

UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Karl - Walter Sillaots

Önwall AR Tool

Bachelor’s Thesis (9 ECTS)

Supervisor:

Raimond-Hendrik Tunnel, MSc

Tartu 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Önwall AR Tool

Abstract:

This thesis describes the development and testing of an Android augmented reality application

for the company Önwall. The application allows a user to view a room with Önwall's mosaic

tiles virtually placed on a selected real wall. Alternative applications are first analyzed and

compared in the thesis. Then the user experience design of the requested application is devel-

oped and described, required features specified. After that, Unity and ARCore are brought up

as the tools used to develop the application. This is followed with the details about the archi-

tectural implementation of the application. The thesis ends with descriptions of the user testing,

found usability issues and potential future improvements.

Keywords:

Augmented reality (AR), mobile, application, mobile app, smart device, 3D graphics, com-

puter graphics, Android, Unity, ARCore

CERCS: P170 - Computer science, numerical analysis, systems, control

Önwall AR Tööriist

Lühikokkuvõte:

Antud bakalaureusetöös kirjeldatakse Android liitreaalsuse rakenduse arendamist ja testimist

Önwall jaoks. Rakendusega saab vaadata ruumi, kus valitud seinale on paigutatud virtuaalsed

mosaiikplaadid. Sarnaseid rakendusi on analüüsitud ja võrreldud. Järgnevalt on soovitud ra-

kenduse kasutajakogemuse disain loodud ja kirjeldatud. Pärast seda tutvustatakse lühidalt

Unity ja ARCore, millega loodi rakendus. Sellele järgneb rakenduse süsteemiarhitektuuri kir-

jeldus. Bakalaureusetöö lõppeb kasutajatestidega, leitud probleemidega ja võimalike

edasiarendustega.

Võtmesõnad:

Liitreaalsus, mobiilirakendus, nutiseade, 3D graafika, arvutigraafika, Android, Unity,

ARCore

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteoo-

ria)

3

Table of Contents

1. Introduction 5

2. Similar Software 7

2.1 PictureThat 7

2.2 ColorSnap Visualizer 8

2.3 Augment and Augment Sales 9

3. The Design 12

3.1 Application Operation 13

3.1.1 Tile Placement 14

3.1.2 Tile Operations 14

3.1.3 Tile Change 15

3.1.4 Lighting 15

3.1.5 Wall Deletion 16

3.1.6 Screenshot Taking 16

3.2 Quality Requirements 17

4. The Implementation 18

4.1 Used Technologies 18

4.1.1 Unity 18

4.1.2 ARCore 18

4.2 Wall Detection 19

4.2.1 Detecting Planes 19

4.2.2 Wall Detection Limitations When Using Planes 20

4.3 Placing Tiles 21

4.3.1 Object Tracking 21

4.3.2 Object Placement 22

4.3.3 Editing Panel Size 23

4.3.4 Changing the Current Tile Used 24

4.4 Lighting 25

4.5 Other Commands 26

5. Testing 27

5.1 Environment Testing 27

5.1.1 Textures 27

5.1.2 Lighting 29

4

5.1.3 Distance 31

5.1.4 Discovered Limitations (Conclusion) 32

5.2 User Testing 33

5.2.1 Testing Area and Tests 33

5.2.2 Test Results 34

5.2.3 Feedback 36

5.3 Used Devices 43

5.4 Quality 44

6. Future Development 45

7. Conclusion 46

8. References 47

Appendix 48

I. User Instructions 48

II. Feedback Questionnaire 49

III. Glossary 52

IV. Additional Files and Repository 53

V. License 54

5

1. Introduction

Augmented Reality (AR) is the technique of visually enhancing the physical world with virtu-

ally added objects in an AR application on a device. One method to implement this is by using

the camera on devices such as smartphones or tablet computers that take the feed from the

world as an input. Then, new information is overlaid on top of it and the result shown on the

device’s screen. This creates an augmented perception where the user can see objects that do

not exist in the real world. According to R. T. Azuma’s 1997 paper A Survey of Augmented

Reality (Presence: Teleoperators and Virtual Environments), the three characteristics that de-

fine AR are that (1) it combines real and virtual environments, (2) is interactive in real time,

(3) is in 3D [1, 2]. AR characteristics are unique and AR technologies are continuously devel-

oped to be more accessible. Because of that, different companies see AR as a useful tool for

advertising their products. Examples of such uses include placing virtual furniture in a person’s

home via AR, displaying instructions to the user while they are working, or placing down a

virtual vehicle that the user can walk around and look inside [3].

Önwall is an Estonian company that creates and sells mosaic wall tiles that are made out of

wood. These tiles form different unique patterns (Illustration 1).

Illustration 1. Mosaic tile, wall with mosaic tiles

The company would like potential clients to be able to preview how their room would look like

with specific wall tiles before they make a purchase. Right now their options are to either take

the customer to an area that already has specific mosaic tiles set up, or to use photo manipula-

tion to manually add these tiles inside a picture provided by the customer. Since both these

options are time-consuming for Önwall, the company started looking for alternative solutions

and decided that an AR application would be the best option for them. The user of an AR

application could actively move around a room, seeing a visual representation of what their

wall would look like when Önwall’s tiles would be placed on it.

6

During the work of this thesis, an AR application for devices that support the ARCore SDK

(See chapter 4.1.2) was created1. It can detect walls using the device’s camera and then display

3D models of mosaics on the detected walls. This allows the user to see what a wall would look

like when specific mosaic tiles are placed on it.

Chapter 2 describes existing applications that are similar to what Önwall has requested for

smartphones, but are not suitable for use. Chapter 3 describes the created design for the Önwall

AR application, as well as setting up quality requirements for the final version of the applica-

tion. Chapter 4 is about the implementation of the application and the tools used to achieve it.

Chapter 5 goes through the tests that were done on the finished application. Chapter 6 goes

through further improvements done on the application and what could be done to it in the fu-

ture. Appendix I includes instructions on how to use the application. Appendix II includes

images of the user feedback questionnaire that participants took during user testing (See chapter

5.2.3). Appendix III is a glossary of terminologies that were used but not defined within the

thesis.

1 https://developers.google.com/ar/discover/supported-devices

https://developers.google.com/ar/discover/supported-devices

7

2. Similar Software

Önwall wanted an AR application where the user can place 3D models of mosaic tiles on their

walls. The main purpose for using AR is so the user could experience their room with virtual

Önwall tiles on their wall. Placing and moving tiles around or changing their amount should

be easy to learn for the user. Also, the application should support taking screenshots of what is

currently displayed, so the user could save the result as an image to look at it later.

There are various AR applications available to use that perform similar tasks to what Önwall

wants, such as interacting with the environment and placing objects inside it. In the following

subchapters 3 applications are described and their functionality analyzed. For various reasons,

these applications were found unsuitable. These applications were found in the Google Play

Store or Apple Store and are the closest examples found to what the company has envisioned.

2.1 PictureThat

PictureThat2 is an iOS3 application created by the company

Nano 3 Labs4 and released in 2017. It allows the user to

display images on their wall by selecting an image and

placing their smartphone physically on the wall5. When

those conditions are met, pressing the Hang Photo button

places the image where the device is. Moving back with

the device now shows a visible image on the wall through

the device’s camera (Illustration 2). Through the use of the

Apple ARKit SDK6, Apple’s equivalent for Google’s

ARCore (See 4.1.2), the user can now view that image

from any angle, and place new images on the same wall.

There are 3 issues with this application that make it unsuit-

able for Önwall.

1. It only uses two-dimensional images. Önwall is us-

ing 3D meshes that are made to look like their tiles. Those would not be compatible

2 https://www.picturethat.io/
3 https://en.wikipedia.org/wiki/IOS
4 http://nano3labs.com/
5 https://youtu.be/CCGrhdP78MY
6 https://developer.apple.com/arkit/

Illustration 2. Placing an image

https://www.picturethat.io/
https://en.wikipedia.org/wiki/IOS
http://nano3labs.com/
https://youtu.be/CCGrhdP78MY
https://developer.apple.com/arkit/

8

with PictureThat. Just a 2D image of a mosaic tile would not be able to convey its depth

and shape.

2. This application does not support placing multiple

images simultaneously in a grid format. This

means that the user would have to place down and

position each image on the wall manually one by

one. This would end up taking too much time and

the end result would be inaccurate (Illustration 3).

3. This application has difficulties detecting texture-

less walls, which is common for applications that

use ARCore or ARKit. This means that it either will not be able to place images on

certain walls, or the placed image might be displayed further from the wall than it is

supposed to.

Based on these issues, this application would be too inconvenient for the user to use and the

result would not be accurate enough to give an idea what the wall would look like with mosaic

wall tiles placed on it.

2.2 ColorSnap Visualizer

ColorSnap7 is a system of colors created by the company Sherwin-Williams8 to help a customer

decide on what color they would like to use in various projects. They have created an applica-

tion to it called ColorSnap Visualizer, which is available on the web9, iOS10 or Android11

platforms.

The main function of this application is to take any image and find colors on it that can be

associated with this company’s color codes. These color codes are then shown to the user. The

7 https://www.colorsnap.com/
8 https://www.sherwin-williams.com/
9 https://www.sherwin-williams.com/visualizer
10 https://itunes.apple.com/us/app/colorsnap-visualizer-iphone/id316256242?mt=8.
11 https://play.google.com/store/apps/details?id=com.colorsnap&hl=en_US

Illustration 3. Multiple images

https://www.colorsnap.com/
https://www.sherwin-williams.com/
https://www.sherwin-williams.com/visualizer
https://itunes.apple.com/us/app/colorsnap-visualizer-iphone/id316256242?mt=8
https://play.google.com/store/apps/details?id=com.colorsnap&hl=en_US

9

web and, according to their advertisements, mobile ver-

sions of the application come with an additional feature

called the Paint a Scene mode. This mode takes an image

uploaded by the user and uses computer vision12 algorithms

to recognize edges of various objects that it can see. After

that, the user can select a color from the system of colors

available in ColorSnap to edit the color of a wall

(Illustration 4).

It would be possible to create an additional feature for this

application to be able to use textures instead of flat colors.

However, because it works on a single image, the Paint a

Scene feature cannot be used to actively move around the

room to see the results from different angles. Önwall’s mosaic tiles are also 3D, not a simple

texture or wallpaper, coloring the wall with a texture of the mosaic tile does not give the same

representation as placing virtual 3D tiles on the wall would.

2.3 Augment and Augment Sales

Augment13 is a company that has made an application

with the same name for Android and iOS devices as well

as a web version. Released in 2011 and with over 1 mil-

lion downloads on the Google Play Store, the Android

and iOS version is a general purpose AR application de-

signed to visualize 3D models in a real world

environment. Users can select any public 3D model up-

loaded in the Augment website and display it on the

device, using the camera display as the background

(Illustration 5). For a monthly fee, they can upload their

own models either publicly or privately. In addition to

this, they can choose to attach an object to a custom

tracker, such as a pamphlet or a magazine. The object is

12 https://en.wikipedia.org/wiki/Computer_vision
13 https://www.augment.com/

Illustration 4. Web version of

ColorSnap

Illustration 5. Augment

https://en.wikipedia.org/wiki/Computer_vision
https://www.augment.com/

10

then displayed on the tracker when viewed through

the device’s camera in this application (Illustration

6). This is useful for smaller scale objects, as the

tracker can be moved around, which moves the virtu-

ally created object on it as well. By paying a monthly

fee, the application user can attach 3D models to a

specific trackable, such as a custom pamphlet. Then

the user’s potential customer could take the pamphlet

from the user. The customer could place the pamphlet

anywhere they want to, and by using this application,

the model is automatically made viewable to the cus-

tomer.

If Önwall decides to use a trackable to display the mosaic wall tiles, it would be time consuming

for the end-user. Each trackable object would have to

be manually placed on a wall for the created tiles to

be displayed in a grid. Also, the Augment application

might not recognize the trackable if it is too far away

or at an angle, causing some 3D models to become

displaced (Illustration 7).

Without the trackable, this application would not

work at all. Augment is designed to place objects on

the ground. The height is not changeable. In addition

to this, the user has to place each tile one by one, with-

out any way to align objects next to each other. With no trackable objects to attach to, the user

would not be able to move around the room without the created objects moving themselves.

Illustration 6. Trackable object in

Augment

Illustration 7. Misplaced trackable in

Augment

11

In 2018, an alternative application named Augment Sales was released for Apple devices. This

version requires users to pay for the monthly fee, and only supports using models uploaded by

the user. Augment Sales uses ARKit to detect floors and place objects on it. Unlike the regular

version of the application, once an object is placed down, the user can move around the area

and each object would remain in their position relative to world position (Illustration 8).

As with Augment, Augment Sales can only place down objects one by one, with no ability to

change the height. Another problem is that Önwall would have to send a person over to their

client that has access to this application, while Önwall would like every customer to be able to

use the application on their own.

Illustration 8. Augment Sales, placing tiles

12

3. The Design

Apart from the initial idea, Önwall did not have set requirements on how an AR application

suited for their needs should work. The first goal was to search for various solutions to solve

this. Two ideas were presented:

1. An application that can detect walls and directly place mosaic tiles on them. This ap-

proach would be easier to implement and use, but has issues with detecting unicolor

walls (Chapter 4.2.2).

2. A solution created by Ott Saar, who also made an AR application as their Bachelor’s

thesis project [10]. This version focuses on detecting the ground instead of walls. The

user would point their device at the starting location and click on a button to mark that

area. Then they either raise or lower their device to indicate the height of the wall and

click on the same button again. After that, clicking on the ground would build a virtual

wall between it and the 2 previously created points. Overall, this is more accurate and

works better in more environments compared to the first solution, but is more difficult

to use.

In the end, Önwall decided to choose the first option, as being user-friendly was important for

them even with limitations. The next part was to visualize the general operation of the applica-

tion.

From this point on the following terminology is used:

● Tile – A 3D mesh that looks like a mosaic wall tile made by Önwall.

● Panel – An invisible rectangle that is used as a distinct portion of a wall to be filled

with tiles.

● Wall – The real-world wall.

Chapter 3.1 is about the design created for the application, while Chapter 3.2 is about the qual-

ity requirements that the final product should fulfill.

13

3.1 Application Operation

As the application is being used, specific interactions with it can only be done when certain

conditions have been met. Illustration 9 shows the general operation states of the application.

Illustration 9. Application operation

Chapter 3.1.1 describes how a user can place down a new tile in the Tile Placement state once

the application has been started. Chapter 3.1.2 describes what the user can do with a tile in the

Tile Operations state once the tile has been placed down. At any point, the user can change the

currently used tile in the Tile Change state, which is described in chapter 3.1.3. Chapter 3.1.4

describes how to change the lighting of tiles. Chapter 3.1.5 shows how the user can delete their

currently placed panel in the Wall Deletion state, if they want to place to another wall. Chapter

3.1.6 shows how the user can take a screenshot of their current view in the Screenshot Taking

state.

There is also a separate button to view Önwall’s contact details in the Contact Information

View state, however, as it only contains their contact details and nothing else, it is not talked

about more in-depth in this thesis.

14

3.1.1 Tile Placement

Illustration 10 shows how placing a tile

on a wall should look like. The first

screen depicts the user pointing their de-

vice camera towards a wall they want to

place a tile on. The second screen shows

that the application has recognized the

wall and displays an overlay on where a

tile can now be placed. When the user taps

on the overlay, a panel is placed on the area the user tapped, a tile is placed on the panel and

the wall overlay turns invisible.

3.1.2 Tile Operations

Illustration 11 shows that the user can move the panel with tiles on

it around by holding 1 finger on the screen, then panning it in any

direction. When more tiles are visible, they are moved at the same

speed as well.

Illustration 12 depicts operations when using 2 fingers. The first

screen shows the user zooming horizontally with 2 fingers, which

causes the panel to increase in size horizontally, until it can fit 3

tiles on it. Pinching 2 fingers together would reduce the panel size.

The second screen shows the same operation, but vertically instead.

The third screen shows the result, which is several tiles being visi-

ble to the user in a grid formation.

These two operations can be performed

simultaneously when the user pinches

or zooms 2 fingers diagonally. While

the user is resizing the panel, the current

tile info text at the bottom of the screen

is changed to the current panel meas-

urements. When let go, the information

switches to the tile info after 1 second.

Illustration 10. Adding a tile

Illustration 11.

Moving a panel

Illustration 12. Resizing a panel

15

3.1.3 Tile Change

Illustration 13 shows an arrow button. Tapping on it

reveals a sub-menu with all selectable Önwall tiles

available in this application. Each tile shows the

name of the tile and its measurements. If no tiles have

been created, tapping on a tile icon changes the de-

fault tile used in the application. When tapping a wall

overlay after selecting a tile, a wall is created with

the newly selected tile. If a wall already exists, se-

lecting a new tile also replaces the current panel with a

new one using the newly selected tile. When a new tile

has been selected, its name and measurements replace the current tile info at the bottom of the

screen.

3.1.4 Lighting

Illustration 14 shows a lightbulb button. Tapping it

reveals a menu with 5 buttons. Clicking the middle

lightbulb button rotates the lighting to the same rota-

tion as the virtual camera is pointing to. When

clicking any of the arrow buttons, the lighting is ro-

tated by 2 degrees to the direction that the arrow

shows – the right button rotates the light 2 degrees

clockwise, the left button 2 degrees counter-clock-

wise, the up and down buttons 2 degrees upwards and

downwards.

It should be noted that if both the Tile Change and Lighting menus are open, closing one closes

them both. This is so that the user would not need to tap to close both menus separately.

Illustration 13. Tile Change

Illustration 14. Lighting

16

3.1.5 Wall Deletion

The application supports only one wall at a time.

Whenever a wall is created, a button to delete the

wall becomes visible on the bottom of the screen.

Illustration 15 shows that tapping this button de-

letes the panel and makes any invisible areas to

place a tile on visible again. The application keeps

track of what tile has been currently selected, so

creating a new panel after a panel has been deleted

creates a new panel using the same tile as before.

3.1.6 Screenshot Taking

The application supports taking screenshots. Illustration 16

shows a camera icon in the bottom right corner. Clicking it takes

a screenshot of the current screen and initially saves it under the

applications internal files folder. Considering that it would be dif-

ficult to find the image here, it is then moved over to the Pictures

folder of an Android device inside a new folder titled Onwall.

When the image is successfully moved, the user is notified that

the screenshot has been taken at the bottom of the UI for 1 sec-

ond, before switching back to the current tile info.

Illustration 15. Tile deletion

Illustration 16.

Screenshot taking

17

3.2 Quality Requirements

Based on the requests from Önwall and the conditions the finished application would be used

in, quality requirements were made to agree what the ideal conditions for this would be:

1. The application should take less than 5 seconds to start up.

2. The application should take less than 100 ms [4] to change the currently viewable tiles.

3. An average Android device user is able to place a tile on a wall in less than 1 minute.

4. The application works without issues in a subjectively well-lit environment.

5. The application works without issues on walls with textures (e.g. wallpapers).

6. The application works on any device that supports the ARCore SDK.

7. The application supports 10 different tiles to use.

These quality requirements cover the basic conditions for the application to be comfortable to

use for any user. The results of these requirements can be read at chapter 5.4.

18

4. The Implementation

Once the quality requirements of the application, as well as the design, were set, the next goal

was to start implementing the design. Chapter 4.1 is about the technologies used in order to

create this application, the rest of Chapter 4 goes into more details on how each operation of

the application in chapter 3.1 has been implemented.

4.1 Used Technologies

During the first discussion with Önwall, it was decided that the application should be developed

for the Android platform, as according on Önwall, their target audience mostly uses Android

devices. To develop the application on Android, two external tools were used: the Unity game

engine and the ARCore software development kit (SDK).

4.1.1 Unity

Unity is a game engine made by Unity Technologies. This engine, while primarily designed to

create 2D and 3D games, can also be used to create general purpose applications. It is also

supported on a variety of different platforms14 and frequently gets bug fixes and updates15.

Products made with Unity are royalty free16, however using Unity is free as long as the annual

income of the user/company is less than 100000$17.

Unity was chosen as the environment to develop the AR application for this thesis. An alterna-

tive would have been to use the Sceneform framework, which was created specifically for

developing AR applications on Android devices. Unity was preferred since it is easier to create

a user interface in it and work with 3D meshes.

4.1.2 ARCore

ARCore is Google’s current platform for building augmented reality applications primarily for

Android devices.18 When using ARCore, it actively tracks the device location as well as uses

the device camera to detect the size and location of surfaces, which can be interacted with.

14 https://unity3d.com/unity/features/multiplatform
15 https://unity3d.com/unity/whats-new
16 https://unity3d.com/unity/faq
17 https://store.unity.com/
18 https://developers.google.com/ar/discover/

https://unity3d.com/unity/features/multiplatform
https://unity3d.com/unity/whats-new
https://unity3d.com/unity/faq
https://store.unity.com/
https://developers.google.com/ar/discover/

19

ARCore itself is supported on a wide array of devices19 and is usable as an SDK for Java, C,

Unity (C#), Unreal Engine and, to a limited degree, iOS.

Before ARCore, in 2014 Google released Project Tango as their first way to bring AR to smart

devices. While more accurate than ARCore, only 2 commercially released devices supported

Tango20. On 1. March 2018, Google shut down Tango and officially released ARCore [5, 6].

Alternatives for building an AR application would have been either ARKit, which is designed

for Apple devices and mostly functions similarly to ARCore, or Vuforia, which can be used on

both Android and Apple devices, but needs to rely on ARKit or ARCore to use its ground

detection markerless functionality.

ARCore was chosen since Önwall wants the application to be usable on as many devices as

possible and due to the amount of time needed to develop an application for 2 platforms, An-

droid was settled as the final choice. This means that ARKit would not be suitable. As for

Vuforia, while developing an application on it is free, deploying it would require Önwall to, at

minimum, either spend 99$ a month or purchase the classic version for 499$21.

4.2 Wall Detection

In order for the Önwall AR application to work, the application needs to be able to detect walls.

The ARCore’s built-in wall detection is used to achieve this. The following subchapters will

talk about how this wall detection works and what limitations it has.

4.2.1 Detecting Planes

ARCore keeps track of every virtual object inside an application by using planes. Every virtual

object is anchored to a plane by transferring the real world device movement and orientation

over to the virtual world. However, the application needs to understand where to create a virtual

plane such that it would accurately correspond to a real-world planar surface.

ARCore uses a process called concurrent odometry and mapping (COM) in order to understand

where the phone is relative to its surroundings.22 ARCore searches for distinct features in the

captured camera image called feature points and uses these points to help calculate the device’s

position and orientation. These feature points can be, for example, visible corners on tables or

patterns on the ground.

19 https://developers.google.com/ar/discover/supported-devices
20 https://en.wikipedia.org/wiki/Tango_(platform)#Devices
21 https://developer.vuforia.com/vui/pricing
22 https://patents.google.com/patent/US20170336511A1/en

https://developers.google.com/ar/discover/supported-devices
https://en.wikipedia.org/wiki/Tango_(platform)#Devices
https://developer.vuforia.com/vui/pricing
https://patents.google.com/patent/US20170336511A1/en

20

In order to create a plane, ARCore searches for clusters of feature points that appear to lie on

horizontal or vertical planar surfaces [7]. Usual examples of such surfaces are floors, tables and

walls. Once it has recognized a valid surface, a plane is automatically generated and viewable

to the user. Since the system is not able to immediately recognize the entire surface, the plane

created on it may initially be of limited size. In this scenario, the user should move their device

around the area, so that ARCore can detect new feature points and combine them together with

either existing planes or create a new one.

4.2.2 Wall Detection Limitations When Using Planes

Since ARCore searches for distinct features in the captured cam-

era image, it cannot detect unicolor surfaces that lack any features

for the algorithm to use as feature points. The ground is somewhat

less likely to have this issue, because it usually has a unique pat-

tern or a rug on it. Plainly colored grounds are uncommon. While

walls may be decorated with wallpapers, they can usually also be

painted with one color. This means that it is likely that a user

might need to do some additional work to make a wall detectable.

This problem can be rectified by placing uniquely identifiable ob-

jects on the wall that differ from the surface color wise. One

example would be using sticky notes or masking tape that the ap-

plication would then recognize on a surface (Illustration 17).

 Illustration 17. Wall

21

4.3 Placing Tiles

Once the Önwall AR application has detected walls and placed planes on them, the next step

is to create a panel. The following subchapters talk about how tracking objects with ARCore

works, as well as the process of events to place down a panel with the first tile.

4.3.1 Object Tracking

As stated in chapter 4.2.1, ARCore searches feature points and uses these points to calculate

the device’s change in position and orientation. This visual information is combined with the

device’s inertial measurement units (IMUs) to estimate, in relation to the world, the camera

position and orientation, also known as a pose (transform) in computer vision.

By aligning the pose of the virtual camera with the pose of the physical device’s camera, virtual

content can be rendered from the correct view. This rendered content is overlaid on top of the

image that the device camera captures, giving the illusion that the content is a part of the world.

This also means that the device can not differentiate if something from the real world is in front

of the created content. So virtual content can still be incorrectly seen from behind occluding

real world objects or walls.

In ARCore, planes and points are special types of objects called a trackable, which are the

various feature points and planes that ARCore tracks in the real world. As ARCore is updating

its information of the environment, the poses of scene objects should change to accommodate

for these changes. For example, it initially detects the ground to be 5 centimeters above the

actual ground and places a plane there, but when moving around the area, it detects that the

ground is lower than the plane is. It then moves the plane closer to the ground. To ensure that

every created scene object also moves when ARCore updates its understanding of the environ-

ment, an anchor needs to be defined for them. Virtual objects can be anchored to a specific

trackable to ensure that the objects placed on a ground or a table will stay there, when ARCore

adjusts the pose of these areas [7].

22

4.3.2 Object Placement

In order to place down an object, the user needs to tap on a plane that they can currently see.

Illustration 18 shows what the process looks like.

Whenever the user taps the screen, a ray is cast into the scene. If it does not hit anything, the

application starts waiting for a new input. If it hits a detected plane, then the application collects

the hit information, generates a panel with a tile in it, anchors the instantiated panel to the hit

plane and turns all planes in the scene invisible. The tile itself is aligned vertically relative to

the world, while the panel takes the vertical and horizontal measurements of the tile and sets it

as its own measurements. After the panel is placed, all planes are turned invisible so that the

grid used to display the plane would not distract the user.

Illustration 18. Tile Placement

23

4.3.3 Editing Panel Size

After a panel is created and a tile has been placed inside it, the application goes into the Tile

Operations mode. The user can now move the panel around or increase/decrease its size, which

causes the panel to be filled with as many tiles as possible. Illustration 19 shows what the

process looks like.

During the Tile Operations mode, the application is constantly waiting for input. When one

finger is detected, the panel is moved around based on the direction the finger is moved in. For

example, when the user moves their finger right on the screen, the panel moves right relative

to the plane it is placed on. When two fingers are detected, the user can resize the panel by

pinching or zooming their fingers. The horizontal and vertical size of the panel is used to cal-

culate how many tiles can be fit inside the panel. The tiles are anchored to the bottom left corner

of the panel. If the panel horizontal size is smaller or larger than the sum of the tiles horizontal

size, a column of tiles is removed or added on the right side of the panel. The same thing

happens with the vertical component and the topmost tile row.

As stated in chapter 3.1.2, the bottom area of the application displays the current tile infor-

mation under normal circumstances. However, while the user is resizing the panel, the

application displays the panel measurements in meters for the user to see. When the user is no

longer resizing the panel, the information switches back to the current tile info after 1 second.

Illustration 19. Tile Operations

24

4.3.4 Changing the Current Tile Used

Whenever the user is placing down a tile or moving around/changing the size of the created

panel, they might want to change the selected tile to another tile. Illustration 20 shows the logic

for changing the current tile.

Whenever the arrow button on the right side of the screen is pressed, the menu to change the

current tile used is opened. While this menu is open, Tile Placement and Tile Operations modes

are disabled, so that the user does not accidentally place tiles / move instantiated tiles around

while selecting a new tile to replace the current ones with. There are 10 mosaic tiles to choose

from, with an image, name and measurements. Tapping on a tile changes the tile used when

creating a new wall, as well as replacing tiles on the currently instantiated wall. If the new tiles

are of different size than the old ones, the application makes sure to fill the current wall area

with as many tiles as it can in a grid pattern.

Illustration 20. Tile Change

25

4.4 Lighting

Whenever tiles are placed down in the scene, they are affected by the built-in lighting that

Unity provides. The user has the ability to change the orientation of this lighting to, for exam-

ple, simulate light shining in from a real world window. Illustration 21 shows how to change

the lighting.

The lighting menu on the left side of the screen opens similar to the tile selection menu. The

user can still open the tile selection or lighting menu if the other is open, but closing one closes

them both.

The application uses a directional light source, which lights the area it is pointed towards. While

the lighting menu is open, the user can click the lightbulb button to rotate the lighting based on

Illustration 21. Lighting

26

the virtual camera’s rotation. Alternatively, they can use the arrows to manually change the

lighting rotation 2 degrees at a time.

4.5 Other Commands

The user also has the ability to take screenshots of what is currently displayed on the device,

as well as check Önwall’s contact information at any point. Illustration 22 shows what the

corresponding buttons do.

The screenshot button saves the current display into the device memory. Once the image is

saved and the user has given permission for the application to access their device memory, the

application creates a separate folder in the “Pictures” folder, where it moves over the saved

image. As said in chapter 3.1.6 it then notifies the user that the image is taken at the bottom of

the UI for one second. The contact information view shows information on how to contact

Önwall.

Illustration 22. Screenshot and Contact Info buttons

27

5. Testing

As the AR application developed for this thesis is dependent on where and how it is used, there

needs to be separate testing to determine the optimal environmental conditions for usage, as

well as user testing to see how people understand and use this application. Chapter 5.1 is about

testing the AR application in different environments, while chapter 5.2 goes through on what

was tested during user testing, as well as the received feedback. Chapter 5.3 describes the plat-

form testing done to see how the application works on supported devices. Chapter 5.4 looks

back at the quality requirements in chapter 3.2 to see if these requirements have been met.

5.1 Environment Testing

This chapter talks about the ARCore built-in wall detection, introduced in chapter 4.2, and

testing it with different textures, lighting and the maximum distance of feature points before

the application starts having difficulties detecting a wall between them.

5.1.1 Textures

As stated before, ARCore has difficulties detecting unicolor walls, so the first test with textures

was to see if it can detect minor texture changes. Illustration 23 shows a white surface with

masking tape placed on it. Due to the lighting, the application had troubles detecting small

changes such as this. Only at an angle did the application detect the masking tape, but it took a

long amount of time before the lighting conditions were good enough for the application to

detect it (Illustration 23).

Illustration 23. Hard to detect surface

28

A more distinct color, such as black, on a white wall yields much better results, as the applica-

tion is able to quickly find the wall. Even then though, the application might mistake the wall

to be further away than it actually is. By moving around and viewing the textured surface at

different angles, the application corrects the created plane location (Illustration 24).

The application can also detect uneven surfaces as walls, as

long as there is a discernable pattern on it (Illustration 25).

The application did not have trouble detecting walls in a

room with unique textures in it (Illustration 26), but when

creating multiple new planes, eventually old ones started

being removed. It appears to have a limit of between 10-15

planes at a time, any more than that and the oldest detected

planes are deleted first. This also means that if a panel has

been placed down, then all the tiles would disappear while

the application continues to detect new planes in the back-

ground. Since these planes are invisible, the user would

very likely not understand what might have happened. On

the other side, this is also somewhat unlikely of happening

if the user would be using this application in only one small

area, since there would not be enough detectable surfaces

to reach this situation.

Illustration 24. Detecting a wall, correcting depth

Illustration 25. Uneven surface

29

In conclusion, as long as the surface is not unicolor or the textured wall colors do not look too

similar to each other, the application should not have difficulties detecting a wall.

5.1.2 Lighting

Testing the application’s wall detection capabilities during different lighting scenarios was

done in the same room. The first test was done by having the room lighting turned on

(Illustration 27, first image). The application had no issues detecting walls while the room was

well lit. For the second test, the lights in the room were turned off, however a curtain was

slightly opened to let a partial amount of light into the room. During this, the application still

detected the wall without any particular issues (Illustration 27, second image).

Illustration 26. Textured surfaces

30

Once all the lights were turned out and the curtains were covering any light from the outside

coming in, the application did not detect the wall, due to it being too dark. However, while

moving around, the application detected feature points a lot better, even while in the dark,

which allowed it to detect the wall in the end (Illustration 27, third and fourth image). The

amount of time needed to move around until the application detected the wall makes using the

application in the dark unsuitable for use.

In the end, as long as there is even partial lighting, the application should be able to detect

walls, but proper lighting is going to give the best results.

Illustration 27. Viewing the wall in different conditions

31

5.1.3 Distance

Under distance testing, 2 aspects were tested, how far away the device using the application

needs to be in order to detect a surface and how far feature points can be from each other before

the application starts having trouble detecting them.

When testing the distance from the wall, the maximum distance the user can be away from the

wall was found to be between 1 to 2 meters. Any further than that and nothing is detected.

When testing the distance between feature points, the application needs at minimum 9 feature

points to be able to create a plane between them (Illustration 28).

Testing with a larger area, for the first test, feature points were placed with a distance of 10 cm

between each point. When viewing the wall directly, the application did not detect the wall.

Slightly moving over to the left however was enough for the application to recognize that it

was viewing a textured surface (Illustration 29).

Illustration 29. 10✕10 cm gaps

Illustration 28. Minimum points to detect a plane

32

When placing the feature points 15 cm apart from

each other, the application started to have more diffi-

culties detecting the textured surface. The wall was

only detected when viewed at a larger angle compared

to the previous test (Illustration 30). Furthermore,

once moving back to the initial location, the wall had

disappeared, meaning that the application could only

recognize the wall when viewing at this angle.

Based on this, if the feature points are too far away

from each other, the application cannot detect a plane

between them.

5.1.4 Discovered Limitations (Conclusion)

● The application detects distinct features better during movement

● It cannot find surfaces in the dark, unless there is very partial lighting and the user is

moving around.

● It detects surfaces better at an angle, rather than when directly facing the wall

● If a plane is created, the user should view the surface at different angles, so that the

application can align the surface to the wall

● If the application had problems detecting a wall when directly facing it, a plane created

on it can still disappear when the user goes back to face it head on

● The application can keep track of between 10-15 planes at a time

● If the application has detected the floor beforehand, it has an easier time keeping track

of walls

● The application starts having difficulties detecting planes when features points are more

than 15 cm apart from each other.

These limitations were formulated as guidelines for the user of the application in Appendix

User Instructions.

Illustration 30. 15✕15 cm gaps

33

5.2 User Testing

While the Önwall AR application is designed with the intention of being easy to understand,

the regular user might still have trouble with certain features, so the application was tested for

feedback.

5.2.1 Testing Area and Tests

The user testing was done on a white wall that had been covered with pink masking tape, so

that the wall would be detectable (Illustration 31).

Illustration 31. Test area

The test scenario consisted of 7 tasks and filling out a feedback questionnaire (Appendix II)

once finished with the tasks. The tasks were:

1. Detect the wall using the application and place down a tile.

2. Resize the panel size to fit 3✕4 tiles.

3. Change the lighting so that it would shine from the real world light source.

4. Take a screenshot of the current result and find it on your device.

5. Delete the panel and create a new one.

6. Pick out the Oaknut tile.

7. Find the contact information button.

The next chapter shows the results from these tasks based on time and how each task was

generally done by the participants, while the chapter after that goes into the feedback of the

participants.

34

5.2.2 Test Results

For each participant, the time taken to solve each task is shown in Table 1.

Table 1. Test results based on time

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Total

Participant A 2:30 1:00 1:37 NA 0:15 0:03 0:01 5:26

Participant B 2:00 1:30 0:57 NA 0:05 0:07 0:01 4:40

Participant C 1:40 0:55 1:45 NA 1:23 0:12 0:01 5:56

Participant D 0:10 0:31 0:51 NA 0:22 0:20 0:04 2:18

Participant E 0:25 0:32 1:42 NA 0:41 0:26 0:05 3:51

None of the participants were told anything about the application, except that they will be using

an AR application. The first task, having the application detect the wall and placing a tile on it,

had the most varying results. Participants D and E are more regular smartphone users, while A,

B and C, are not. Therefore D and E had a much easier time to figure out how to place down a

tile, while the others either did not understand how the wall detection worked, or tried to use

different methods for placing the tiles. Having some form of instructions could have given

likely given better results.

Task 2, resizing the panel, went mostly well for everyone except for participant B, who did not

think about zooming 2 fingers on the screen to increase panel size, but tried to drag 2 fingers

in various ways instead. Having instructions for this as well would probably solve the issue.

Task 3, changing the lighting, was solved by everyone correctly, however none of the partici-

pants really understood how the lightbulb button exactly worked (changed the light rotation to

the device camera rotation), nor noticed any major differences when tapping the lighting ar-

rows. Apart from having instructions for this as well, the arrows would likely function better if

they moved the lighting every frame while the button was being held down, instead of tapping

the buttons many times.

Task 4, taking a photo and finding it on the device, was not finished by anyone. The taking a

photo part was understood by everyone, there is a camera icon, and clicking it makes a flash in

the screen, indicating an image being taken. However, finding the image was nearly impossible,

due to a bug where every image displaying application on the device did not immediately show

these newly saved images. The only way to find it was to go inside the device memory, and

from there, the Pictures folder, to find the folder where all of the application images are stored

35

in. When checking later, all the programs are suddenly able to find these images, which means

there might be a function that is supposed to notify these applications that there are new images

to view and currently the device itself does it after some time has passed, when it should be

notified of this upon the image being taken.

Task 5, deleting the panel and placing a new one, was easy enough for every participant. Par-

ticipants C and E took considerably longer because they were giving feedback about various

things during this point, but they did not have any troubles actually performing the task.

Task 6, selecting the Oaknut tile, did not cause issues for anyone. Task 7, finding the contact

information button, was also not difficult, however, since 3 of the participants discovered the

location of this button during the first task, they knew where it was immediately. The applica-

tion could use an icon to make it more understandable that it leads to the contact information

view.

In conclusion, most of the issues prevalent here came from the participants not being introduced

to any form of instructions on how to operate with the application. Since one the goals stated

in chapter 2 of the thesis was that this application would be easy to learn for the user, having a

short user manual or in-application instructions would likely make it easier to understand for

users. For this, appendix I briefly goes through all the functions of the application.

The feedback of these participants for the general design of the application is written in the

following chapter.

36

5.2.3 Feedback

Once each test participant had finished all the tasks, they were asked to answer questions re-

garding their smartphone usage habits and feedback on specific features of the created AR

application. Some questions also had additional fields so that each participant could write their

reason for a rating (See Appendix II).The first question was how often the participant uses their

smartphone, shown on Figure 1.

Figure 1. Smartphone usage

As can be seen in Figure 1, the majority of participants use their smartphone regularly every

day. This means that most of the participants should be familiar with different smartphone

functions and what to do with them.

Figure 2 shows what each participant commonly uses their smartphone for.

Figure 2. Smartphone most common uses

37

The results on Figure 2 are mostly balanced, each participant has specific needs when they are

using their smartphone, but nothing that everyone has in common. This makes it more difficult

to gauge a general level of skill that all participants have.

Figure 3 shows how often each participants uses AR applications.

Figure 3. AR application usage frequency

Two of the five participants use some form of AR application semi-frequently, while the others

are mostly unfamiliar with AR applications. This means that some issues are more likely to

happen due to lack of experience on how AR applications work.

Figure 4 shows each participants opinion on how difficult it was to use the application, 1 being

easy and 10 difficult.

Figure 4. Application usage difficulty

One participant found the application to be easy to use, while others found some parts of the

application to be difficult. While these details are gone more in-depth into in the following

38

questions, placing down the first tile and understanding how the lighting works were the main

issues brought up here.

Figure 5 shows how difficult each person found the wall detection to be, 1 being easy and 10

difficult.

Figure 5. Wall detection usage difficulty

In general, none of the participants had too much difficulty in using the wall detection. Based

on the feedback, the application should have some form of indicator to tell the user if they are

not close enough for the application to detect a wall, since some participants did not think that

they had to move closer to the wall for the application to detect the wall.

39

Figure 6 shows how much each participant liked changing the panel size and panel move-

ment, 1 being they disliked it and 10 being they liked it.

Figure 6. Tile movement and resize opinion

The results here were mostly below average. Once the participants understood how it works

then it was fine, but figuring out how to change the amount of tiles at first was rather confusing

for them. One suggestion was to swap moving the panel around to 2 fingers and resizing the

panel with 1 finger. Another person did not like that all the tiles that were being displayed

suddenly disappeared. This is due to the plane the anchored panel was attached to no longer

being detected, so everything attached to the plane disappeared with it, until the app detected

the plane again. This can be easily fixed by not anchoring panels to planes, however then the

application would lose the ability to correct the panel positioning, when the application detects

that the plane should be positioned differently than it currently is.

40

Figure 7 shows how each participant liked changing the lighting, 1 being they disliked it 10

being they liked it.

Figure 7. Lighting opinion

Some participants liked how the lighting direction affected the tiles, however, everyone had

difficulties first understanding how the lighting works. None of the participants really under-

stood that the lightbulb icon rotates the lighting at the same rotation as the device. Since arrow

buttons move the lighting 2 degrees at a time, they also barely gave any kind of indication that

the lighting had moved. There needs to be a clearer explanation on what the lighting buttons

do, or an illustration of the light’s direction.

Figure 8 asks each participant how they liked taking screenshots, 1 being they disliked it 10

being they liked it.

Figure 8. Taking screenshots opinion

Most participants did not have trouble taking screenshots, however, as stated in chapter 5.2.2,

Task 4, the device did not recognize any newly created images, meaning they could only be

41

found by going into the device’s internal memory. One participant suggested that the screen-

shot button could be larger, as it was a little difficult for them to press it.

Figure 9 asks each participant how they liked the user interface (UI), 1 being they disliked it

10 being they liked it.

Figure 9. UI opinion

Most participants agreed that the UI is simple and easy to understand, but could use instructions

on how certain parts of it function, such as the lighting. One participant also suggested having

the Önwall logo be placed in one of the upper corners to understand what application is cur-

rently being used. Önwall did not find this necessary to currently add, as they already liked the

minimalistic UI design.

Another participant decided to hold the testing device horizontally and found that the UI was

too small when the application is used in this state. A separate scaling system should be made

when the application is used horizontally, so that the UI remains the same size as when it is

vertically.

42

Figure 10 and Figure 11 asks each participant how likely they would try out this application

when they would plan to purchase Önwall’s products and how they liked the overall experience

with the application.

Figure 10. Likelihood of using the Önwall AR Tool

Figure 11. Overall experience

Overall, the application was seen mostly positively by the participants, but specific features

should be improved on for a higher average. A few additional improvements were suggested

after the testing had concluded. One thing was to improve the button reaction on click, as a few

participants had longer taps when selecting tiles or changing the lighting which caused nothing

to happen. Making the buttons react as soon as they receive input would fix this issue. The

other thing suggested by a participant was to make any information changes at the bottom of

the UI (screenshots, panel resizing) stay visible for a longer amount of time, as 1 second was

not enough time for them to notice what was written.

43

5.3 Used Devices

The application was tested on different devices that support ARCore23 to find out if these de-

vices have any differences between each other when using the application. The following

devices were:

● Samsung Galaxy Note 8 – The default device used to develop the application on, which

will be used to compare with other devices.

● Xperia XZ1 Compact – Considerably smaller screen, which causes the panel resizing

to be different due to it not being scaled with screen size, otherwise no noteworthy

differences.

● Galaxy S7 Edge, OnePlus 5, Nokia 7 Plus – Similar measurements to each other, no

noteworthy differences.

● Huawei Honor 10 – The camera display was flickering, which caused the application

to have difficulties detecting the walls. It was not certain if the problem was related to

the device itself or the application.

● Xiaomi Mi A2 lite – This device was not shown as a supported device on the ARCore

supported devices webpage. The application installed successfully, but when starting

the application, it requests to download ARCore. Accepting this takes the user to the

Google Play Store page for ARCore, where it says this device does not support ARCore.

Based on these tests, the application should not have any problems when used, as long as the

device supports ARCore and the camera on the device does not have any issues.

23 https://developers.google.com/ar/discover/supported-devices

https://developers.google.com/ar/discover/supported-devices

44

5.4 Quality

Looking back at the quality requirements in chapter 3.2, to see if their conditions have been

met.

1. The application should take less than 5 seconds to start up.

Result: 4.82 seconds, measured on the smartphone used for development of the appli-

cation. This time mostly comes from the Unity’s splash screen when starting up the

application. This splash screen is used to load items in the background, but it is possi-

ble that the application might finish loading faster than the duration of the splash

screen. The splash screen cannot be removed when making Unity applications for An-

droid24, so this cannot be improved on.

2. The application should take less than 100 ms to change the currently viewable tiles.

Result: Depends on how many tiles are placed down. At around 25 tiles or more at a

time, the time taken for a wall to be changed starts to take more than 100 ms.

3. An average Android device user is able to place a tile on a wall in less than 1 minute.

Result: Based on user testing in chapter 5.2, if the user is less experienced with using

smart devices, they are more likely to perform badly at this. This is due to the applica-

tion not having any instructions to notify the user on what they should be doing.

4. The application works without issues in a subjectively well-lit environment.

Result: No issues found.

5. The application works without issues on walls with textures (e.g. wallpapers).

Result: No issues found.

6. The application works on any device that supports the ARCore SDK.

Result: some devices need to have a more up-to-date version of Android, the ARCore

supported devices page25 has notes for these exceptions.

7. The application supports 10 different tiles to use.

Result: 10 tiles are currently usable in the application.

Conclusion: mostly satisfying, but some form of instructions should be included with the ap-

plication to reduce the overall average time to place tiles on a wall. If possible, the time taken

to change the currently viewable tiles with new could also be improved on.

24 https://support.unity3d.com/hc/en-us/articles/212165803-Why-can-t-I-remove-the-Splash-Screen-from-my-

build-
25 https://developers.google.com/ar/discover/supported-devices

https://support.unity3d.com/hc/en-us/articles/212165803-Why-can-t-I-remove-the-Splash-Screen-from-my-build-
https://support.unity3d.com/hc/en-us/articles/212165803-Why-can-t-I-remove-the-Splash-Screen-from-my-build-
https://developers.google.com/ar/discover/supported-devices

45

6. Future Development

After testing had been finished, some minor improvements were made to the application:

● All buttons were changed to trigger as soon as they are held down. During testing, some

participants had minor issues clicking buttons, so having these buttons trigger instanta-

neously should improve results.

● Based on the suggestion by one of the participants, whenever the information on the

bottom of the UI is changed, it is now displayed for 2 seconds before switching back to

the tile info.

In the upcoming 1-2 months, based on the feedback from the user testing and manual testing,

the following issues will be addressed:

● Instructions – Either creating a separate manual that the user can read or making in-app

notifications that tell the user what they should be doing.

● Lighting – Give the buttons a clearer indication on what they do, and change the arrow

buttons so that they would continuously rotate the lighting when held down, instead of

having to tap the button every time.

● UI – Make the screenshot, deletion and information buttons slightly larger, so that they

would be easier to tap on.

● Tile Operations scalability, as right now, moving a panel with one finger moves it the

same amount on every device, meaning users that have a smartphone with a smaller

screen would have to let go of their finger more often.

● Improve UI scaling when the application is used on a mobile device horizontally.

● Research ways to make the device see newly saved images for other applications.

● Research ways to improve performance when changing the size of the panel and tiles

are added or removed in the process.

Once these issues have been taken care of, most of the issues that the participants had would

be significantly reduced. Any further improvements that could be made is to be discussed with

Önwall in the future.

46

7. Conclusion

During the work for the present thesis an augmented reality (AR) application was developed

for Android for the company Önwall. The name of this application is Önwall AR Tool. This

application was made using the Unity game engine and ARCore SDK and can be used by most

modern devices, usually needing only Android 7.0+ to operate. Different features and a user

interface were added to make the application easy to learn for the user. The user can use this

application to detect walls and place panels that are filled with mosaic tiles on these walls. The

panel can either be moved around or resized, which moves the tiles inside it or adds/removes

tiles based on the size of the panel. Other functions feature changing the lighting of the tiles,

changing the current tile used, or taking a screenshot of the current scene.

Several types of tests were done to discover the limitations of the functions provided by

ARCore, performance and compatibility issues. This includes testing the application on partic-

ipants who were mostly familiar with using mobile devices, but had rarely used AR

applications. The app was rated to be above average, however there were many areas that the

participants were not fully satisfied with. The main reasons for this were a lack of instructions

on how the application operates, as well as the lighting abilities not being clear to the user on

what they do. Some minor issues were addressed after testing.

Apart from a minor scalability issue with resizing panels on devices with different screen sizes,

the application works identically on any Android device that supports ARCore, due to it being

developed in Unity. The performance between devices was nearly identical, only devices that

had issues with their camera had difficulties working optimally. The major issues still left in

the application were agreed with Önwall to be taken care of beyond the present thesis.

Learning how AR applications work was a big challenge, as well as figuring out how to develop

one myself. Overall, I enjoyed learning how to develop an application in a field I was not

familiar with. Special thanks go to my supervisor, Raimond-Hendrik Tunnel, who helped me

out whenever I had any questions regarding the thesis, as well as Karl Nagel, head of Önwall,

who offered the opportunity to do this thesis.

47

8. References

[1] Micheal Lanham. Learn ARCore - Fundamentals of Google ARCore. (30.03.2018)

[2] Ronald T. Azuma. A Survey of Augmented Reality (Presence: Teleoperators and Vir-

tual Environments). (1997)

[3] Matt D’Angelo. Augmented Reality Check: Why Businesses are Embracing AR in

2018. (18.03.2018). [Online]. https://www.businessnewsdaily.com/9245-augmented-

reality-for-business.html

[4] Jakob Nielsen. Powers of 10: Time Scales in User Experience. (05.10.2009). [Online].

https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/

[5] Brie Barbee, David Cogen. Tango vs. ARCore: Which is the future of augmented re-

ality on Android? (17.12.2017). [Online].

https://www.digitaltrends.com/mobile/tango-vs-arcore-theunlockr/

[6] Jacob Kastrenakes. Google’s Project Tango is shutting down because ARCore is al-

ready here. (15.12.2017). [Online].

https://www.theverge.com/2017/12/15/16782556/project-tango-google-shutting-

down-arcore-augmented-reality

[7] Fundamental concepts of ARCore. [Online]. https://developers.google.com/ar/dis-

cover/concepts

[8] Alan B. Craig. Understanding Augmented Reality. (26.04.2013)

[9] Jonathan Linowes, Krystian Babilinski. Augmented Reality for Developers,

(09.10.2017)

[10] Ott Saar. RoomMapperAR – A Mobile Augmented Reality Room Mapper

https://www.businessnewsdaily.com/9245-augmented-reality-for-business.html
https://www.businessnewsdaily.com/9245-augmented-reality-for-business.html
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
https://www.digitaltrends.com/mobile/tango-vs-arcore-theunlockr/
https://www.theverge.com/2017/12/15/16782556/project-tango-google-shutting-down-arcore-augmented-reality
https://www.theverge.com/2017/12/15/16782556/project-tango-google-shutting-down-arcore-augmented-reality
https://developers.google.com/ar/discover/concepts
https://developers.google.com/ar/discover/concepts

48

Appendix

I. User Instructions

Detecting walls

Point the device towards the wall you want to place mosaic tiles on. If the wall is unicolor, a

pattern of 3x3 pieces of masking tape, sticky notes or something similar should be placed at

minimum on the wall, up to 10 cm away from each piece. If the application still cannot detect

the wall, try moving closer to it, view it from different angles or add more masking tape until

it detects a distinct texture and generates a plane on it.

Placing a tile

Tap anywhere on a plane to place a panel, that starts with 1 tile.

Moving the panel

When a panel is created, hold down one finger on the screen to move the panel around.

Resizing the panel

To resize the panel, place two fingers on the screen, zooming your fingers will increase its size

while pinching will reduce it. If the panel is large enough to fit more tiles in it, it will do so

automatically. Same thing goes for when it is smaller than the total size of the tiles. The UI bar

at the bottom shows the current size of the panel while resizing it.

Changing tiles

To change tiles, press the arrow button on the right side of the screen. A menu with all se-

lectable tiles are presented in a scrollable bar. Pressing a tile button will automatically change

any tiles to the newly selected one.

Deleting the panel

Whenever a panel is created, a button for deleting it becomes visible. Tapping that button de-

letes the wall and makes all planes visible again.

Screenshot

To take a screenshot, press the camera button on the bottom-right corner of the screen. A flash

will indicate that an image has been taken. The UI bar at the bottom notifies the user once it is

successful.

Contact

To view the contact information, press the “i” icon at the bottom right corner. The menu can

be closed with the “close” button.

49

II. Feedback Questionnaire

Illustration 32. Questionnaire, part 1

50

Illustration 33. Questionnaire, part 2

51

Illustration 34. Questionnaire, part 3

52

III. Glossary

Smart Device – Electronic device that is generally connected to other devices or networks

through wireless protocols like Bluetooth, Wi-Fi, 4G, etc. Some examples are smartphones,

tablets, smartwatches, and so on.

Software development kit (SDK) – Set of software development tools to give more function-

ality to an existing platform, such as ARCore providing premade AR related functions to Unity.

Game engine – A software-development environment that is designed to create video games.

Typically includes a rendering engine for 2D or 3D graphics, a physics engine or collision

detection, sound, scripting, animation, and so on.

Inertial measurement unit – An electronic device that uses a combination of accelerometers

to measure acceleration and gyroscopes to measure its angular rate (rotation acceleration).

Transform – The position, rotation and scale of an object.

Pose – The computer vision term for a transform, to determine each object’s position and ori-

entation relative to some coordinate system.

Computer vision – A scientific field of computer science that deals with making computers

understand digital images or videos / automate tasks that the human visual system can do.

3D Rendering – Generating an image from a model (e.g. a virtual 3D model)

Virtual camera – A camera that is used to display a 3D virtual world. In AR, the real world

is used as a background and any virtually created objects are what the user can only see through

the virtual camera.

Mesh – A collection of vertices, edges and faces that make up a 3D model.

Directional light source – A light source that defines a global direction where the light comes

from. Usually used as sunlight in a 3D world when a ground is rendered.

53

IV. Additional Files and Repository

2 Additional files were provided in a separate file, an apk file and a video:

Onwall_ARCore.apk – This is the main program that can be installed on any Android device

that has Android 7.0 at minimum. However, if the device does not support ARCore, it is still

not usable. To use this program, copy it on the device you want to use it on. Under normal

circumstances, going into the file manager and tapping on the apk file prompts the user to

install the application. If this does not work, then the user might have to enable the developer

mode on their device. Once the application is successfully installed and activated, it requests

permission to use the camera, in order for the application to work, and storage, in order to move

images from its internal files to the Pictures folder. It also asks permission to download

ARCore, if the user does not have it already. Doing so takes them to the Google Play Store

page, where they can download ARCore, if their device supports it. Once all of this is done,

the application can be started normally at any point by simply clicking on the application icon.

Onwall_Demo.mp4 – This video is a demonstration on how the Önwall AR Tool works, in

case the apk file cannot be installed. It shows everything that the application can do, apart from

viewing the contact information.

An additional repository link to the project is provided here:

Repository link – https://gitlab.com/K-WS/onwall-arcore

Due to Önwall wanting the code to be private, for business reasons, separate permission will

need to be asked in order to access it.

54

V. License

Non-exclusive licence to reproduce thesis and make thesis public

I,

Karl – Walter Sillaots,

 (author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital archives

until the expiry of the term of copyright,

Önwall AR Tool,

 (title of thesis)

supervised by Raimond-Hendrik Tunnel.

 (supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the

public via the web environment of the University of Tartu, including via the DSpace digital

archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by giv-

ing appropriate credit to the author, to reproduce, distribute the work and communicate it

to the public, and prohibits the creation of derivative works and any commercial use of the

work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellec-

tual property rights or rights arising from the personal data protection legislation.

Karl – Walter Sillaots

10/05/2019

