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Visuaalsel informatsioonil põhinev roboti juh-

timine liigestatud objekti manipuleerimisel

Lühikokkuvõte:

Roboti juhtimine liigestatud objekti manipuleerimisel vajab robustset ja täpset
objekti oleku hindamist. Oleku hindamise tulemust kasutatakse tagasisidena vas-
tavate roboti liigutuste arvutamisel soovitud manipulatsiooni tulemuse saavu-
tamiseks. Selles töös uuritakse robootilise manipuleerimise visuaalse tagasiside
teostamist. Tehisnägemisele põhinevat servode liigutamist juhitakse ruutplaneer-
imise raamistikus võimaldamaks humanoidsel robotil läbi viia objekti manipulat-
siooni. Esitletakse tehisnägemisel põhinevat liigestatud objekti oleku hindamise
meetodit. Me näitame väljapakutud meetodi efektiivsust mitmel erinevatel eksper-
imendil HRP-4 humanoidse robotiga. Teeme ettepaneku ühendada masinõppe ja
serva tuvastamise tehnikad liigestatud objekti manipuleerimise markeerimata vi-
suaalse tagasiside teostamiseks reaalajas.

Võtmesõnad:

Liigestatud objekti jälgimine, Tehisnägemine, Ruutplaneerimine, Robootiline ma-
nipuleerimine, Visuaalsel informatsioonil põhinev liigutuste kontrol, Masinõpe

Articulated Object Tracking from Visual Sensory

Data for Robotic Manipulation

Abstract:

In order for a robot to manipulate an articulated object, it needs to know its
state (i.e. its pose); that is to say: where and in which configuration it is. The
result of the object’s state estimation is to be provided as a feedback to the con-
trol to compute appropriate robot motion and achieve the desired manipulation
outcome. This is the main topic of this thesis, where articulated object state
estimation is solved using visual feedback. Vision based servoing is implemented
in a Quadratic Programming task space control framework to enable humanoid
robot to perform articulated objects manipulation. We thoroughly developed our
methodology for vision based articulated object state estimation on these bases.
We demonstrate its efficiency by assessing it on several real experiments involv-
ing the HRP-4 humanoid robot. We also propose to combine machine learning
and edge extraction techniques to achieve markerless, real-time and robust visual
feedback for articulated object manipulation.

Keywords:

Articulated Motion Tracking, Computer Vision, Quadratic Programming, Robotic
Manipulation, Vision Based Motion Control, Machine Learning
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Introduction

Modern robotic technology is no longer confined to the field of automation and
structured environments. Indeed, robotics have spread into various services. Bill
Gates forecast a robot in every home and a revolution that shares various com-
monalities to that of computers years ago. By being applied to various services,
modern robotics has slowly and surely changed to be human-centric and is to
be considered as part of the information and communication technologies, which
transform the numerical data into actions in the real world. Now robots share the
same space as humans and shall be considered as work partners (cobots), home
companions (domotics), etc.

To be fully operational, robots should be able to use the same infrastructures as
humans (anthropomorphic design), interact with humans (cognition) and manipu-
late the same tools and implements, e.g. house implements, as humans (dexterity).
Contrary to humans, however, robots process strictly numerical data, and instruc-
tions such as “open a drawer” or “open a door” should be programmed for the
robot to translate into planning and control that only process data of the sort
“open the drawer that is at X position and Y orientation, by Z centimetres” or
“open the door by π/4 radians”. Whereas the robot controls its motions using
transducers (i.e. electronic sensors) such as joint optical encoders, force sensors
etc., such equivalent sensors are not available on the house implements and any
daily articulated objects that we manipulate in general. It is important to note
that, from a robotic perspective, both daily objects and humans can be modelled
as articulated structures. Thus, in order for the robot to interact with a human or
help a frail person by assisting her/his motion, it has to know the exact location
and the posture of the person so that it plans the location of touch and the manner
of contact and applies force accordingly. Obviously humans also cannot be em-
bedded by invasive sensors only to allow the robot to understand their state and
their intentions by inferring their posture or more generally their motion. This
brings us to the conclusion that other information acquisition sources, such as,
for example, video cameras, must be used to understand the state of manipulated
objects.

Object manipulation is a very wide and important area of study in robotics. For
a given application, set of tasks, and performances (e.g. in terms of execution
time and reliability) the robotic platforms that are designed to physically interact
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with surrounding environment need to possess good perceptual and reasoning
capabilities to manipulate the objects skilfully. In modern manufacturing and in
almost any other service robotic applications, computer vision is one of the most
important artificial perception cues. Indeed, basic perceptual skills for robotic
manipulation tasks are being studied by many branches of computer vision (CV),
such as object segmentation, detection, recognition, pose estimation and visual
tracking. In this thesis we use vision to allow the robot to extract the information
required for motion planning and control about the objects it has to manipulate.
As a use case, we regard daily object manipulation (e.g. drawer opening), and do
not consider physical human-robot interaction at the moment. However, we keep
in mind that continuation of this work should be potentially extendible to the case
of more complex articulated structures, such as humans. We also assume that we
know what objects we will ask the robot to manipulate or operate and focus our
research on poly-articulated objects.

Vision is also used in robotics to control the motion. Indeed, Visual Servoing
(VS) consists in incorporating the information extracted from the visual data into
the planning and the control law by which robot motion is generated. As an
academic example of such a control law, we can refer to the block diagram in
Figure 1. Here the task of manipulating one degree-of-freedom (DoF) articulated
object (e.g. door, drawer) is considered. Of course, our work is not limited to this
restriction, which is chosen only to convey the ideas. For a robot, the manipulation
task is defined in terms of the desired configuration of an object, θd, at the end of
manipulation. For example, “open drawer by 20cm” would be formulated in the
control as θd = 20cm. The completion of the task is regulated by the value of the
error ǫ between the desired configuration, θd, and the actual current configuration
of the object, θm, that we cannot access directly. According to the control law
illustrated in Figure 1, the current state value measure θ̂m, obtained from the
perception measurement block M (ideally θ̂m = θm), is compared to θd. The
error value ǫ is computed and processed by the controller block C to generate
appropriate input signals u for the motion update of the robotic system S, so that
the value of ǫ is driven to zero as a result of the closed-loop control.

C S
u

M

θd ǫ θm

−

θ̂m

Figure 1: Closed-loop control law or feedback controller.
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The work in this thesis is mainly concerned with the block M of Figure 1 diagram,
which is responsible for estimating the value of θm. We show that if we consider
articulated objects to be modelled as other “robots” with passive joints (i.e. the
objects and their parts have no actuators to change their configuration and also
no encoders to measure the latter changes should they occur from an external
force/action), we can estimate θm from the robot embedded vision and integrate
the results in a multi-robot task-space based controller formulated as Quadric
Programming (QP), which controls altogether the robot and the articulated object
that is to be manipulated or operated.

Let us now highlight all the previous concepts through a concrete example. The
robotic platform used for the object manipulation in this work is the HRP-4 hu-
manoid robot illustrated in Figure 2, together with one of the tasks that is con-
sidered in our work: opening the printer’s drawer.

Figure 2: The HRP-4 humanoid robot manipulating an articulated object (the
printer). Illustration of floating base frames and some joints.

In the example of Figure 2, the HRP-4 motion is driven by a task-space QP
controller, in which the goals to be achieved are written as errors in the task-
space. The QP controller computes desired joint accelerations, desired contact
forces, and eventually desired torques for the robot to drive the tasks to their
desired state – or equivalently, to drive the task errors to zero. Since the robot
interacts with other objects that are articulated in the general case, they are
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seen as additional “robots”, whose models are incorporated and used by the QP
together with that of the robot (HRP-4). For instance, the printer is modelled as
a “robot” having a floating base with position and orientation degrees of freedom
in 3D space (indicated as object floating base frame in Figure 2) and a prismatic
joint (that of the drawer). The configuration of the robot HRP-4 means where
it is (position and orientation w.r.t world frame), and the joints articulations say
what is its actual posture. The configuration of the “robot” printer means where
is it situated w.r.t robot’s camera frame or the world frame; its joint configuration
in this case means how much the drawer is opened. However, contrary to the
robotic systems that are embedded with encoders or other sensors that measure
directly the value of their current configuration (position, orientation and joints),
the printer does not have any encoders, and the opening value of the drawer (which
acceleration is a decision variable of the QP), as well as its position and orientation,
is to be determined from the robot embedded sensors: that is, the HRP-4 camera,
and eventually the HRP-4 encoders once contact constraint between the drawer
and the robot’s gripper is established.

The novelty of our work is to design and implement a framework for estimating
the configuration of the poly-articulated objects from vision, when manipulated
by the actuated robots. This then allows us to effectively close the control loop
in order for the robot to achieve the desired goals with the articulated object of
interest. Our main contributions include the following aspects:

• A study of features and visual sensory data types for the articulated object
tracking and pose estimation;

• Comprehension and implementation of the vision based motion control in
the multi-robot Quadratic Programming controller framework;

• Incorporation of the knowledge about the articulated structure of the object
into the tracking framework;

• Articulated object state estimation from points and edge image features;

• Evaluation of the proposed system in challenging scenarios, such as drawer
opening and pulling circuit breakers of a mock-up provided by the Airbus.

We structured the thesis as follows: Chapter 1 gives an overview of the research
field in articulated object tracking. In the conclusion of Chapter 1, the main
challenges of the articulation tracking for robotic manipulation and drawbacks of
the existing methods are outlined. Chapter 2 presents the methods used for vision
based motion control in the QP controller framework. Chapter 3 describes the
details of the proposed articulated object configuration estimation, which takes
advantage of visual servoing and image processing principles. In Chapter 4 the
experimental results are presented.
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Chapter 1

Object tracking: a brief overview

1.1 State of the Art: overview and evaluation of

existing methods

It is important to first screen existing work and research efforts in object tracking
should they be adaptable to solve our problem of providing visual feedback on the
state of an object for use in real-time control of robotic manipulators in real-life
experimental settings.

This chapter reviews the existing methods that we identified as potentially useful
for our needs in tracking passive articulated objects (i.e. continuous estimation of
their pose in 3D and eventually their joints values) to close the loop in the multi-
robot QP controller. We selected these approached on the basis of (i) real-time
performance, and (ii) potential use for the control of robotic manipulation. We
sort the reviewed approaches into 3 main categories:

• Machine Learning based tracking (Section 1.2),

• Stochastic and gradient-free tracking (Section 1.3),

• Control and gradient based tracking (Section 1.4);

Note that in this section we bring a brief and general overview of the methods,
concentrating more on the computer vision part of the methodologies for visual
tracking and its advantages and drawbacks for the use in the robotic manipulation
control context. The conclusions, made after the state-of-the-art overview, are
explained in detail in Section 1.5 of this chapter. We review the articulation
tracking background, specifically concentrating on joint value reconstruction later
in this work in Section 3.3 of Chapter 3.
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1.2 Machine Learning based tracking

A popular and efficient strategy for object tracking is to use the advances in
machine learning (ML) algorithms to quickly detect and track specific patterns
of the object in the video stream [1][2][3]. The patterns of the object parts can
be learned beforehand, and the trained models can be used afterwards in the
detection and tracking processes. However, in the case where an object does not
have any specific pattern (e.g. the plain white face of a printer), the use of ML in
computer vision becomes more challenging.

The main advantage of ML based approaches is real-time performance. The be-
ginning of the real-time ML based object detection era can be associated with
the Viola-Jones framework proposed in 2001 by Paul Viola and Michael Jones [2].
They proposed to learn the Haar-feature cascade of weighted simple features to
learn complex patterns from the data with the AbaBoost algorithm. A significant
increase in the speed of both training and detection was achieved due to the util-
isation of integral image in the proposed framework [4]. In order to evaluate the
potential of using the trained model for the articulated object part tracking, we
trained the Haar cascade with the AdaBoost method on some sample data of the
printer base and the front face of the printer drawer. To train the Haar cascade,
frames from one of the sample videos were manually labelled, specifying the loca-
tion of the upper static part of the printer front face and the lower front face of
the articulated drawer. Figure 1.1 shows various frames, where the parts of the
printer were automatically detected using the trained model of the Viola-Jones
Haar cascade. The training process took approximately 7-11 hours on a standard
CPU.

(a) Parts of the printer correctly
detected

(b) Incorrect detection of the
drawer location

Figure 1.1: Identifying the location of different articulated parts of the tracked
object with trained Viola-Jones model.

To sum-up the detection performance of the trained Haar cascade, the following
can be stated: successful detection of the upper static part of the front face was
more stable compared to the detection of the drawer front face. The reason for
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such a result could be the fact that the upper part of the printer contains more
specific patterns (e.g. the on/off button, the printer logo), which are easier for
the cascade of Haar features to learn. The overall performance, however, was not
sufficient for a robust and smooth tracking of the articulated object parts. On top
of that, the bounding-box type detection is not suitable for tracking in robotic
manipulation, due to the fact that such detection does not provide sufficient geo-
metric information about the detected object (e.g. orientation and exact pose are
not known with sufficient accuracy in order to have stable closed-loop control).
However, such a method of fast bounding-box type detection is quite useful for
reducing the size of the entire input to the small sub-window containing the object
of interest.

Much more sophisticated ML methods for computer vision were developed in re-
cent years. The histogram of gradient descent (HOG) based bounding box type
detection of objects greatly outperforms Haar feature cascade based approach[5].
We take advantage of this method to perform coarse object detection in our mark-
erless tracking approach presented later in Section 3.7. The convolutional neural
networks have gained great popularity due to much higher robustness to changes in
pattern appearance, however, slightly less robust, but more simple methods, such
as the HOG, proved to require much less time to train the model and perform
detection.

1.3 Stochastic and gradient-free approaches

1.3.1 Blocks World Robotic Vision Toolbox

Scale-invariant feature transform (SIFT) [6] and a Particle Filtering [7] based ap-
proach for 6D pose tracking called BLORT has been proposed in 2010 by T. Mor-
wald et al. [8]. The method has been implemented in the ROS framework[9] and
made publicly available1. However, the BLORT module has not been maintained
lately and is not supported in the new versions of ROS.

Prior to tracking, the BLORT method requires a user to map the textured surface
of the object to the object model to extract SIFT features, which are used later
in the matching process for the pose estimation. Offline mapping is performed
by aligning the object with the projected object model and saving aligned sample
frames.

It is important to note that SIFT features are expensive to compute and, de-
pending on the number of features per frame, they may not provide real-time
performance. Alternative feature descriptors have been proposed over the years,
such as Speeded Up Robust Features (SURF) [10] or Oriented FAST and Rotated

1https://github.com/pal-robotics/perception_blort
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BRIEF (ORB) [11]. The SURF and ORB feature descriptors are faster to com-
pute, but at the same time, they are less robust to scale and orientation variations
w.r.t. the SIFT. Moreover, none of the mentioned feature descriptors is applicable
to the case of non-textured objects.

Another software, similar to BLORT, has been proposed by Karl Pauwels and
Danica Kragic in 2015 [12]. This is an example of more recent work; the codes of
the software are publicly available2.

This software offers better scalability in terms of number of tracked objects thanks
to the high degree of parallelism in the code implementation, which also allows
us to efficiently fuse color and depth features for pose estimation and tracking.
However, yet again, only textured objects can be tracked robustly due to the fact
that SIFT features are used for object detection.

1.3.2 Depth Based Tracking via Particle Swarm Optimiza-
tion

Depth information based object tracking approaches have been extensively
studied. A considerably good performance has been achieved in the line of
works [13][14][15][16]. Both rigid and articulated object tracking have been de-
veloped, as well as tracking of the interaction between various types of objects.
Objects are modelled as rigid or articulated structures, which consist of some ge-
ometric primitives of a known size and shape. In these works the base for the
object configuration (i.e. position, orientation and joint values) reconstruction is
done using the Particle Swarm Optimisation (PSO), which is an evolutionary algo-
rithm (EA) that does not impose the restriction of differentiability to the problem
definition of configuration estimation. Those methods have shown to be highly
robust and capable of automatic initialization and reinitialization in many vari-
ous scenarios including manipulation of virtual objects [17] or force sensing from
vision [18][19]. However, in the case when optimisation is done in a gradient-free
fashion, it is impossible to prove or guarantee correct tracker error convergence.
Thus, a gradient based approach would be the more safe and reasonable choice
for the control of real object manipulation.

1.3.3 Robust edge and keypoint based tracking

The MBT framework, described previously in Section 1.4.1, can in practice lose
the tracking relatively easily due to the fact that in the tracking loop it only
considers a single hypothesis of the object pose. This leads to a number of issues.
First of all, frame-to-frame pose estimations can be somewhat inconsistent and
not always smooth. Secondly, if the number of features for the current hypothesis

2https://github.com/karlpauwels/simtrack
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is insufficient to estimate the pose, the tracking is terminated and cannot be
recovered.

To address those issues, a more robust and thus practically more useful edge and
keypoint based object tracking framework was proposed by C. Choi et al. [20] in
2012. In [20], multiple hypotheses are considered for tracking a single object using
a Particle Filter based architecture. The weighed sum of all the hypotheses (or
particles) is then reported to be the true estimated pose of the object. In such a
framework, the complete failure of one or even several hypotheses would not affect
substantially the final pose estimation result, as long as there is a good amount of
good pose hypotheses.

In [20], they also implemented automatic keypoint based initialization and reini-
tialization methods for the start of the tracking procedure, which is yet another
advantage of the framework, which makes it practically more useful.

1.3.4 3D object tracking: an edge-based approach

In the same year of 2012, C. Choi et al. proposed an extension of their previous
work for the case of non-textured objects [21]. In this work, the same principles
of Particle Filtering with annealing on the SE(3) group are used to achieve ro-
bustness. Only edge features are used to compute the measurement likelihood
and an efficient Fast Directional Chamfer Matching [22] is used for initialization
with 49 edge templates obtained from the predefined polygonal mesh models of
the tracked object. The sample code for this method is publicly available3.

The two works of C. Choi et al., described in this chapter, outline the robustness
that can be achieved by using Particle Filtering. However, it is needless to say
that considering multiple hypotheses (e.g. hundreds) instead of just one implies
much higher computational complexity of the method. Nonetheless, it can also
be noted that all the particles can be evaluated in parallel; thus computations
in such an architecture can be accelerated by using the general-purpose graphics
processing units (GPGPU) [23][24][25][26].

1.4 Control and gradient based approaches

1.4.1 Real-time markerless Model Based Tracking

A more suitable framework for robotic manipulation, which enables precise pose
estimation from visual data, has been proposed in 2006 by A.I Comport et al. [27].

Later this framework has been implemented in the ViSP library as the MBT

3https://github.com/CognitiveRobotics/object_tracking_2D
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(Model Based Tracking) module and made publicly available4. The MBT module
of the ViSP library allows tracking rigid objects either with or without the texture
on the surface. The tracking can be performed in three different modes:

• Edge based tracking, for objects without texture;

• KLT keypoint tracking, for textured objects when edges are not easily
detectable;

• Hybrid edge and keypoint based tracking, which is the most robust of
all three modes, if both texture and edge information are well acquired.

To perform rigid motion tracking, the CAD model of the object which is being
tracked needs to be known and provided. The CAD model is then projected onto
the image and determines the location of the contours which correspond to the
edges of the object. Those contours are then tracked iteratively using the Moving
Edge algorithm [28]. As the new position of the edge point and/or keypoint is
only searched for in a limited neighbourhood of the previous location, there is a
limitation on the maximum amount of inter-frame movement of the object. There
is a possibility of increasing the size of the neighbourhood, but that, obviously,
also means that more computations are to be performed.

In order to evaluate the performance of the MBT module on the sample printer
data, two CAD models of the rigid front faces of the separate rigid parts of the
printer have been defined. For the tracking to be more robust to noisy or missing
information, additional (auxiliary) edges were also included in the model along
with the edges that define the boundaries of the rigid parts. Figure 1.2 demon-
strates the projection of the defined CAD models onto several frames from the
sample video of the printer drawer opening/closing.

Figure 1.2: Separate tracking of different rigid parts of the articulated object
with the MBT module while the object is being manipulated.

As can be seen from the sample frames from the video sequence, presented in
Figure 1.2, tracking is much more accurate than in the case of Viola-Jones. The
poses of the articulated parts are estimated with higher accuracy, and relative

4https://visp.inria.fr/mbt/

16

https://visp.inria.fr/mbt/


displacement can thus be computed to estimate the value of the drawer opening
(i.e. the prismatic joint θm).

Originally, the MBT object tracking framework was proposed for the case of rigid
body tracking. However, many articulated objects can be defined in terms of
a physically constrained ensemble of rigid parts. Thus, the task of articulation
tracking can be directly approached from the point-of-view of generalization and
extension of rigid body tracking framework. This is discussed in more detail in
Section 1.4.4.

1.4.2 Dense Articulated Real-time Tracking

A dense depth based approach for articulated object tracking has been proposed
by T. Schmidt et al. [29]. This tracking framework is called DART. In this work
GPGPU CUDA acceleration is used to provide real-time performance. The com-
putational complexity, and thus the necessity to use GPU acceleration, in the
proposed method is due to the decision to use dense depth data and not a sparse
subset of the available data. The authors even made use of so called “negative”
depth information, meaning that missing depth data was also incorporated into
the energy function subject to minimization.

In the DART framework, signed distance functions (SDF) are generalized to the
case of articulated objects to account for the physical constraints between object
parts in the tracking process. The method requires a model of the tracked object to
be defined in the XML format, clearly and precisely stating what is the geometry
of each part, how parts are connected and positioned with respect to each other
(as this is used in describing a robot). An initial guess also need to be provided
with high accuracy in the DART framework to start the tracking process.

From the experiments conducted in this work with the publicly available code of
the DART framework5, only brief tracking of a simple slowly moving rigid object
was achieved. When we tested the framework on a two-link articulated printer
object model, we did not obtain good tracking performances. Only few seconds of
correct tracking of the rigid object was achieved. Such results can be explained by
insufficient accuracy in the initial guess manually provided on the first iteration of
the tracking loop. Another possible obstacle for a better tracking could be a large
amount of noise in the scene, which “confuses” the optimization procedure and
leads to false pose estimation in a local minima of the objective function. Since
the framework only considers a single hypothesis in the local optimizer, it is thus
impossible to recover after the algorithm converges to a local minima or after an
insufficiently accurate initial pose guess has been provided.

Nevertheless, effort toward using dense depth (hence featureless) tracking is still
active area of research in the computer vision community, and we will consider

5https://github.com/tschmidt23/dart
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investigating it more in future work.

1.4.3 Tracking of objects with identical appearance

The challenge of tracking multiple objects with identical and possibly non-textured
appearance has been addressed in [30]. In this work a probabilistic approach is
exploited in order to define the energy function that contains both visual sensory
data and physical constraint terms in it. The energy function is then minimized
via the Levenberg-Marquardt method [31].

The main idea of this method is to fuse the Signed Distance Functions (SDF) of
all tracked objects into a single SDF. This tracking method can be extended to the
case of multiple objects without a significant increase in the computations, due to
the fact that optimization can still be performed once for a single function that
describes the geometry of multiple tracked objects. The physical constraints are
added to the energy function to ensure that the estimated poses of independently
moving objects do not occupy the same space. However, the objects are assumed
to be moving independently in the probabilistic model of the tracker, and no ar-
ticulation related constraints are modelled in the framework. The implementation
of this method can achieve over 80 FPS speed performance on a CUDA-capable
GPU and has been made publicly available since 20146.

1.4.4 Kinematic Sets

Several frameworks and formalisms for articulated motion tracking have been pro-
posed recently, e.g. [32][33][34]. The tracking of the articulated motion is typically
formulated as a error minimization task for the error between the observations
(s∗) and the forward-projection of the object model (s(x)), where x defines the
configuration of an object which needs to be estimated (either the pose r of a rigid
body or the minimal set of parameters q in the case of articulated motion):

δ =
∑

(s(x)− s∗) (1.1)

In 2004 a method for poly-articulated object tracking was proposed in [34]. This
method is an extension of the rigid body motion tracking method proposed in [27]
and partially described previously in Subsection 1.4.1. Both [27] and [34] use the
Virtual Visual Servoing [35] method to iteratively minimize the error defined in 1.1,
by deriving a robust control law that drives the virtual system, defined by x, in
the direction where error converges to a locally lowest possible value. Similarly to
how this is done in visual servoing, where the camera position is controlled and
physically moved into the direction minimizing the error between where the object
is in the frame, (u, v) coordinates in the image, and where is should be.

6http://www.robots.ox.ac.uk/~victor/libisr/index.html
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As a result of the minimization procedure, the best estimate of s(x) is found and
the corresponding configuration of the virtual system, x, is said to be the current
true state of the system.

The robust control law to estimate rigid body motion derived in [27] is:

v = −λ(D̂L̂s)
+D(s(r)− s∗) (1.2)

where v is the velocity of the virtual camera; r is the position and orientation
(pose) of the virtual camera; D is a weight matrix to reduce the influence of the
outliers and; Ls is the interaction matrix between the visual feature velocities, ṡ,
and the camera velocity, v. For more details on the control law derivation, the
interested reader may refer to the original paper.

The control law for the articulated object tracking derived in [34] is:

gpv = −λ(D̂L̂DÂ)+D(s(q)− s∗) (1.3)

As can be noted, the difference between the equations 1.2 and 1.3 lies mainly in:

1. the definition of the system state (r is the camera pose in the case of a
single rigid motion tracking; whereas gpv is is a general parameter vector
of common and intersecting velocities in the case of the articulated object);

2. the articulation matrix A. This matrix defines how gpv is related to the
velocities of every rigid part in the articulated mechanical structure of the
tracked object.

1.5 Main challenges

1.5.1 Real-time requirement

In order to use the object detection and tracking in control, we need to account for
various challenges. The first challenge comes from the requirement of the control
framework to perform all computations in real-time (i.e. within or less than the
QP control-loop period to be used by the controller). To extract useful information
for object detection, it requires processing a large amount of data (4 channels in
case of RGB-D data × the resolution of the camera) possibly several times in one
iteration at a frame rate, which in the case of a standard real-time system is at
least 25 FPS. That leaves on average only 40ms to fully process the current frame.

The problem becomes even more sensitive to real-time, when the robotic context
and its corresponding motion planing issues are considered, due to the fact that
real-time motion planing, for example using the QP control framework, typically
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runs at a 200 FPS rate. In this case, the vision frame should ideally be processed
in the order of a millisecond (under 5ms). It is important to note that, when
using a standard camera, an additional problem occurs because frame acquisition
rate limits slow down the process of visual information processing. A typical
camera can provide 30-60 FPS frame acquisition rate. That means that, even if
image processing algorithm is finished in under 5ms, for the next several dozens
of millisecond there is no new vision frame acquired by the camera for image
processing to act on it.

The real-time requirement challenge can partially be solved by performing some
computations in parallel with the help of modern GPGPUs, as a large part of
the image processing tasks for object detection can be parallelized and are GPU
friendly (e.g. processing various subparts of the image, evaluating several position
hypotheses, etc.). However in practice still, not many systems or robotic platforms
are equipped with such powerful processing units. The real-time requirement
becomes even more crucial in the context of robotic physical interaction, due to
the fact that all computations for the motion update are usually carried out on
the same platform; thus a limited amount of processing power is available for the
perception related computations.

1.5.2 Data inconsistency and occlusions

Visual sensory data can be very unstable and inconsistent in a video sequence.
The RGB data that encodes the color information for the objects in the scene
always varies significantly with slight changes in illumination of the scene or part
of the scene (e.g. shadows, reflected light rays). The development of a very robust
and completely illumination-invariant color or intensity based object detector is
extremely difficult. In practice, some assumptions about lighting are made when
using color information in the detection algorithm.

The depth information which can be acquired by the range sensors, such as the
Kinect or Xtion, is less sensitive to the changes of light in the scene. However,
another challenge arises, as the depth data can be highly inconsistent and noisy at
the edges of the objects and outside the distance of use (too close or too far from
the camera). Missing depth data can be to some degree recovered by the means
of interpolation, and noise can be partially eliminated by outlier removal.

Inconsistency and noisiness of the visual sensory data requires the implementa-
tion of pre-processing operations and statistical outlier detection and elimination
before low or high level visual features can be extracted from the frame. That in-
creases the overall computation complexity of any detection algorithm, but gives
the chance to increase robustness of the method, which makes it more useful and
generic in practice.

The issue of partial or full occlusion of the tracked objects make already challenging
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visual data even more complex to work with. In the case of full occlusions, the
recovery from tracking failures and reinitialization of the tracker is required. More
details on reinitialization and recovery are given later in Section 1.5.4.

In the case of partial occlusions of the tracked object, the detection algorithm
is required to be flexible and robust in terms of adaptation to new conditions in
data availability. Ideally the relative position between seen and unseen parts of
the object needs to be exploited efficiently to handle partial occlusions well.

1.5.3 Pose estimation inconsistency

When estimating the current pose of the object from the data that can be noisy
and inconsistent at times, as described in Section 1.5.2, the problem arises that
the estimated poses for subsequent frames would also lead to abrupt results.

The problem of inconsistent and noisy frame-to-frame pose estimation can be
particularly problematic in the context of a visual servoing feedback controller.
Large inconsistencies in pose estimation, when fed directly into the motion control
loop, will inevitably result in undesired edgy (or jerky), rough and inconsistent
motions of the robot.

As an example of edgy pose estimation, we can look at the data collected from
the experiments with a single hypothesis based MBT module described in Sub-
section 1.4.1. Figure 1.3a shows the values of θm for the printer opening/closing
manipulation experiment obtained by calculating relative displacement of the sep-
arate rigid parts tracked by the MBT module.

As can be seen from the plots, estimated values are rather noisy and inconsistent,
as the actual process of manipulating the object was much smoother. The result
of a mean filter applied to the θm estimation, which would be practically more
useful in the robotic manipulation context (but it introduces a phase, i.e. a delay),
is shown in Figure 1.3b.

We can attempt to address this issue by filtering to the sequence of the estimated
poses, for example by using a Particle Filter. Multiple randomly initialized hy-
potheses (or particles) of the current object pose estimate are considered, and the
weighted average of those hypotheses is granted to be the actual pose of the object.
This way the frame-to-frame pose estimation results become more consistent. The
influence of such an approach is well illustrated in [20], described in Section 1.3.3.
However, as we already mentioned, applying a smoothing filter to the data will
induce a lag in the estimation and the data will always be retarded.
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(a) Raw output of θm estimation via the MBT module.

(b) Mean filter of window size 30 applied to the estimation of θm.

Figure 1.3: Examples of raw/noisy (a) and smoother (b) estimation of θm

parameter of the articulated object.

1.5.4 Initialization and recovery of the tracking

A basic scheme for pose estimation from 2D image features can be described by
the block diagram shown in Figure 1.4.

This loop minimizes the error between measured and projected features to estimate
the current pose of the object considering the previously known pose(s). The logic
of the loop in Figure 1.4 is the following:
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FP Pose Correction

M

cMo(t− 1) sprev ǫ
cMo(t)

−

sm

Figure 1.4: Pose estimation loop.

1. Get the previous pose estimation cMo(t− 1);

2. Forward project (FP) the previous pose onto the new camera frame ft;

3. Search for most similar points sm along the projected model contours sprev;

4. For each point found, determine the displacement, ǫ, from the corresponding
point in the projected contour model;

5. Compute the new object pose to minimize ǫ;

6. Re-project the new pose to the same frame;

7. Go to 3 and repeat until ǫ is nil.

Note that in the very first iteration of such an object tracking loop it is necessary
to provide an initial guess, due to the fact that cMo(t−1) is simply non-existent
when the algorithm just starts the tracking process (i.e. at t = 0). That implies
yet another challenge for the object tracking framework. In some methods the
initial guess has to be provided by the user, as it is done for MBT and DART
described previously in this chapter. However, providing the initial pose manually
is very tedious, not practical and also prone to errors. In practice of course, a given
technology framework has to generate a “close to true” initial guess automatically
with as little previous knowledge or supervision as possible. If the initial guess is
not close to the true initial pose of the object, the tracking procedure will not be
able to converge to the actual object state. That will cause a tracking failure, and
the system would need to be able to recover from this situation and reinitialize
the tracking.

Since the operations of initialization and recovery only have to be performed from
time to time and not for each frame, it is possible to allow more computationally
complex methods to be applied for addressing this challenge. In the process of
initialization, the framework has to take raw images as an input and segment out
from scratch where the object is, as well as predict the pose of this object. It
is clear that in order to perform such (re)initialization, the framework needs to
know at least “what is it looking for”. Thus such information as a known apriori
model of the object, specific patterns, etc. can be of good use for addressing the
(re)initialization issue.
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1.5.5 Handling of non-textured objects

When using the color intensity information, it is fairly simple to robustly track
an object with a specific texture on its surface – or, what is a less desirable but
still common practice, with distinctive markers. The distinctive texture can be
efficiently and robustly matched using keypoints, as is done in [20], described
previously in Subsection 1.3.3. In this case, precise initialization, recovery and
robust tracking of the object become somewhat less challenging

A much more complex task is to track non-textured objects (or any object). In
this case, only efficient exploitation of edge and depth information can allow us to
achieve somewhat robust object tracking and precise (re)initialization.

1.6 Summary

To sum-up the evaluation of the existing approaches in the field of articulated
object tracking, we bring out the main criteria that make the methodology prac-
tically useful in the context of robotic control. These are:

• The tracker must preform within the task-space control loop;

• Automated initialization of the tracking;

• Exploit possible apriori knowledge, but with as little supervision as possible,
as for (re)initialization;

• Automate recovery from tracking failure and handle full or partial occlusions
of the parts of tracked object (due to the robotic part overlap during reaching
or manipulation);

• Use of joint constraint and limits to support articulation tracking (in addi-
tion, the kinematic of the robot in contact must be exploited);

• Exploit all available information, meaning that photometric and geometric
information are properly fused and complement each other;

• Frame-to-frame pose predictions are smooth and do not cause jerky robot
motions;

• Tracking of low- or non-textured objects.

By now, we have presented the overview in the field of computer vision based
tracking of articulated objects. In the next chapter, we focus on the motion
control part of the study conducted in this thesis.
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Chapter 2

Vision based whole-body motion
control in the Multi-robot QP
framework

In the previous chapter, we looked into the computer vision field of research on
articulated object tracking. This chapter is dedicated to the vision based motion
control part (i.e. visual servoing) of the study conducted in this thesis.

2.1 Introduction

Before we decide on what and how visual information is extracted, processed and
interpreted, first we look at how this information will be used in the low level
motion control process. We need to define the methods to translate information
extracted from the image into the update values for the robot joints. This in turn
allows us to develop poly-articulated object configuration estimation using visual
tracking techniques, which will be presented in the next Chapter 3.

In this chapter, the methods for vision-based motion control, or Visual Servoing
(VS) [36][37], are described in the context of sample experiments using our Multi-
Robot Quadratic Programming framework (QP for short) [38]. This functionality
(i.e. describing robot goals or objectives as visual servoing tasks) was missing
in the QP controller at the start of this thesis. Therefore, it was important to
port it prior to conducting the experiments with the HRP-4 robot. First, we give
explanations on the multi-objective whole-body humanoid motion control in the
QP framework. Then, image-based and position-based visual servoing tasks are
presented. Later in this chapter, several sample experiments with visual servoing
in the QP are described in order to illustrate the vision based QP motion con-
trol in action. The full integration in a multi-modal force/vision control and the
experimental results are described in Chapter 4.
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2.2 Multi-objective task-space whole-body mo-

tion control via QP

Multi-objective, task-space control [39] formulated as QP appeared recently as a
golden standard for the whole-body control of robots – hyper-redundant robots in
general and humanoids in particular, see examples in [40][41][42][43][44][45][46][47].
In the QP control framework, tasks can be ordered in strict, weighted or hybrid
priority. In a weighted (soft) priority scheme, which we are using, the tasks to be
achieved at best are weighted according to their priority and summed up in the
cost function of the QP. Those objectives, which need to be fulfilled strictly, are
put in the constraint part of the QP. For instance, creating a contact is split into
two parts: (i) a reaching contact task and (ii) a contact task. Reaching the contact
is a task, which is defined as an error in the robot sensory space, that is put first
in the cost function. As soon as the contact is established, this task is shifted into
a QP set of constraints to maintain the contact. Tasks inclusions, removals and
changes of priority are scheduled and managed by a finite state machine; see [47],
which will be detailed with the integration and experiment in Chaper 4. To be
self-contained, we recall here the main ingredients of the QP control framework,
with the classical tasks and the newly integrated one: visual servoing.

In the QP control framework, each task Ti is defined as an error in the sensory
task space; this error is a function of the QP decision variables that are: (i) robot
configuration accelerations, q̈, (ii) the actuator torques, τ , and (iii) the contact
forces, f . To the task, we associate a Jacobian matrix Ji, a weight wi that defines
the soft priority, and gains (namely, a stiffness ki).

Let us refer to Figure 2.1 for the illustrated example of the HRP-4 humanoid robot,
controlled by the QP, performing a complex task. At the high level, the given
mission can be formulated as: “operating the circuit breaker”. At the low level,
such a mission is split into a set of tasks that can be written as constraints or as
objectives on the decision variables. Hence, tasks Ti are formulated as errors in the
robot sensory space and used in the QP as constraints, or as part of the objective
function with appropriate values for stiffness, ki, and weight, wi. All the QP
tasks, Ti, which are necessary to perform one sample mission are exemplified and
visually illustrated in Figure 2.1, along with the set of QP constraints, such as joint
limits, contact friction cone constraints, etc. We bring more general mathematical
formulation of the QP in the continuation of this section.

The most usual tasks, in the QP control framework, are position-based (an error
between any point probot(q) of the robot, like an end-effector position, center of
mass (CoM) position etc., and a desired position of this point, ptarget). Here,
q is the robot generalized configuration variables, i.e. the vector containing the
position and the orientation of the floating base, plus the joint values. For Np

number of such tasks with errors Tp = probot(q) − ptarget, weights wp, Jacobian
matrices Jp and gains kp, we write the cost function:

26



Figure 2.1: Whole-body control QP framework tasks (components of the QP
objective function) and constraints illustrated on the example of the HRP-4
humanoid robot performing a complex task of operating a circuit breaker (see

experiments in Chapter 4).

P =

Np
∑

p=1

wp

∥

∥

∥
T̈p + 2

√

kpṪp + kpTp

∥

∥

∥

2

(2.1)

with Ṫp = Jpq̇, and T̈p = Jpq̈ + J̇pq̇. Tasks in position with strict inclusions,
equalities and inequalities are integrated in the constraints part after two deriva-
tions that result in a linear form in the decision variables; they are gathered into
Pc.

In Figure 2.1, an example of tasks, which are summed up in P are: (i) one of the
“CoM Tasks” is the CoM tracking tasks defined as an error between the current
CoM and a desired one, CoMd, that has a low priority, (ii) the “Posture task” is
a tracking task with very low priority to have a preference posture/configuration
of the robot, qd, and to avoid singularities in the QP solver.

Position tasks belonging to Pc are:
(i) the kinematic (fixed) contact tasks. Once the contact is reached, it is shifted
into the constraint part of the QP through the following task:

Jq̈ + J̇ q̇ = 0 (2.2)

for example, each foot-ground contact is such kind of task; it writes as an equality
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in the constraint part of the QP between the task-frame attached to the feet and
a task frame attached to the ground;
(ii) another of the “CoM Tasks” ensures that the projection of the robot CoM
lies within the region defined by the support (convex) polygon, and hence is writ-
ten with a set of inequalities. This task is put in the constraint part to ensure
that the robot does not lose balance and fall while operating a circuit breaker;
(iii) all collision avoidance tasks (not illustrated). Collision avoidance is also inte-
grated into the QP as described in [47] with the following constraints:

ḋ + t d̈ ≥ ξ
d− dσ

di − dσ

(2.3)

where d is the distance between a pair of bodies computed using [48], dσ is the
threshold distance, under which we consider that the collision happens; di is the
influence distance to activate the damping; ξ is a damping coefficient and t is the
control time-step. The distance is a function of the joint state, and its double
derivative writes in terms of the configuration acceleration and in a linear form.
(iv) Joint limits tasks (not illustrated) that write simply as:

qmin ≤ q ≤ qmax (2.4)

LetNv be the number of visual servoing tasks, which are defined as residuals in the
task function space Tv = s(q)−starget, s(q) being the visual features as currently
observed by the robot in configuration q, and starget their desired value. The time
derivative of the residual is related to the joint velocities through the Jacobian
Jv = LvJ , Lv being the interaction matrix (i.e. the visual features Jacobian)
and J being that of the robot as in classical visual servoing formulation. Two
main types of visual servoing approaches and corresponding interaction matrices
forms are discussed in more detail later in this chapter, in sections 2.3 and 2.4.
Now we have that, Ṫv = LvJq̇ and its derivative T̈v = L̇vJq̇ + LvJ̇vq̇ + LvJq̈
are integrated into the cost function with weight wv and gain kv as:

V =
Nv
∑

v=1

wv

∥

∥

∥
T̈v + 2

√

kvṪv + kvTv

∥

∥

∥
(2.5)

More details on this formulation can be found in [38]. Here also, visual tasks with
strict inclusion, equalities or inequalities are integrated into the constraints part
as before and gathered in Vc.

In Figure 2.1, an example of tasks belonging to V is the “PBVS task”, or po-
sition based visual servoing task, that achieves visual servoing between the right
arm tool to reach the exact position of the desired panel’s button to pull. The
“PBVS task” task is assigned relatively high weight to ensure precise and correct
manipulation of the small buttons. Whereas another example of a task belonging
to Vc, “IBVS task”, or image based visual servoing task, which is responsible
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for keeping visual markers in the field of view (FoV), can be assigned a much lower
weight value, to allow the FoV to deviate from its target value by a few centimetres
as long as it does not affect the visibility of the markers. The detailed expression
of the visual task is thoroughly developed in the coming sections of this chapter.

Force control is implemented as an interplay between two functions. First, the
target force, ftarget, can be either user defined, fd, or it can be the output of the
QP controller, f . Let Nf , be the number of force control tasks. Since the force f
is a QP decision variable, then if fd is defined, the corresponding force task writes
simply as Tf = f − fd. In this latter case, Ṫf = T̈f = 0 by definition; it is the
“QP force task” in Figure 2.2. Whether fd is defined or not, we also propose an
admittance task exactly in a form of a position-type one (previously discussed),
where the Ṫf = ṗrobot − ṗtarget such that ṗtarget = Kf(ftarget − fsensor)|n. p̈target

and ptarget are obtained by numerical derivation and integration respectively; Kf is
a gain and n is the surface normal; this is the “QP admittance task” in Figure 2.2.

Finally, force tasks weighted error is:

F =

Nf
∑

f=1

wf

∥

∥

∥
T̈f + 2

√

kf Ṫf + kfTf

∥

∥

∥
(2.6)

It is understood that Equation (2.6) can be one or duplicate (i.e. two equations).
It is two equation when fd is specified, the first one corresponds to the task Tf =

f − fd with Ṫf = T̈f = 0, and the second one is the admittance task previously
discussed. If in fd is not specified, Equation (2.6) is the single admittance task, see
Figure 2.2. As for previous task-types, strict inclusions, inequalities and equalities
can be defined as constraints gathered in Fc.

QP force task

QP
∫∫

Robot

QP admittance task

fd

q̈ q

fsensor

f

τ

Figure 2.2: Implementation of the force regulation within the QP framework.

In Figure 2.1, an example of tasks belonging to F is the “Force task” that
achieves admittance control of the left arm taking a contact on the panel when
previously reached by a contact reaching task that is not illustrated. Whereas
examples of tasks belonging to Fc are:
(i) the friction cone constraints (not illustrated):

Af ≤ 0, (2.7)
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for non-sliding contacts. This task keeps the forces f within their linearized fric-
tion cones represented by A (see [49]).
(ii) a threshold of contact forces, e.g. an inequality threshold put on the contact
force measured from the left wrist embedded force/torques transducer (i.e. 6D
force sensor):

fn ≤ fthreshold (2.8)

At each control time step t, the controller with the set of tasks, previously defined,
is fed back with the current state of the robot (q, q̇) and the sensor parameters.
It then solves for the decision variables: robot state acceleration q̈, the stacked
vector of forces f , and the actuation torques τ through the following QP:

min
(q̈,f,τ)

P + V + F (2.9)

subject to: Pc, Vc, Fc, additionally to the common constraints:

M(q)q̈ + C(q, q̇) + G(q) = Sτ + JTf (2.10)

which is the dynamic equation linking all the decision variables, with S a selection
matrix for the actuated joints in q, J is the force to torques mapping Jacobian.
M , C and G are the classical Inertia matrix, the Coriolis and Gravitation vectors
respectively. By pre-multiplying this equation by ST , we can express τ as an
affine function of q̈ and f , and remove it from the decision variables.

The torque limits task inherent from the actuators’ characteristics are expressed
as:

− τmax ≤ τ ≤ τmax (2.11)

Thanks to the torque constraints, the torque decision variable can be eliminated
from the QP decision variable ending up having a QP only in terms of the config-
uration acceleration q̈ and force variables f . That is:

− Sτmax ≤M(q)q̈ + C(q, q̇) + G(q)− JTf ≤ Sτmax (2.12)

As in [47], waypoint tasks are integrated as guide-paths to avoid local minima.
They also resolve the contradiction between moving a body to a desired contact
spot and at the same time avoiding collision between that body and the environ-
ment component on which the contact is defined. Note that our controller can
integrate multiple robots in a single formulation (i.e. any objects, including other
robots, that can be represented as robotic structures even with passive joints),
see [50] and Chapter 4 for more details.

In the continuation of this chapter, we will focus in more detail on the visual
servoing tasks.
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2.3 Image Based Visual Servoing task

The aim of a visual servoing task is to change the configuration of the system
in order to minimize the error between values of desired and observed features
extracted from the vision. In the image based visual servoing (IBVS) the error is
defined as a difference between currently observed (s) and desired (s∗) features in
a 2D image plane. Commonly used features are points, lines or other geometrical
shapes detected in the image. For simplicity of explanation, we consider a point
feature with coordinates in the image plane (u, v), expressed in pixels. Suppose
the desired location of this point feature is (u∗, v∗) (the center of the image).
First the error is computed:

e = s− s∗ = (u, v)− (u∗, v∗) (2.13)

Now, the mapping L between camera spatial velocity, vc, and point feature veloc-
ity, ṡ, can be derived. Since s∗ is constant for the visual servoing task, derivative
of the point feature is equal to the error derivative:

ṡ = ė = Lvc (2.14)

In the motion control literature, mapping L is called either interaction matrix
or image Jacobian. For many common image features, the derivation of the L
mapping form is performed using feature geometry [36]. For instance, L mapping
for a point feature is the following 2× 6 matrix:

Lp =







−
1

Z
0

u

Z
uv −(1 + u2) v

0 −
1

Z

v

Z
1 + v2 −uv −v






(2.15)

where Z is the estimated depth of the point (u, v) relative to the camera frame.
For more complex features the interaction matrix can be approximated or learned
offline.

In order to enable an exponential decrease of the error, the following relation is
specified with λ > 0:

ė = −λe (2.16)

As a result of relations 2.14 and 2.16, the velocity of the camera can be computed
as follows:

vc = −λL+e (2.17)

where L+ denotes the pseudoinverse of the interaction matrix L. The value of
the vc is passed as an input to the motion update, and the corresponding motion
is performed, the process of measuring the new position of the point feature,
recomputing the error and the interaction matrix and finally obtaining the new
value of the camera velocity can be repeated iteratively until the error converges
to zero.
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2.4 Position Based Visual Servoing task

In the case of position based visual servoing (PBVS) the error is defined in terms
of difference in rotation and/or translation of two reference frames in the 3D space.
First of all, the features are detected in the image plane. Then, the 3D position
and orientation of those features need to be estimated. This can be done, for
example, by forward projecting the points from the image plane using the camera
calibration parameters. Once the pose is estimated, the motion update can be
defined so that the robot end-effector’s reference frame origin is aligned with the
pose of the point feature. Such computations are useful for object manipulation.

Suppose that the goal is to position the right hand of the robot to be aligned with
a given point P in the 3D space detected by the camera. In terms of the PBVS
task, this can be achieved by minimizing the error between P and the origin of the
right hand link reference frame, Trh). An important thing to notice here is that
both points are expressed in the camera reference frame. The feature in PBVS
can be of the following type:

s = (t, θu), (2.18)

here t is the translation difference between frames P and Trh and θu is the rotation
difference between two frames expressed in axis angle coordinates. In order to align
two frames, both t and θu need to be 0, which means that s∗ = 0 and e = s.

For such a definition of the PBVS task, the interaction matrix takes the following
form:

L =

[

R 0
0 Lθu

]

, (2.19)

where R is a rotation matrix between frames P and Trh and

Lθu = I3 −
θ

2
[u]x +









1−
sinc θ

sinc2
θ

2









[u]2
x
, (2.20)

where sinc θ is the sinus cardinal defined such that θ sinc θ = sin θ and
sinc(0) = 1. The interested reader can refer to a tutorial on VS [36] for the
derivation of the interaction matrix form.

The mapping L from 2.19 relates the Trh frame velocity, vTrh
, to the feature error

velocity as follows:

ė = LvTrh
(2.21)

The computation of the vTrh
frame velocity is now analogous to the computation

of the camera velocity in equation 2.17.
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2.5 Sample visual servoing experiment: gazing

We have assessed the QP integration of the visual servoing task with preliminary
experiments on the HRP-4 consisting in gazing and whole-body tracking of a
marker (Figure 2.3).

For a gazing experiment, a WhyCon marker [51] was used as a visual target. The
robot was required to minimize the error between the detected position of the
marker in the image plane and the center of the image. In order to achieve that,
an IBVS task was defined and added to the QP with the following task error:

e = (uwc, vwc)− (0, 0), (2.22)

where uwc and vwc are the pixel coordinates of the detected WhyCon marker
(Figure 2.3a).

Additionally, posture and CoM tasks were added to the same QP instance to
ensure that the posture of the robot remains as preferred while the gazing task is
performed and that the robot does not fall. IBVS, posture and CoM tasks were
assigned weights 50, 10 and 10000 respectively for the optimisation, meaning that
the IBVS task had a higher priority than the posture task, but much lower than
the CoM task, to ensure that the robot could move while performing the IBVS
task without falling.

(a) Robot point of view (PoV). (b) View from the side.

Figure 2.3: IBVS experiment.

2.6 QP controller implementation: manipula-

tion with active perception

For more complex experiments, IBVS and PBVS tasks can be combined in a single
QP instance. While a PBVS task is used for manipulation, the IBVS task can be
used to update the pose of the camera so that the manipulated object is ensured
to be in the FoV during the entire process of manipulation.
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In order to study visual servoing integration in the QP control framework, a sam-
ple case of the HRP-4 humanoid robot operating an Airbus circuit breaker was
implemented in the form of a QP controller including position, posture, force and
other classical QP framework tasks, along with IBVS and PBVS visual servoing
tasks, which allowed us to enable closed-loop control based on visual feedback. In
this section, we bring the implementation and simulation details of the controller
and discuss experimental results of a real setup in Chapter 4.

In the experimental setup for circuit breaker operation, four markers were used.
One of the markers was attached to the robot hand tool, and the remaining three
were attached to the wall in the environment in front of the robot. The robot
was required to pull the switches/buttons on the wall with the right hand tool.
In order to enable this manipulation, the PBVS task was defined and added to
the QP with the corresponding error, e = (t, θu), where t is a difference in
translation and θu is a difference in rotation of the right hand tool marker frame
and fixed manipulated button reference frame. Both frames are expressed in the
camera coordinate frame. This is illustrated in the sample frame of simulated
FoV of the robot in Figure 2.5. The manipulated button reference frame position
and orientation are obtained by adding the offsets in X and Y axes of the wall
reference frame, which is computed from position of 3 markers attached to the
wall. In the described experiment only the position of the right hand frame was
controlled by the PBVS task, while the orientation task was defined separately
with a fixed hand orientation goal.

In order to ensure that both markers are in the camera FoV, an IBVS task is
defined as described in Subsection 2.5, to minimize the error between the image
coordinates of the right hand tool frame and the image center. The IBVS task is
added to the QP after the right hand end-effector has been positioned in front of
the robot somewhat close to the manipulated switches. Three markers are posi-
tioned on the wall relatively close to the switches so that during the manipulation
experiment they remains in the FoV as the hand tool is being tracked with the
camera. The frames of the simulation at different parts of experiment are shown
in Figure 2.4.

We also exploit task-aware contact planing in the implementation of the controller,
by creating a closed-kinematic chain between the wall and robot body. This is
achieved by maintaining a contact between the robot’s left hand and the wall (as
shown in Figure 2.4b). Creating such a closed-kinematic chain increases the robot’s
equilibrium and pulling forces. Contact is implemented as a force and admittance
tasks in the QP, resulting in the integrated force and vision based controller. The
addition and removal of the QP tasks and constraints in the controller is managed
by a finite state machine (FSM) composed by a finite set of states and transitions.
More details and the real experimental result of such an integration in the context
of the Airbus circuit breaker operating use-case are presented in Chapter 4.
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(a) Start of the simulation with only
posture, CoM and torso orientation

tasks in the QP cost function.

(b) Simulation state after the IBVS,
PBVS and left hand force tasks are
added to the QP cost function.

Figure 2.4: Experimental setup shown in simulation.

Figure 2.5: Camera view after IBVS and PBVS tasks are added to the QP cost
function. All markers are in the FoV, wall and tool marker frames are visible.

2.7 Conclusion

We have presented the QP control framework formulation and explained the work-
ing principles of vision based motion control. We discussed a sample controller
implementation, which uses VS tasks to enable the HPR-4 to perform complex
closed-loop manipulation. Real experiments are discussed later in Chapter 4.

In fact, now that we have tools for VS, we will use them in order to estimate the
configuration of the articulated objects that are manipulated by the robot. The
idea is to track continuously the configuration of these objects (recall that they
are modelled as “robots”) using the so-called Virtual Visual Servoing, which is
explained in detail in the following Chapter 3.
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Chapter 3

Articulated object configuration
estimation via visual tracking

In the previous chapter, we described the whole-body motion control in the QP
framework, the vision-based control and visual servoing. In this chapter, we de-
scribe methodology of using point and edge features in combination with visual
servoing principles to enable estimation of poly-articulated object configuration.
We describe the solution for real-time and accurate markerless edge feature ex-
traction that can be used as a feedback in the closed-loop control. The proposed
methodology is exploited later in Chapter 4, in order to effectively close the loop
on perception in the multi-robot QP (MQP) control framework, and perform real
closed-loop experiments.

3.1 Introduction

The QP control framework, presented in Section 2.2, can be used for object ma-
nipulation and interaction. This is achieved by modelling the manipulated object
as a “robot” with its corresponding configuration. The configuration of the object
consists of the floating base (FB) position and orientation and, for poly-articulated
objects, joint values. The extension of the QP control framework to multi-robot
control is explained in Section 4.1.

Since daily objects are not equipped with encoders or other sensors, their configu-
ration needs to be estimated at each time-step. We use visual tracking techniques
to achieve the block M in Figure. 1 in real-time. Since we do not track a target
but instead estimate the configuration by continuously matching the image plane
configuration on the 3D model, such an approach is called Virtual Visual Sevoing.
We bring formulation of the method in the following sections of this chapter.
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3.2 Estimation of the configuration using visual

tracking: background

Reconstruction of the configuration of articulated objects is a well studied problem
in both the computer vision community (tracking human motion, hands, etc.), and
in robotics (tracking robotic systems). In this section we look at the related works
purely from the point-of-view of the configuration reconstruction problem and not
from the visual perception viewpoint, which was done in Chapter 1.

Several methods to track motion of articulated bodies have been proposed over
the years. A kinematic tree based parametrization of articulated objects was
used in [33]. In the latter work, the tracking was formulated as a tree param-
eters fitting problem, assuming full geometric model of an object to be known.
In [32] the articulated structure tracking is handled as an extension of rigid object
tracking. Independent trackers are used to compute motions of every link, then
constraints between the links, expressed using Lie algebra formalism, are imposed
to find optimal set of motions that satisfy the constraints. Multiple hypothesis
using derivative- or gradient-free optimization techniques have been studied in the
line of works (e.g. [15][16][17], also described in Chapter 1). Such approaches are
quite helpful to avoid local minima in optimization. As an example of application,
such methods have been recently studied further for use in force estimation from
vision [18][19]. Yet, estimating the configuration of articulated structures with
multiple hypothesis methods, can lack frame-to-frame consistency, due to occa-
sional ambiguous observations which cause false hypotheses temporarily to have
high matching scores. This issue is not critical in many applications areas (surveil-
lance, computer graphics, etc.), but in a robotic closed-loop control schemes, such
estimation inconsistency could result in a very bad behavior, such as jumps and
jerky motions.

As mentioned previously in Subsection 1.4.2, the motion of articulated objects can
also be estimated using depth information in a GPU-based implementation of an
Extended Kalman Filter (EKF) in [29]. This method has been extended further to
consider physical constraints in tracker objective function by using contact infor-
mation in robotic object manipulation scenario [52]. Another depth based method
for estimating the state of a robotic arm was proposed in [53]. It demonstrated
robustness to calibration errors in a closed-loop manipulation task. Combination
of depth and joint encoders data was used in [54] to track the state of robotic arm.
However, for some robotic platforms, especially humanoids, end-effector distance
from the camera may not exceed the minimum distance for depth data acquisition
by a standard range sensor. In such case, RGB data processing is the only reliable
source of visual information. Articulation tracking can also be done using images
collected by a multi-camera system and then processed by a particle filter [55].
These methods are yet computationally expensive to be applied at the low-level
real-time robot control.
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Model-based approaches that make use of monocular images result to be the most
promising techniques for achieving fast and accurate estimate of articulated ob-
jects configuration. In [56], a Kalman filter based tracking, using multiple models
(such as the geometric and the appearance models of the object), was proposed
to recover values of joint position and velocity, but not that of the floating base.
Another articulated object tracking method has been proposed in [34]. This al-
gorithm uses a virtual visual servoing approach [35][27], previously mentioned in
Subsection 1.4.1, to minimize the visual error between some detected features of
the real object and other virtually projected by the estimated system. The vir-
tual control law provides the configuration of the object, but not expressed with
the classical generalized coordinates (see Equation 1.3 in Subsection 1.4.4 for de-
tail). Further computations should be added to retrieve the joint velocity variable
values.

An advantage of the model-based approaches is that the object and the visual fea-
tures trackers can work together cooperatively: knowing the model of the object,
the tracking of features leads to the reconstruction of the object configuration and
vice-versa. Extending this concept, the features motion can also reveal geometric
information of the observed object, that in turn is used to better track the fea-
tures. This idea is exploited in [57], that estimates the kinematic structure of the
observed object combining the manipulation task with the perception algorithm.
With the same principle, color and depth (RGB-D) information are processed by
an EKF to provide also a measurement of the joint values in [58]. In [59], RGB-D
data was processed in a unified framework able to estimate the pose, the shape
and the structure of the observed object. These approaches do not need the model
of the object, being itself estimated, but have been validated with simple artic-
ulated objects, they are not guaranteed to converge fast or to be reliable in all
circumstances. Some are computationally expensive.

In our attempt to find the articulated motion tracking solution, whose formalism
can be used as a part of MQP in the closed-loop object manipulation control, no
existing method could fit our requirements. Therefore, we took inspiration from
previous works to devise a tracker whose formalism suits the MQP requirements.
We present our methodology in the remaining sections of this chapter.

3.3 Virtual Visual Servoing for articulated ob-

ject configuration estimation

To track articulated objects for robotic manipulation, we propose a method based
on virtual visual servoing. We briefly recall the basics of this technique to formu-
late our tracking problem.

Besides vision based motion control, visual servoing (VS), introduced in the pre-
vious chapter, can also serve a purpose of object configuration estimation. This
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is done by the means of the Virtual Visual Servoing (VVS) paradigm, initially
introduced in [35] for the inclusion of computer graphics generated object into off-
line or real-time recorded videos: this is called augmented-reality. In this latter
context, it is important to well track the real environment in order to well posi-
tion the virtual (i.e. graphic) objects in the scene. Recently, this is done thanks
to simultaneous localization and mapping (SLAM) technologies. In our work, we
study the use of VVS to estimate the configuration of the poly-articulated object
in a form required by Multi-robot QP control framework for further use in object
manipulation. The integration is explained in Chapter 4. Following in this section,
we rather look into more details on the VVS idea and give a formulation of VVS
based poly-articulated object configuration estimation.

We recall the general idea of VVS. For simplicity, let’s first consider the case of
a rigid and non poly-articulated object configuration. Suppose we have m visual
features on the object; each feature mi is of dimension di and hence dim(m) =
dm =

∑m

i=1 di. The visual features can be observed by the camera, detected and
recognized through real-time image processing. The configuration of the object,
q, w.r.t. the camera frame and part of the corresponding features positions on
the image s(q) are known at time t. When a new camera frame is acquired, new
position of the visual features, s∗, can be extracted by means of computer vision.
The new position of the visual features, measured at time t+1, is compared with
the position of the same features at time t. The corresponding errors are computed
and stored in the vector e = s(q)−s∗. We know, from the classical visual servoing
techniques, that the error vector can be related to the camera velocity through
the interaction matrix mapping, L. Then for all features tracked, we stack all
corresponding interaction matrices. Since the camera, in this case, is a central
reference frame, and the new object configuration, q∗, only needs to be estimated
w.r.t. the camera, knowledge on the camera velocity is sufficient to derive the new
configuration of the object in the camera reference frame.

Now, we explain how the VVS based method can be used for poly-articulated
object configuration reconstruction. Suppose a humanoid robot is manipulating
a poly-articulated object with a camera looking at the object, as in the depicted
scenarios of Figure 3.1; more specifically, let us consider the case where a humanoid
robot is opening the drawer of a furniture (Figure 3.1c), as this scenario is used
later for real experiments.

The camera frame of the robot, Fc, is used as the central reference, meaning
that reconstructed configuration of the object is expressed in Fc. Figure 3.1
demonstrates several examples of Fc axes placement. Another frame of interest,
Fo, is arbitrarily defined at the floating base (FB) of the object, also shown in
Figure 3.1. The configuration of the poly-articulated object, which needs to be
estimated, is denoted by the vector

q∗ =





po

σo

qjoint



 ∈ R
7+n (3.1)
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(a) HRP-4 manipulating a steering
wheel (revolute or helical joint).

(b) HRP-4 opening a door (revolute
joints: the handle and the door).

(c) HRP-4 manipulating the drawer of a
furniture (prismatic joint).

Figure 3.1: Manipulation of various articulated objets by a humanoid robot. The
embedded camera reference frame, Fc, is indicated in front of the robot’s ‘head’.

where po ∈ R
3 and σo ∈ R

4 are the position and orientation (expressed with a
quaternion) of Fo w.r.t. Fc. Quaternions prevent the orientation representation
from being singular. The vector qjoint ∈ R

n in (3.1) is the vector of the generalized
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coordinates describing the internal configuration of the object, composed of n
joints (e.g amount of drawer opening defined by the value of drawer prismatic
joint in Figure 3.1c). We use a visual controller to estimate the derivative of the
configuration vector. Thus, the estimate of q∗ is reconstructed through numerical
integration. Suppose we have an object with p known visual features. The error of
the proposed control scheme is the difference between the previous known position
of the visual features, s(q), where q is the previous known configuration vector
value, and the current measured position of the corresponding visual features s∗:

e = s(q)− s∗ (3.2)

For the sake of generality, we do not specify which type of the visual features are
used at this stage. In any case, the dynamics of this error says how the visual
features changed between two time steps or between two sequentially acquired
camera frames. Error dynamics can be written as follows:

ė = ṡ(q)− ṡ∗ (3.3)

The observable motion of the visual features is a consequence of the motion and
corresponding change of the configuration of the object w.r.t. the camera. In
Fc, the velocity of each visual feature can be expressed using the geometry and
kinematics of the object (i = 1, ..., p):

vi = Ji(q)q̇ (3.4)

where Ji is the 6× (7 + n) Jacobian of ith visual feature. Thus, we can express
the dynamics of each visual feature as follows (i = 1, ..., p):

ṡi(q) = −LiJi(q)q̇ = Aiq̇ (3.5)

where Li is the interaction matrix (or the image Jacobian) associated to the ith

visual feature; it depends on the estimated depth of the corresponding feature,
that is available in the estimation process.

Usually, the interaction matrix relates the 2D velocity of the visual features to the
6D velocity of the camera. If the camera is considered fixed1, the apparent motion
of the features is due to the motion of the observed object (actually, its features)
in the opposite direction, that explains the minus in (3.5). Now, the dynamics of
the error can be explicitly written as follows:

ė = Aq̇ − ṡ∗ (3.6)

where we define, following the nomenclature in [34], A = (A1, . . . , Ap)
T as the

dm × (7 + n) articulation matrix, that relates the FB and joints velocities of

1Fc being the reference frame, the relative object-camera motion is actually meant as motion
of the object w.r.t. the “fixed” camera. In practice, it might happen that the camera itself
moves.
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the articulated object to the velocity of the visual features. Imposing a stable
dynamics of the error (ė = −λe, λ > 0), we derive the following “control law”:

q̇ = −λA+e + A+ṡ∗ (3.7)

where A+ is a pseudoinverse of the articulation matrix A and the term depending
on ṡ∗ introduces a predictive term in order to improve the performance of the
tracker as it anticipates on the motion and cancels related static errors. The bars
below the variables denote that approximation is used. The local stability of the
controller is ensured if the articulation matrix and its approximation are full-rank,
and we use a good approximation of A and of the visual feature derivative.

At steady state, (3.7) produces an estimate of object’s configuration (that is the
FB and joint velocities) q̇k at each discrete time-period kTs (Ts being the sampling
time of the algorithm and k the loop iterator), from which qk, an estimate of the
object configuration, is obtained by numerical integration.

To avoid the error introduced by brute-force normalization-based methods, the
derivative of the quaternion is integrated using a closed-form exponential map
method [60]. The other elements of qk are obtained with simple explicit Euler
integration:

qk =







po,k−1 + (ṗo,k + ṗo,k−1)
Ts

2

exp(Ωk−1 Ts)σo,k−1

qj,k−1 + (q̇j,k + q̇j,k−1)
Ts

2






(3.8)

where Ω is the 4× 4 skew matrix of the FB angular velocity.

Pseudoalgorithm, presented in Algorithm 1, shows the complete procedure for
computing the vector q.

The controller (3.7) has a threefold utility: (i) it works as visual features tracker,
(ii) FB pose estimator, and (iii) object’s joints estimator. From these two latter
information, the pose of any link of the object can be reconstructed. In principle, in
order to reconstruct the same information, one could use multiple instances of VVS
for estimating the rigid body pose of each object link separately. The advantage of
using (3.7) stands in managing all information in the same framework, activating
a virtuous circle. Indeed, the visual features trackers helps the estimation of the
object FB pose, which helps the tracking of all the links and the estimation of the
object joints, that in turn helps to correct estimation of the visual features.

The method can reconstruct also other information about the object. In fact, it is
also possible to estimate some geometric parameters, such as the length of the links
or even the composition of the CAD model, that is assumed to be known. This can
be achieved as an extension of our algorithm, by modelling the distance between
visual features on the same link as virtual prismatic joint. This characteristic will
be tested in real experiments and described in Chapter 4, Section 4.4.
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Algorithm 1: VVS-based tracking of articulated objects. Each acquired
image is processed to detect the 2D visual features that are collected in the
vector s∗. The position of the visual features on the 3D object model, ρ, is
computed using the estimate of the object configuration from the previous
iteration, q. For each visual feature with Jacobian (Ji), the visual feature
locations on the image plane according to q (si(q)), interaction matrix (Li)
and corresponding part of the articulation matrix (Ai) and corresponding
visual feature error (ei). Once Articulation matrix and error vector is fully
constructed, q̇ is computed and q is obtained through numerical integration.

foreach new image frame I do
s∗ ← Detect Features(I) ;
ρ← Update Model(q) ;
e← allocate space for error vector e ;
A← allocate space for the articulation matrix;
foreach visual feature i do

Ji ← Compute Jacobian(q, ρi) ;
si(q)← Project(ρi) ;
Li ← Compute Interaction Matrix(ρi, si(q)) ;
Ai = −Li Ji ;
ei = si(q)− s∗

i
;

end

q̇ = −λA+e + A+ṡ∗ ;
q ← Numerical Integration(q̇) ;

end

3.4 Point feature based parameter estimation

One of the most simple and well studied types of visual features in visual servoing
are point features. Let us define a vector ρ ∈ R

3p of p points of interest (PoI) on
the articulated object, whose projection on the image plane of the camera provides
p corresponding visual 2D point features.

The motion of the articulated object, q∗, which we wish to estimate, produces
the motion of visual features collected in the vector s∗ ∈ R

2p. These features are
observable and measurable on the image plane of the camera.

Whereas, the previously known configuration (computed for previous camera
frame or time step) of the articulated object, denoted with q, affects the mo-
tion of virtual visual features, gathered in the vector s(q) ∈ R

2p. Note that the
virtual visual features depend on (i) the geometric model of the object, assumed to
be known and used to calculate the location of the virtual PoI in Fc, and (ii) the
camera intrinsic parameters, used to project the virtual PoI on the image plane.
Since Fc is the reference frame, we do not need the camera extrinsic parameters
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to build the projection model.

Assuming known the object’s PoI ρ, and measuring the visual features s∗, the
objective of the tracking algorithm is to estimate the vector q∗.

Using the previously known estimation q, the model of the object is updated, so
that the positions of the PoI ρ are also estimated and available for the subsequent
computations. Then, for each visual point feature i = 1, . . . , p the following
actions are performed:

• the Jacobian Ji of the corresponding PoI is computed using q and ρi. The
exact Jacobian computation is explained later in this section;

• the virtual visual feature si(q) is obtained projecting 3D points ρi on the
image plane, using the projection model of the camera;

• the interaction matrix Li is computed using the estimated depth of the point
(i.e., the z-coordinate of the point ρi) and the image plane coordinates of
the point feature (recall Section 2.3);

• finally, the articulation matrix Ai is obtained.

Once all these operations are repeated for all the features, the articulation matrix
is fully composed. Finally, q̇ is computed and q obtained by numerical integration,
as described in the previous section (explicit Euler).

Let us explicitly describe the computation of the PoI’s Jacobian, to be used
in (3.5). To this end, we first need to express the Jacobian of the object’s FB.

The orientation of the objet’s FB in (3.1) is expressed with the unit quaternion
σo = (η, ε)T , where ε = (ε1, ε2, ε3). From σo, the rotation matrix Ro express-
ing the rotation from Fc to Fo can be reconstructed. Furthermore, from the rule
of the quaternion propagation [61], it is possible to relate the angular velocity of
the frame Fo in its own frame to the derivative of the quaternion parameters:

oωo = 2ET σ̇o (3.9)

E =

(

−εT

ηI3 − S(ε)

)

(3.10)

where I3 indicates the 3 × 3 identity matrix and S(ε) is the skew symmetric
matrix associated to ε. From (3.9), it follows that the velocity of the FB in the
camera frame is

(

vo

ωo

)

=

(

Ro S(po)Ro

O3 Ro

)(

I3 O3×4

O3 2ET

)(

ṗo

σ̇o

)

(3.11)

that actually defines the Jacobian of the object’s floating base:

Jo =

(

Ro S(po)Ro

O3 Ro

)(

I3 O3×4

O3 2ET

)

(3.12)
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where O3 is the 3× 3 zeros matrix.

If the ith PoI belongs to the FB of the object, then the corresponding Jacobian to
be considered is

Ji =

(

I3 −S(
oρi)

O3 I3

)

(

Jo O6×n

)

(3.13)

where oρi is the coordinate vector of the ith PoI expressed in Fo. On the other
hand, if the ith PoI is attached to the lth link of the articulated object, than the
corresponding Jacobian is

Ji =

(

I3 −S(
lρi)

O3 I3

)

(

Jo Jl O6×(n−l)

)

(3.14)

where lρi is the coordinate vector of the ith PoI expressed in lth link frame, and
Jl is the Jacobian of the lth link of the object (l = 1, ..., n).

Experiments using PoI in the drawer opening use-case are presented in Chapter 4,
Section 4.4.3.

3.5 Line feature based parameter estimation

With respect to the methodology, described in the previous sections, the following
aspects need to be considered to enable line based parameter estimation in the
proposed framework:

• Line representation on the image plane is given by a 2D vector of line polar
coordinates, (θ, ρ).

• The interaction matrix Li in Equation 3.5 now represents the relation be-
tween the camera velocity and the velocity vector of the line polar coor-
dinates (θ̇, ρ̇). Such a mapping is well studied and presented for example
in [62];

• The visual feature Jacobian matrix form Ji defined in Equations (3.14)(3.13)
must be adapted to the case of line features;

• While point feature 2D representation vector contains coordinates of the
same type and scale, the line representation in polar coordinates contains
two elements that are completely different in nature and scale (θ is measured
in degrees or radians, while ρ is measured in pixels). To address this issue,
we can apply different gains (λθ and λρ) for each entry of the error vector
in Equation 3.7 as follows:

q̇ = A+

(

λθ 0
0 λρ

)

e + A+ṡ∗ (3.15)
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3.6 Markerless feature extraction

To enable markerless edge based tracking, we need to match the edges extracted
from the image to their corresponding counterparts in the 3D model (Figure 3.2).
In this part of the work we describe how to achieve this goal. We present the
main modules of the proposed framework, their interconnection and the structure
of the overall tracker and the pose estimation system.

(a) Sample input. (b) Sample output.

Figure 3.2: Given an input image (a), the output of the markerless feature
extraction algorithm is a coarse detection of the bounding box around the object
(green box in (b)), and the edges correctly assigned to the corresponding classes

on the model (different color-labeled lines in (b)).

The general scheme of the system is presented in Figure 3.3. The Learning algo-
rithm is adapted to learn to discriminate between known object features (e.g. lines
that form object model). It takes as an input the object’s model afforded with
the best geometric features and other parameters to best tune both the detection
and the tracking. The output of the learning process is a detection and prediction
models to detect coarse position of the object in the current image and predict
possible positions of the known landmarks. The detector and predictor can act on
initialization request and output the table of object features with their location on
the current image and initial values of the table data structure. This feature table
is the core of the entire process as it is also used by the guided Hough line fit-
ting module and is continuously updated by the edge selection and update blocks.
The guided Hough detects exact lines in the current image, while being guided by
the estimation provided by both the detector and predictor, and in the same time
–could be at different update rates, the feature table update of the previous itera-
tion. The latter is a prediction provided from the results of the tracking and pose
estimation module. Moreover, the features in the feature table are evaluated and
the minimum number of the features required to estimate the pose is selected by
the edge selection module; the feature table is updated accordingly. The output
of the guided Hough module is a set of edge parameters, which is passed as an
input to the tracking and pose estimation module. The pose of the object (here
the printer) is updated based on the visual information and is passed as a feedback
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to the MQP control. The joint update for the “multi-robot” system is computed,
executed by the robot (here the HRP-4). The robot then captures the next camera
frame and the entire process is repeated until the tasks objectives are achieved.

Object model
Labeled edges

Learning
Detector
Predictor

Initialize

Edges (features)
Table

Edge Selection

Current
Image

Edge detection
guided Hough

Edge update
method

Tracking
Pose estimation

MQP
control

Figure 3.3: The general scheme of all modules.

The proposed framework also has a potential of being augmented with the contin-
uous learning from experience functionality, when the result of successful tracking
is automatically annotated for the supervised learning process and used to en-
hance detector and predictor models. In the following sections, all the modules
(blocks), the data flow exchanged and the data structure are described in more
details together with their algorithms and eventually their implementation.

3.7 Detector and Predictor modules

We need to derive approximate position of the object model edges on the image
at the (re)initialization stage, i.e. when the tracker information from the previous
iteration is either completely missing or is not reliable. We use several machine
learning techniques, that can provide robust, reliable and real-time initialization
solution. The key to achieving real-time performance of initialization step is to
use fast coarse bounding box type object detector prior to any further processing
as it greatly reduces the amount of data that needs to be processed.

Historically, first real-time performance for the object detection has been achieved
by Viola and Jones in 2001 [2]. Since 2005, histogram-of-orienter gradient (HOG)
proved to be a fast and reliable feature descriptor for various object detection
tasks [5][63][64]. The HOG based object detectors take less time to train than
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Viola-Jones, they provide real-time performance and good detection accuracy.
It is important to note, that accuracy of the detection will drop if the object
appearance varies significantly in the training set and/or during the test detection.
The convolutional neural networks (CNN) can deal with such issues better, but it
rarely achieves real-time performance, while maintaining high detection accuracy,
especially if executed on CPU. Thus, HOG based method was selected for coarse
detection. The idea of this method is that a feature descriptor for an object class
is created based on training samples. The HOG operation computes dominating
local gradient directions to produce a descriptor for object detection. A sample
descriptor of the floating base of a printer is shown in Figure 3.4. The pseudo-
algorithm for computing HOG descriptor is presented in Algorithm 2.

(a) HOG descriptor. (b) Training sample.

Figure 3.4: (a) Learned HOG filter for a printer floating base, structure of the
printer is recognizable, (b) Sample from detector training set.

Algorithm 2: HOG descriptor computation

Data: CurrentImage
Result: HOGdescriptor

gx, gy ← ComputeHorizontalVerticalGradients(CurrentImage)
gradMag, gradDir← allocateSpace()
foreach pixel in CurrentImage do

gradientMagnitude[pixel] =
√

g2
x
+ g2

y
⊲ compute gradient magnitude

gradientDirection[pixel] = arctan
gy

gx

⊲ compute gradient direction

end
HOGdescriptor← allocateSpace()
imageBlocks← DivideIntoBlocks(CurrentImage)
foreach b in imageBlocks do

⊲ compute histogram for 9 discrete classes of gradient orientation
HOGdescriptor[b.id]← getHistogram(b, gradMag[b.id],

gradDir[b.id])
end
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The object detector is trained given a set of images and corresponding manually
annotated positions of bounding boxes, (Ii, Bi). For each sample in the training
set its HOG descriptor is computed according to Algorithm 2. Areas of the training
samples outside the annotated bounding box are used to generate negative samples
and compute corresponding HOG descriptors. Linear support vector machine
(SVM) is trained on those sample HOGs. After the model is trained, given a new
image, Itest, sub-images of various positions and scales are evaluated by trained
SVM to make a decision whether given sub-image contains object of interest or
not.

After coarse detection is performed successfully and we identified smaller part of
the image, which contains an object of interest, more fine detection can take place.
To better estimate the exact shape of the object as it appears in the image, few
known auxiliary object landmark positions inside the bounding box are predicted.
This is done using combination of appearance and shape knowledge learned from
sample data. According to the method, proposed in [65], given a training set of
images, bounding boxes and landmark positions, (Ii, Bi, Si), a cascade consist-
ing of T strong regression functions, {r0, r1, . . . , rT−1} is learned. Each strong
regression function in the cascade is trained to improve upon prediction of the
previous function in the cascade. Each strong regressor is a linear combination of
K weak regression tree models, which are trained using gradient boosting method
to predict update vector, which needs to be added to the current guess of the
landmark positions in order to achieve better alignment with the actual object
shape, which is observed in the image.

The mean position of all landmarks is computed over the entire training set.

Smean =
1

n

∑

i

SBi

i , (3.16)

where SBi

i is expressed in the corresponding bounding box coordinate system and
not in the full image coordinate system. The Smean serves as an initial guess of the
landmark positions in the bounding box, Btest, detected in the test image Itest. In
order to correct this simple initial guess, iterative process of evaluating the cascade
of learned regression functions {r0, r1, . . . , rT−1} and applying resulting update
vectors is preformed as follows:

S1 = Smean + r0(Btest, Smean)

S2 = S1 + r1(Btest, S1)

...

Spredicted = ST−1 + rT−1(Btest, ST−1)

After final Spredicted is calculated, it is regarded as a prediction of landmark po-
sitions in the current frame. We use this prediction to validate existence of the
actual image feature around the predicted image area. If result of the validation
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process is positive, we extract the precise parameters of actual image feature, that
can be further used to compute vision based control input for a robot to manip-
ulate the observed object. Details of this process are presented in the following
sections.

To test performance of object detector and landmark position predictor for the
articulated object used in our manipulation experiment, 140 images from a sample
recording were annotated. The bounding box around floating base of the object
was indicated on every image. The floating base was used rather than the entire
object to reduce variance in appearance of the training samples. For the same
reason, the detector for the drawer was trained separately. The front and upper
faces of the printer were selected for landmark annotation, due to their more tex-
tured appearance 16 and 13 landmarks were annotated on those faces respectively.
Additional 12 landmarks were annotated on the drawer. Annotation example is
presented in Figures 3.5a 3.5b 3.5c. A sample result of the detection and landmark
position prediction is shown on Figure 3.5d.

(a) Front face landmarks. (b) Upper face landmarks.

(c) Drawer landmarks. (d) Result.

Figure 3.5: (a), (b), (c) annotated landmarks, and (d) ample
detection/prediction result frame.

Dlib toolkit2 implementation of the object detector framework [5] was used to
train SVM for coarse object detector and implementation of [65] was used to train
a cascade of regressors for landmark position prediction. The SVM regularization

2https://github.com/davisking/dlib
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parameter, C, was set to 15, to enable better separation of the positive and neg-
ative samples. For the landmark position prediction model training, due to the
small amount of annotated data, parameters of the model were changed to enable
better generalization. The number of initializations used per image in the training
set to generate data for regressor function training was set to 300. A regulariza-
tion parameter used in gradient boosting, called learning rate or shrinkage factor,
denoted by ν, was set to 0.05, as it has been shown empirically in several works on
gradient boosting, that lower values of ν greatly decrease test set error [66] and
thus allow model to generalize better. The depth of each individual regression
tree model for landmark position prediction was limited to 2. A combination of
those parameter values has shown to yield subjectively best alignment on the im-
age plane with the 3D object model on two sample videos, which in total contain
7000 frames, which were not used for the training of the detector or predictor
models.

The output of the initialization process must be in a form of approximated edges
parameters. From the sample result of detector and predictor, shown in Fig-
ure 3.5d, we see that all necessary components for computing reliable initial values
for the sub-set of object edges are available.

First, landmarks are gathered into known groups, which lie on the same edge.
Then, for each group number of visible landmarks is computed, if this number is
less than 2, this edge is considered to be not visible. If number of visible land-
marks per edge is two or more, those points are used to compute edge parameters
required by the tracker. The algorithm and details of this process are discussed in
Section 3.8.3. Brief visualization of the process is shown on Figure 3.6.

Predicted line parameters:
ρi, θi, endpointsi,

for i in set of visible lines

Landmarks Visible groups Visible lines

Figure 3.6: The scheme of the initialization process from the output of
detector/predictor modules.
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It is important to note that the output of initialization method is not used in the
control. Initialization method only provides prediction of where possible lines may
be in the frame, this prediction is used further by precise image processing guided
Hough method to verify existence of actual line near predicted location and to
compute the parameters of actual line, which is then passed to the tracker module
to compute input for the MQP control.

3.8 Edge selection and update method

The edge selection and update method is at the heart of the overall pose estimation
problem. It bridges the detector and predictor to the tracker through several
intermediate modules with various internal closed-loops as illustrated in Figure 3.3.

The edge selection and the edges update share a common data structure. The
detector and predictor modules create the data structure and fill it with initial
values. The edge selection picks parameters for the guided-Hough to seek for a
minimal set of quality edges to be given to the tracker. The latter estimates the
pose and provides a prediction on the tracked edges that are used to update the
table. Hence, the update of the Edges (features) Table is made from the tracker
and also from the detector and predictor. In the following, we describe what are
the fields that compose the Edges (features) Table.

3.8.1 The edges (features) table

At each initialisation request, the detector and predictor modules create the table
using the current image and the data from the 3D poly-articulated object model as
an input. If the table exists already, the reinitialisation consists in filling the table
only from the current image, since the data concerning the 3D poly-articulated
object model is already in the table.

The structure of the Edges Table is composed by three categories of data: (i)
those that can be filled directly from the 3D model of the objects, (ii) those using
the latter structure in (i) and completed from the current image, and finally (iii)
those that are computed from previous data (i) and (ii).

The following fields are the structure data obtained from the 3D model of the
object and affordance knowledge (we specify only one level of parent dependancies
in the data structure for the clarity of the reading and writing):

• edgeID: (unsigned integer, char or string) it is the edge label. The edges
are potentially used for tracking and they come from the 3D CAD model.
That is to say, the model of the objects already says what are the edges
that are worth to be tracked. The 3D CAD model can be rich in edges
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but not all of them (namely the internal hidden ones, or those representing
insignificant details) are worth to be labelled to be tracked. So there is an
off-line effort where the user (or an algorithm in the future work) elects the
edges (line segments) from the mesh composing the 3D CAD model of the
poly-articulated object.

• linkID: (unsigned integer, char or string) we assign to each poly-articulated
object’s link an ID (one can take that of the urdf file if any, otherwise we
can store such an ID in the description of the object). To each linkID we
assign a set of edges identifiers.

• linkID.nbrPreferenceTracking: (unsigned int) stating for each linkID

the total number of preferenceTracking.

• linkID.preferenceTracking: (an array of lists of ordered edge(s) for each
link), list of the preference for tracking (for example, for given link, we can
order the preferred edges for the tracking, or their combination if more than
one is needed for a given link). The best scored preferenceTracking are
selected for the tracking). The ordering of this array is made when other
fields are filled.

• preferenceTracking.nbrEdges: (unsigned int) stating for each
preferenceTracking’s list, the number of edges present in it.

The following fields are obtained from the current image, after the previously
mentioned fields are present in the table. These fields are related to the edges and
their inner data structure:

• edgeID.rho and edgeID.theta: (floats) are the coefficient of the normal
representation of the lines (that will be used by the guided Hough module).
These data are roughly estimated from the detector and predictor at the
creation of the table. Then, for those edges that are tracked, the update of
these values comes from the prediction as an output of the tracker module;
for those who are not, the update come from the detector and predictor.
Ideally, any update shall be made by a combination of the detector/predictor
and the tracker.

• edgeID.points[2]: (array of two elements of 2D points), these points can
be used for plotting purposes and also to compute the length of the edge as
it appears in the screen.

• edgeID.isVisible: (boolean) if the edge is visible or not in the image;
this is obtained directly from the detector/predictor at the initialization and
assessed continuously by the tracking process when true.

• edgeID.isTracked: (boolean) says weather a given preference edge is
tracked or not. At the initialization this field is set to false for all the
preference edges for a given preferenceTracking.
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The following fields are the data structure derived from the previous data and
concern marking and other data that are useful for the edge selection for tracking:

• edgeID.edgeLength: (float) each edge has a length obtained from
Points[2] (i.e. the 2-norm).

• edgeID.dX and edgeID.dY: (float), we assign to each edge a distance metric
to the image borders: it is the distance of a 2D edge to the border of the
image (if any of this distance is zero, then the edge is touching the image
border).

• edgeID.qualityEdge: (float) is a mark given to an edge to be determined
from a formula that will be discussed later.

• preferenceTracking.qualityTracking:(float) is a mark given to
preferenceTracking from qualityEdge to be discussed later in this
section.

These are the fields that constitute the Edge Table. In the following we will first
discuss how the edges are selected assuming the Table already fully filled with
right values.

3.8.2 Selection of edges for tracking

The edge selection is made easy from the Edges Table data. Indeed, we have
already put efforts and emphasized on the importance of having a well documented
Edge Table in order to make available the data for the tracking. The edge selection
algorithm will seek for the preferenceTracking, i.e. potentially a set of elected
edges, that are tracked ans have the highest mark. In the table, for each linkID

its preferenceTracking sets are ordered in a first in, first out perspective, from
the tracked ones to the lower marked ones. For each link, we always provide the
first preferenceTracking list to the Hough-guided edge detection module. If the
latter succeeds in returning the edge(s), they are sent to the tracker. Otherwise,
the next preferenceTracking in the list is selected and evaluated, etc. If all
preferenceTracking for a given link were not detected by the Hough-guided edge
detection, then there are two possible options:

1. the link without any Hough-guided edges found is not visible (but this is in
opposition with the detector/predictor that founds them);

2. the detector/predictor returns bad information (maybe the image changed
a lot already), here we need to infer initialization of the Edges Table.
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If the tracker cannot be started after a certain number of initializations, the pose
estimation fails severely and one needs to reconsider the entire approach by refining
the parameters for the object in question.

In the other hand, if edges are found by the Hough-guided process, their param-
eters are sent to the Tracking and pose estimation module and in the same time
to the Edge table update modules.

The entire pseudo-algorithm of Edges selection is presented in Algorithm 3.

Algorithm 3: Edge selection

Data: CurrentImage, EdgeTable
Result: edgesList, the list of edges to send the tracker

scoring(edgeID) ⊲ Call Algorithm 4, we score at this level, right before
usage
foreach linkID do ⊲ we screen all links

⊲ find the requested number of preferenceTracking for this link
for (i = 1 : nbrPreferenceTracking) do

test← GuidedHough(CurrentImage, preferenceTracking[i],
edge) ⊲ run guided hough for the preferenceTracking[i] if all
found, return true otherwise return false
if test then ⊲ add the edge parameters to the list

edgesList.add(edge)
exit ⊲ found all the edges in preferenceTracking[i]

else
i← i + 1 ⊲ Next preferenceTracking in this link’s list

end

end
if (i > linkID.nbrPreferenceTracking) then ⊲ no edge found for
this link]

Initialization(CurrentImage, EdgeTable)
nbrInitialization← nbrInitialization +1
if max(nbrInitialization) reached then

user warning for/and robot safe mission cancelling
end

end

end

In Algorithm 3, the function “GuidedHough” will take as input each of the current
ith linkID.preferenceTracking edges parameters to seek for that edge Hough
parameters in the image portion where the edge is expected to be. This function
is detailed in Section 3.9. The edgesList.add method only copy the result of the
GuidedHough function returned in variable “edge” into the edges list to be passed
to the tracker. The “Initialization” function is explained in Section 3.8.3.
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Algorithm 4 is used to score the edges and the preference tracking so that they
are ordered by merit (best first) as to ease the Edge selection later.

Algorithm 4: Scoring

Data: Edge Table

Result: edgeID.quality and preferenceTracking.qualityTracking

updates

foreach edgeID do ⊲ start by marking edges
dX← min(point[1].X, point[2].X, imageSize(X) - point[1].X,
imageSize(X) - point[2].X)
dY← min(point[1].Y, point[2].Y, imageSize(Y) - point[1].Y,
imageSize(Y) - point[2].Y)
edgeLength← norm(point)
qualityEdge← scoreEdge(edge.ID)

end
forall the linkID.preferenceTracking do ⊲ mark each
preferenceTracking in each linkID from the marks of its edges

qualityTracking← scorePreferenceTracking(preferenceTracking)
end
foreach linkID do ⊲ sort preferenceTracking by merit

order(preferenceTracking[])
end

Now we propose a simplistic score strategy for the edges described in Algo-
rithm 5. The idea is to favor edges that have good visibility through the parameter
edgeID.length modulated by a user-given gain α, and those who are far from the
image borders. For the latter, the score is penalized thanks to edgeID.dX (modu-
lated by γ that can be taken as a gain divided by the size of the image along its X
axis) and edgeID.dY (modulated by λ that can be taken as a gain divided by the
size of the image along its Y axis). More sophisticated scoring can be envisioned,
for example, we can consider the noise of the edge, or consider the past score to in-
crease the current one, add threshold to previous parameters, etc. But since we do
closed-loop control, we better consider simple scoring strategies and computations.

Algorithm 5: function scoreEdge(edgeID) in Algorithm 4.

Data: edgeID
Result: edgeID.quality updates

if isVisible then
quality← α edgeLenght + γ dX + λ dY

else
quality← −1

end

Now that we have scored the edges we will devise a simple formula to
score the preferenceTracking. This is explained in Algorithm 6. If in a
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given preferenceTracking, one of the edgeID.quality < 0, then the en-
tire preferenceTracking is considered bad, otherwise, we can simply assign
preferenceTracking.quality to be

∑

.nbrEdges .edgeID.quality i.e. the numer-
ical sum of all edge scores composing a given preferenceTracking. We can of
course modulate this by dividing the sum on the number of edges or not; we can
also consider other aspects.

Algorithm 6: function scorePreferenceTracking(preferenceTracking) in
Algorithm 4.

Data: preferenceTracking
Result: preferenceTracking.qualityTracking updates

qualityTracking← 0 ⊲ Initalization
for i = 1 : nbrEdges do

if edgeID.quality > 0 then
qualityTracking← qualityTracking + edgeID.quality

else
qualityTracking← −1
return

end

end
qualityTracking← qualityTracking/nbrEdges ⊲ eventually take a
mean

3.8.3 Edge table initialization and updates

The update of the Edge Table is made in two parts (eventually not at the same fre-
quency) by the Detector Predictor module and the Edge Update Method (outcome
of the Edge Selection guided Hough results and the tracker).

Prior to the update, we have the initialization phase, that can also be requested
when the tracker or the edge selection algorithm is stacked. Initialization of the
Edge Table by the detector predictor module is done according to Algorithm 7.
Here we describe this algorithm. If the Edge Table is empty, it is first filled with
initial values. For every link of the object bounding box around the object in
the current image is detected. The cropped bounding box, which contains the
poly-articulated object (entirely or partially), is passed to the landmark predictor
to estimate possible position of the link landmarks. Known landmark groups form
edges on the link, those groups are known for each link from object description.
For each such group of landmarks, visibility of a possible link edge is evaluated.
If at least two landmarks from the group are visible, then they can be used to
derive edge data, which is necessary to fill the edges data. If landmarks, which are
supposed to form the edge are not visible, then this edge is set to be non-visible

57



in the Edge Table.

Algorithm 7: Initialization

Data: CurrentImage, EdgeTable, ObjectDescription

Result: EdgeTable updated

if EdgeTable is empty then ⊲ first step: build initial table from the object
model; done once

EdgeTable← BuildEdgeTable(ObjectDescription)
end

for (linkID = 1 : ObjectDescription.numberOfLinks) do ⊲ second step:
update edges with true value as available from the current image]

objectWindow← DetectObject(CurrentImage, linkID)
landmarks← PredictLandmarks(objectWindow, linkID)
landmarkGroups← getLandmarkGroups(linkID,
ObjectDescription)
foreach group in landmarkGroups do ⊲ fill the edges data

edgeID← getEdgeID(linkID, group)
if groupIsVisible(group,landmarks) then

edgeID.theta, .rho, .points← getEdgeData(group,
landmarks)
edgeID.isVisible← true

else
edgeID.isVisible← false

end

end

end

In case of successful tracking, each edge of the object model can be updated in
the Edge Table. Since tracking computes full pose of the object in 3D, projection
of this information onto the image can yield very rich information even about
fully-occluded edges. The information for each edge, including it’s theta, rho,
and points parameters, can de derived from tracker results along with additional
information for isVisible, isTracked field of the Edge Table.

Another important issue of the tracking process is the update. The update occurs
at two levels: (i) the update that outcome from the tracker, and (ii) the update
that outcome from the detector predictor.

The first is a continuous update of the edge parameters directly from the tracker.
Indeed, since these edges are tracked, their update is of higher priority and of better
reliability. Therefore, the Edge update method will update all the edges that are
tracked with predictive values obtained from the tracker (input: edgeList, and
output: edges’ parameters derivatives), in a closed-loop form. We emphasize that
the update of the tracked edge is not the parameters values obtained from the

58



current image, but the predicted ones for the next iteration. This is described
thoroughly in Algorithm 8.

Algorithm 8: Edge Update from Tracker and Edge Selection

Data: edgesList from Algorithm 3, and (θ̇, ρ̇) from the tracker
Result: edgeID updates in edgesList

edgesList.

[

ρ̇

θ̇

]

= −LJq̇ ⊲ derivatives of the tracked edges’ parameters

forall the edgeID ∈ edgesList do
edgeID.rho← δ edgesList[edgeID].ρ̇ + edgeID.rho ⊲ predicted ρ

edgeID.theta← δ edgesList[edgeID].θ̇ + edgeID.theta ⊲ predicted
θ
edgeID.point← 2dLineProject(edgeID.point, edgeID.rho,
edgeID.theta) ⊲ we obtain the predicted points by projecting the
current ones on the 2D line obtained from the predicted parameters (the
previous two instructions).

end
copy edgesList data to Edge Table

In Algorithm 8, ρ̇ and θ̇ are the derivative of the tracked edges that can be
computed directly from the tracker data as explained in line 1, in which: L is
the interaction matrix, J is the Jacobian and q̇ is the vector of the generalized
poly-articulated object joints, δ is a constant value taken as the sampling time∆t.
Since we have the derivative of the edge parameters we compute their prediction
for the next iteration. This is done in lines 3 and 4 respectively. From here we
can compute using the line formula ρ = y cos(θ) + x sin(θ) the predicted line
and we can then project the current edge’s points onto that new line to have the
prediction of the next iteration 2D point coordinates, line 5. When all is done, the
edgesList contains predictive information of the tracked edges that can be used to
update the Edge Table, line 7.

The second level of update deals with all the edges that are not tracked but for
which we need to keep track of the changes in the current image. This update is
the outcome of the detector and predictor module without intialization. That is to
say, in a separate thread, the detector and predictor updates all edgeID that are
not tracked. The update from the detector predictor is given by Algorithm 9 and
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follows somehow the same steps as described in the initialization Algorithm 7.

Algorithm 9: Edge Update from Detector Predector

Data: CurrentImage, EdgeTable, ObjectDescription

Result: EdgeTable updated

forall the linkID do
objectWindow← DetectObject(CurrentImage, linkID)
landmarks← PredictLandmarks(objectWindow, linkID)
landmarkGroups← getLandmarkGroups(linkID,
ObjectDescription)
foreach group in landmarkGroups do

edgeID← getEdgeID(linkID, group)
if edgeID.isTracked = false then ⊲ only for non-tracked edges

if groupIsVisible(group,landmarks) then
edgeID.theta, .rho, .points← getEdgeData(group,
landmarks)
edgeID.isVisible← true

else
edgeID.isVisible← false

end

end

end

end

3.9 Hough-guided line detection

In classical Hough line fitting process, every possible value of ρ, θ parameters is
evaluated for detecting a possible line in the image. Since we already have good
approximation of line parameters in the Edge Table, either from initialization
process or from the tracker update, we use this information to only evaluate small
subset of possible line parameters. This is done by “guiding” Hough transform
with approximated values inside sub-image, where edge candidate in predicted to
be in the current frame. The Hough-guided system serves as an extractor of real
image line parameters and as a validator that those predicted edges actually exist
in the image.

The Hough-guided algorithm works in close interaction with(in) the edge selection
Algorithm 3, described in Section 3.8.2. The Hough-guided detection takes as
an input the preferenceTracking edges suggested by the edge selection process
(Algorithm 3), and seeks for those edges in the current image, processed for edges
extraction using Canny or other method, but only in a subscribed sub-image area.
The latter is computed from a slightly enlarged area around the current edge points
preferenceTracking.edgeID.points. The Hough-guided simply seeks for the
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edge using Hough transform at the neighbourhood of the provided edge parameters
preferenceTracking.edgeID.rho and preferenceTracking.edgeID.theta, see
Algorithm 10. Thus it is being “guided” by approximation of those parameters as
given in the Edge Table.

Algorithm 10: Hough-Guided algorithm

Data: CurrentImage, preferenceTracking
Result: returns true if all edges in preferenceTracking, false otherwise

foreach edgeID in preferenceTracking do
if edgeID not already found then

subImage← crop(CurrentImage, edgeID.points)
edge = Hough(subImage, edgeID.rho, edgeID.theta)
if not empty(edge) then

⊲ real edge found in the image near predicted parameters
edgeID.isTracked← true

edgeID.isVisible← true

else
edgeID.isTracked← false

edgeID.isVisible← false

return false
end

end

end
return true

3.10 Conclusion

In this chapter, we have presented the methodology for articulated pose tracking
from primitive visual features, such as points and edges. We have proposed a
framework, which combines advantages of a real-time performance of the machine
learning based pose prediction and accuracy of the Hough-guided line extraction
to enable markerless visual feedback for edge based articulated pose tracking.

The experimental results for the closed-loop object manipulation using presented
methodology based on point features are described in detail in Section 4.4 of the
following chapter.
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Chapter 4

Integration, experiments and
results

In the previous chapters of this work, we have introduced the theory behind vision
based whole-body motion control in the QP framework (Chapter 2) and the poly-
articulated object configuration estimation by the means of VVS based tracking
(Chapter 3) for the use in a multi-robot QP control framework (MQP).

In this chapter we present the MQP and the integration of the described methods
to perform real challenging experiments using the HRP-4 humanoid platform.
We assess our developments and discuss the experimental results that have been
obtained for each experiment together with the limitations and other aspects that
might require additional efforts in the future work.

4.1 The multi-robot QP control framework: de-

scription and integration

The QP control framework, described in Section 2.2, is extended to the case of
multi-robot QP (MQP). In this new version of the control framework, the fully
or partially actuated robotic platforms, the environment and the rigid or non-
actuated articulated objects are all modelled as a single multi-robot system, whose
components interact by means of contact forces or mutually shared constraints.

Let us consider the case of the drawer opening operation. The multi-robot system
in this case consists of the ground and the table modelled as a static environment,
the HRP-4 humanoid robot with actuated joints, and the printer with one non-
actuated prismatic joint for the drawer (also modelled as a robot with no actuator).
The corresponding components are highlighted in Figure 4.1.

In this multi-robot system case, there are 3 components which interact with one
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Figure 4.1: Given set of tasks, the MQP framework computes control solution for
the overall state of the multi-robot system.

another through interaction contact forces: ground and table are considered static,
the humanoid, and the articulated object (printer) with non-actuated prismatic
drawer joint: they are considered as “robots”. For the purpose of generality,
suppose there are n number of “robot” components in the multi-robot system of
the MQP. At every time step of the interaction, for all robot components in such
a multi-robot system, their individual equations of motion (EoMi, i = 1, . . . , n,
the same as Equation 2.10 in Section 2.2):

Mi(qi)q̈i + Ci(qi, q̇i) + Gi(qi) = Siτi + JT
i
fi (4.1)

are combined (stacked) together through the interaction contact forces (or eventu-
ally other interaction constraints) to form a single EoM for the entire multi-robot
system.

The desired configuration of the manipulated object is specified at the high level
task space (e.g “robot opens the drawer by 10cm”). The MQP framework finds
optimal contact forces, joint torques and accelerations for the entire multi-robot
system to achieve the desired configuration. To fulfil the tasks in a closed-loop
control scheme, at every time step, the MQP needs to know the current state of
the entire system for every component. Here, the MQP system is explained in the
context of non-actuated articulated object manipulation. While the robot joints
have encoders, which provide joint value at every control time-step, such trans-
ducers are absent on common objects we manipulate daily. Thus, it is necessary
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to estimate the configuration of the manipulated object. In our work, computer
vision is used for this purpose, as we already described in Chapter 3. From now on,
“robot” means a real robot or articulated object, and we write it without quotes.

For the sake of completeness of MQP framework description, we give here the
changes w.r.t single QP presented in Section 2.2. For more details, the reader may
refer to [67][68]. The vector fi stacks all contact forces applied on the surfaces
of robot i. They come in pairs of action/reaction forces among the system of
robots according to Newton’s third law, and opposite forces applied by the robot
i on the robot j appear in the vector fj . Therefore fi is decomposed into fi =
(f0

i
, f−

i ,−f+
i ) such that f0

i
are the forces applied by the static environment on

the robot i, f−

i are the forces applied by the robots j < i on the robot i, and
f+
i are the forces applied by the robot i on the robots j > i. Let F 0, F−, F+,

be the vectors stacking all f0
i
, f−

i , f+
i respectively, and K the total number of

forces in F−, i.e. such that F− ∈ R
3K . By virtue of Newton’s third law, there

exists a permutation matrix Π ∈ R
K×K such that

F+ = (Π⊗ I3)F
− (4.2)

where ⊗ denotes the Kronecker product. Let Ψ = Π⊗ I3. The permutation
matrix Ψ is decomposed into selection matrix blocks Ψi ∈ R

3Ki×3K in the form:

Ψ =







Ψ1
...

Ψn






(4.3)

such that for each i we can write f+
i = ΨiF

−. Finally the EoM (4.1) writes:

Mi(qi)q̈i +Ci(qi, q̇i) +Gi(qi) = JT
i,0f

0
i
+ JT

i,−
f−

i − JT
i,+ΨiF

− +Siτi (4.4)

where Ji,0 and Ji,− and Ji,+ are the matrices obtained by extracting from Ji the
columns corresponding to the positions of f0, f−, f+ in f , respectively. Then all
the Equations (4.4) are simply stacked in the compact form

M(q)q̈ + C(q, q̇) + G(q) = JT
0 F

0 +
(

J− −ΨTJ+

)T
F− + Sτ (4.5)

with the following matrices and vectors

q = (q1, . . . , qn), (4.6)

τ = (τ1, . . . , τn), (4.7)

M(q) = blockdiag(M1(q1), . . . ,Mn(qn)), (4.8)

J0(q) = blockdiag(J1,0(q1), . . . , Jn,0(qn)), (4.9)

J+(q) = blockdiag(J1,+(q1), . . . , Jn,+(qn)), (4.10)

J−(q) = blockdiag(J1,−(q1), . . . , Jn,−(qn)), (4.11)

S = blockdiag(S1, . . . , Sn), (4.12)

C(q, q̇) =
(

C1(q1, q̇1)
T · · · Cn(qn, q̇n)

T
)T

, (4.13)

G(q) =
(

G1(q1)
T · · · Gn(qn)

T
)T

. (4.14)
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The kinematic constraint that expresses the coincidence of the contacts points
corresponding to an action/reaction pair can be synthetically written using the
matrix Ψ and the principle of virtual work as

J+q̇ = ΨJ−q̇ (4.15)

which is equivalent to, given that a permutation matrix is orthogonalΨTΨ = I3K ,

(

J− −ΨTJ+

)

q̇ = 0 (4.16)

This constraint has to be complemented with the static environment contact kine-
matic constraint that writes

J0q̇ = 0 (4.17)

The constraints and tasks expression as described in Section 2.2 remains exactly
the same and we finally obtain a multi-robot system integrated in a single QP
problem that is solved for each control iteration at once.

In the following sections of this chapter, we present and discuss experimental
results on vision based motion control for complex tasks and articulated object
configuration estimation for closed-loop manipulation.

4.2 Description of the experimental contexts

As mentioned in the Introduction, robots are now sharing work and home space
with humans. Ongoing research efforts aim to enable robots to perform various
tasks, like everyday human-scale manipulation activities or manufacturing tasks,
previously done mostly by humans, at a competent level.

We have considered two different experimental contexts to assess the methodology
built in this thesis. Both experimental contexts involve the humanoid robot HRP-4
and use the MQP control framework:

1. The circuit breaker experiment: the HRP-4 operate circuit breakers
(switches) disposed on a panel.

2. The printer’s drawer opening: the HRP-4 opens and closes a drawer of a
printer.

4.2.1 The context of the circuit breaker experiment

The circuit breaker experiment takes place in the context of the collaboration be-
tween author’s hosting group at CNRS-LIRMM and the Airbus Group aiming at
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introducing humanoid technologies into the aircraft manufacturing. The motiva-
tion behind using humanoid platform is not solely driven by a wish to increase
the level of automation, but also to use humanoids to perform “non-added value
tasks”: repetitive tasks, where the experience and intelligence of the operator are
not put to use, and where boredom can lead to mistakes, or tasks presenting health
risks, that are usually performed in confined spaces. For example,

• Accurate assembly operations, e.g. riveting, drilling and screwing using
manual or semi-automatic hand tools;

• Cleaning and painting operations;

• System installation: electrical harness installation, connector plugging, etc.

Humanoids could also be used to perform other non-added value tasks such as
conveying equipment or tools to highly qualified operators. By unburdening highly
qualified operators from such boring tasks, a robot (even a costly humanoid) is
socially and economically valuable. In such a context, the 3D models of the aircraft
and the shop floors exist and are constantly updated in the manufacturing process,
enabling model-based reference and localization of the robot.

Our case study covers a frequent use-case encountered in production. It aims at
investigating the capability (and hence the feasibility) of a humanoid to check the
correct behavior of the electrical systems of the plane or helicopter once it has been
assembled. Circuit breakers are used on aircrafts in order to protect an electrical
circuit from damage caused by current excess. Their state can also be switched
manually in order to reset operation or to switch off a function. In particular,
during ground testing, operators manipulate the circuit breakers panel in order to
validate the behavior of the systems in a large number of configurations. This is
done in the context of the COMANOID1 EU project. Here, we demonstrate how
the HRP-4 controlled by the MQP and equipped with visual feedback can perform
the task of checking if the circuit breaker switches have been properly installed by
pulling them with specially designed tool attached to the hand of the humanoid.

4.2.2 The context of opening the drawer of a printer

Our second experimental context is in line with the RoboHow2 European project,
which is focused on the research to enable robots to perform manipulation ac-
tivities, which human perform in their daily life. Enabling robots to perform
everyday manipulation activities such as offices or household chores exceeds, in
terms of task, activity, behavior and context complexity, anything that have been
investigated in motion planning, cognitive robotics, autonomous robot control and

1www.comanoid.eu
2www.robohow.eu
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artificial intelligence at large. It is not feasible to expect human programmers to
equip our robots with plan libraries that cover such an open-ended task spectrum
competently. The research lines taken under the RoboHow project is that a key
enabler for meeting the “open world” challenge is to exploit the huge information
resources that already exist and are intended for human use, such as web ser-
vices, product catalogues, dictionaries and encyclopaedic knowledge bases... and
bridge them with a sophisticated low-level controller, in which tasks specification
is simplified.

Ideally, we favor a knowledge-enabled control by affording objects with more data
than simple geometry and inertia parameters. For example, each object (e.g.
drawer) may contain information concerning the parameters of the tracker and all
what it needs to increase performances. This extends constraint- and optimization-
based movement specification and execution methods, that permit the force adap-
tive control of movements, that achieve the desired effects and avoid the unwanted
ones. In addition, novel perception mechanisms, such as the estimation of the ar-
ticulated objects configuration and satisfying the knowledge preconditions of plans,
allow monitoring the effects of actions that will make the whole approach more
feasible.

The constraint- and optimization-based movement specification, that is best illus-
trated with our MQP control framework, builds a stable and sustainable bridge
between symbolic high-level control and the continuous time and space of the
robots’ motion and perception. At the high level, the robot will reason about
and manipulate symbolic descriptions of these movement specifications, while at
the low level, the continuous time and space trajectories will have to satisfy the
specifications. In fact the idea of the MQP is that the model already embeds the
constraints (the kinematics and the dynamics ones) instead of explicitly defining
them. This property substantially simplifies the tasks specifications.

For the articulated object manipulation case study we consider the example of
opening drawer of a printer, as in the RoboHow project, we had to demonstrate
the HRP-4 operating in working or home offices.

4.3 The circuit breaker case study

4.3.1 Description of the experimental setup and require-
ments

The robot used for the experiments is the humanoid HRP-4. An Xtion PRO
LIVE camera is mounted in the head of the HRP-4. The robot is placed in front
of the panel with the circuit breakers (provided by the Airbus Group). The initial
position does not have to be precisely set, as visual feedback allows to perform the
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task successfully regardless of the variability in the starting position. Figure 4.2a
shows one example of a feasible initial placement.

(a) Example of initial position.

(b) Marker and tool
placement.

Figure 4.2: Experimental setup.

Switches on the panel are given a label based on the position in the 3 × 4 grid,
that is switchij , where i and j indicate the row and the column respectively.

Three WhyCon [69] markers are placed in the panel to form a pattern, which
is not ambiguous in rotation (e.g. “L” shape). One marker is attached to the
tool, such that it remains visible throughout the experiment. The pulling tool is
attached to the right wrist of the robot. Example of tool and marker placement
is shown in Figure 4.2b. The horizontal offsets from one of the markers on the
panel to the switch00 are measured and later used to compute relative pose of the
switch, which needs to be pulled, in the camera frame. Distance from the tool tip
to the tool marker center dtc is measured and later used to set appropriate error
thresholds for visual servoing tasks.

As was mentioned in Section 2.6, task-aware contact planning was used to amelio-
rate operating circuit breaker task performance. The advantage of the humanoids
is that they can use free end-effectors to support the main task execution. In this
example, additional QP tasks for the left hand were implemented in order to make
the HRP-4 put the palm of its left hand on the panel. This created additional
closed kinematic chains (in addition to the existing ones due to feet contacts),
which resulted in the robot being able to apply higher forces on the switches, gen-
erated from internal torques. It also prevented the robot from tilting toward the
panel during pulling, and increases the equilibrium area and robustness.
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4.3.2 The MQP tasks description

The panel is considered as a fixed robot-base having multiple links, each with a
prismatic joint: the switch system. In this subsection we present the tasks, which
form the MQP objective function in the circuit breaker experiment controller im-
plementation. As described previously in Section 2.2, each task is defined as an
error in the sensory space and has weight and stiffness value. General overview
of the tasks and corresponding values for weight and stiffness is presented in Ta-
ble 4.1.

Task name Description Weight Stiffness

robotComTask Balance task 1000 5
torsoOriTask Torso orientation 10 5
postureTask Preferred robot configuration 10 0.1
lhSurfaceTask LH movement control up to 1000 3.5
rhToolTask RH movement control up to 100000 8
gazeTask IBVS task 5 5
rhPbvsTask PBVS RH task 20000 5
rhOriTask RH orientation task 100 5
forceLeftHand Target force for LH 1000 8
forceTool Target force for the tool 1000 8
rhPosTask Avoid moving RH 1000 2
lhPosTask LH movement control 10000 2
rhPushTask Move tool back 20000 12

Table 4.1: The MQP tasks with weight and stiffness values.

4.3.3 Scheduling tasks using a finite state machine

We mentioned in Section 2.6 that the addition, removal and change of priority
of tasks and constraints is managed by a FSM. Figure 4.3 illustrates the FSM
implementation for the circuit-breaker controller. In the remaining part of this
subsection, states and transitions of implemented FSM are described in more
detail.

Initial posture is a safety state: CoM and torso orientation tasks must converge,
before t1 can be triggered and further tasks are then added to the QP. In hand to
panel state, position task is added to move left hand (LH) to a predefined way-
point. t2 is triggered after position task converges. When in left hand impedance,
position task for LH is removed. New contact constraint is added to ensure that
left palm and panel are in contact. Impedance task with desired target force for
the contact is added. t3 is triggered after desired force is achieved.
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Figure 4.3: FSM of the circuit-breaker operating controller.

In default position state, position task is added to move the right hand (RH) to
default position through two predefined way-points. t4 is triggered once both
waypoints have been reached sequentially. Image based visual servoing (IBVS)
task is added in initialize gaze state, to ensure that markers appear in the FoV.
Once IBVS error converges, t5 is triggered. After entering default position end,
position task for RH is removed. Default position of the right hand with respect to
the panel is refined by adding position based visual servoing (PBVS) task. Once
vision based position of the tool is less than 3mm away from the target value, t6
is triggered. In wait for command, robot is waiting for the command with switch
label (ij). After command is received, t7 is triggered.

In reach switchij , the target for PBVS task is redefined, so that the tip of the
tool is positioned under switchij with appropriate offsets. t8 is triggered once
tool tip is at least 3mm away from desired position. In the beginning of touch
panel with tool tip PBVS task is removed. New force-guarded position task is
added to detect when tool tip is in contact with the panel. When in contact (i.e.
target force is reached), t9 is triggered. Set point task with objective to move RH
5mm back is added in move tool tip back state. t10 is triggered once set point
task error converges. In tool impedance, set point task is removed. New contact
constraint and impedance task are added to bring tip of the tool in contact with
switchij . After impedance task converges, t11 is triggered. In pull switchij ,
set point task is added to move RH diagonally 1cm up and 2.5cm back to avoid
tip of the tool slipping off the switch. As a result of this motion switchij is
pulled. t12 is triggered once Euclidean distance from the target position is less
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than 8mm. Contact between tool tip and the switchij is removed in remove tool
from switchij state. After tool is removed away from the switch, t13 is triggered
and robot goes back to default position end state.

4.3.4 Experimental results

Object parameter vector q (see Equation 3.1) is used in the MQP to model ma-
nipulated object. In order to perform manipulation tasks, elements of q need to
be estimated, along with q̇ and q̈, from the data of camera stream by means of
computer vision. However, for the real-time motion control, which typically runs
at the rate of 200 FPS, the estimation of the velocity and the acceleration from
the camera frames is a known bottleneck, due to the fact that for the standard
cameras frame acquisition rate is usually at most 60 FPS. In such setup, the re-
quired motion is executed and finished much before new command from the vision
based motion control can be computed, which results in a jerky motion. Never-
theless, experiments with the MQP framework, which is an acceleration-resolved
framework for motion control (i.e. acceleration of the actuated joints is a deci-
sion variable of the MQP), revealed that the great difference in frame rates of the
low-level control and embedded camera frame acquisition do not cause significant
jerkiness of the robot motions and allow to perform the tasks successfully.

For the discussion of the results, we indicate the main phases of the experiment
as follows: 1) LH position task added, 2) LH impedance task added, 3) RH po-
sition task added, 4) IBVS task added, 5) PBVS task added, 6) switch label is
received, 7) pulling finished, going back to default position. Brief illustration of
the experiment state after some of the defined phases is shown in Figure 4.4.
Figure 4.6 demonstrates changes in HRP-4 joint values at different stages of the

(a) After phase 2. (b) After phase 3. (c) After phase 5. (d) After phase 6.

Figure 4.4: Sample frames of the video recording of the experiment.

experiment. As can be seen, the joint value curves are smooth with no abrupt
changes. Figures 4.7 and 4.8 illustrate the evolution of the task error values during
the experiment. Description of the tasks with corresponding weight and stiffness
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values is presented in Table 4.1. As can be seen from the plot, high weight CoM
task error stays close to zero, while lower weight torso orientation task error varies.
Figure 4.8 illustrates the fast convergence of IBVS, PBVS and LH position tasks
to zero. Figure 4.5 illustrates the norm of main force components fx of LH that
is controlled to hold a given force on the panel, and RH force sensors (we plot-
ted the norm of all components for RH). After phase 2, LH impedance task with
force target 15N is added and force value converges to this target. LH impedance
task stays in the MQP until the end of the experiment, and the controller tries to
satisfy the objective while other motions are being performed.
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Figure 4.5: The LH is controlled in impedance after phase 2 to hold a contact of
15N with the panel all along the experiment.
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Figure 4.6: All HRP-4 joint values during the experiment.

Stiffness of the tasks can be increased to force faster convergence of the error.
However, when using visual feedback, there is a limitation on task convergence
speed, due to the low frame rate of the standard camera. Task stiffness values used
in QP controller are presented in Table 4.1. Final size of the WhyCon markers
used in the experiment, is 2.4cm (diameter of the outer black circle). In order to
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Figure 4.7: General MQP tasks: CoM and torso orientation task errors.

1 2 3 4 5 6 7

−1.0

−0.5

0.0

0.5

1.0

0 20 40 60
time (s)

T
a
s
k
 e

rr
o
r

lhSurfaceTask_x

lhSurfaceTask_y

lhSurfaceTask_z

lhPosTask_x

lhPosTask_y

lhPosTask_z

rhOriTask_r

rhOriTask_p

rhOriTask_y

rhPbvsTask_x

rhPbvsTask_y

rhPbvsTask_z

gazeTask_x

gazeTask_y

rhToolTask_x

rhToolTask_y

rhToolTask_z

Figure 4.8: Experiment specific task errors (normalized).

minimize the amount of the potential error in the marker position estimation, the
maximal camera resolution was used for frame acquisition (1280× 1024 pixels).
This allowed having 2−3mm precision in marker localization. Calibrated camera
was used to ensure low uncertainty in the camera intrinsic parameters.

4.3.5 Conclusion

We have demonstrated that circuit breaker operation can be divided into states,
to form an appropriate FSM, and implemented as a set of MQP tasks and con-
straints. This results in a unified force and vision based control, which enables
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the HRP-4 to perform required operation. From the plots, which demonstrate the
MQP controller state and the robot’s sensor values during the experiments, we
see that task errors decrease exponentially and force sensor values remain around
the specified target values. The experiments also proved the importance of creat-
ing additional closed-kinematic chain to increase robot’s equilibrium and pulling
forces.

The experiments were successfully conducted several times in the laboratory over
the course of two months without imposing any explicit constraints on the light
conditions of the room (both natural and electric light were used at some point).
The same controller, with some additional improvements in the implementation,
was used to demonstrate this work at the first Digital Festival in Tahiti in March
of 2017 (Figure 4.9). This shows, that our experiment is highly reproducible.

Figure 4.9: Demonstration of the Airbus experiment at the Digital Festival,
Papeete, French Polynesia, March 2017.

4.4 The printer drawer case study

In this section, we present the results of the closed-loop experiments of the poly-
articulated object manipulation, namely the printer drawer opening, with the
HRP-4 robot controlled by the MQP framework. The estimation of the object
configuration is done via visual feedback methodology described in Chapter 3.

4.4.1 Experimental setup

The humanoid robot HRP-4 is equipped with a Xtion PRO LIVE RGB-D sen-
sor. The Xtion is used as monocular camera, providing images with a resolution
of 640 × 480 pixels at 30 FPS. A calibration procedure provides the intrinsic
parameters used in the projection model of the algorithm.

For the initial experiments visual markers were used. This was done in order to
eliminate potential visual point feature detection failures and to focus mainly on
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the configuration reconstruction part of the VVS based poly-articulated object
tracking methodology. The images are processed by WhyCon, a vision-based
localization library that detects proper markers placed in the field-of-view of the
camera, and also gives an estimate of their position in the camera frame. Four
WhyCon markers were placed at the known positions on the FB of the printer and
two more were placed on the drawer as shown in Figure 4.10.

Figure 4.10: Markers placement on the printer.

These markers represent the p PoI in our algorithm, and the detection of their
corresponding visual features fills the vector s∗. For the continuation of this work,
the markers can be replaced with keypoint features such as SIFT, however, this
would require additional efforts to address potential failures in point detection
as well as speed-up implementation to allow real-time performance, as real-time
closed-loop control is very sensitive to both of those factors.

In the start of the estimation experiment, the robot is placed in front of the printer
with the hand grasping the drawer. Then, commands are sent to the robot with
specification of the drawer opening amount. The robot is supposed to execute
these commands. The same set-up is used for the experiment with edges, except
that the visual markers are not put.

The configuration vector q ∈ R
9 that we provide is composed of (i) the pose

(position vector and quaternion) of the printer FB, (ii) the value of the prismatic
joint of the drawer, q1, and (iii) the distance between the two markers on the
drawer, q2, modelled as a virtual prismatic joint.

4.4.2 Integration of the poly-articulated object configura-
tion estimator to the MQP controller

The HRP-4 robot is controlled with our MQP [68]. The tasks, which are defined in
the controller for the printer’s drawer experiment, are presented in the Table 4.2,
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Task name Description Weight Stiffness

robotComTask Balance and CoM position task 1000 5
torsoOriTask Torso orientation 500 5
postureTask Preferred robot configuration 0.1 5
lhSurfaceTask LH movement control 1000 2
rhPositionTask RH movement control 100 0.1
rackTask Drawer position task 1500 2
rackPostureTask Drawer posture task 10 2

Table 4.2: The MQP tasks with weight and stiffness values.

with corresponding values for the weight and stiffness. In order to achieve the
closed-loop behavior, it is possible to define the error between the current value
of the drawer’s joint and a desired joint target: τq = (q1 − q1,d). Here, q1,d is
specified by the user (it could be defined by a higher level planning), while q1 is
provided by our method. This term is actually added to the cost function of the
MQP after the robot grasps the drawer

wq

∥

∥

∥
τ̈q + 2

√

kpτ̇q + kpτq

∥

∥

∥
(4.18)

with τ̈q = Jqq̈1 + J̇qq̇1, being Jq the Jacobian of the task; wq is a given weight.
The addition, editing and removal of the tasks in the MQP is handled by the FSM,

idle lowerCoM reaching

add contact
wait for 

command
pull

Figure 4.11: FSM for the drawer experiment.

similarly to what has been presented in Subsection 4.3.3. Figure 4.11 shows the
diagram of the FSM for the printer drawer opening experiment.

4.4.3 Point feature experiments and results

For the point feature based experiments, the initial value of the configuration
vector has been set to q = (0.0, 0.1, 0.6, 1.0, 0.0, 0.0, 0.0, 0.0, 0.1)T at t = 0.
Figure 4.12a illustrates the tracker state at t = 0. Figure 4.12b shows the state
of the experiment after the tracker has converged, and the manipulation has been
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performed. Real experiments have revealed, that the computation of the visual
features derivative, ṡ∗, was very noisy. As already stressed before in this work,
significantly noisy input is not acceptable in the real-time low-level control. In
particular, since the camera and the object did not move excessively during the
execution of the experiment, we disabled the derivative action in (3.7).

(a) Initial state of s(q) in blue and s∗ in
red.

(b) State of image point features after
tracker converged.

Figure 4.12: Projection of PoI onto the image plane based on current
configuration estimation (blue) and the corresponding detected point features

(red).

Figure 4.13 shows the norm of the VVS error. After a small time interval, required
to make the visual features converge to their real counterparts, the error decreases
exponentially and remains small with no extreme jumps, showing the effectiveness
of the visual feature tracking. To validate our approach, we compare the results of
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Figure 4.13: Experimental results: norm of the VVS error.

the proposed VVS-based tracking algorithm with a Singular Value Decomposition
(SVD) based method for rigid motion reconstruction. It uses two sets of points:
m PoI on the FB expressed in camera frame, cρ, and the same points expressed in
the object frame, oρ. The first set is provided by WhyCon, the latter is assumed
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to be known (i.e. manually measured). The reconstruction of the object pose
(position vector po and rotation matrix Ro) is formulated as a least squares error
problem:

(Ro, po) = argmin
Ro,po

m
∑

i

‖(Ro
oρi + po)−

cρi‖
2. (4.19)

To find an optimal combination of Ro and po that satisfies the minimization
problem, we apply an SVD on the cross-covariance matrix of the two points
distributions, that results in the decomposition UΣV T . The sum in Equa-
tion (4.19) is minimized when Ro = V UT . Then, the translation is computed as
po = µc − Roµo, where µc and µo are the centroids of the sets cρ and oρ, re-
spectively. For the proof, interested reader can refer to [70]. Once transformation
between camera and object frames is computed, FB parameters can be validated.
For the validation of the drawer prismatic joint, we consider the 3D position of
a marker on the drawer in Fo reconstructed using Ro and po. The amount of
drawer opening is equal to the position of the drawer marker on the x-axis (red) of
Fo (Figure 3.1c). For the validation of estimated distance between two markers on
the drawer, Euclidean distance between corresponding points is computed using
coordinates in Fc provided by WhyCon.

The position of the FB as estimated by the VVS and by the SVD-based method
is shown in the plots of Figure 4.14, by the blue continuous lines with triangle
markers and red dashed line respectively. After an initial time interval, required
to recover from the inaccurate initial value of q, the estimation of the position
of the FB, provided by the VVS, converge to the actual position of the object.
The estimation curves provided by the SVD-based method validate the estimation
results. Similarly, plots of the FB orientation, transformed from quaternion repre-
sentation in roll-pitch-yaw angles for more intuitive representation, are presented
in Figure 4.15. The effectiveness of the VVS at estimating the pose of the FB is
validated by the comparison with SVD-based method. Furthermore, it appears to
be less noisy and thus more appropriate to be used as a control feedback.

The plots in Figure 4.16a refer to the estimated value of the joint of the printer
drawer. The black dash-dot line shows the command with desired joint values,
sent to the MQP. Blue and red lines show drawer joint values estimated by the
VVS and SVD-based methods respectively.

Finally, we show the estimation result of the distance between the markers placed
on the drawer of the printer, modelled as a prismatic joint in our algorithm. As
confirmed by the plot in Figure 4.16b, the method successfully estimated this
distance, which represents the link length.
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Figure 4.14: Experimental results: position of the object w.r.t. the camera
frame. From top to bottom: x, y and z-coordinate.

4.4.4 Conclusion

We have shown, that articulated object tracking methodology, presented in Chap-
ter 3, is applicable to the real-time control for robotic manipulation of the articu-
lated objects in the MQP framework. Values of the configuration vector elements
estimation have been validated by comparing estimation against the plots of SVD
based method for computing position, orientation and drawer opening. Plots of
the estimated values show that VVS based estimation of the articulated object
configuration estimation is approximately equal to the values obtained using SVD.
The curves of VVS based method have also proven to be more smooth. The geo-
metric properties of the manipulated object, i.e. link size, have been also correctly
estimated by proposed tracker. Experiments with the HRP-4 humanoid robot con-
trolled by the MQP framework show that the robot can successfully perform the
required manipulations.
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Figure 4.15: Experimental results: orientation of the object w.r.t. the camera
frame. From top to bottom: roll, pitch and yaw angle.
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Figure 4.16: Plots for the drawer joint and size parameter estimation validation.
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Conclusion

The aim of our work was to study visual feedback for robotic manipulation in the
task-space multi-modal and multi-robot quadratic programming control frame-
work (MQP). We devised and assessed a method to estimate the configuration
of articulated objects that are not embedded with sensors. We reconstruct the
configuration of articulated objected that are manipulated by a robot from the
on-board camera data. The robot camera observes the object and the video im-
ages are processed in real-time. The processing consists in using the articulated
object model and matching it to its counterpart in the video using virtual visual
servoing (VVS) to close the control loop of the MQP controller.

In the conclusion, first, we review briefly our main contributions. Then, we outline
current limitations and the short-term and mid-term efforts, required to overcome
those limitations. Finally, we discuss the future directions of the research, which
could result from the continuation of the presented work.

The overview of the state-of-the-art and experiments with available open source
codes were presented in Chapter 1. The study of the state-of-the-art revealed the
main challenges in vision based articulated object configuration reconstruction in
the context of the low-level task-space robotics control. In the conclusion of the
first chapter, the main challenges are outlined (Section 1.6). The remaining part
of our work was devoted to account for the limitations and consider the challenges
that need to be addressed, in order to enable robust visual feedback in robotic
manipulation control.

The methodology for the motion control in the QP framework, including vision
based motion control, has been described in Chapter 2. The integrated force and
vision based control of the humanoid robot in the QP framework has been studied
on a sample case of the Airbus circuit breaker panel. The implementation of
the QP controller and the experimental results have been described in detail in
Section 4.3. The experiments revealed the feasibility of achieving millimetre level
precision of marker-based visual feedback for the meticulous manipulation of small
switches of the circuit breaker panel. The concept of task-aware contact planning
was used in the experiment, which resulted in increasing robot’s equilibrium and
maximum pulling forces.

The VVS based methodology for the reconstruction of the configuration of an
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articulated object was presented in Chapter 3. First, the general framework was
described for any kind of feature. Then, more detailed description of point and
edge feature based configuration reconstruction of an articulated object through
the means of VVS based method were described. The framework consisting of com-
bined machine learning and guided Hough edge feature extraction was proposed
for markerless robust, precise and real-time feature extraction. The experiments of
the robotic manipulation of a sample articulated object (drawer opening), using
the presented VVS based method for the visual feedback about the articulated
object configuration, were conducted. The controller implementation details and
experimental results for this part of the work, were presented in Section 4.4. The
plots illustrating the estimated values of the object configuration vector elements
show, that proposed configuration reconstruction method produces smooth and
correct estimation of the object configuration. The plot of the value of the drawer’s
prismatic joint shows that robot, controlled by the MQP framework, could prop-
erly execute required manipulation task. We also discover that VVS can even be
used to estimate the size and dimensions of the object if such dimension can be
modelled as additional joints to those of the robot.

What concerns the limitation of our work in the current implementation of the
QP controller for the circuit breaker experiment, only position of the hand tool is
controlled. That causes a problem, that for the successful execution of the task,
robot needs to be placed aligned more or less in parallel to the panel. In the
next implementation of the controller, the orientation of the hand tool will also
be controlled, however that requires to enable more robust orientation estimation
of the tool. Currently, single WhyCon marker is used for the visual feedback
about the tool. A single WhyCon marker only provides 2D orientation, which is
not very reliable. Another type of markers can be considerer or more advanced
solution using depth information could be used to estimate the tool orientation.
For the panel position and orientation a template matching could be considered.
That would allow to remove the markers from the panel and test the feasibility
of using template matching for visual feedback for the control in complex setting,
where frame-to-frame consistency and millimetre level accuracy are crucial for the
successful task execution.

For the current version of the work, we took advantage of the visual markers to test
our methodology without imposing any risk to the robotic manipulator, HRP-4,
during trial manipulation experiments. Now that the configuration reconstruction
method itself has been tested and validated, the continuation of this work will
focus on replacing visual markers with highly robust edge or point feature detec-
tors. The main problem that we faced, was that existing point feature detectors,
such as SIFT, SURF, ORB... do not provide sufficient accuracy and frame-to-
frame consistency for the use as a visual feedback for the low-level control. To test
markerless feature based configuration reconstruction in real manipulation exper-
iments, efforts will be dedicated to the implementation and meticulous testing of
the proposed methodology for markerless feature extraction As a mid-term effort
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for the enhancement of the proposed tracking methodology, one could also investi-
gate properties of the articulation matrix, A, for possible speed-up of the inversion
operation. As this matrix often consists of several similar Jacobians, it could be
possible to use known form of A and it’s properties to increase computational
performances.

An important long-term goal, that would enhance the presented tracking method-
ology, is to derive the control-law of the tracking, so as to express the acceleration
of the articulated object configuration vector, q̈, which is already part of the de-
cision variables of the MQP control formulation. When such an implementation
is achieved, the estimation and the control will be computed in parallel in the
same framework. Also, since the articulated object is a part of the MQP, the Ja-
cobians for the estimator, since already computed for the control part, can simply
be reused. Moreover, since the constraints on the joints limits are also part of the
control, the estimation can be integrated with fewer computation time and benefit
from theses constraints. Yet, the implementation and testing of such an exten-
sion of our tracking methodology will also require more study on the acceleration
estimation from vision.

The long-term research objectives, which will be developed as a continuation of
the work conducted in the scope of this thesis, will be focused on extending the
VVS based approach for the visual feedback of more complex articulated struc-
tures. For instance, using known and highly visible and distinctive visual features
of the HRP-4 humanoid model, the effectiveness of the proposed tracker can be
validated for the use in full humanoid robot configuration estimation. The im-
portant note here is that, unlike passive daily articulated objects, the HRP-4 has
encoders, which allow to get a reliable ground truth for our method evaluation
and validation. After visual feature extraction for the HRP-4 case is defined and
implemented, the experiments will reveal, if any additional challenges need to be
solved if the methodology is to be extended to more complex structures. The
further continuation of the work will be dedicated to extending our approach for
the human tracking, for the use in physical human robot interaction scenarios,
such as physical human assistance. In this case, the type of visual features and
the visual feature detection methods will change drastically, as humans have very
various appearances. That would possibly requires to study completely different
types of features to consider for the use in tracking. For example, dense depth
information can be used in that case. Alternatively or additionally, deep learn-
ing based feature detection can be studied for human configuration estimation,
with consideration, that result of such detection needs to be used in the low-level
control for robotic manipulation. In this case, the main challenge is to ensure,
frame-to-frame consistency and zero false-positive rate of visual feature detection.
As deep learning approaches are usually probabilistic and non-deterministic mod-
els, overcoming this challenge, and ensuring safe and robust physical human robot
interaction, is definitely a very challenging task.
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