
UNIVERSITY OF TARTU
Institute of Computer Science

Software Engineering Curriculum

Ilia Aphtsiauri

Declarative Process Mining on the Cloud
Master’s Thesis (30 ECTS)

Supervisor: Fabrizio Maggi, PHD

Tartu 2017

2

Acknowledgements
I would like to express my sincere gratitude to my supervisor Dr. Fabrizio Maggi who pro-
vided guidance and colossal support, also big thanks to the academic staff of the Computer
Science faculty.

I wish to thank my friends and great colleagues at Veriff ÖU for support and flexible
working hours.
Last but not least I would like to thank my family and friends for being with me on every
step of the way.

3

Declarative Process Mining on the Cloud
Abstract:

This thesis provides an overview of the Declare language and declarative process mining
algorithms, followed by the description of currently available tools for a declarative process
mining. This thesis provides the availability of all the discussed tools on a cloud platform
and introduces two new tools. One provides the event monitoring capabilities and and the
other one generates a verbal representation of a Declare model. All the described process
mining tools are implemented as bundles of the cloud platform RuM. Afterwards, the new
user interface and functionalities of the tools are described. The evaluation part of the thesis
presents, the mining tools on the cloud and the capabilities of the live event monitoring tool.

Keywords: process mining, declarative process modelling, cloud applications

CERCS: P170

Deklaratiivne protsessikaeve pilveteenuses
Lühikokkuvõte:

Antud magistritöö annab ülevaate deklaratiivse keele ja deklaratiivse protsessikaeve algo-
ritmide kohta. Sellele järgneb deklaratiivse protsessikaeve tarvis kasutatavate vahendite kir-
jeldus. Töö tagab eelnevalt käsitletud vahendite kättesaadavust pilvplatvormil ning tut-
vustab kaks uut vahendit, mis pakuvad sündmuse seirevõimekust ja deklaratiivse mudeli
suulise esitluse genereerimist. Kõik kirjeldatud protsessikaeve vahendid on rakendatud kim-
pudena pilvplatvormil RuM. Samuti on kirjeldatud uus kasutajaliides ja vahendite
funktsioonid. Töö hindamisosas olid esitatud pilvel olevad kaevevahendid ja otsesündmuste
seirevahendi võimed.

Võtmesõnad:
protsessikaeve, deklaratiivne protsessi modelleerimine, pilvrakendused

CERCS: P170

4

Table	of	Contents	
1	 Introduction ... 6	

1.1	 The aim of the thesis ... 7	
1.1.1	 Process Discovery ... 7	

1.1.2	 Log Generation ... 7	
1.1.3	 Runtime Monitoring.. 8	

1.2	 Structure of the thesis .. 8	
2	 Background ... 9	

2.1	 Process mining .. 9	
2.2	 Linear Temporal Logic ... 10	

2.3	 Declare: LTL-Based Constraint Language ... 11	
2.3.1	 Existence Templates ... 12	

2.3.2	 Relation Templates ... 13	
2.3.3	 Negation Templates .. 14	

2.4	 Event Log Specification .. 15	
2.4.1	 Mining eXtensible Markup Language .. 16	

2.4.2	 eXtensible Event Stream ... 17	
3	 Contribution .. 21	

3.1	 Declarative Process Mining Tools .. 21	
3.1.1	 MINERful ... 21	

3.1.2	 Declare Miner ... 21	
3.1.3	 Deviance Miner ... 22	

3.1.4	 MINERful Simplification ... 22	
3.1.5	 Log Generation ... 22	

3.1.6	 FLLOAT ... 23	
3.1.7	 MobuconLTL, MobuconLDL, Online Analyzer .. 23	

3.1.8	 Open Services Gateway Initiative (OSGi) .. 24	
3.2	 Mining Bundle Development .. 24	

3.2.1	 Bundle Manifest .. 24	
3.2.2	 Bundle Input Output ... 25	

3.2.3	 Bundle Registration into RuM .. 27	
3.2.4	 Bundle lifecycle .. 28	

3.3	 Monitoring Bundle Development ... 29	
3.3.1	 Monitoring Bundle Implementation ... 31	

3.3.1.1	 Runtime Verification Bundle .. 32	

5

3.3.1.2	 Conformance Visualizer Bundle Implementation .. 32	
4	 Evaluation ... 35	

4.1	 MINERful ... 35	
4.2	 MINERful Simplification ... 35	

4.3	 MINERful Log Generation ... 36	
4.4	 Declare Model Verbalization .. 38	

4.5	 FLLOAT ... 38	
4.6	 MoBuConLTL, MoBuConLDL, Online Analyser ... 40	

5	 Conclusion .. 44	
6	 References ... 45	

Appendix ... 47	
I.	 License .. 47	

6

1 Introduction	
Business Process Management (BPM) is the science of developing, analyzing, and manag-
ing all the processes performed by an organization. BPM identifies the processes carried out
in the organization, measures their performance and productivity, trying to improve the re-
sults over the time by optimizing them. Optimization may include, cost, error or execution
time reduction [1].

Nowadays, most of the systems store process execution information, in the form of event
logs, which are the entry point of any business process mining technique. The goal of pro-
cess mining is to identify or provide meaningful information, which can help analyze and
improve the current process. Properly constructed event log should consist of a case (an
instance of the process) and activity (an individual step in the process). Additional infor-
mation for example timestamp, resources involved in the event is also used in process min-
ing techniques [2].
Figure 1 shows the three types of process mining operations that can be executed on the
event log. Process discovery - the primary objective is to discover a business process model
from the event log, without any prior information about the process. Conformance checking
- takes as an input an event log and a process model and it checks if the log is compliant
with the model. Enhancement - the primary objective of this operation is to improve or
extend an existing process model; as an input this procedure takes a process model and an
event log, the result is a new improved or extended process model [2].

Process discovery is one of the key components of business process management, the goal
of which is to deliver the business process model. Taking into consideration the complexity
of the process discovery step, multiple techniques were introduced, to extract a complete
process model from the event logs. The majority of this methods produce a procedural
model. A procedural model explicitly specifies all the possible behaviors and choices in the
process (not specified behaviors are forbidden), as a result, procedural process models ob-
tained from process discovery techniques are often spaghetti-like and very hard to interpret.

Figure 1. Three types of process mining operations (Adopted from [2])

7

This led to the development of a different process mining approach – the declarative ap-
proach. Declarative process models specify behavioral constraints meaning that if the re-
striction does not prohibit something, it is allowed. As a result, this produces more compact
and flexible models [3].

1.1 The	aim	of	the	thesis		
The aim of the thesis is to implement a repository of declarative process mining tools as a
part of a cloud platform. Thus allowing the users to benefit from running resource extensive
tasks, easily accessibility and platform independence. The tools are divided into the follow-
ing groups: Process Discovery, Log Generation and Runtime Monitoring

1.1.1 Process	Discovery		
MINERful – Considering the adjustability of artful processes, a procedural representation
can lead to highly entangled models. As a result, the models are extremely complex to un-
derstand and person analysing them is susceptible to errors. Therefore, it is possible to de-
scribe the process models in a declarative way. MINERful was designed to discover control-
flow of artful processes and produce declarative process models [8].

MINERful Simplification – Declarative process discovery algorithms use event logs to vali-
date discovered constraints which may result in disregarding constraint interaction. Hence,
discovered process models may contain counter excluding constraints, therefore there is no
possibility to have traces compliant with all of them together. Additionally, the discovered
models can contain redundant constraints. This algorithm addresses this issues and automat-
ically trims the discovered models to exclude redundancies and resolves interaction colli-
sions. The algorithm uses the automata-product monoid concept to assure model consistency
and removal of redundant constraints [13] [14].

Declare Miner– Declare Miner is a two-phase algorithm for declare discovery, in the first
phase an Apriori algorithm is used to identify frequent activities in the event log. The second
phase operates on discovered frequent activity sets and produces candidate constraints. Fi-
nally, the candidate constraints are trimmed to the ones that are satisfied in the log using
Sequence Analysis [9].
Declare Model Verbalization – Provides a verbal representation of the discovered declara-
tive models.

Declare Deviance Miner – Business process deviance mining is a branch of business process
mining. The primary objective of deviance mining is to provide reasons why an event log
deviated from a defined process model. The deviations can be either positive or negative.
Positive deviations result in higher performance metrics than expected, like achieving flaw-
less conclusive results in a smaller amount of time, with smaller expenses or with lower
resource utilization. Negative deviance, on the other hand, is when process outcome is un-
favourable [11].

1.1.2 Log	Generation		
MINERful Model To Log – Simulated generation of event logs from a process model is
crucial for testing and verifying the correctness of process discovery algorithms. Therefore,
a tool providing this capability for declarative process discovery techniques is important.
This thesis provides an implementation of a simulated event log generation algorithm from
Declare process models. The Declare models can be provided either as a JSON file or as a

8

standard Declare XML file. The algorithm translates the constraints presented in the Declare
model into regular expressions and afterwards employs Finite State Automata to simulate
the process. The user additionally can define as an input number of traces and length [15].

1.1.3 Runtime	Monitoring		
FLLOAT – Runtime monitoring should provide the means to check whether the running
processes satisfy the defined constraints and rules and is considered as crucial task to supply
proper operational decision support. Providing precise runtime tracking capabilities is usu-
ally delegated to the verification branch. Thus plugin provides several verifications tech-
niques for finite state automata. The goal of verification is to inspect the concerning system
properties and confirm if they meet the defined standards [18].

MoBuConLTL, MobuConFLLOAT– Verifying all the details of process beforehand is im-
possible on multiple occasions. It will be incorrect to consider that participant behavior can
be known. For this reason, runtime verification capabilities are provided. These plugins pro-
vide runtime monitoring functionalities and verify model compliance at runtime translating
rules into automata [12] [16].
Online Analyser – Is a tool for runtime verification of multi-perspective declarative models.
Multi-perspective monitoring means that the processes are not only evaluated in terms of
the sequences of events but also by aspects of data and time [17].

Runtime Monitor Visualizer – Provides easily understandable graphical user interface,
which displays the data provided by the runtime monitoring tools.

1.2 Structure	of	the	thesis		
This thesis has the following structure. Section 2 provides a background information about
process mining. Section 3 introduces the tools which are part of Declarative process mining
repository and in detail discusses the implementation approaches. Section 4 provides the
evaluation of the tools which were implemented and explains their functional capabilities.

9

2 Background	

2.1 Process	mining	
Process mining’s fundamental objective is to discover, monitor and provide improvement
ways of the processes at hand. The entry point of process mining is an event log. Each
separate data entry is referred as an event. The event should contain information about the
executed step in the process (activity), each activity should be part of an instance of the
process (case). Additionally, an event can hold information regarding the actors executing
the activity, timestamp and information about the data which was needed to execute the
activity. Event data can be stored in different data storages like databases, mail archives etc.
The efficiency of process mining tools highly depends on the event log quality, therefore,
for the systems that plan to support the process analyses, it is crucial to treat log as first-
class citizen artifacts [2].

The following criteria measure the quality of a log. Trustworthiness recorded events are part
of a given case and the information they hold is correct. Completeness the scope should not
be missing any event. Semantics of the stored events, should be clearly described. Security
actors should be aware of stored event types and what is the purpose of saving them. Log
quality ranges from excellent (⋆⋆⋆⋆⋆) to poor (⋆). Table 1 provides detailed explanations of
the quality levels [2].

Table 1 Log quality levels (Adopted from [2])

Level Characterization

⋆⋆⋆⋆⋆ The log is trustworthy and complete. Events are distinctly outlined. Stored
events follow the precise semantics of defined ontology. Events are stored au-
tomatically in a systematic and reliable way. Security concerns are taken into
consideration.

⋆⋆⋆⋆	 The log is trustworthy and complete. Events are stored automatically in a sys-
tematic and reliable way. Activities and cases are mentioned distinctly.

⋆⋆⋆	 Events are automatically but not regularly stored. At least some portion of
stored events match reality, meaning that the log is not complete, but the infor-
mation stored in the events is correct.

⋆⋆	 Events are automatically but not regularly stored. No conventional approach is
designed to define which events to store. Additionally, it is possible to complete
the process without storing the events which result in missing events.

⋆	 Events are missing, and recording events do not hold real and complete data.
Handwritten event logs usually have such a tendency.

Three types of process mining operations can be executed on an event log. Figure 1 provides
the input and output overview of the operations. Process discovery - the primary objective
is to discover the model from the event log, without any prior information about it. Created
models are represented using for example UML activity diagram, BPMN or Petri net. Con-
formance checking takes as an input an event log and a process model. The operation can

10

be applied on various types of models: procedural, declarative, organizational, etc. Con-
formance checking verifies if the given model and event log are compliant. This operation
yields the data which displays the discrepancies between the log and the model. Enhance-
ment - the primary objective of this activity is to improve or extend an existing process
model, as an input this operation takes a process model and an event log, the result is a new
improved or extended process model [2].

Producing clear and understandable process models is one of the key goals of process dis-
covery. Procedural approaches are dependent on describing the control-flow by providing
all the possible options on process execution, and this results in extremely complex models
especially for processes characterized by high variability. Alternative to procedural ap-
proach is declarative approach. Declarative process models specify behavioral constraints
meaning that if the constraint does not prohibit something, it is allowed. As a result, this
produces more compact and flexible models. One of the languages used in the declarative
approaches is Declare. Declare is based on Linear Temporal Logic, which is introduced in
Section 2.2, Section 2.3 afterwards will describe Declare language [3].

2.2 Linear	Temporal	Logic		
Linear Temporal Logic (LTL) is the language that depicts series of state progressions in a
reactive system. The progression is a conversion through states. A state of the system is
described as propositional formulae. Because of this declarative characteristics, LTL’s se-
mantic is used for a constraint specification in a declarative process model. The process
model is an automaton which can administer if the state constraints are satisfied during the
execution. The specifics of LTL formula syntax are adopted for declarative process model-
ing and is illustrated in Table 2 [4].

Table 2 LTL formula operators, σ represents trace of events, p LTL formula, ⎟= denotes
that p satisfies σ (Adopted from [4])

Operator Definition

not(!) σ ⎟= !p holds true if σ ⎟= p is not satisfied

and(∧) σ ⎟= p∧q holds true if σ ⎟= p and σ ⎟= q

or(∨) σ ⎟= p∨q holds true if σ ⎟= p or σ ⎟= q

next(⃝) σ ⎟= ⃝p holds true in the next occurrence

until (U) σ ⎟= pUq holds true if p holds true until q holds. q is in the current or
transitioned to future state

eventually (¸)  Is an abbreviation of ¸p = (p∨!p)Up, eventually - indicates that the
constraint holds true before (including) last occurrence, in time

always (¨) Is an abbreviation of ¨p =!¸!p, always - indicates that from current
until the last occurrence of the constraint it holds true

weak until (W) Is an abbreviation of pWq = (pUq)∨(¨p), weak until – indicates
that the constraint holds true until (U) some period of time or always

11

2.3 Declare:	LTL-Based	Constraint	Language	
Traditional workflow management system languages such as BPMN, EPC, UML etc. spec-
ify the process model executions as a set of step-by-step instructions. This specification is
referred as an imperative modelling approach. Thus a highly structured process is produced.
As a result, execution decisions are planned during the modelling phase and users do not
have the flexibility to modify the process model at run-time [5] [4].

Figure 2. Imperative vs. declarative approach (Adopted from [5])

Declarative process modelling approach defines the process models by specifying a list of
constraints, which should not be violated during the execution. As a result, the control flow
of the process is inherently defined. Figure 2 shows the difference between the two ap-
proaches, given the situation that if A is executed, execution of B is prohibited and vice
versa. This is easily presented with the help of not co-existence template, but in imperative
languages, there are no such constructs. Therefore, the lower level construct, such as deci-
sion “X” is used. Also, conditions “c1” and “c2” should be specified as mutually exclusive
[5].
Declare represents a constraint-based modelling system. Furthermore, Declare is not limited
to the declarative process modelling features, it also supports: model development, model
verification, automated model execution, changing models at run-time, executed processes
analysis, and large process decomposition features which are traditional for other workflow
management systems [5].

The Declare language was introduced to simplify constraint semantics for people who are
not familiar with LTL, constraints in Declare are represented graphically. Declare offers
rich verity of templates. Templates consist of a name, an LTL formula and a graphical rep-
resentation, as shown in Figure 3. Here, the constraint defines that event (A, completed),
should be followed by (B, completed) at least once. LTL representation of this constraint is
¨((A, completed) ⇒ ¸(B, completed)). Instead of having to specify the formulas, the
graphical representation of the response template can be used. Figure 3 shows the graphical
representation of the constraint. Declare counts about twenty templates which are grouped
into three thematic groups. Existence templates specify the number of activity executions.
Relation templates specify connection among multiple activities. Negation templates spec-
ify negative connections [4].

Declare Template

name response

LTL ¨((A, completed) ⇒ ¸(B, completed))

12

graphical

Figure 3. Declare constraint template representation (Adopted from [4])

2.3.1 Existence	Templates	
Existence templates require a single event and define its position or cardinality in a trace.
Figure 4 shows the graphical representations of the existence templates. The group is di-
vided into four subgroups. Existence subgroup specifies least amount of times the event
should be executed. Absence subgroup designates the maximum number of times the ac-
tivity can be performed. Exactly, provides the exact number of times the activity should be
executed. Init, specifies that the trace case should start with the specified event [4].

Figure 4. Notation for the existence templates (Adopted from [4])

The graphical representation of the existence templates as the corresponding LTL formulas
shown in Table 3. existence(A) defines that the event A should be eventually be fulfilled
during the case execution. existence2(A) recursively specifies the lower bound of the num-
ber of executions. Absence template negates the existence template, which results in setting
the upper bound of the execution number. Exactly, template functions are represented as the
combination of the existenceN and absenceN+1 functions. init(A) defines that A should hold
as a starting event of the given case [4].

Table 3. LTL formulas for existence templates (Adopted from [4])

Template name LTL formula

existence(A)
existence2(A)

existence3(A)
 …

existenceN(A)

¸(A)

¸((A) ∧ ⃝(existence(A)))

¸((A) ∧ ⃝(existence2(A)))

…

¸((A) ∧ ⃝(existenceN-1(A)))

absence2(A)

absence3(A)

!existence2(A)

!existence3(A)

13

 …

absenceN(A)

…

!existenceN(A)

exactly1(A)

exactly2(A)
 …

exactlyN(A)

existence(A)∧absence2(A)

existence2(A)∧absence3(A)

…

existenceN(A)∧absenceN+1(A)

init(A) A

2.3.2 Relation	Templates	
Relation templates describe relationships of multiple activities. For simplicity purposes in
the examples provided here we have only two activities A and B as parameters. The line
that connects these two activities represents a unique LTL formula which defines their rela-
tionship. Figure 5 shows the graphical representation of the relation templates.
Templates responded existence and co-existence are not concerned with activity execution
order. The responded existence template defines that activity B should execute prior or after
the activity A is executed. The co-existence template states that if either A or B activity is
executed the remaining one should also be executed.

For templates response, precedence and succession activity execution order is important,
but it does not state that executions should follow straight after each other meaning that
other activities can be executed in between. In order to successfully execute response, com-
pletion of A should be followed by execution of B. Precedence, specifies that execution of
B should be preceded by execution of A. Succession, is a bi-directional blend of response
and precedence and both should be satisfied. Alternate response, alternate precedence and
alternate succession specify that the execution of events A and B should alternate, meaning
that activity A cannot be executed twice before executing B. Chain response, chain prece-
dence and chain succession strictly state that execution of activities A and B should be di-
rectly after each other. LTL formulas of the relation templates are shown in Table 4 [4].

Figure 5. Notations for the relation templates (Adopted from [4])

14

2.3.3 Negation	Templates	
Negation templates can be described as negated relation templates. The not responded ex-
istence stipulates that activity B should never be executed (not before nor after), if activity
A is executed. The not co-existence specifies that A and B cannot be executed together.

Figure 6. Notations for the negations templates (Adopted from [4])
Additionally, if event A is never executed responded existence(A, B) and not responded
existence(A, B) hold, thus ‘negation’ is not a ‘logical implication’. The not response tem-
plate defines, that B cannot be executed after A is executed. The not precedence template
specifies that activity A should not precede event B if B is executed. The not succession
template, is a consolidation of templates not response and not precedence. The not chain
response implies, that B cannot be executed right after execution of activity A. According
to the template, not chain precedence, execution of activity A should never precede, execu-
tion of activity B. Following the same logic as above the not chain succession template is
established by the combination of not chain response and not chain precedence. The of
graphical representation of the negation templates is shown in Figure 6 [4].

Table 4. LTL formulas for relation templates (Adopted from [4])

Template name LTL formula

responded existence(A, B)
co-existence(A, B)

¸(A)	⇒¸(B)

¸(A) ⇔¸(B)

response(A, B)
precedence(A, B)

succession(A, B)

¨(A ⇒¸(B))
!(B) W (A)

response(A, B)∧precedence(A, B)

alternate response(A, B)
alternate precedence(A, B)

alternate succession(A, B)

response(A, B)∧ ¨(A ⇒ ⃝(precedence(B, A)))

precedence(A, B)∧¨(B ⇒ ⃝(precedence(A, B)))

alternate response(A, B)∧alternate precedence(A, B)

chain response(A, B)
chain precedence(A, B)

chain succession(A, B)

response(A, B)∧ ¨(A ⇒ ⃝(B))

precedence(A, B)∧ ¨(⃝(B) ⇒ A))

15

chain response(A, B)∧ chain precedence(A, B)

Figure 6 shows that the templates are grouped into three equivalence classes. Thus, the eight
formulas can be reduced to the three equivalent ones. This reduction is made based on the
LTL formulas presented in the Table 5. The not responded existence(A, B) formula states
that if activity A occurred, activity B cannot be executed in the rest execution of the case.
As the ordering of the events is not mandatory for the responded existence and co-existence
templates, thus not responded existence(A, B) = not co-existence(A, B), as a result this two
templates can be satisfied by one formula. Therefore, the templates not response(A, B) and
not precedence(A, B) state that if event A is executed, in the following execution of trace
event B should not be executed, thus not response(A, B) = not precedence(A, B). The not
succession(A, B) is a combination of not response and not precedence, therefore the formula
not response(A, B) = not precedence(A, B) = not succession(A, B), as a result this three
templates are equivalent to not succession(A, B) formula representation. As the templates
not chain response, not chain precedence and not chain succession extend the base formulas
the equality not chain response(A, B) = not chain precedence(A, B) = not chain succes-
sion(A, B) hold, and this three templates can be represented as a single not chain succes-
sion(A, B) LTL formula [4].

Table 5. LTL formulas for negation templates (Adopted from [4])

Template name LTL formula

not responded existence(A, B)

not co-existence(A, B)
¸(A)	⇒!(¸(B))

not responded existence(A, B) ∧

not responded existence(B, A)

not response(A, B)

not precedence(A, B)
not succession(A, B)

¨(A ⇒!(¸(B)))

¨((¸(B)) ⇒!A)

not response(A, B) ∧ not precedence(A, B)

not chain response(A, B)

not chain precedence(A, B)
not chain succession(A, B)

¨(A ⇒!(¸(B)))

¨((¸(B)) ⇒!A)

not chain response(A, B) ∧ not chain precedence(A, B)

2.4 Event	Log	Specification	
Event logs, in real life solutions, appear in multiple forms and instantiations, and one of the
most important tasks is to standardise them. Below, two different standards are described,
which are supported by process mining tools, both the standards are XML based [6][7].
Figure 7 shows the general overview of the event log structure. An event log can contain
multiple process instances without any concern of their order. The instance of an activity
which occurred during the process instance is called event. Events are stored in a sequential
order of their occurrence. The occurrence time of the event is stored in the timestamp ele-
ment. Frequently in the event, the resource that was responsible for the execution of the
given event is also specified. The resource is not limited to a person who uses the system; it
also can be the system itself or some third party. Additionally, multiple other attributes can
be stored in the event [6][7].

16

Figure 7. Event log structure (Adopted from [6])

2.4.1 Mining	eXtensible	Markup	Language		
Mining eXtensible Markup Language (MXML) was introduced in 2003. Its main goal was
to standardise the log storage format and to use it as input for process mining tools [7].
Figure 8 represents the meta model of MXML log format. Table 6 depicts a partial repre-
sentation of an MXML log. The WorkflowLog element is a root element of the log. Source
holds the information about the organization that generated the log. MXML log can docu-
ment multiple processes, represented in the Process element tag. Each process can hold the
information regarding the multiple process execution instances, represented in the Proces-
sInstance element tag [6].
Recorded events and corresponding attributes are stored in the AuditTrailEntry element. The
WorkflowModelElement represents the name of the activity. Events are atomic recordings
which do not possess the sense of duration, but activity on the other hand do. Therefore,
EventType element specifies in what state the event execution is at a given time. Example
values of the event type are start and complete, specifying the beginning and the finish times
of the execution. The Timestamp element holds the event execution date and time. The Orig-
inator element stores the identifier of the resource performing the activity. The Data element
can hold some additional data attributes to provide more detailed information about the
event [6].

17

Figure 8. MXML meta model1

MXML has some limitations. The most severe problem is related to the semantics of
MXML handling the additional information stored in the Data element of the event. The
data type of the value is extremely hard to determine as all the values are treated as String.
Additionally, initially MXML was designed with expectation to describe strictly structured
processes only. Based on the experience the new eXtensible Event Stream format was in-
troduced which is described in the next section [6].

Table 6. Partial MXML log
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <!-- This file has been generated with the OpenXES library. It conforms -->
3 <!-- to the legacy MXML standard for log storage and management. -->
4 <!-- OpenXES library version: 1.0RC7 -->
5 <!-- OpenXES is available from http://code.deckfour.org/xes/ -->
6 <WorkflowLog>
7 <Source program="XES MXML serialization openxes.version=”1.0RC7"/>
8 <Process id="Selling process">
9 <ProcessInstance id="1">
10 <AuditTrailEntry>
11 <WorkflowModelElement>Receive Payment</WorkflowModelElement>
12 <EventType>complete</EventType>
13 <Timestamp>2016-11-29T11:02:00.000+01:00</Timestamp>
14 <Originator>Hele</Originator>
15 <Data>
16 <Attribute name="Activity">Receive Payment</Attribute>
17 <Attribute name="requestedBy">Mark</Attribute>
18 <Attribute name="Costs">50</Attribute>
19 </Data>
20 </AuditTrailEntry>
21 ...
22 </ProcessInstance>
23 </Process>
24 </WorkflowLog>

2.4.2 eXtensible	Event	Stream		
eXtensible Event Stream (XES)2 is the second attempt towards standardization of the event
log format, and was designed to overcome all the shortcomings of its predecessor. The new
standard should have four main characteristics. Simplicity, logs should be human readable,
easy to produce and parse. Flexibility, logs from wide range of application domains should

1 http://www.processmining.org/_media/presentations/miningmetamodelimoa2005.ppt
2 http://www.xes-standard.org/

18

be apprehended. Extensibility, standard should be scalable for the future changes. Expres-
sivity, the generalization of the log should not be for the cost of information loss, the maxi-
mum range of the information should be acquired [6][7].
Figure 9 shows the complete meta model of the XES format. Table 7 depicts a partial rep-
resentation of an XES log. In XES a single occurrence of the process instance is represented
as a trace element, the number of the trace elements is not limited. trace on its hand can
hold arbitrary number of the event elements. The event is a portrayal of atomic activities
state like in MXML [6][7].

Table 7. Partial XES log
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <!-- This file has been generated with the OpenXES library. It conforms -->
3 <!-- to the XML serialization of the XES standard for log storage and -->
4 <!-- management. -->
5 <!-- XES standard version: 1.0 -->
6 <!-- OpenXES library version: 1.0RC7 -->
7 <!-- OpenXES is available from http://www.openxes.org/ -->
8 <log xes.version="1.0" openxes.version="1.0RC7">
9 ...
10 <trace>
11 <string key="description" value="instance with id 1"/>
12 <string key="concept:name" value="1"/>
13 <event>
14 <date key="time:timestamp" value="2016-11-29T11:02:00.000+01:00"/>
15 <string key="concept:name" value="Receive Payment"/>
16 <string key="lifecycle:transition" value="complete"/>
17 <float key="cost:total" value="50"/>
18 <string key="org:resource" value="Hele"/>
19 </event>
20 ...
21 </trace>
22 </log>

The information describing either of the elements is stored in the children elements called
attributes. Attribute elements are limited to types; string, integer, float, boolean, date, id, list
and container. List attribute type may consist of multiple child attribute elements, can be
empty as well, the child elements should have a unique key property and they are ordered.
Container attribute element also consists of multiple child attribute elements and might be
empty as well but on the other hand, the child attributes are not ordered. Attribute elements
should have a property key which defines to what extension (if any) attribute belong. Table
8 shows the standard XES extension. Attributes can be nested in attributes as well to provide
some additional information [6][7].

19

Figure 9. XES meta model (Adopted from [7])

OpenXES Java library3 represents an implementation of the XES standard. Additionally,
OpenXES can perform I/O operations on the XES format event logs and (de)serialize the
MXML event log format [7].

Table 8. XES standard extensions (Adopted from [7])

Attribute Level Key Type Description

Concept Extension

log, trace,
event

name string Stores a generally understood name for any type hi-
erarchy element. For logs, the name attribute may
store the name of the process having been executed.
For traces, name attribute usually stores the case
ID. For events, the name attribute represents the
name of the event, e.g. the name of the executed
activity represented by the event.

event instance string The instance attribute is defined for events. It rep-
resents an identifier of the activity instance whose
execution has generated the event.

3 http://code.deckfour.org/xes/

20

Lifecycle Extension

log model string This attribute refers to the lifecycle transactional
model used for all events in the log. If this attribute
has a value of “standard”, the standard lifecycle
transactional model of this extension is assumed.

event transition string The transition attribute is defined for events, and
specifies the lifecycle transition represented by
each event.

Time Extension

log, trace,
event, meta

timestamp date The date and time, at which the event has occurred.

ID Extension

log, trace,
event, meta

id id Unique identifier (UUID) for an element.

21

3 Contribution	
This chapter in Section 3.1 provides an overview of the algorithms and the tools which are
part of the declarative process mining family and are adopted to be used on the cloud plat-
form RuM4. RuM (from Rule Mining) is a web-application with the focus on supporting
process mining tools.
Afterwards Section 3.2 describes the development process of the mining bundles. Mining
bundles are the ones that produce an output file, this file can be a process model, and event
log, a Microsoft Word document verbalizing the business process, etc. Mining bundles in-
clude following solutions:

• MINERful
• MINERful Simplification
• MINERful Log generation
• Declare Miner
• Declare Deviance Miner
• Declare Model Verbalization
• FLOATT

Section 3.3 discusses the approach and the implementation of the monitoring bundles. This
bundles provide capabilities to monitor the running process, checks if currently executed
cases satisfy or violate the business constraints. Monitor bundles include the following so-
lutions:

• Log replayer
• MoBuConLTL
• MoBuConLDL
• OnlineAnalyzer
• Visualizer

3.1 Declarative	Process	Mining	Tools		
This section provides an overview of the algorithms and the tools which are part of the
declarative process mining family and are adopted to be used on the cloud platform RuM.

3.1.1 MINERful	
The MINERful algorithm is two phase algorithm for the discovery of Declare models, from
event logs. The first phase prepares a knowledge base which stores extracted statistical in-
formation from the event log and is established on MINERfulKB concept. The second phase
creates the process model by discovering the constraints through queries on the results pro-
duced by the MINERfulKB in the first phase. The efficiency of the algorithm is highly de-
pendent on the quality of the input log [8].

3.1.2 Declare	Miner	
Declare Miner is based on a two-phase algorithm for the discovery of Declare models, from
event logs. In the first phase an Apriori algorithm is used to identify frequent activities in
the event log. The second phase operates on discovered frequent activity sets and produces

4 At the moment of writing this thesis the RuM platform is in implementation phase and is not publicly acces-
sible. The source code and general information can be found at https://github.com/FableBlaze/RuM

22

the candidate constraints. Finally, the candidate constraints are trimmed using Sequence
Analysis [9] [10].

The goal is to verify if constraint holds over the traces in the log, this is achieved by inves-
tigated the positioning of activities in the trace [9].

Vacuity detection is an additional input parameter option, enabling this option the output
list of constraints will include the constraints which are activated and hold frequently for
given traces, if the detection is not activated trivially satisfied constraints will be included
as well [9].

3.1.3 Deviance	Miner	
Business process deviance mining is a branch of business process mining. The primary ob-
jective of deviance mining is to provide reasons why some traces in an event log lead to a
normal execution and others deviate from the standard behaviour. The deviations can be
either positive or negative. Positive deviations result in higher performance metrics than
expected, like achieving flawless conclusive results in a smaller amount of time, with
smaller expenses or with lower resource utilization. Negative deviance, on the other hand,
is when process outcome is unfavourable [11].

The deviance mining algorithm accepts as an input a log where each trace is marked as
“normal” or “deviant”. The output of the deviance mining algorithm includes two Declare
process models, one process model includes constraints characterizing “normal” traces i.e.
satisfied in “normal” traces and violated in “deviant” traces. The other one characterizing
“deviant” traces. These models give feedback about the reason of the deviations in terms of
Declare patterns [11].

3.1.4 MINERful	Simplification	
Declarative process discovery algorithms do not take into consideration constraint interac-
tion. Hence, discovered process models may contain counter excluding constraints. Addi-
tionally, redundant constraints may be the reason for the verbose models. Declare tem-
plates are hierarchical; if the child template is satisfied the parent is satisfied as well. For
example, responded existence (a, b) can be considered a parent of the response (a, b) con-
straint and therefore, it can be inferred that response ⊑ responded existence. Because of
this nature the redundancy may occur in discovered declarative process model. The
MINERful Simplification algorithm addresses the issues and automatically trims the dis-
covered model to exclude repetitions and resolves interaction collisions. The algorithm
uses the automata-product monoid concept to assure model consistency and removal of re-
dundant constraints [13] [14].

3.1.5 Log	Generation	
The generation of event logs from a process model is crucial for testing and verifying the
correctness of process discovery algorithms. Therefore, a tool providing this capability for
declarative process discovery techniques is important. This capability consists in the event
log generation algorithms from Declare process models. The algorithm interprets the con-
straints presented in Declare model into regular expressions and afterwards employs Finite
State Automata to simulate the process. The user additionally can define as an input number
of traces and length [15].

23

3.1.6 FLLOAT	
Linear-time Temporal Logic (LTL) is appropriate for representing declarative process mod-
els. Nonetheless, the semantics of LTL is defined with infinite traces in mind. BPM system
traces in most of the cases are finite, and because of that, the finite trace assumption is made.
This resulted in alteration of the LTL to support a finite trace. The modified version is de-
noted as LTLf (LTL on finite traces) [18]. LTLf additionally represents one of the back-
bones of declarative process mining system DECLARE. To verify if the relevant trace pre-
fixes include present execution of the LTLf formula φ, φ is converted to a state machine
[18].

Finite state machine (FSA) is a state machine which defines possible alphabet of events
which can occur in the log, the states list, in which the FSA can be transitioned after an
occurrence of event in the alphabet, the initial state of the FSA and the transition function
[18].

The FLLOAT plugin supports satisfiability, validity and logical implication operations on a
FSA. FSA is satisfiable if the list of accessible states includes a final state. FSA is valid if
the negated list of accessible states does not in include a final state. Two FSA’s are logical
implicit if the list of accessible states of negated union of negated first automaton, and se-
cond automaton contains a final state [18].

3.1.7 MobuconLTL,	MobuconLDL,	Online	Analyzer		
These tools provide functionalities for runtime monitoring of business rules. The output
should be easy to analyze thus providing the relevant information to make changes to the
process model if needed timely. Currently three monitoring frameworks are supported:
MobuconLTL monitors LTL – based rules. MobuconLDL monitors LDL based rules. Lin-
ear Dynamic Logic (LDL) is an extension of LTL which introduces more expressive con-
straints. Online Declare Analyzer to monitor multi-perspective rules [12] [16] [17].

These plugins have the following capabilities to ensure conformance checking at runtime:

• Intuitive diagnostics, i.e., detailed overview of the violated constraints and the rea-
sons of violation.

• Continuous support, i.e., diagnostic information is provided event after a violation
has occurred.

• Recovery capabilities, i.e., techniques for recovering the monitor after a violation.
The output of the plugins depicts if the currently executed trace is satisfying every con-
straint. The constraint can be in four states: satisfied, possibly satisfied, possibly violated
and permanently violated. Satisfied, the trace is conformant with the process model. Possi-
ble satisfied, the trace is currently conformant, but the state may change if a certain set of
activities are executed. Possibly violated, the trace is currently violated, but the state may
change if a certain set of activities are executed. Violated, the trace violates the constraint,
and it is beyond the bounds of possibility that trace will become satisfactory. The violation
may be due to two reasons: First, the execution of prohibited event occurred. Second, mul-
tiple constraints are conflicting. If the reason of violation is conflict, it is not feasible in the
future that all constraints become satisfied. Additionally, if trace execution is terminated
possibly violated constraints turn into permanently violated. The reason of this transfor-
mation is that there are no future activity sequences executed which may satisfy the con-
straint [12] [16] [17].

24

3.1.8 Open	Services	Gateway	Initiative	(OSGi)	
The Open Services Gateway Initiative (OSGi) framework is a general-purpose application
development environment which provides developers with capabilities to deliver extensible
and modular software. Modules are referred to as bundles. Figure 10, provides the general
overview of the framework architecture [19].

Figure 10. OSGi framework layers (Taken from [19])

The security layer is the improvement of the Java 2 security, to provide proper level of
abstraction between the bundle interactions during the runtime. The module layer provides
the rules for package sharing and hiding between the bundles. The Life Cycle layer defines
an API which manages the bundles in the module layer. Additionally, it defines how to start
and stop the bundle. The service layer simplifies the service bundle development by de-
coupling the specification from implementation. Thus, the bundle developer can subscribe
to the service and specify the unique needs of the bundle at the run-time [19].

3.2 Mining	Bundle	Development	
This section describes an approach which is used in order to port the solutions described in
the Section 3.1 to the cloud based system RuM which has been implemented in OSGi frame-
work to support modularity. RuM allows user to run resource extensive processes also the
tasks are started on a “fire and forget” principle, meaning that the task will be carried out
even if the user logs out of RuM.
As the list of the mining plugins is long and the development process of each of them is
similar, this chapter will describe a specific example which covers the MINERful bundle
development in detail.

3.2.1 Bundle	Manifest	
In order to provide the meta information to the OSGi framework a bundle should define a
manifest file which is located at META-INF/MANIFEST.MF. The meta information is pre-
sented as a key value pair. Keys are the headers which provide OSGi framework with the
information and the requirements needed for the the bundle to be installed into the OSGi
environment. Table 10 shows the partial (The list of MINERful class path libraries is not
complete) manifest file of the MINERful.

Table 9. MINERful bundle manifest file

1. Manifest-Version: 1.0
2. Bundle-Description: MINERful, an algorithm for the automated discovery of de-

clarative process constraints
3. Bundle-SymbolicName: MINERful
4. Bundle-Version: 0.3.6
5. Bundle-Name: MINERful

25

6. Bundle-Vendor: University of Tartu
7. Bundle-ManifestVersion: 1
8. Bundle-Activator: ee.ut.cs.rum.minerful.plugin.v1.Activator
9. Service-Component: OSGI-INF/MINERful.xml
10. Import-Package: ee.ut.cs.rum.plugins.development.interfaces,
11. ee.ut.cs.rum.plugins.development.interfaces.factory,
12. org.osgi.framework;version="[1.7.0,1.7.0]",
13. org.slf4j;version="[1.7.2,1.7.2]",
14. Import-Bundle: com.google.gson;version="[2.6.2,2.6.2]"
15. Bundle-ClassPath: lib/automaton.jar,
16. lib/combinatoricslib-2.0.jar,
17. lib/commons-cli-1.2.jar,
18. lib/commons-lang3-3.1.jar,
19. lib/commons-math3-3.1.1.jar,
20. lib/DeclareVisualizer.jar,
21. lib/dom4j-1.6.1.jar
22. ...

Manifest headers provide the following information:

• Bundle-Description: Human readable textual description of the bundle functional-
ity.

• Bundle-SymbolicName: Unique identifier of the bundle.
• Bundle-Version: Bundle version, it is possible to have a multiple versions of the

same bundle in the same environment
• Bundle-Name: Human readable bundle name
• Bundle-Activator: The class which is notified during the bundle state changes.
• Service-Component: Defines the consumed service functionality metadata
• Import-Package: Imports external dependencies required by the bundle. Version

ranges can be provided as well.
• Import-Bundle: Imports the external bundle. Versions can be provided as a range
• Bundle-Classpath: Provides information about the library specific dependencies,

which are not available on the platform.

Additionally, the RuM Platform requires uniqueness of the Bundle-Name and Bundle-Ver-
sion combination.

3.2.2 Bundle	Input	Output	
To install the bundle into the RuM platform the bundle should provide a JSON format de-
scription, which has a specific set of elements. The descriptions hold the information about
the input parameters and output files, if any. The file is located at resources/plugininfo.json.
Table 11 shows the general structure of the plugininfo.json file. All the root level elements
are required.

Table 10. Structure of the plugininfo.json

1. {
2. "name": "Plugin name",
3. "description": "Plugin description which will be shown to the user",
4. "parameters": [
5. List of the input parameters
6.],
7. "outputs": [
8. List of the output files
9.]
10. }

The Parameters element describes the list of the input parameters of the bundle. The infor-
mation is used to provide a user of the system with understandable user interface, and the

26

system access to the values entered by the user. All the parameter objects are required to
have following elements:

• internalName – The name by which the parameter will be accessible in the devel-
opment environment.

• displayName – The name which will be displayed to the user.
• description – Additional information which will be displayed to the user as an ad-

ditional information.
• required – Marks parameter as a mandatory or optional.
• parameterType –RuM parameter type.

At the moment of writing of this thesis RuM supported parameter types are following:

• STRING – Provides a user with a text input field, accepts string values. Additionally,
string type requires two customization fields:

o maxInputLength – Maximum allowed number of characters’ user can input.
o defaultValue – If the field is left empty, a beforehand provided default value

will be used.
• INTEGER – Provides a user with a number input field, accepts numeric (without

decimal places) values. Additionally, integer type requires three customization
fields:

o minValue – Minimum number a user can input.
o maxValue – Maximum number a user can input.
o defaultValue – If the field is left empty, a beforehand provided default

value will be used.
• DOUBLE – Provides a user with a number input field, accepts numeric (with deci-

mal places) values. Additionally, double type requires four customization fields:
o decimalPlaces – Number of allowed decimal places
o minValue – Minimum number a user can input.
o maxValue – Maximum number a user can input.
o defaultValue – If the field is left empty, a beforehand provided default

value will be used.
• FILE – Provides a user with a file select dialog, the user can select from publicly

available files on the server or from user’s personal machine. Additionally, file type
requires one customization fields:

o inputTypes – File types which are allowed for the input parameter.
• SELECTION – Provides a user with an option input field, from which the user can

select value(s) from a predefined list of values. Additionally, selection type requires
three customization fields:

o selection – Marks if the user is allowed to select more than one item at a time.
o defaultValue – If the field is left empty, a beforehand provided default value

will be used.
o selectionItems – Contains a list of possible value items. Each item should

define the following list of elements:
§ internalName – The name by which the parameter will be accessible

in the development environment.
§ displayName – The name which will be displayed to the user.

27

§ description – Additional information which will be displayed to the
user as an additional information.

Table 12 shows the snippet from the MINERful plugininfo.json file, which presents the pa-
rameters element partial set.

Table 11. MINERful plugininfo.json parameter partial

1. "parameters": [{
2. "inputTypes": ["text", "xes"],
3. "internalName": "logFile",
4. "displayName": "Log File",
5. "description": "File to be mined",
6. "required": true,
7. "parameterType": "FILE"
8. },
9. {
10. "minValue": 0,
11. "maxValue": 1.0,
12. "defaultValue": 1.0,
13. "internalName": "supportThreshold",
14. "displayName": "Support Threshold",
15. "description": "Minimum number of events that have to be in-

cluded in the generated traces.",
16. "required": false,
17. "parameterType": "DOUBLE"
18. },
19. ...
20.]

The Outputs element describes the bundle output information. The Outputs element contains
a set, where each element represents an output file. Each bundle is required to have at least
one output file. Bundles can create temporary files that are not considered as an output of
the bundle therefore there is no need in describing them.

Each output object consists of two elements:

• fileName – The name of the output file.
• fileTypes – The list of possible output file types. The output types are not case sen-

sitive.

Table 12 shows the snippet from the MINERful plugininfo.json file, which presents the out-
puts element set.

Table 12. MINERful plugininfo.json describing the bundle output

1. "outputs": [{
2. "fileName": "process_model",
3. "fileTypes": ["xml", "csv", "json"]
4. }]

3.2.3 Bundle	Registration	into	RuM	
In order to register the bundle as a RuM mining bundle, a bundle should provide the imple-
mentation of the RuM RumPluginFactory interface, which is discussed in detail in the next
section. The RumPluginFactory uses an OSGi declarative service (DS) functionality.

DS functionality provides capabilities to use metadata (XML) to consume or define the ser-
vice. An XML description should contain the information which provides the name of the

28

service interface and the implementation component instance. The file is usually stored in
the OSGI-INF folder and it is referenced in the manifest file with Service-Component
header. Table 14 shows the MINERful service component implementation.

Table 13. MINERful service component

1. <component name="MINERfulPluginFactory">
2. <implementation class="ee.ut.cs.rum.minerful.plugin.v1.RumPluginFacto-

ryImpl" />
3. <service>
4. <provide interface="ee.ut.cs.rum.plugins.development.interfaces.RumPlugin-

Factory" />
5. </service>
6. </component>

3.2.4 Bundle	lifecycle	
Figure 11 shows the bundle life cycle in the OSGi framework. The entry point for the bundle
is the installation. Install state specifies that the bundle has been loaded to the OSGi con-
tainer but not all of the bundles’ dependencies are resolved. In order to be RuM compliant
the bundle should provide the implementation for the RumPluginFactory interface shown
in the Table 14.

Figure 11. OSGi bundle life cycle state diagram (Taken from [19])

The method getPluginInfoJSON is invoked by RuM during the plugin installation. The
method implementation should return the JSON string which is bundle input/output param-
eter specification provided in the plugininfo.json file.

Table 14. RumPluginFactory interface

1. public interface RumPluginFactory {
2. public String getPluginInfoJSON();
3. public RumPluginWorker createRumPluginWorker();
4. }

After the checks are finished and the dependencies are resolved at a class level, the bundle
enters the resolve state, and is waiting to be started.

29

Table 16 shows the BundleActivator interface. The bundle should provide the implementa-
tion of the interface, so that OSGI framework can control the bundle life cycle. The start
method is invoked in order to start a bundle. The stop method is called to stop an execution
of the bundle and return it to the resolve state.

Table 15. OSGi BundleActivator interface5

1. public interface BundleActivator {
2. public void start(BundleContext context);
3. public void stop(BundleContext context);
4. }

As soon as the bundle is started RuM invokes a createRumPluginWorker method. The im-
plementation of the method should return a new instance of the class which implements the
RumPluginWorker interface shown in Table 17. Every time the bundle is started the new
instance of the class is returned therefore making each bundle invocation unique.

Table 16. RumPluginWorker interface

1. public interface RumPluginWorker {
2. public int runWork(String configuration, File outputParent);
3. }

The RuM will use the instance of the RumPluginWorker and will invoke the runWork
method. The runWork method is the point where the functionality of the bundle is located
and the access point of the MINERful algorithm implementation. The runWork method ac-
cepts two arguments: configuration and outputParent. The configuration string contains the
JSON string produced by the getPluginInfoJSON method. The runWork method is expected
to process the string and parse the parameter values provided by the user. The second pa-
rameter is the outputParent, is a parent directory for the outputs of the given bundle. The
bundle is responsible for creating the output files and verifying that the output file type is
compliant with the output types specified in the plugininfo.json.

3.3 Monitoring	Bundle	Development	
This section provides an overview of the implementation of the Monitoring bundle (Moni-
toring bundle refers to all the tools involved in the runtime monitoring process). The bundle
grants the user abilities to understand and analyse the process conformity at the run-time. In
order to achieve it, the following main features should be supported by the bundle:

• Providing capabilities to replay an event log and validate it over a process model,
thus providing real time verification.

• Accepting streams of events from third party providers
• Providing support for the different runtime monitoring algorithms.
• The Monitoring bundle should be able to receive information from multiple log re-

players at the same time.

Figure 12 shows the general architecture of the monitoring bundle. The bundle is split into
four components, to separate the concerns, and make it more scalable and flexible. At the
moment bundle supports the visualization of runtime monitoring algorithms.

5 https://osgi.org/javadoc/r4v43/core/org/osgi/framework/BundleActivator.html

30

Figure 12. Monitoring bundle architectural overview

The essential part in the design is the Messaging API. To provide flexible and reliable mes-
saging capabilities, between the monitoring components RabbitMQ6 is selected. RabbitMQ
is an open source message broker application, which provides the means of communication
for the different application parts or distinct applications. The motivation for choosing Rab-
bitMQ is that it can be used with a wide range of programming languages, thus making it
easy to connect third party tools. Applications can communicate via a common protocol
such as AMPQ 0-9-1, 0-9, 0-8, STOMP, MQTT etc., thus making the bundle communica-
tion protocol independent. Last but not least the message broker provides a wide range of
routing capabilities. Figure 13 shows two message routing type (queue and exchange) which
are used in the current implementation. queue routes the message from one producer to a
single consumer, exchange allows to send messages from multiple producers to a single
consumer. Producers send the information i.e. the log replayer sends the event stream. Con-
sumers receive, i.e. a runtime verification bundle receives the event stream sent by the re-
player. queue and exchange are assigned unique name.

Another important part of the bundle is the monitoring user interface. The user interface is
developed via Remote Application Platform7 (RAP). The RuM user interface is developed
with RAP, therefore the choice of the user interface tool for the Monitoring bundle was
limited to RAP. RAP is a powerful platform providing a rich widget toolkit to develop user
interfaces. Additionally, RAP adopts the Standard Widget Toolkit8 (SWT) API, thus the
user interface development follows the principles of the SWT Java API used for desktop
application development in Java programing language.

6 https://www.rabbitmq.com/
7 http://www.eclipse.org/rap/
8 http://www.eclipse.org/swt/

31

Figure 13. RabbitMQ message routing types

Log replaying is the final part of the bundle, and is implemented as a mining bundle. The
essential functionality of the log re-player is to simulate the process execution from an event
log which the bundle accepts as an input parameter.

The starting point of the flow is the runtime verification bundle. The bundle accepts two
parameters. First, the process model, to verify conformity against. The second parameter is
the routing type. The possible routing types are supported queue and exchange. To support
different implementation of runtime verification tools, standardized output “Fluents string”
is used. The “Fluents string” contains the identifier of the ongoing trace under analysis, the
current event processed in the stream and the state of all constraints after the occurrence of
the current event. The output of the runtime verification tool is a .txt file which contains a
queue name which should be used for as an input parameter for the Visualizer and queue/ex-
change name which is used as an input parameter for the log replayer.

The visualizer requires two parameters. First, the parent canvas where the Visualizer dis-
plays its user interface. Second, the queue name to which it connects and listens for the
incoming “Fluents strings”, which are processed and displayed in the designated area.

The Log re-player can be any software application which has an access to the RuM’s Rab-
bitMQ server. The input for the log re-player is a log file, a routing type which can be either
queue or exchange and a queue/exchange name. The log re-player connects to the queue/ex-
change and send the activities in the order of their occurrence in the log.

3.3.1 	Monitoring	Bundle	Implementation	
This section discusses the implementation details of the solutions described in Section 3.3.
Section 3.3.1.1 describes the implementation details of the runtime verification bundle and
Section 3.3.1.2 overviews the implementation details of the Visualizer.

32

3.3.1.1 Runtime	Verification	Bundle	
Runtime verification bundle implementation process fully absorbs the steps described in the
Section 3.2 but in order to integrate it with the Visualizer and the message broker it intro-
duces additional messaging package. The messaging package contains two classes:

• RabbitMQConnection
• EventManager.

RabbitMQConnection provides a connection to the message broker. As the connection in-
stance of the class can and is encouraged to be reused, the Singleton design pattern is chosen
for the class definition. Singleton design pattern ensures that there is only one instance of
the class and the class provides globally available access point.
EventManager receives the messages produced by the log re-player, processes them and
sends them to the visualizer. In order to receive messages from the RabbitMQ instance the
class extends the com.rabbitmq.client.DefaultConsumer class shown in Table 18. Event-
Manager instance has to explicitly call the DefaultConsumer constructor and pass the Chan-
nel instance. Channel is a TCP connection provider to the RabbitMQ which enables message
sending and receiving abilities. To process messages from the message broker EventMan-
ager overrides the implementation of the handleDelivery method. The handleDelivery
method is executed asynchronously every time the message is delivered.

Table 17. Partial DefaultConsumer class interface

1. public class DefaultConsumer {
2. public DefaultConsumer(Channel channel);
3. public void handleDelivery(String consumerTag, Envelope enve-

lope, AMPQ.BasicProperties properties, Byte[] body);
4. }

Afterwards, the received message is validated whether it is properly formatted event and is
deserialized to XES Event class instance. Next an event is passed to the runtime verification
algorithm. The algorithm produces the Fluents string, which contains the information
whether the event is conformant with process model or not. Additionally, the string holds
the trace identifier and event name information. As a final step the Fluents string is dis-
patched to the message broker, which delivers it to the visualizer.

3.3.1.2 Conformance	Visualizer	Bundle	Implementation	
The visualizer provides a user interface displaying whether an ongoing trace is conformant
or not with the constraints in the input process model. Figure 14 shows the mockup of vis-
ualizer user interface. The user interface window is divided into two columns: Traces and
Monitor. Traces column, contains buttons, which identify different traces in the re-played
event log. Pressing the Trace button displays the sequence of events in the trace and the
corresponding state of each constraint in the process model in the Monitor column. The
Monitor column provides the user with the graphical information. Each constraint contained
in the process model is displayed as a separate chart. The constraint template name and
involved events are displayed on top of each chart. Each column in the bar represents the
event received from the log replayer, and can be in one of the four states: Satisfied - blue,
Possible Satisfied - green, Possible Violated - orange and Violated - red. On a mouse hover
over the column the event name is displayed as a tooltip.

33

Figure 14. User interface mockup for Visualizer bundle

The implementation of the visualizer differs from the mining bundle implementation, but as
visualizer is still the part of the OSGi framework it should provide the MANIFEST.MF and
BundleActivator interface implementation.

MANIFEST.MF file is similar to the mining bundle’s manifest file except that there is no
need for the bundle to be registered as mining bundle and execute the algorithm with run-
Work method from RumPluginWorker interface, therefore Service-Component header is
omitted.

The implementation of the BundleActivator interface, has a slight change as well, in order
to ensure that all the connections to the RabbitMQ are closed, during the state change from
Active to Resolved, the stop method is executed which assures that the connection is aborted
properly.

To notify the RuM platform that the bundle provides the visual content, the bundle extends
the org.eclipse.swt.widgets.Composite class, which is part of the RAP package. The Com-
posite is a “container” and a graphical user interface wrapper class for the graphical ele-
ments, which are displayed to the user of the system.

34

Figure 15. Fluents string processing flow chart

The bundle enters Active state as soon as the user accesses the URL of the bundle, which is
decided by the RuM administrator. The bundle requires two input parameters. The first one
is the instance of the Composite class, which will serve as a canvas area, where the bundle
is allowed to display its graphical user interface. The second parameter is the RabbitMQ
queue name, which is generated by the runtime verification bundle.
The Visualizer bundle connects to the RabbitMQ and subscribes to the incoming messages
in the queue. The visualizer in the same way as runtime verification bundle implements the
RabbitMQ connection and message delivery mechanisms.

Figure 15 is a flowchart diagram which depicts the activity conformance information re-
trieval process from the Fluents string. As soon as the Fluents string is received it is split on
the designated delimiter, to extract trace identifier. The trace collection is checked if the
trace with the same identifier already exists in the collection.

If the trace exists, it is retrieved from the collection and the current information is added to
the trace. Additionally, the check is performed whether currently chart is displayed in the
Monitor column of the user interface. If it is displayed the chart is checked if it belongs to
the current trace. If the check is positive the chart is immediately updated with newly re-
ceived activity information.
If the trace is new, the new instance of the trace is created. The trace instance is assigned
the extracted trace identifier and the activity information. Furthermore, the button is created
in the Traces column with the trace identifying text. The button click draws the conformity
information chart for the corresponding trace.

35

4 Evaluation	
This chapter provides examples and shows the capabilities of the implemented bundles on
the cloud platform RuM.

4.1 MINERful		
This section provides an overview on the use of the MINERful bundle. This bundle allows
users to generate a process model from the event log. Additionally, it is possible to specify
explicitly what activities are excluded, remove the redundant and inconsistent constraints
and to specify the activity support and confidence threshold. The user interface of the bundle
is shown in the Figure 16.

Figure 16. MINERful bundle user interface

To evaluate the bundle, the BPIC 2012 financial event log is used for process discovery.
Support threshold is 0.9, Confidence 0.25 and Interest Factor 0.125. “Crop redundant and
inconsistent constraints” parameter is set to “False”. The discovered model contains 291
constraints and 24 activities.

4.2 MINERful Simplification
This section provides an overview on the use of the MINERful Simplification bundle. This
bundle allows a user to remove the redundancies and conflicting constraints from the pro-
cess model. The bundle accepts a process model as an input. A model can be in Declare,
JSON or MINERful format. It is possible to specify support, confidence and interest factor
thresholds. Additionally, post processing analysis can be applied and one of the following
can be chosen: Hierarchy – subsumptional constraint pruning and conflict check. Hierarchy
Conflict Redundancy – Additionally to Hierarchy eliminates single-pass automata-based
redundancies. Hierarchy Conflict Redundancy Double - Additionally to Hierarchy elimi-
nates double-pass automata-based redundancies. Figure 18 shows a user interface of the
MINERful Simplification bundle.

36

Figure 17. MINERful Simplification user interface

To evaluate the MINERful Simplification bundle process model generated in Section 4.1
was used. Figure 19 shows a simplified BPIC 2012 process model.

Figure 18. Discovered process model before and after simplification

4.3 MINERful	Log	Generation	
This section provides an overview on the use of the MINERful log generator bundle. The
bundle is capable of simulating the event log from the input process model. It is possible to
generate event logs from Declare and JSON format process models. The type is specified as
an “Input model type” parameter. Additionally, it is possible to specify minimum and max-
imum events per trace, as well as the maximum number of traces in the log. Generated log
can be in XES, MXML or String format. Figure 20 shows the user interface of the bundle.

37

Figure 19. User interface of Log generation bundle

To evaluate the functionality of the bundle the simple process model of fraction treatment
is used, shown in the Figure 21. The generated log contains 500 traces, each trace contains
5 to 50 events, log is in XES format. To evaluate the correctness of the generated log the
Declare Miner a ProM plug-in is used. Declare Miner discovers a process model from the
event log. The discovered process is identical to the initial model and is shown in Figure 22.

Figure 20. Fracture treatment simple process(taken from [FRACT])

Figure 21. Discovered fracture treatment process

38

4.4 Declare	Model	Verbalization		
This section provides an overview on the use of the DeclareModelVerbalization bundle.
Figure 23 shows the user interface of the bundle. The bundle accepts as an input a process
model in Declare format and produced the .dotx Microsoft Word document.

Figure 22. Declare Model Verbalization user interface

A description of each constraint is extracted from the input process model. Additionally, if
present a constraint support, confidence and interest factor values are displayed. To evaluate
the functionality of the bundle, process model discovered from the BPIC 2012 log is used.
Figure 24 shows the partial result of the verbalized BPIC 2012 process model.

Figure 23. Verbalized BPIC 2012 model

4.5 FLLOAT		
This section provides an overview on the use of the FLLOAT bundle, which generates the
automaton for the LTL or LDL formula. Additionally, satisfiability, validity and logical
implication of the automaton can be determined by selecting the appropriate option from
the bundle’s user interface which is shown in the Figure 25.

39

Figure 24. User interface of the FLOATT bundle

To evaluate the automaton generation functionality, formulas for response(A,B) and prece-
dence(A,B) constraints are selected shown in the Table 19. The alphabet of the events is A;
B; C; D. Each event is “;” separated. The “Automata type” value specifies whether the input
formula is LTL or LDL. The “Trim” Automaton option defines if permanently violated
states should be removed from the final result or not. The output of the bundle is a .dot file.
Furthermore, if any of satisfiability, validity or logical implication options are enabled .txt
file is generated containing the respected information for each operation. The logical impli-
cation operations require two formulas, to state if the formulas are logical implicit, therefore
the second formula field is added.

Table 18. FLOATT evaluation formulas

Constraint Formula

response(A,B) [](A -> (<>B))

precedence(A,B) [](!B) || (!B U A)

Figure 26-A shows the visualized result of the response(A,B) constraint, additionally the
automaton is satisfiable but not valid. Figure 26-B shows the precedence(A,B) with the
“Trim” parameter set to true, generated automaton is satisfiable but not valid. Figure 26-C
shows the precedence(A,B) with the “Trim” parameter set to false, generated automaton is
satisfiable but not valid.

40

Figure 26-A. Results of au-

tomaton generation

Figure 26-B. Results of au-

tomaton generation

Figure 26-C. Results of au-
tomaton generation

Figure 25. Results of automaton generation

4.6 MoBuConLTL,	MoBuConLDL,	Online	Analyser		
This section provides an overview on a use of the Monitoring bundle. In order to evaluate
the bundle, two runtime verification bundles are used, MoBuConLTL and Online Analyser.
Figure 27 shows the order management process model. Two event logs were generated, each
log contains 2 to 10 traces, and each trace contains 2 to 20 events. Four possible use case
scenarios are used to demonstrate bundle capabilities.

1. One log replayer sends data to a single monitoring bundle
2. One log replayers sends data to multiple monitoring bundles
3. Multiple log replayers send data to a single monitoring bundle
4. Multiple log replayers send data to multiple monitoring bundles

Figure 26. Order management process model

The user interface of the runtime verification bundle is shown in Figure 28. The “Messaging
type” parameter can be “Queue” or “Exchange”, “Queue” should only be selected for the
first use case for others “Exchange”, additionally to connect runtime verification bundle to
already created “Exchange”, “Exchange” name must be provided. A sample output of
runtime verification bundle is shown in Figure 29.

41

Figure 27. Runtime verification bundle user interface

Log replayer requires the Queue/Exchange name to which it will send the event stream,
routing type and an event log which will be streamed to the runtime verification bundle.

Figure 28. Runtime verification bundle output

Use case 1: MoBuConLTL is used as a runtime verification bundle, the produced results are
shown in Figure 30.
First occurring event in the first trace is Archive Order, which possible violates constraint
existence([Send Invoice]) as according to the model Send Invoice should appear at least once
during the process execution. Constraints response([Receive Order], [Archive Order]) and
precedence([Receive Order], [Ship Products]), are possible satisfied.
Afterwards Ship Products event occurs, state of existence and response templates remain
the same. On the other hand, precedence([Receive Order], [Ship Products]) is violated, Ship
Products should not occur before Receive Order.

Third event in the trace is Receive Order, the state of the response changed to possible vio-
lated and state of precedence constraint is reset to satisfied. The constraint is reset to possi-
bly violated but since since Receive Order occurs it becomes permanently satisfied.
Next Send Invoice is executed, thus satisfying the state of existence, does not affecting the
state of the rest of constraints.
Finally, event complete is sent by the log replayer indicating the end of the trace, as the trace
is completed and an Archive Order was not executed after Receive Order, state of the re-
sponse changes to violated.

Figure 29. Runtime verification results. Use case

Use case 2: MoBuConLTL and Online Analyzer is used as a runtime verification bundle.
The event log used for this use case is same as in the use case 1. The “Messaging type”

poss. viol. poss. viol. poss. viol. sat. sat.

poss. sat. poss. sat.

poss. viol. poss. viol. viol.

poss. sat. viol. sat. sat. sat.

42

parameter in runtime verification and log replayer bundles is set to “Exchange”, to allow
message delivery to multiple consumers. Produced results are shown in Figure 31.

Figure 31-A. MoBuConLTL result

Figure 31-B. Online Analyzer result. trace no. 00

Figure 31-A shows the result produced by the MoBuConLTL, the results are identical as in
the use case 1. Figure 31-B depicts the results of the trace no. 00 for the Online Analyzer.
The events in these two traces are the same the difference is activation condition. This ad-
ditional information is used by the Online Analyzer. Therefore, in the Figure 31-B the re-
sponse constraint is never activated because when Receive Order occurs the condition
A.price> 50 is not satisfied as a result constraint is satisfied after the trace is completed.

Use case 3: Two log replayers produce the event stream which is passed to a single
MoBuConLTL instance, the traces are differentiated according to the trace ID specified in
the event log. In this case trace ID’s are matching therefore, both log replayers are sending
events of the same trace. “Messaging type” parameter as in the second use case is set to
“Exchange” allowing multiple producers deliver the event stream to a single consumer. The
result is shown in Figure 32.

Figure 30. Runtime verification results. Use case 3

poss. viol. poss. viol. poss. viol. sat. sat.

poss. sat. poss. sat.

poss. viol. poss. viol. viol.

poss. sat. viol. sat. sat. sat.

poss. sat. poss. sat. poss. sat. poss. sat.

poss. viol. poss. viol. poss. viol. sat.

sat.

sat.

poss. sat. viol. viol. viol. viol.

sat. sat. sat. sat. sat. sat. sat.

sat.

sat. sat. sat. sat. sat. sat. sat. sat. sat.

poss. viol. poss. viol.

poss. viol. poss. viol. poss. viol. poss. viol. poss. viol. poss. viol. poss. sat. poss. sat.

43

Use case 4: Two log replayers produce the event stream which is passed to MoBuConLTL
and Online Analyzer instances. “Messaging type” parameter as in the second and third use
cases is set to “Exchange” allowing multiple producers deliver the event stream multiple
consumers. The results are shown in Figure 33.

Figure 31-A. MoBuConLTL results.

Figure 32-B. Online Analyzer result.

Figure 33. Runtime verification results. Use case 3

The demo video of the monitoring tool can found at https://youtu.be/1BHRI8B0EBQ

poss. viol. poss. viol. poss. viol. poss. viol.

poss. viol. poss. viol. poss. viol.

poss. sat. poss. sat.

poss. sat. poss. sat. poss. sat. poss. sat. poss. sat. poss. sat.

sat. sat. sat. sat.

sat.

sat.

sat. sat. sat. sat. sat. sat. sat.

sat.

sat. sat. sat. sat. sat. sat. sat. sat. sat.

poss. viol. poss. viol.

poss. viol. poss. viol. poss. viol. poss. viol. poss. viol. poss. viol. poss. sat. poss. sat.

44

5 Conclusion	
In this thesis we have described the Declarative process mining and currently acceptable
Declarative process mining tools and their capabilities. As a result, we provided all the func-
tionalities of the tools on the cloud platform.

We discussed the modular OSGI framework in which the cloud platform RuM is imple-
mented, additionally we provided the description of RuM specific development require-
ments. As a result, we demonstrated how to implement Declarative process mining tools as
OSGI bundles. We evaluated those bundles with artificial and real life logs.

Additionally, we introduced new process monitoring solution which provides functionalities
for online monitoring of declarative specifications on the cloud. We briefly discussed the
message routing broker RabbitMQ and its functionalities which where used for implement-
ing the monitoring bundle. Finally, we presented Online Monitoring bundle capabilities and
evaluated it using four different use case scenarios.

45

6 References	
[1] M. Dumas, M.L. Rosa, J. Mendling, H.A. Reijers, Fundamentals of Business Pro-

cess Management, Springer, Berlin, Heidelberg, 2013.
[2] W. van der Aalst, W. et al. Process mining manifesto. In Daniel, F., Barkaoui, K., &

Dustdar, S. (Eds.), Business Process Management Workshops, Lect Notes Bus Inf,
(Vol. 99 pp. 169–194). Berlin: Springer, 2012

[3] Claudio Di Ciccio, Fabrizio Maria Maggi, Jan Mendling. Efficient discovery of Tar-
get-Branched Declare constraints. Inf. Syst. 56, 258–283, 2016.

[4] M. Pesic. Constraint-based workflow management systems: shifting control to users.
Eindhoven : Technische Universiteit Eindhoven, 2008.

[5] M. Pesic, H. Schonenberg, and W. van der Aalst, “Declare: Full Support for Loosely
Structured Processes,” Proc. 11th IEEE Int’l Enterprise Distributed Object Compu-
ting Conf. (EDOC 07), IEEE CS, pp. 287–300, 2007.

[6] Buijs, J.C.A.M.: Mapping Data Sources to XES in a Generic Way. Master’s thesis,
Eindhoven University of Technology, 2010.

[7] Christian W. Günther, Eric Verbeek. XES Standard Definition Version 2.0, Eindho-
ven University of Technology. 2014.

[8] Claudio Di Ciccio, Massimo Mecella. On the Discovery of Declarative Control
Flows for Artful Processes. ACM Trans. Manag. Inform. Syst. 5, 4, Article 24. 2015.

[9] Taavi Kala, Fabrizio M. Maggi, Claudio Di Ciccio, Chiara Di Francescomarino. Ap-
priori and Sequence Analysis for Discovering Declarative Process Models. Enter-
prise Distributed Object Computing Conf. (EDOC). 2016.

[10] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large da-
tabases,” in VLDB. Morgan Kaufmann. pp. 487–499. 1994.

[11] Hoang Nguyen, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi, Suriadi
Suriadi. Business Process Deviance Mining: Review and Evaluation. ACM Transac-
tions on Management Information Systems. 2016.

[12] Fabrizio Maria Maggia, Michael Westergaard, Marco Montali, Wil M.P. van der
Aalst. Runtime Verification of LTL-Based Declarative Process Models. Springer In-
ternational Publishing. 2012

[13] Claudio Di Ciccio, Fabrizio Maria Maggi, Marco Montali, Jan Mendling. Ensuring
Model Consistency in Declarative Process Discovery. Springer International Pub-
lishing. 2015

[14] Claudio Di Ciccio, Massimo Mecella. On the discovery of declarative control flows
for artful processes. ACM Trans. Manage. Inf. Syst. 5(4), 24:1–24:37. 2015

[15] Claudio Di Ciccio, Mario Luca Bernardi, Marta Cimitile, Fabrizio Maria Maggi.
Generating Event Logs through the Simulation of Declare Models. Springer Interna-
tional Publishing. 2015

[16] Guiseppe De Giacomo, Riccardo De Masellis, Marco Grasso, Fabrizio Maria Maggi,
Marco Montali. Monitoring Business Metaconstraints Based on LTL and LDL for
Finite Traces. S. Sadiq, P. Soffer, and H. Vo ̈lzer (Eds.): BPM 2014, LNCS 8659,
pp. 1–17. Springer International Publishing. 2014.

46

[17] Andrea Burattin, Fbarizio Maria Maggi, Alessandro Sperduti. Conformance check-
ing based on multi-perspective declarative process models. Expert System Applica-
tions. Volume 65. pp. 194–211. 2016.

[18] Fabrizio Maria Maggi, Marco Montali, Michael Westergaar, W. van der Aalst. Mon-
itoring Business Constraints with Linear Temporal Logic: An Approach Based on
Colored Automata. S. Rinderle-Ma, F. Toumani, and K. Wolf (Eds.): BPM 2011,
LNCS 6896, pp. 132–147. 2011.

[19] The OSGi Alliance OSGi Core. http://www.osgi.org. OSGi Alliance. 2014

47

Appendix	

I. License	
Non-exclusive licence to reproduce thesis and make thesis public

I, Ilia Aphtsiauri,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:
1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of the
copyright,

of my thesis

Declarative Process Mining on the Cloud
supervised by Fabrizio Maria Maggi
2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property
rights or rights arising from the Personal Data Protection Act.

Tartu, 02.03.2017

