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Enhancing Breast Cancer Prediction Using Unlabeled Data

Abstract: The following thesis presents a deep learning (DL) approach for automatic
classification of invasive ductal carcinoma (IDC) tissue regions in whole slide images
(WSI) of breast cancer (BC) using unlabeled data. DL methods are similar to the way
the human brain works across different interpretation levels. These techniques have
shown to outperform traditional approaches of the most complex problems such as image
classification [KSH12] and object detection [AAL+15]. However, DL requires a broad
set of labeled data that is difficult to obtain, especially in the medical field as neither
the hospitals nor the patients are willing to reveal such sensitive information. Moreover,
machine learning (ML) systems are achieving better performance at the cost of becoming
increasingly complex. Because of that, they become less interpretable that causes distrust
from the users. Model interpretability is a way to enhance trust in a system. It is a very
desirable property, especially crucial with the pervasive adoption of ML-based models
in the critical domains like the medical field. With medical diagnostics, the predictions
cannot be blindly followed as it may result in harm to the patient. IDC is one of the most
common and aggressive subtypes of all breast cancers accounting nearly 80% [DSBJ11]
of them. Assessment of the disease is a very time-consuming and challenging task for
pathologists, as it involves scanning large swatches of benign regions to identify an area
of malignancy. Meanwhile, accurate delineation of IDC in WSI is crucial for the estima-
tion of grading cancer aggressiveness. In the following study, a semi-supervised learning
(SSL) scheme is developed using the deep convolutional neural network (CNN) for
IDC diagnosis. The proposed framework first augments a small set of labeled data with
synthetic medical images, generated by the generative adversarial network (GAN) that is
followed by feature extraction using already pre-trained network on the larger dataset
and a data labeling algorithm that labels a much broader set of unlabeled data. After
feeding the newly labeled set into the proposed CNN model, acceptable performance is
achieved: the AUC and the F-measure accounting for 0.86, 0.77, respectively. Moreover,
proposed interpretability techniques produce explanations for medical predictions and
build trust in the presented CNN. The following study demonstrates that it is possible
to enable a better understanding of the CNN decisions by visualizing areas that are the
most important for a particular prediction and by finding elements that are the reasons
for IDC, Non-IDC decisions made by the network.

Keywords:
Invasive ductal carcinoma, interpretability, convolutional neural networks, whole-slide
imaging, generative adversarial networks, machine learning
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Sildistamata andmete kasutamine rinnavähi ennustamise parendami-
seks
Lühikokkuvõte: Selles väitekirjas esitatakse sildistamata andmeid kasutav süvaõppe
lähenemine rinna infiltratiivse duktaalse kartsinoomi koeregioonide automaatseks klassi-
fitseerimiseks rinnavähi patoloogilistes digipreparaatides. Süvaõppe meetodite tööpõhi-
mõte on sarnane inimajule, mis töötab samuti mitmetel tõlgendustasanditel. Need mee-
todid on osutunud tulemuslikeks ka väga keerukate probleemide nagu pildiliigituse
[KSH12] ja esemetuvastuse lahendamisel [AAL+15], ületades seejuures varasemate
lahendusviiside efektiivsust. Süvaõppeks on aga vaja suurt hulka sildistatud andmeid,
mida võib olla keeruline saada, eriti veel meditsiinis, kuna nii haiglad kui ka patsien-
did ei pruugi olla nõus sedavõrd delikaatset teavet loovutama. Lisaks sellele on mas-
inõppesüsteemide saavutatavate aina paremate tulemuste hinnaks nende süsteemide
sisemise keerukuse kasv. Selle sisemise keerukuse tõttu muutub raskemaks ka nende
süsteemide töö mõistmine, mistõttu kasutajad ei kipu neid usaldama. Meditsiinilisi
diagnoose ei saa järgida pimesi, kuna see võib endaga kaasa tuua patsiendi tervise
kahjustamise. Mudeli mõistetavuse tagamine on seega oluline viis süsteemi usaldatavuse
tõstmiseks, eriti just masinõppel põhinevate mudelite laialdasel rakendamisel sellistel
kriitilise tähtsusega aladel nagu seda on meditsiin. Infiltratiivne duktaalne kartsinoom
on üks levinumaid ja ka agressiivsemaid rinnavähi vorme, moodustades peaaegu 80%
[DSBJ11] kõigist juhtumitest. Selle diagnoosimine on patoloogidele väga keerukas
ja ajakulukas ülesanne, kuna nõuab võimalike pahaloomuliste kasvajate avastamiseks
paljude healoomuliste piirkondade uurimist. Samas on infiltratiivse duktaalse kartsi-
noomi digipatoloogias täpne piiritlemine vähi agressiivsuse hindamise aspektist ülimalt
oluline. Käesolevas uurimuses kasutatakse konvolutsioonilist närvivõrku arendamaks
välja infiltratiivse duktaalse kartsinoomi diagnoosimisel rakendatav pooleldi juhitud õppe
skeem. Välja pakutud raamistik suurendab esmalt väikest sildistatud andmete hulka
generatiivse võistlusliku võrgu loodud sünteetiliste meditsiiniliste kujutistega. Seejärel
kasutatakse juba eelnevalt treenitud võrku, et selle suurendatud andmekogumi peal läbi
viia kujutuvastus, misjärel sildistamata andmed sildistatakse andmesildistusalgoritmiga.
Töötluse tulemusena saadud sildistatud andmeid eelmainitud konvolutsioonilisse när-
vivõrku sisestades saavutatakse rahuldav tulemus: ROC kõvera alla jääv pindala ja F1
skoor on vastavalt 0,86 ja 0,77. Lisaks sellele võimaldavad välja pakutud mõistetavuse
tõstmise tehnikad näha ka meditsiinilistele prognooside otsuse tegemise protsessi sele-
tust, mis omakorda teeb süsteemi usaldamise kasutajatele lihtsamaks. Käesolev uurimus
näitab, et konvolutsioonilise närvivõrgu tehtud otsuseid aitab paremini mõista see, kui ka-
sutajatele visualiseeritakse konkreetse juhtumi puhul infiltratiivse duktaalse kartsinoomi
positiivse või negatiivse otsuse langetamisel süsteemi jaoks kõige olulisemaks osutunud
piirkondi.

Märksõnad:
infiltratiivne duktaalne kartsinoom, konvolutsiooniline närvivõrk, digipatoloogia, digi-
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taalpatoloogia, generatiivne võistluslik võrk, masinõpe
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Abbreviations

ADN Adaptive Reconvolutional Network

CNN Convolutional Neural Networks

DL Deep Learning

DNN Deep Neural Network

DT Decision Tree

DP Digital Pathodology

DPI Digital Pathodology images

GAN Generative Adversarial Network

GB Gradient Boost

NAS Neural Architecture Search

SAE Stacked Auto-Encoders

SSL Semi Supervised Learning

ReLU Rectified Liner Unit

RBM Restricted Boltzann Machines

RF Random Forrest

WSI Whole Slide Imaging
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1 Introduction
IDC is one of the most prevalent and dangerous breast cancers in women, and identifi-
cation of its aggressiveness during the early stages is the most crucial step in treatment.
In most cases, the survival rate is dependent on early diagnosis. However, it is a very
challenging task for pathologists to identify the malignant area among huge swatches
of benign regions. In supervised learning, the performance of a model is dependent on
the amount of labeled data. The greater the volume of the training set available for the
classifier, the more it can learn. However, it is a very time-consuming, expensive, and
difficult task to collect enough labeled data, especially medical data like annotation of
IDC areas on the WSI. It is also very challenging to extract handcrafted features from
medical images, as many factors are still restricting the efficacy of screening mammogra-
phy, and many elements vary from one medical case to another. Neural Networks, on the
other hand, solve the problem of feature engineering and have shown enormous potential
as a successful application in machine learning; from image classification [KSH12] to
object detection [GDDM14], image captioning [VTBE15], visual question answering
[AAL+15] and many other domains. However, this is highly dependent on the number
of labeled instances, which can be difficult to obtain. To label large sets of examples,
several radiologists are needed first to label the data, and then compare the results to one
another case by case. One problem is the workload, and another is a consensus between
results as many conflicts can arise. Besides, it is not possible to get these massive labeled
datasets from hospitals and similar institutions since neither the doctors nor the patients
are willing to reveal that information due to privacy or policy of the particular institution.
Model interpretability matters. To trust intelligent systems like Deep Neural Networks
(DNNs) and integrate them with everyday life, they have to be transparent. It has to be
completely clear why the model makes a particular decision. In general, transparency is
essential for three reasons. First, when AI is weaker than humans, the goal is to identify
where it fails to help researchers to focus more on improving those aspects [ABP16].
Second, when AI is as powerful as human, users need enough confidence and trust to
rely on it. Finally, when AI is much more potent than humans [SHM+16], the goal is for
users to learn from the machines how to make better decisions. Decision-making based
on a false premise is especially highly undesirable in applications like medical imaging
as it can easily lead to someone’s death. Models, like DNNs, cannot be integrated into
the medical domain, until they are considered as "black box" models.

1.1 Contribution
In this work, the semi-supervised framework for breast cancer diagnosis is proposed.
The problems related to the lack of sufficient labeled data and model interpretability are
addressed. It will be shown that it is possible to label the significantly large amount of
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unlabeled sets successfully. Using a small portion of labeled data, the model achieves
almost as good performance as if the model was trained on the larger set of labeled
instances. Further, when training on the fully labeled instances, the proposed CNN
outperforms other papers working on the same dataset [CRBG+14][JM16]. Finally, the
model interpretability issue is addressed by explaining model predictions on the test set
both locally and globally.

1.2 Thesis outline
In Section 2, the state-of-the-art techniques applied in both supervised and semi-supervised
DL are presented. Moreover, augmentation and feature extraction methods are also re-
viewed. The section ends with a general overview of model interpretability techniques.
In Section 3, the detailed framework of the study is presented. Section 4 shows different
results and discusses them. The conclusion and future prospects can be found in Section
5.
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2 Related work
This section reviews the work related to automated medical image analysis using DL,
various feature extraction, feature augmentation techniques, state-of-the-art model inter-
pretability methods, and identifies their possible limitations.

2.1 Deep learning applications in medical analysis
Related work to applications of DL can be categorized into supervised, unsupervised,
and weakly supervised approaches. This section considers the work applied on only
the medical domains and reviews detection, segmentation, and classification techniques
sorted by different medical modalities, including breast, chest, lung, and many other
abnormalities. The section is based on the information extracted from the Litjens et al.
survey paper [LKB+17] on DL in medical images analysis.

2.1.1 Supervised deep learning

Researchers started developing the models for automated medical analysis as soon as it
became available to transfer medical images to a computer for further processing. Thus,
by the end of the 1990s, the interest and popularity of the supervised learning system
development started to increase. The most critical and time-consuming step while using
such models is feature engineering when extensive information is extracted from the
images, that are called handcrafted features. By using DL models, higher dimensional
features are learned. These models consist of several layers that gradually transform the
input images to the output that in a medical scenario is the presence or absence of the
disease of the particular person. In the medical domain, it was first applied by Lo et al.
[LLL+95].
DL contribution towards the medical image classification is significant. In the typical
scenario, the model can output a target variable given the input images.
Chest x-ray image analysis started from early 1995, by Lo et al. [LLL+95] who detected
malignant nodules using a two-layer CNN. There are several papers published in the
years of 2015-2016 in this area. An image retrieval application was made by Anavi et al.
[AKG+16] who obtained the features from the last fully connected layer of a five-layer
CNN that were feed to a one-vs-all support vector machine (SVM) for classification.
Some of the works for chest x-ray analysis are summarised in Table 1.
There were several works for pathology detection on x-ray images. Bar et al. [BDW+18]
extracted low-level features in order to detect several different diseases, whereas Hwang
et al. [HK16] detected Tuberculosis still using CNN but fine-tuned on the higher volume
datasets. Rajkomar et al. [RLT+17] and Wang et al. [WKG+16] also used ImageNet
pre-trained network for frontal/lateral, and nodule classification but Wang et al. used
the network for feature retrieval and combined it with the original features, whereas
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Table 1. Overview of papers using deep learning techniques for chest x-ray analysis

Reference Method Application

Lo et al. (1995) Nodule detection Classifies candidates from small patches with a two-layer CNN

Anavi et al.(2015) Image retrieval Combines classical features with those from a pre-trained CNN for image retrieval

Bar et al. (2015) Pathology detection Features from a pre-trained CNN and low-level features are used to detect various diseases

Bar et al. (2016) Image retrieval Continuation of Anavi et al. (2015), adding age and gender as features

Bar et al. (2016) Pathology detection Continuation of Bar et al. (2015), more experiments and adding feature selection

Hwang et al. (2016) Tuberculosis detection Processes entire radiographs with a pre-trained, fine-tuned network with 6 convolution layers

Rajkomar et al. (2017). Frontal/lateral classification A pre-trained CNN performs frontal/lateral classification task

Wang et al. (2016) Nodule classification Combines classical features with CNN features from a pre-trained CNN on ImageNet

Rajkomar et al. performed standard classification task.
Since this study works on mammography (MG) images, it worth mentioning other related
papers within this domain. Table 2 gives a summary of related papers. The oldest research
in this area is done by Sahiner et al. [SCP+96] using CNN as a method for classification.
In 2012 Jamieson et al. [JDG12] implemented four layer Adaptive Reconvolutional
Network (ADN) that is an older version of a CNN. Use of pre-trained CNN on natural
image patches is a common technique on MG images as well. Huynh et al. [HLG16],
Samala et al. [SCH+16], Kooi et al. [KvGKdH17], Fonseca et al. [FMW+15] all used
pre-trained network either for feature-extraction tool followed by SVM or for direct
classification of new images.
Digital Pathology (DP) is a part of virtual microscopy, and it is a process in which
scientists convert glass slides into digital slides, that are then transferred to a computer,
preprocessed and analyzed digitally. This way it is much easier to view, analyze and
process the information and with the help of WSI, this area gives even more promising
results as it achieves faster performance and affordable diagnosis and prognosis various
important diseases. Table 3 gives an overview of the papers using DP for digital pathology
images (DPI). There are various studies performed for either detecting or classifying the
disease on the DPI. Kim et al. [KCRB16] used AlexNet architecture that was further
fine-tuned on the cytology images for thyroid cytopathology classification. Authors show
that the method can leverage networks that have been trained on an extensive set of
generic images, to medical scenarios where only a hundred of images is available. A

Table 2. Overview of papers using deep learning for breast image analysis

Reference Method Application

Sahiner et al. (1996) CNN First application of a CNN to mammography

Jamieson et al. (2012) ADN Four layer ADN, an early form of CNN for mass classification

Fronseca et al. (2015) CNN Pre-trained network extracted features classified with SVM for breast density estimation

Huynh et al. (2016) CNN Pre-trained CNN on natural image patches applied to mass classification

Samala et al. (2016) CNN Pre-trained CNN on mammographic masses transfered to tomosynthesis

kooi et al. (2017) CNN Pre-trained CNN on mass/normal patches to discriminate malignant masses from (benign) cysts.
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Table 3. Overview of papers using deep learning for digital pathology images

Reference Topic Method

Cruz-Roa et al. (2014) Detecting of invasive ductal carcinoma CNN-based patch classifier

Xu et al. (2014) Patch-level classification of colon cancer Multiple instance learning framework with CNN features

Bychkov et al. (2016) Outcome prediction of colorectal cancer Extracted CNN features from epithelial tissue for prediction

Kallen et al. (2016) Predicting Gleason score Overfeat pre-trained network as feature extractor

Kim et al. (2016) Thyroid cytopathology classification Fine-tuning pre-trained AlexNet

Schaumberg et al. (2016) SPOP mutation prediction of prostate cancer Ensebmle ResNets

Wng et al. (2016). Metastases detection in lymph node Ensemble of CNNs with hard negative mining

couple of papers – Schaumberg et al. [SRF16] and Wang et al. [WKG+16], proposed an
ensemble of ResNet and CNN respectively for prostate cancer classification and lymph
node detection. Kallen et al. [KMH+16] used the Overfeat network for feature extraction,
which is very rarely used in medical images.

2.1.2 Weakly supervised deep learning

Models learn more when they have enough labeled data available, which results in a
better performance. However, collecting enough labeled set is tricky as it requires time
and enough resources. SSL makes use of unlabeled and labeled data by making a cluster
assumption: similar attributes lead to similar labels. SSL might be useful in the cases
when labeled data is not enough to get satisfactory results. Zhu et al. [ZLR05], Shin et
al. [STS+06], Shin et al. [SLL07] have even shown that learning with a mixed set of
labeled and unlabeled data can achieve better performance than having labeled data only.
As medical datasets are growing in size, there is always a lack of annotated instances.
As a result, SSL is actively used in medical scenarios. This section reviews some of the
cases of SSL both in diagnosis/detection and segmentation tasks. The information is
extracted from the Cheplygina et al. [CdBP19] survey paper.
The types of SSL are self-training and co-training. In both cases, a learner is trained
on the labeled instances first, and it is used to label the rest of the unlabeled set. The
newly labeled set is then appended in the originally labeled data. Many papers apply
active learning, and experts are asked to verify the labels (Parag et al. [PPS14], Su et al.
[SYH+16]).
Self-training is mainly used for segmentation in various medical cases: in the brain by
Iglesias et al. [ILTT10], Meier et al. [MBS+14], Wang et al. [WLP+14], Dittrich et al.
[DRK+14], in the retina by Gu et al. [GZB+17], in the histology and microscopy by
Singh et al. [SJP+11] for nuclei cell classification.
Another type of SSL is Graph-based method. In that case, graphs are constructed with
samples as nodes and edges as similarities between samples. This type of SSL makes
a different assumption. It is assumed that similar samples have a similar distance from
the neighboring nodes. For segmentation, it was used by Gass et al. [GSG12], Song
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Table 4. Overview of semi-supervised learning applications.

Reference Application SSL category

Brain
Song et al. (2009) tumor segmentation graph-based

Iglesias et al. (2010) skull stripping self-training

Filipovych et al. (2011) Classification if MCI semi-supervised SVM

Batmanghelich et al. (2011) Classification of AD, MCI graph-based

Meier et al. (2014) tumor segmentation graph based

Dittrich et al. (2014) fetal brain segmentation self-training

Wang et al. (2014). lesion segmentation self-training

An et al. (2016) AD classification graph-based
Moradi et al. (2015) classification of MCI semi-supervised SVM

Histology and microscopy
Singh et al. (2011) cell type classification in microscopy self-training

Parag et al. (2014) cell type segmentation in microscopy graph-based active

Su et al. (2016) cell segmentation in microscopy graph-based, active
Multiple

Gass et al. (2012) segmentation in two applications graph-based

Ciurte et al. (2014) segmentation in four applications graph-based

Gu et al. (2017) segmentation in two applications self-training

et al. [SZL+09] and Ciurte et al. [CBC+]. Sun et al. [STZQ16] identified malignant
and benign cases of breast cancer with the help of CNN, but before the neural network,
SSL graph-based method was used to label much larger unlabeled sets using minimal
training data. The study showed that unlabeled data provides some additional valuable
information for the model.
Manifold regularization is similar to the SSL graph-based method and can generalize
unseen labels. Such an approach is not only used for segmentation purposes but computer-
aided diagnosis as well. The works by An et al. [AAL+16] and Batmanghelich et al.
[BDP+11] demonstrated this.
Semi-supervised SVMs are based on the assumption that there should be a low-density
region along with different classes. It is used for classification of AD and MCI (Fil-
ipovych et al. [FDI+11], Moradi et al. [MPG+15]). For a general overview of different
applications of SSL, refer to Table 4.

2.1.3 Unsupervised deep learning

Unsupervised algorithms process data without labels, thus models are trained to find
patterns, like latent subspaces. The method gives the possibility to make use of all
unlabeled data available in the world. Traditional unsupervised models are PCA and
clustering methods. Recently, the community has been focused on unsupervised pre-
training and network architectures like stacked auto-encoders (SAEs) and Restricted
Boltzmann machines (RBMs).
Uzunova et al. [UHE18] proposed two different unsupervised detection approaches:
1) The PatchMatch algorithm which compares healthy patient images, to the ones that
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have a pathology. 2) Conditional variational auto-encoders (CVAE), which model
healthy data by mapping it to the lower dimensional latent space. Kallenberg et al.
[KPN+16] proposed Unsupervised CNN feature learning with SAE for breast density
classification. Various research has been done in DL for brain image analysis. Table

Table 5. Overview of papers using deep learning techniques for brain image analysis. All works use MRI
unless otherwise mentioned

Reference Method Application

Brosch and Tam (2013) DBN AD/HC classification; Deep belief networks with convolutional RBMs for manifold learning

Plis et al. DBN Deep belief networks evaluated on brain network estimation, Schizophrenia and Huntington’s disease classification

Suk and Shen (2013) SAE AD/MCI classification; Stacked auto encoders with supervised fine-tuning

Suk et al. (2014) RBM AD/MCI/HC classification; Deep Boltzmann Machines on MRI and PET modalities

Payan and Montana (2015) CNN AD/MCI/HC classification; 3D CNN pre-trained with sparse auto-encoders

Hossein-Asl et al. (2016) CNN AD/MCI/HC classification; 3D CNN pre-trained with a 3D convolutional auto-encoder on fMRI data

Kim et al. ANN Schizophrenia/NH classification on fMRI; Neural network showing the advantage of pre-training with SAEs, and L1 sparsification

5 gives an overview of the papers performing brain disorder classification; most of
them work on MRI. Brosch et al. [BTI+13] classified Alzheimer’s disease using deep
belief networks and convolution RBMs for manifold learning. Payan et al. [PM15]
and Hosseini-asl et al. [HAGEB16] were working on the same disease but used 3D
CNNs instead of 2D. Specifically, they used SAEs alongside 3D CNNs to build a model
that can differentiate between the disease cases of a patient, using an MRI scan of
a brain. Three other papers were studying on Schizophrenia- Suk et al. [SLS+14],
Suk et al. [SS13], Plis et al. [PHS+14], and all were working on the MRI scans and
used DBNs, RBMs and SAEs respectively. Kim et al. [KCRB16] used fMRI scans
instead of MRI and showed the positive outcomes of using a pre-training network with
SAEs. Another unsupervised learning examples are GANs. GANs are a special type of
neural network models where two networks are trained simultaneously. More details of
GAN architecture will be reviewed in Section 2.3.2. GANs are mostly used as a data
augmentation technique. However, there are several studies, that used it for unsupervised
classification and detection tasks - Hu et al. [HTC+17] combined WGAN and InfroGAN
for unsupervised learning in histopathology images. Schleg et al. [SSW+17] used GAN
to learn a manifold of normal anatomical variability and presented a state-of-the-art
anomaly scoring scheme. Alex et al. [AKCK17] used GAN for brain lesion detection.
The generator was used to learn the distribution of regular patches, whereas discriminator
was used to compute a posterior probability of every test image.

2.2 Neural Architecture Search
The success of DL is mainly due to its automation of the feature engineering process.
However, neural architecture engineering is a challenging and time-consuming step.
Currently, employed architectures are mostly developed by human experts and might be
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an error-prone process. Because of this, there is a rising interest in making neural archi-
tecture search (NAS) automated. The goal of Automated Machine Learning (AutoML) is
to enable people without ML background to use ML models easily. NAS aims to search
for the best architectural design and the best parameter set for the given learning task
and dataset in a reasonable time. The following section gives an overview of existing
applications in Neural Architecture Search (NAS).

2.2.1 Applications in NAS

Early NAS works tried to search for a complete Network [LLS+17], while more recent
ones tried finding healthy cells [LZN+18]. A notable drawback of the mentioned ap-
proaches is expensive computational overhead. DARTS (Differentiable Architecture
Search), introduced by [LSY18] achieved state-of-the-art results and a remarkable per-
formance by getting rid of the time-consuming process of architecture evaluating and
sampling. The main idea in DARTS is that search space is continuous instead of being dis-
crete that avoids searching in a broad set of candidate architectures. A general overview
of DARTS framework is as follows: operation on edges (connection of 2 neurons) is
initially unknown, and a continuous relaxation of search space is followed by referring to
a mixture of candidate operations per each edge. Finally, bilevel optimization is solved
to jointly optimize mixing probabilities and network weights. The final architecture is
obtained from inducing the learned probabilities. Another relevant topic is One-Shot
[BKZ+18] that trains the over-parameterized network with DropPath [ZVSL18] and gets
rid of each path with some probability. Then, the pre-trained system is used to evaluate
architectures that are sampled from zeroing out paths. However, this type of NAS suffers
from large GPU memory consumption. Stochastic neural architecture search (SNAS)
proposed by [XZLL18] follows the pipeline of DARTS, and the main idea is to build
a very efficient end-to-end system with the smallest NAS framework possible. This is
achieved by forcing the weights on each edge to be one-hot, that tackles the inconsistency
between search and evaluation optimization. SNAS trains neural operation parameters as
well as architecture distribution in the same round of back-propagation. Another novel
approach is ProxylessNAS (direct neural architecture search) [CZH18], which learns
architecture on the target task without a proxy dataset. The technique achieves memory
efficiency by adopting binary masks to operations and by allowing only one path of the
parameterized network to be activated and fed in the GPU. For a General overview of
applications in NAS, refer to Table 6.

2.2.2 Neural Network Intelligence

For the best architecture search and tuning this study applies Neural Network Intelligence
(NNI) proposed by Microsoft. NNI is an online platform which enables users to find
the best achieving neural network architectures of their particular dataset. Besides, the
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Table 6. Overview of applications in NAS

Method Remarks Refference

DARTS memory efficient- gets rid of architecture evaluation and sampling [LSY18]

SNAS The smallest NAS framework [BKZ+18]

One-Shot Large GPU consumption [XZLL18]

ProxyLessNAS Memory efficient [CZH18]

toolkit helps to tune machine learning models by finding a set of hyperparameters. The
general process works as follows: a tuner, which is an AutoML algorithm, receives a
search space predefined by users and generates configurations. Then an iterative process
is started: configurations are submitted for training, and performance is sent back to
the tuner which creates new configurations and provides for training again. For one
particular experiment, users only have to define a search space that is a space for tuning
the model like the value ranges for hyperparameters, update model codes, and run the
experiment. The results can be obtained within each trial. Figure 1 shows the structure
of the NNI.
NNI provides recent builtin-tuners that are quite easy to use. This study uses a Tree-
structured Parzen Estimator (TPE) tuner for hyperparameter search. TPE is a sequential
model-based optimization tool that is used in various scenarios and shows excellent
performance. TPE is mainly suggested in case of limited computation resources and
authors claim that it is far better than Random Search.
For neural architecture search, the tuner Network Morphism is used. It provides the
abilities to search for the best performing architecture automatically. Every child of a
network gets the knowledge from its parent and morphs into different types of networks.
The value of a child network is estimated using historical architecture. After this, the
best one is chosen to be trained.
There are some other well-known tuners available to choose from like Random Search-
surprisingly simple and effective search and Grid Search – more exhaustive searching in
manually specified hyperparameters space.

2.3 Augmentation techniques
This section gives a general overview of the existing manual data augmentation tech-
niques and presents the studies, which used GAN as a powerful tool for synthetic image
synthesis on a different medical domain.

2.3.1 Manual data augmentation

Various methods have been proposed as an augmentation tool, including horizontal flips,
random crops, and color jittering [SRASC14] on different modalities. Krichevsky et al.
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Figure 1. NNI architecture [Win]

applied a technique fancy PCA that alters the intensities of the RGB channels on the
images [KSH12]. Hussain et al. [HGYR17] experimented with different augmentation
techniques to find out which one leads on more discriminative models and concluded
that flips and Gaussian filters achieve the best performance whereas adding noise leads
to poor results.
Other common forms of data augmentations are simple transformations like left-right
flipping, translations, rotations, scaling of images [KSH12][CB16]. Flipping, resizing,
cropping are also widely used [HB04]. Besides, geometric distortions of deformations
are used to add several samples in the training set [KMG17a], or to balance the size of
the dataset [KMG17b]. Popular methods are histogram equalization, white-balancing,
blurring, sharpening. Those methods are fast, reproducible, and relatively easy for code
implementation.

2.3.2 Augmentation with GANs

GAN is a new and more powerful tool to perform synthetic image generation. GANs
utilize two different networks – a discriminator D(x) and a generator G(z). It is a
minimax game were generator seeks to generate as realistic pictures as possible to fool
the discriminator, whereas discriminator is trying to accurately distinguish between fake
and generated images as shown on Figure 2.
Unconditional synthesis is a process of image generation from a random noise without
any conditions. Techniques commonly used for medical image synthesis are summarized
in Table 7 that is obtained from Yi et al. [YWB18] survey paper about GAN applications
in medical imaging. The mostly used and most successful techniques in medical imaging
are DCGAN [RMC15], WGAN [GAA+17] and PGGAN [KALL17] because of their
good training stability and performance. Most studies train a separate generator for
each class. For instance, Frid-Adar et al. [FADK+18] used three DCGANs to obtain
fake images from all the three classes. This work applies DCGAN for synthetic image
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Figure 2. Generative Adversarial Network framework[YLLH18].

Table 7. Overview of semi-supervised learning applications.

Publication Method Remarks

CT

Chuquicusma et al. [CHBB18] DCGAN Lung Nodule

Frid-Adar et al. [FADK+18] DCGAN/ACGAN liver lesion

MR

Bernudez et al. [BPD+18] DCGAN brain

Han et al. [HHR+18] WGAN Brain

X-ray
Salehinejad et al. [SVD+18] DCGAN Chest

Madani et al. [MMKSM18a] DCGAN Chest

Madani et al. [MMKSM18b] DCGAN Chest
Retinal fundus imaging

Gass et al. [GSG12] DCGAN -

Lahiri et al. [LAKBM17] PGGAN -

generation that follows the same concept of GAN. It takes uniform 100-dimensional
noise distribution Z as input and result is a four-dimensional tensor that is used as the
beginning of the convolution stack. Thus, Z is projected into a small spatial convolutional
representation with several feature maps. For discriminator, last convolutional layer
is flattened and fed into sigmoid output. No pre-processing is needed for images, just
rescaling. Weights are initialized from a zero-centered normal distribution. For a detailed
architecture, please refer to Figure 3.

2.4 Feature extraction techniques
Feature extraction is a crucial preprocessing step as it removes noise and invariant parts
from the image, not relevant for a particular classification or regression task. This section
reviews some common feature extraction techniques.
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Figure 3. DCGAN architecture [RMC15].

2.4.1 Handcrafted features

Manually designed features are lower dimensional that makes it easier to train a model.
However, it requires domain knowledge and a huge amount of time. Considering the
past work, many previous studies in medical area extracted shape, color and texture
features from the images and trained a shallow model on them [BRF+14] [SWC+11]
[IOC+08][RHN+17][RGS+10] but such feature representations cannot be generalized
and often have a poor quality. In recent years, it is more preferred to use learned
representations of data instead of hand-crafted features.
A natural step is to use the ability of computers to learn the most important features from
the input images. It is achieved by models (networks) that consist of many layers and
transform data over layers gradually. The deeper they go, the higher level features are
obtained. The most successful neural network model while working on images is CNNs.
There exists a couple of well-known CNN (VGG [SZ14], ResNet [HZRS16], AlexNet
[KSH12]) that are pre-trained on a huge dataset consisting of thousands of colorful
images of thousands of classes. Those networks are used in many medical scenarios, as
a feature preprocessing step. Specifically: instead of training on the original images, the
features from images are extracted from the chosen layer and feed into another classifier.
In the end, not only dimensionality is reduced, but more important features are obtained
as well. Thus the classification accuracy is usually better than just training on the raw
images. This technique is called transfer learning.

2.4.2 Transfer learning

There are two types of transfer learning strategies applied on medical data: 1) use of
a pre-trained network 2) fine-tuning a pre-trained network. Antony et al. extracted
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features from VGG-16 pre-trained network and after fine-tuning successfully plugged
them into linear SVMs to classify knee OA images. Kim et al. [KCRB16] used CNN
as a feature extractor and claimed that it outperformed the strategy of fine-tuning. To
judge which strategy is better, there are two other papers the readers can refer (Esteva
et al. [EKN+17], Gulshan et al. [GPC+16]). The authors fine-tuned a pre-trained VGG
network on their dataset and as far as it is known, such results are not achieved by using
pre-trained networks as feature extractors.
The pre-trained network followed by SVM as a classifier is a common tool. Anavi
et al. [AKG+16] and Liu et al. [LTK16] extracted the features from x-ray images
using a fully connected layer of five-layer CNN. Obtained features were then feed in
a one-vs-all support vector machine (SVM) for classification. Zhang et al. [ZZM+17],
Kumar et al. [KSQ+16], Fonseca et al. [FMW+15] followed the same strategy. The
state of the art results were obtained by Liu et al. [LTK16] who used the penultimate
fully-connected layer for feature extraction of x-ray images on 193 different classes.
Shah et al. [SCNK16] mixed CNN feature descriptors with hashing-forests, specifically:
1000 features, extracted from MRI volumes, were then compressed into descriptors by
hashing forests. Burlina et al. [BFJ+16] used the Overfeat pre-trained network [SEZ+13]
for feature extraction on the age-related macular degeneration detection task. There are
several other works done in nodule detection analysis (Ciompi et al. [CdHvR+15], Van
et al. [VGSJC15], Chen et al. [CZP+16]) which also used CNN feature descriptors for
their classification tasks.
This work uses VGG-16 network [SZ14] pre-trained on ImageNet [DDS+09] dataset
due to it’s excellent performance when used as a feature extractor [EKN+17][GPC+16].
The number 16 stands for the number of layers used in the model. The network is known
for its simplicity, using only 3×3 dimensional convolutional layers.

2.5 Interpretability
The Following section gives a general overview of some state-of-the-art model inter-
pretability techniques applied in medical imaging.

2.5.1 Importance of interpretability

There is no mathematical definition of interpretability. However, in general, interpretabil-
ity is the degree to which a human understands the cause of a particular decision. The
higher the interpretability of a model, the more transparent it is and the easier it is for
someone to understand why specific predictions have been made. Model interpretability
is crucial, especially in the medical area as an automated diagnosis of the diseases cannot
be integrated with real-world scenarios unless there is not enough trust and transparency
in the models.
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2.5.2 Local model interpretability

There are several methods proposed to address local interpretability problem. In 2016
Ribeiro et al. [RSG16] proposed a technique called LIME that explains predictions
of any classifier, including neural networks in an interpretable and straightforward
manner. The output of the method is a part of the original image, and it captures the
area, that contributed to the particular prediction the most (Figure 4). Specifically, if
g is an explanation defined as a model and Ω(g) is a measure of the complexity of the
description of the model f , LIME seeks to minimize locality-aware loss by drawing
samples πx. The explanation is then produced using Equation 1. LIME has also been
used to explain model predictions on a mental health classification task [SMB18].

h(X) = argmin
(g)∈G

L(f, g, πx) + Ω(g) (1)

Figure 4. LIME explaining an image classification prediction made by Google’s Inception neural
network[RSG16].

Deepminer is proposed by Wu et al. [WZP+18] and it is a framework to identify
interpretable explanations for medical predictions. The framework consists of three steps.
In the first step, authors trained a basic neural network for breast cancer classification. In
the second step, experts were asked to annotate the most class-specific internal units of
the trained model. In the final step, annotated units were used to generate explainable
predictions by sorting individual unit contributions to each prediction.
Deepbase is another technique proposed by Sellam et al. [SLH+18]. It’s a system to
inspect neural network behaviors using user-provided hypothesis functions. The main
idea in Deepbase is that technique seeks to quantify how the behavior of hidden units
is similar to the user-defined functions. Given a group of units and hypothesis, the
tool calculates the affinity score between each hidden units and hypothesis pair and
statistically measures the difference.
Wu et al. [WPH+18] showed that CNN internal units can learn and detect medical
concepts which match the vocabulary used by radiologists. Rajpurkar et al. [RIZ+17]
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and Wang et al.[WPL+17] applied class activation maps to explain informative regions
related to test set predictions. Hybrid CNN proposed by Zhang et al. [ZXX+17] generated
radiological reports if trained on a large image dataset.

2.5.3 Global model Iterpretability

The number of works has been proposed for Global Interpretability. One of them is called
Activation Maximization(AM) and is offered by Erhan et al. Idea of AM is the following:
It looks for input patterns which maximize the activation of a given hidden unit. The
reasoning behind finding those activations is that pattern that arose such activation can be
a good representation of what a unit is doing. AM can be interpreted as an optimization
problem. If θ is a set of neural network parameters, and hij(θ, x) denotes activation of
unit i from layer j then, given input x, what AM looks for is depicted in the Equation 2.

x′ = arg max
xs.t||x||=p

hi,j(θ, x) (2)

AM has been used as a global interpretability tool for breast cancer prediction by Graziani
et al. [GAM18b].
Pereira et al. [PMM+18] proposed a technique that can interpret model predictions
globally in brain tumor segmentation and penumbra estimation task. The main focus of
that work is on the interpretation of automatically learned features- basically, authors
study the interpretation of features from Magnetic Resonance Imaging sequences (MRI).
To do this, authors couple RBM representation model with RF and jointly considered
correlations between images, features and target variables.
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3 Methodology
The following section gives a very detailed overview of the performed experiments
and the proposed framework. It starts by explaining the dataset and the baseline of the
work, followed by presenting feature extraction and data augmentation methods used in
different data labeling techniques. The chapter concludes by giving a thorough overview
of the proposed CNN architecture and model interpretability methods.

3.1 Proposed framework
The proposed study consists of two stages. In the first stage, a CNN network is proposed
for breast cancer classification, which outperforms other papers working on the same
dataset for the same problem [CRBG+14][JM16]. To make the comparisons valid, no
data augmentation or feature extraction techniques are applied on the original images,
and the same dataset with the same training and testing instances are feed in the proposed
CNN network.
The second stage, which is the main contribution of the study, refers to the case when
there is no way of having a broad set of labeled instances. In contrast to the first stage,
it is assumed that only a small portion of data is labeled while the more extensive set
remains unlabeled. The proposed framework labels the rest of the instances and trains
CNN with the newly labeled set. To simulate having a lack of data, the truth files for most
of the instances are covered. The ratio between labeled and unlabeled examples is 1:10.
In the first path, the aim is to enlarge the size of the labeled set. For this reason, DCGAN
is adopted for new image synthesis. Generated images are appended in the training
set, and VGG-16 pre-trained network is used to extract features from both training and
testing instances. In the second path, 10 Gradient Boosting (GB) models are used to train
the rest of the unlabeled instances. After data labeling, CNN is trained on the mixed set
of both, labeled and newly labeled instances, and performance is tested on the same test
set, used in the first stage. In the third and the final path, model interpretability technique
is applied to each of the testing instances in order to understand why specific predictions
are made. The overall framework is shown in Figure 5.

3.2 Dataset
The original annotated dataset obtained by Cruz et al. [CRBG+14] consists of 162 WSI
images that come from patients diagnosed with IDC. Initially, the slides were randomly
split into three different subsets: 84 training cases and 29 validation cases for parameter
exploration, and 49 test cases for final evaluation. Each WSI was divided into non-
overlapping image patches of size 50x50 via grid sampling and ones with fatty tissue,
and slide background was removed. Image patch was labeled as positive if it belonged
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Figure 5. The Overall framework for the proposed study

to more than 80 % of the annotated mask, otherwise labeled as negative. The sampling
procedure is illustrated in Figure 6.
The final patch-based dataset consists of 82,883 (A1) and 31,352 (A2) instances for
training and validation, and 50,963 (A3) instances for testing. Dataset is highly un-
balanced with around 70% of negative instances. This work experimentation with the
patch-based dataset and train-test-validation sets is identical to the one in the baseline
paper [CRBG+14]. The example of the sampled patches is shown in Figure 7. To
simulate the lack of unlabeled data, 12,000 (10% of A1 and A2 ) instances were randomly
taken from A1 and the rest of the instances in the training and validation sets are assumed
to be unlabeled. Beyond this point, labeled data is referred to that 10% of instances
instead of the originally labeled set unless specified. Images were downscaled to the
dimensions 32x32 to make them compatible with the proposed methods.

3.3 Baseline
Baseline for this work applies a 3-layer CNN to detect malignant IDS tissue regions.
The network receives sampled patches as input and it outputs a probability for a cell
being malignant. Network output (probabilities) is then stitched onto the original WSI to
obtain the IDC probability map over WSI. The framework and the architecture used in
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Figure 6. Image patch sampling process. The original WSI with annotations is shown to the left and splits
of image patches to the right. The white parts are removed. Red color corresponds to the positive patch of
IDC, while green is a negative example [CRBG+14].

Figure 7. Examples of positive and negative patches in the dataset [CRBG+14].
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the paper are shown in Figure 8.

Figure 8. Overall framework of the baseline study [CRBG+14].

Another experiment pursued by Janowczyk et al. [JM16] obtained better results than
the original paper by using a well-known AlexNet architecture. The Study showed that
relatively smaller and compact network could produce comparable results.

3.4 Data augmentation
DCGAN (Section 2.3.2) is adopted for data augmentation due to its good training stability.
DCGAN is trained on each class separately to make the generated images more useful.
Obtained synthetic images are appended in the labeled set.

3.5 Feature extraction
Synthetic and original images are converted to YUV color space. YUV is a color
encoding system that takes human perception into account. By enabling transmission
errors, images are masked better than just a "direct" RGB-representation. VGG-16
pre-trained network on the ImageNet dataset is proposed as a feature extraction tool. The
GlobalAveragePooling is applied to the four internal convolutional layers and the result
is concatenated into one vector [RSIK18]. After this step, the high-level feature set is
returned with a significantly reduced dimension. Refer to Figure 9 for more details.

3.6 Data labeling
The labeled set is further split into training (B1), validation (B2) and testing (B3) sets
and experiments are evaluated on the validation instances. Several classifiers are applied
to find the best performing model to label the rest of the instances (A1, A2), and it will
become the primary model for data labeling in this study.
LightGBM, the ML technique for either regression or classification problems, is a
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Figure 9. Overview of the network architecture for deep feature extraction [RSIK18].

framework of GB models. Predictions are produced in the form of weak classifiers, that
are presented as decision trees. The loss is optimized on the validation dataset using the
log loss depicted in Equation 3.

− 1

N

N∑
i=1

[yilogpi + (1− yi)log(1− pi)] (3)

N is the number of samples; yi is a binary indicator of whether or not label j is the correct
classification; and pi is the model probability of assigning label j to the example i. After
all the instances are labeled, they are appended in the labeled set and used to train the
CNN.

3.7 Neural network
For the best architecture and parameter optimization, NNI is adopted. A detailed ex-
planation of the platform is provided in AutoML Section 2.2. First, NNI is applied
to the initially labeled dataset (A1, A2) to find the best architectural design and make
comparable results concerning the baselines [CRBG+14][JM16]. To address the main
contribution that assumes the case when a small portion of the labeled data is available,
newly labeled instances, along with the initially labeled set are feed into the NNI platform
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again. The best architecture found in both cases consists of three convolutional layers
and two fully connected layers, applying ReLU activation and batch normalization before
each convolutional layer, following max-pooling technique after each layer of CNN. The
number of kernels for each layer was set to 64. The detailed architecture is shown in
Figure 10.

Figure 10. A visualization of the CNN network for the mixed data

3.8 Model interpretability
Developing trust in individual model predictions is an important problem, especially for
decision making in the medical field. Moreover, it is also crucial to evaluate a model
as a whole, before integrating it and applying into real-world problems. Understanding
the logic behind a network will lead to more transparency, better design, and quicker
experiments. To gain more confidence, this work adopts neural network inspection
techniques. Such interpretable systems will help researchers to identify failure models,
which allows them to focus their effort into weak side development.
To understand how the CNN is learning the newly labeled set, two interpretability tech-
niques are adopted: Grad-Cam proposed by Selvaraju et al. [SCD+17] and Regression
Concept Vectors proposed by Graziani et al. [GAM18a]. The following section gives an
overview of the use of those techniques in this study.

3.8.1 Grad-Cam

Grad-Cam is a localization map that generates local visual explanations on the input
image and identifies regions, which were the most important while taking a particular
decision. Grad-Cam uses gradient information flowing in the last convolutional layer, as
it is assumed that information is lost in fully-connected layers. To obtain the localization
map, the gradient of the score yc is computed for the class c concerning the feature map
Ak. These gradients flowing back are then global-average-pooled, and neuron importance
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weights are computed (Equation 4).

αc
k =

1

Z

∑
i

∑
j

∇yc

∇Ak
ij

(4)

After performing a weighted combination of forward activation maps, followed by ReLU
activation, localization heat-map is obtained. (Equation 5).

Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k) (5)

Localization maps acquired from proposed CNN is shown in Figure 11. The first and
the third rows are negative and positive class examples respectively and the second and
fourth rows are the corresponding heat-maps. Both tumor and non-tumor heat-maps
include nuclei-resembling shapes, but Grad-Cams of positive examples seem to capture
more nuclei parts. However, more research is needed to interpret the discriminant factors
between those classes.

3.8.2 Regression Concept Vectors

Saliency methods like Grad-Cam are one of the most popular explanation techniques,
but they have a couple of limitations: 1) since a saliency map is conditioned on only one
image, humans have to manually assess each picture to draw a class-wide conclusion,
2) users do not have control over what concepts are illustrated in the heat-maps. Those
limitations are also depicted in Figure 11. Firstly, it is not clear exactly how the saliency
maps differ across the classes. Secondly, heat-maps are not very informative to identify
if there is any concept that is a reason for particular class prediction. Moreover, it
is difficult to draw a broader conclusion unless someone is not a doctor. This study
uses directional derivatives of Regression Concept Vectors to measure the influence of
user-defined concepts in the network output. The following section explains how the
textual concepts are obtained and how they are used for explaining network predictions.

3.8.2.1 Framework

Texture analysis is a useful way of extracting relevant information from images and
an essential step in discriminating between normal and benign tissues that show early
signs of breast cancer [KASS14]. The texture itself is interpreted as the distribution of
gray levels in the images. Haralick et al. propose one of the most famous approaches
to texture analysis [HS+73] and it is based on the Gray-level Co-occurrence Matrices
(GLCM), obtained from the images. GLCM is computed for various angular moments
and distances and in total, thirteen textual features can be extracted. Each cell (i, j)
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Figure 11. Grad-Cam for testing patches

in GLCM corresponds to the number of occurrences in the gray levels of i, j. In this
study, three out of thirteen concepts are calculated, and they refer to the Nottingham
Histologic Grading System (NHG) [EE02]. Only the following concepts are considered:
Contrast (f1) – a measure of gray-tone linear-dependencies in an image, Correlation
(f2) – a number of local variations presented in an image and ASM (f3) – a measure
of homogeneity of the image. In a homogeneous image, there are a very few dominant
gray-tone transitions.

f1 =

Ng∑
i=1

Ng∑
j=1

p(i, j)2 (6)

f2 =

Ng−1∑
k=0

k2px−y(k) (7)
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f3 =

∑Ng

i=1

∑Ng

j=1(i, j)p(i, j)− µxµy

∇x∇y

(8)

Concepts are calculated from nuclear segmentation dataset [KVS+17], for which labels
of tumorous and non-tumorous regions are not given. The dataset contains different
organs, but 100 image patches are extracted from WSI breast tissue only. Features Φl(xj),
from layer l of the trained CNN, are extracted from the same set of images and linear
regression (LR) is solved for each concept cj separately. LR is fitted so that it follows
increasing values of the concept measurements. After this stage, three directional vectors
are obtained those are called Regression Concept Vectors (RCVs). RCVs are used for
sensitivity score calculation, and for bidirectional relevance score measurement, that is
used for global interpretability of the proposed CNN. General steps of this process are
depicted in Algorithm 1 and the framework can be found in Figure 12.

3.8.2.2 Sensitivity scores

Sensitivity Scores Sl
c,i, c = 1, 2, 3 are computed for each testing input (xi, yi) sepa-

rately (Equation 9).

Sl
C,i = ∇f(Φl(xi)× ~vc (9)

Each score represents the network sensitivity along the direction (~vc ) of increasing values
of the concept. For instance, if the concept measure in the input increases, the probability
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Figure 12. Regression Concept Vectors for Bidirectional Explanations in Histopathology. I. The CNN is
Trained on the newly labeled data. II. Linear Regression is solved on Φl(xj) at layer l for each concept cj .
III. Sensitivity scores are computed for each testing instance xi as the derivative of the network prediction
f(xi) on the direction of the RCV [GAM18a].

of being malignant cell might decrease, increase or remain unchanged. The magnitude of
the score represents the rate of change, whereas the sign shows the direction of change.
Sensitivity scores can be computed for all the testing instances in the test set.

3.8.2.3 Bidirectional Relevance Score

Bidirectional Relevance (BR) score is used for global interpretability of the model
that is a ratio between coefficient of determination of the least squares regression R and
a standard deviation of the Sensitivity Scores (Equation 10).

Br = R2 × (
µ

σ
) (10)

A negative value of Br score of the concept i indicates that i negatively contributed to
the network predictions. Thus, it is the reason of non-tumor cases, whereas positive Brs
suggest the concepts that arise positive( tumor) predictions.

3.9 Experimental setup
Experiments are done using the machine with Intel(R) Core(TM) i5-7300U CPU proces-
sor. DCGAN was trained using Stochastic Gradient Descent as an optimizer for 1200
epochs with the batch size of 16 and learning rate equal to 0.0003. Loss function applied
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is a binary cross-entropy. Parameters are the same for both discriminator and generator.
Training took ten days for both classes.
Feature extraction from VGG-16 pre-trained network took two days. For Gradient Boost-
ing models, parameters are estimated using a grid search. Found learning rate, number
of leaves, maximum depth, feature fraction, bagging fraction values are 0.1, 191, 7, 0.46,
0.69, respectively. For the best neural architecture search, NNI was trained using AUC
as a loss function and Stochastic Gradient Descent as an optimizer. Best hyperparameter
values in both networks are the same: learning rate, epoch, batch size, momentum, decay-
0.01, 80, 32, 0.9, 1e-5, respectively. The model was trained using early stopping criteria
with patience set to ten. For the best neural architecture search and hyperparameter
tunning, budget assigned was set to 24 hours.
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4 Results
The following section explains the experimental design, performance measures used to
evaluate classification methods, the effects of data labeling, proposed CNN architecture,
and the model interpretability technique.

4.1 Experimental design
Image patches are classified as one or zero. In the case of training the CNN on the
originally labeled patches on the full dataset, the same training (A1), validation (A2) and
test (A3) sets are used for parameter exploration and for testing the model performance
as it was used in the baseline. In the case of the semi-supervised learning, however, a
small subset is constructed accounting for the 10% of the training (A1) and validation
(A2) instances in total. Moreover, this 10% is further subsetted to construct training (B1),
validation (B2) and testing folders (B3) with the proportion of 8:2:90 to simulate labeling
the more significant portion of instances. The Best labeling model is then applied to the
rest of the A1 and A2 instances. The newly labeled set (A1, A2) combined with the initial
labeled data is used to train CNN and performance is tested on the A3 testing set.

4.2 Performance measures
Precision (Pr) is a proportion of IDC detected from the total number of IDC areas.
Recall (Rc) or Sensitivity (Sen) is a proportion of IDC correctly predicted out of the
total number of predicted IDC. Specificity (Spc) is a proportion of Non-IDC regions
correctly predicted out of the total number of Non-IDC parts. Because the dataset is
highly unbalanced, the primary labeling measure is the balanced accuracy, which is the
same as the area under the curve (Equation 11) for the binary labels. Other measures used
in the evaluation are the F-measure (Equation 12) and the accuracy, where the accuracy
is the percentage of the examples correctly classified.

BAC =
Sen+ Spc

2
(11)

F1 =
2× PR×Rc
Pr +Rc

(12)

4.3 Data Labeling method
Features are extracted from the VGG-16 pre-trained network, and several classifiers are
evaluated to find the best performing data labeling technique. Table 8 shows the AUC
and the accuracy of the newly labeled dataset using different machine learning models.
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As it is seen from Table 8, GB and RF classifiers give the best results, and between those,
GB model achieves a better performance. Table 9 shows a different number of GB as an
ensemble model. The results are almost the same, but 10 GB is slightly better than the
others.

Table 8. Labeling performance across models. Table 9. Number of GB vs. performance

Model AUC ACC
RF 0.8321 82.32
GB 0.8373 84.86
DT 0.7558 75.43

AdaBoost 0.8308 81.91
Gaussian 0.7581 71.06

N AUC ACC
4 0.8381 82.70
6 0.8386 82.83
8 0.8385 82.81

10 0.8387 82.9
12 0.8386 82.86

Table 10 and 11 show data labeling performance of 10 GB models using Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Since LDA only
has at most 2 classes, only one projection is produced that explains why the same results
are obtained across different number of components. The performance is deficient
in comparison to PCA as well. In overall, It can be concluded that VGG-16 extracts
higher level features than PCA as there is more than a percent difference in data labeling
performance by 10 GB models.
Figure 13 shows the AUC of 10 GB models when a different percentage of synthetic

images are added in the labeled set. Features are extracted from VGG-16 pre-trained
network. For instance, 30 % (of 12000) means 3600 instances, 50 % means 6000
instances, and so on. The highest AUC, 0.8474, is achieved when 100% of generated
images are added. In this case, the training size is doubled. It is the best result achieved
in data labeling, and the CNN is trained on this newly labeled set alongside the initially
labeled data. Examples of the generated synthetic images are shown in Figure 14.

4.4 CNN model performance
Figure 15 shows CNN performance using only different amount of labeled data. The
results are also compared with a various number of labeled and fix size of newly labeled

Table 10. PCA for feature extraction. Table 11. LDA for feature extraction

Components AUC ACC
50 0.8269 83.87

100 0.8272 83.96
200 0.8247 83.78
250 0.8241 83.58

K ACC AUC
50 0.4651 0.6412
100 0.4651 0.6412
200 0.4651 0.6412
250 0.4651 0.6412
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Figure 13. Data Labeling performance of 10 GB models with different number of synthetic images added
in the training set.

data. The performance gradually increases as the number of initially labeled instances
grows. It is also clearly seen that adding newly labeled examples to the labeled set
increases the performance and hits the highest score – 0.7729 F-measure, 0.8649 AUC
with 12 000 (10%) instances labeled and the remaining 90% newly labeled.

Table 13. Performance on originally labeled data

Method F-measure AUC
Cruz et al. 0.718 0.8423
Janowczyk et al. 0.7648 0.8468
Our approach 0.7923 0.8696

To compare the performances using all the originally labeled data with the baselines, the
truth files are uncovered to train the CNN. The F-measure of originally labeled data is
0.7923, whereas Cruz et al. [CRBG+14] reported 0.718 and the best achieved by [JM16]
is 0.7648. The results are shown in Table 13. Further, there is a 2% difference in the
F-measure when all data is labeled VS. newly labeled, that is to be expected as originally
labeled set contains more accurate information.

4.5 Model interpretability
As it was shown in Figure 11, Nucleipleomorphism seems to be the main factor affecting
the output prediction. Heatmaps of tumor patches capture nuclei variations that focus on
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Figure 14. Synthetic images generated by DCGAN

Figure 15. AUC using labeled data only and mixed data

nuclei with various shapes and sizes. Figure 16 shows the obtained Br concept measures.
Based on the results, Contrast is a concept relevant for classification, and this is also by
the NHG grading system, that identifies hyperchromatism as a sign of nuclear atypia.
Moreover, Br also shows that concept Correlation negatively affects classification results
and causes negative predictions. Thus, when this concept in nuclei sufficiently increases,
the prediction of the input patch switches from class IDC to class Non-IDC. Sensitivity
scores mirror Br score results that strengthens the conclusions.

4.6 Discussion
In the following study, a semi-supervised, CNN network for breast cancer prediction is
developed, that can use a large amount of unlabeled set to improve the performance. In
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Figure 16. Br concept measures

comparison to other image classification cases, labeled medical images are complicated
to obtain. The provided method is a step closer towards deep learning integration with
medical diagnostics. The approach introduced in this study makes use of a tiny portion
of labeled instances, and in the scenarios where not enough labeled data is available,
existing sources of the unlabeled set can be utilized.
To make use of unlabeled data and automatically label it as accurately as possible,
different settings are tested. The best result achieved is using 10 GB models, when 100%
of synthetic images are added in the initial labeled set. Features extracted from VGG-16
gave the best results in comparison to other dimensionality reduction techniques, and
the best labeling performance achieved in this study is 0.8474 AUC. From Figure 14,
it can be concluded that the amount of labeled data has a significant influence on the
performance of CNN. Both the AUC and the F-measure increase gradually as the size
of the labeled set increases. Based on those experiments it can also be concluded that
unlabeled data provides some extra information useful for classification, as training CNN
using mixed data resulted in a better performance, rather than training on an initially
labeled set only. The highest CNN performance achieved on the newly labeled data is
the F-measure – 0.7729 and the AUC – 0.8649. The same CNN was trained with the
originally labeled dataset and compared to two other baselines [CRBG+14] [JM16] and
it was shown that provided CNN architecture gives a considerable performance boost:
0.7923 F-measure, 0.8696 AUC. There is a 2% difference in the F-measure when all
data is labeled vs. newly labeled, as initial labels contain more accurate information for
the network. The proposed CNN was also inspected by two techniques: Grad-Cam and
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Regression Concept Vectors. The techniques successfully marked regions, relevant for
classification, and also identified two textual concepts – Correlation and Contrast which
were found to be the reason for positive and negative class predictions.
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5 Conclusion
This study developed a framework that enables users to use a small amount of labeled
data and a much larger set of unlabeled data to train a CNN. This was done by augmenting
the dataset using GANs and feature extraction with VGG-16 pre-trained network. The
unlabeled set was labeled with proposed ten gradient boosting models. The results
showed that unlabeled data could increase the performance (Figure 15). The CNN
performance was also compared on mixed (labeled+unlabeled) data and fully labeled
data, and as it was expected, there was a 2% performance increase in the F-measure
when all data was labeled. The unlabeled set will never be able to replace labeled data
as it contains more accurate information, but there are some situations when obtaining
the completely labeled set is not possible, especially in the medical domain and this
work pertains to such cases. It enables users to use an unlabeled set and train the CNN,
while still achieving acceptable performance – 0.8649, 0.7729 for the AUC and the
F-measure, respectively. Further, the study adopted two interpretability techniques,
that can adequately inspect the proposed CNN network both locally and globally and
identify concepts, that positively and negatively affect classification results. Future work
might include increasing labeling performance and advancing neural network inspection
methods.
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