to handle client requests all throughout the test, rating the sys-
tem at least at 512 requests per second. As the main goal was to test the performance of
underlying consensus algorithm implementation, this performance might not be achiev-
able in a production ready system. Future work could theoretically or practically try to
find out how much overhead has to be added to the system for it to be production ready
and how it would affect the performance.

Future work could also test the performance of the systems under different kind of
load (e.g. spike load) or even expand the testing onto software solutions not handled in
this work.

19

References
[AWS] Elastic compute cloud(ec2) - cloud server & hosting - aws. https://

aws.amazon.com/ec2/. Visited: 25.04.2017.

[BCH+12] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A.
Ryan, Steve Schneider, Sriramkrishnan Srinivasan, Vanessa Teague, Roland
Wen, and Zhe Xia. Using prêt à voter in victorian state elections. In Pro-
ceedings of the 2012 International Conference on Electronic Voting Tech-
nology/Workshop on Trustworthy Elections, 2012.

[bft] Bft-smart by bft-smart. http://bft-smart.github.io/
library/. Visited: 25.04.2017.

[BSA14] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. State machine
replication for the masses with bft-smart. In Proceedings of the 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN ’14, pages 355–362, Washington, DC, USA, 2014. IEEE
Computer Society.

[Cac09] Christian Cachin. Yet another visit to paxos. IBM Research, Zurich, Switzer-
land, Tech. Rep. RZ3754, 2009.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
OSDI, volume 99, pages 173–186, 1999.

[CS14] Chris Culnane and Steve Schneider. A peered bulletin board for robust use
in verifiable voting systems. CoRR, abs/1401.4151, 2014.

[DHSZ03] Kevin Driscoll, Brendan Hall, Håkan Sivencrona, and Phil Zumsteg. Byzan-
tine fault tolerance, from theory to reality. In International Conference on
Computer Safety, Reliability, and Security, pages 235–248. Springer, 2003.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems (TOCS), 16(2):133–169, 1998.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gener-
als problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[SB12] J. Sousa and A. Bessani. From byzantine consensus to bft state machine
replication: A latency-optimal transformation. In 2012 Ninth European
Dependable Computing Conference, pages 37–48, May 2012.

[Sho00] Victor Shoup. Practical threshold signatures. In Advances in Cryptol-
ogy—EUROCRYPT 2000, pages 207–220. Springer, 2000.

20

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
http://bft-smart.github.io/library/
http://bft-smart.github.io/library/

[vvk] E-hääletamise statistika - valimiste arhiiv - valimised. http://www.
vvk.ee/arhiiv/e-statistika/. Visited: 25.04.2017.

21

http://www.vvk.ee/arhiiv/e-statistika/
http://www.vvk.ee/arhiiv/e-statistika/

Appendix

I. Repository
All code and configuration files used in this work are available at https://github.
com/marekpagel/bc_thesis_code

22

https://github.com/marekpagel/bc_thesis_code
https://github.com/marekpagel/bc_thesis_code

II. Testing Instructions
The following is a guide for reproducing the testing process used in this work. File paths
referenced in this guide are relative paths from the root directory of the code repository
found in Appendix I. The cAdvisor-InfluxDB-Grafana setup is inspired by a web article
by Brian Christner available here.

Setting Up AWS Instances

It is required to create and start 3 instances of the following types:

• m4.xlarge with Ubuntu 16.04 Operating System as the server machine;

• m4.xlarge with Ubuntu 16.04 Operating System as the client machine;

• m4.large with Ubuntu 16.04 Operating System as the collection machine.

After starting the machines, note the public IP addresses for the server and collection
machines.

Detailed guide for this process can be found at AWS homepage.

Installing Docker and Docker-Compose

It is required to install Docker on server and collection machines. In addition, Docker-
Compose has to be installed on server machine. Instructions for installing Docker can
be found here. Instruction for installing Docker-Compose can be found here.

Configuring Collection Machine

1. Create SSH connection to the collection machine.

2. Clone the project’s code repository:

$ git clone https://github.com/marekpagel/bc_thesis_code

3. Start Influxdb instance with the following docker command:

$ docker run -d -p 8083:8083 -p 8086:8086 --expose 8090 --expose
8099 -e PRE_CREATE_DB=cadvisor --name influxsrv tutum/
influxdb:latest

4. Start Grafana instance with the following docker command:

23

https://www.brianchristner.io/how-to-setup-docker-monitoring/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
https://docs.docker.com/engine/installation/linux/ubuntu/
https://docs.docker.com/compose/install/

Figure 11. Grafana InfluxDB configuration

$ docker run -d -p 3000:3000 -e HTTP_USER=admin -e HTTP_PASS=
admin -e INFLUXDB_HOST=localhost -e INFLUXDB_PORT=8086 -e
INFLUXDB_NAME=cadvisor -e INFLUXDB_USER=root -e INFLUXDB_PASS
=root --link=influxsrv:influxsrv --name grafana grafana/
grafana:latest

5. Go to <collection-machine-IP>:3000 with a webbrowser.

6. Log in with username and password ’admin’.

7. Add new Data Source as shown in Figure 11. InfluxDB password is ’root’.

8. Import dashboard from grafana/benchmark.json.

24

Configuring Server Machine

1. Create SSH connection to the server machine

2. Clone the project’s code repository with submodules:

$ git clone --recursive https://github.com/marekpagel/
bc_thesis_code

3. Open /etc/default/grub with root access and modify the following line:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS0"

to

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS0
cgroup_enable=memory"

4. Run the following command:

$ sudo update-grub

5. Reboot the instance.

6. Start cAdvisor instance with the following docker command. Make sure the cor-
rect collection machine IP address is inserted:

$ docker run --volume=/:/rootfs:ro --volume=/var/run:/var/run:rw
--volume=/sys:/sys:ro --volume=/var/lib/docker/:/var/lib/
docker:ro --publish=8080:8080 --detach=true --name=cadvisor
google/cadvisor:latest -storage_driver=influxdb -
storage_driver_db=cadvisor -storage_driver_host=<collection-
machine-ip>:8086

Configuring Client Machine

1. Create SSH connection to the server machine

2. Clone the project’s code repository with submodules

$ git clone --recursive https://github.com/marekpagel/
bc_thesis_code

3. Install Java8 JRE

$ sudo apt-get update
$ sudo apt-get install openjdk-8-jre-headless

25

Testing vVote

1. Create SSH connection to the server machine

2. Modify vvote/suvote_wbb/wbb/release_demo/Peer1/wbbconfig.
json so the json list with key "peers" contains correct server machine IP ad-
dresses.

3. Repeat the process for configuration files of Peers 2-4.

4. Start the service with the following commands:
$ cd vvote/suvote_wbb/
$ docker-compose up -d

5. Create SSH connection to the client machine

6. Modify vvote/my_app_client/MBBConfig.json to contain the correct
server machine IP addresses.

7. Start the client with the following commands:
$ cd vvote/my_app_client/
$ java -jar out/suvote_client.jar

8. Test ends automatically in 50 minutes

Testing BFT-SMaRt

1. Create SSH connection to the server machine

2. Start the service with the following commands:
$ cd BFT_SMART/
$ docker-compose up -d

3. Create SSH connection to the client machine

4. Modify BFT_SMART/my_app/config/hosts.config to contain the cor-
rect server machine IP addresses.

5. Start the client with the following commands:
$ cd BFT_SMART/my_app/
$ java -cp out/* pagel.thesis.Client

6. Test ends automatically in 50 minutes

26

III. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Marek Pagel,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the pub-
lic, including for addition to the DSpace digital archives until expiry of the
term of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Performance Testing Bulletin Board Implementations for Online Voting
supervised by Sven Heiberg and Janno Siim

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 11.05.2017

27

	Introduction
	Tested PBB Implementations
	Peered Bulletin Board
	Posting and Acknowledgment
	Publishing the Bulletin Board

	BFT-SMaRt

	Testing Setup
	Testing-Related Software
	Docker
	cAdvisor
	InfluxDB
	Grafana

	Testing Process

	Testing Results
	vVote PBB
	BFT-SMaRt

	Conclusion
	References
	Appendix
	I. Repository
	II. Testing Instructions
	III. Licence

