

UNIVERSITY OF TARTU

Institute of Computer Science
Computer Science Curriculum

Rodion Krjutškov

Camera Component for the ESTCube-2

Mission Control System
Bachelor’s Thesis (9 ECTS)

Supervisor: Dr. Andris Slavinskis

Co-supervisor: Alo Peets

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Camera Component for the ESTCube-2 Mission Control
System

Abstract:

ESTCube-2 is the second satellite project of the Estonian Student Satellite
Programme. Its main scientific mission is to test the plasma break technology on
the low Earth orbit. The hardware and the software for the project are developed by
students. Computer software called Mission Control System is being developed to
monitor and control the satellite after launch. The system consists of multiple
components and applications connected in a microservice architecture. This paper
focuses on the research and development process of the Mission Control System
camera component. The author describes challenges related to displaying the
satellite images in a modern web application, analyses possible solutions and
provides an overview of the software prototype implementation.

Keywords:

ESTCube-2, space technology, Flexible Image Transport System (FITS), web
software development, microservice architecture, front-end application

CERCS: P175, Informatics, systems theory

Kaamera komponent ESTCube-2 missiooni
juhtimissüsteemi jaoks

Lühikokkuvõte:

ESTCube-2 on teine Eesti Tudengisatelliidi Programmi satelliidi projekt. Selle
peamiseks uurimisülesandeks on plasma piduri tehnoloogia testimine maa orbiidil.
Projekti riistvara ja tarkvara arendavad üliõpilased. Arendamisel on tarkvara
nimega missiooni juhtimissüsteem, mis aitaks satelliiti pärast orbiidile saatmist
jälgida ja juhtida. Süsteem koosneb mitmest osast ja rakendustest, mis on mikro-
teenuste arhitektuuri sees ühendatud. Käesoleva lõputöö autor kirjeldab
väljakutseid, mis on seotud satelliidi piltide kuvamisega kaasaegses

3

veebirakenduses, analüüsib võimalikke lahendusi ja annab ülevaate tarkvara
prototüübi arenduse protsessist.

Võtmesõnad:

ESTCube-2, kosmosetehnoloogia, Flexible Image Transport System (FITS), veebi
tarkvara arendus, mikroteenuste arhitektuur, front-end rakendus

CERCS: P175, Informaatika, süsteemiteooria

4

Table	of	Contents	

1 Introduction .. 6

2 Terms and Notations ... 7

3 Background ... 9

3.1 Small Satellites ... 9

3.2 First Estonian Satellite ... 9

3.3 ESTCube-2 Mission and Goals ... 9

3.4 Mission Control System ... 10

3.5 Previously Used Camera Software ... 11

3.6 Problem Statement ... 11

4 Camera Component Analysis .. 12

4.1 Definition ... 12

4.2 Requirements Engineering... 12

4.3 Architecture ... 14

4.4 Displaying the Images .. 15

4.5 Image Data Operations .. 17

5 Camera Component Prototyping ... 18

5.1 Methods ... 18

5.2 Initial Development ... 18

5.3 The React Project Setup ... 19

5.4 Development of the React Components ...20

5

5.5 Displaying Thumbnails on HTML Canvas .. 22

5.6 Displaying FITS Images on HTML Canvas ... 23

5.7 Development of the Go Prototype .. 25

5.8 Development of the Python Prototype.. 26

5.9 Canvas Image Operations... 27

6 Conclusions ... 30

7 Bibliography .. 31

Appendix .. 34

I. Source Code ... 34

II. License ... 35

6

1 Introduction	

In the fast-changing field of Software Engineering, new technologies and trends
appear on the regular basis. Companies invest significant funds in engineering to
deliver new releases frequently and provide necessary software updates. One of the
major development trends of the past decade is the increasing popularity of web-
based and cloud-based solutions. Such approach allows software to be platform-
independent, removes hardware restrictions for the user’s machine and allows
instantaneous and seamless software updates.

When the Estonian Student Satellite Foundation started preparations for their
second project, they faced numerous software-related challenges. The software
used in their previous mission, ESTCube-1, was not compatible with the ambitions
of their second mission, ESTCube-2. The team set out to develop new hardware and
software, including Mission Control System, a unified web-based solution for
satellite interaction. The system consists of multiple microservices, or components
grouped by functionality.

The present work introduces the camera component of the Mission Control System
and describes the research and development process. The component is going to
provide functionality required to browse the satellite images and issue camera-
related commands. The images on the satellite are saved using the Flexible Image
Transport System (FITS) standard, which is not used commonly in web-based
applications. To handle these files in the Mission Control System, it is necessary to
analyse existing open-source software libraries that were created by the community.

The paper consists of three major parts:

• the Background chapter introduces the missions of the Estonian Student
Satellite Programme, describes the existing solutions and states the problem;

• the Camera Component Analysis chapter describes the process of initial
research, specifies the functional requirements and presents the proposed
solutions;

• the Camera Component Prototyping chapter follows the development
process, describes the methods, gives examples of concrete problems and
solutions that were implemented.

7

2 Terms	and	Notations	

• Mission Control System (MCS) is a software system that is being developed
for theESTCube-2 project. The purpose of the system is to monitor and control
the satellite after launch.

• Web client is an application that communicates with a web server. Usually
refers to the web browser on a user’s computer.

• Web server is a computer system that processes and fulfils requests of web
clients.

• Application Programming Interface (API) is a set of clearly defined
methods of communication between a web client and a web server.

• Graphical User Interface (GUI) is a mean of human-computer interaction
that allows a person to interact with computer software through visual
indicators and icons.

• Thumbnail is a small-resolution digital image that is used as a preview of a
larger digital image.

• Pixel is a smallest controllable element of a digital image presented on a screen.

• Website wireframe is a visual guide that is used to present website structure
and layout.

• Hypertext Transfer Protocol (HTTP) is a request-response application
protocol of the client-server software system. It is the foundation of data
communication over the internet.

• Hypertext Markup Language (HTML) is the standard language used to
create web pages. Describes the structure of the page semantically.

• Joint Photographic Experts Group (JPEG) is a commonly used graphics
file format that allows lossy data compression. The degree of compression can
be adjusted, resulting in adjustable file size.

• Portable Network Graphics (PNG) is a graphics file format that allows
lossless data compression. Most commonly used lossless image compression
format used on the internet.

• Flexible Image Transport System (FITS) is a digital file format that is used
for transmission, processing and storage of scientific and other images. Most
commonly used digital file format in astronomy.

8

• Header-Data Unit (HDU) is a data structure inside a FITS file that consists
of a header and the data the header describes.

• Node Package Manager (NPM) is a software that consists of a command
line client and an online database of software packages, called the registry. Used
to install and manage JavaScript software packages.

• Raw image data is a minimally processed data from the image sensor of a
digital camera.

• Red, blue, green, alpha (RGBA) is a combination of the red-blue-green
color model with an alpha channel information that describes the image
transparency.

• Document Object Model (DOM) is an application programming interface
that describes HTML documents as a tree structure.

• Goddard Space Flight Center (GSFC) is a NASA space research laboratory
for developing and managing unmanned scientific spacecraft.

• High Energy Astrophysics Science Archive Research Center
(HEASARC) is a NASA center for managing and archiving of high energy
astronomy data.

9

3 Background	

3.1 Small	Satellites	

The miniaturized satellite industry is developing rapidly in recent years. According
to the classification, small satellites are satellites with weight under 500 kilograms
[1, p. 5]. The main reason for making satellites smaller is significant cost reduction.
Such satellites can be launched using smaller and cheaper launch vehicles or even
delivered to orbit in excess capacity of larger launch vehicles.

Nanosatellite is a small satellite with weight from 1 to 10 kilograms [1, p. 5].
Example applications of nanosatellites include scientific and technology research,
education, earth observation, astronomy and military purposes. In order to further
reduce the costs and development time, the CubeSat Project was started, and a
standard for design of nanosatellites was created. CubeSat is a 10-centimeter
cubical satellite unit with a mass up to 1.33 kilograms [2, p. 5].

3.2 First	Estonian	Satellite	

As described in a publication by Slavinskis et al. [3], ESTCube-1 was a project led
by University of Tartu and supported by European Space Agency. In course of the
project a group of students developed a CubeSat satellite in collaboration with
international partners. The scientific mission of the satellite was to conduct the first
in-orbit experiment with electric solar wind sail technology.

ESTCube-1 was launched on May 7, 2013. The mission was mostly successful, and
the satellite operated as expected, except several issues. All the subsystems of the
satellite were developed in-house by a team of students with no previous
experience. The team gained valuable insights, and Estonian Student Satellite
Foundation was established with a goal to plan and develop next missions.

3.3 ESTCube-2	Mission	and	Goals	

ESTCube-2 is an ongoing project developed primarily by students of University of
Tartu. The aim of the project is to create a new nanosatellite and launch the next
mission that is designed based on the outcomes of the previous mission.

10

As described in a paper by Ehrpais et al. [4], the main scientific mission behind
ESTCube-2 satellite is to conduct further testing of electric solar wind sail and
plasma break (also known as Coulomb drag propulsion). This technology was
previously subject of experiments conducted in the missions of ESTCube-1 and
Aalto-1 satellites.

3.4 Mission	Control	System	

In order to communicate with a satellite and control the command flow between the
satellite and a ground station, special computer software is required. Several
applications and application expansion modules were developed by members of the
Estonian Student Satellite Programme and used successfully in the ESTCube-1
project. This software was developed in different programming languages (Python,
C), to be executed directly on the satellite operator's workstation.

In the ESTCube-2 project a set of such software constitutes the Mission Control
System (MCS). In effort to create a modern, platform-independent, scalable
software solution, ESTCube-2 team decided to develop the applications in a web-
based microservice architecture. Such approach allows components to be executed
in an isolated environment, transmitting data between each other over the network
using Application Programming Interfaces (APIs). The components could be
defined based on the principal functionality, programming language used in the
application or other criteria.

It is a common practice in web software development to clearly separate server-side
applications from client-side applications [5, p. 149]. The former ones are also
referred to as back-end applications, and the latter ones as front-end applications.
Back-end applications are executed on the server and therefore have direct access
to predictable amount of hardware resources and to the file system. Front-end
applications run on the user's computer, inside the environment of a web browser.
It is, therefore, impossible to predict the amount of available hardware resources
and access the local file system.

ESTCube-2 Mission Control System consists of one front-end application and
multiple back-end microservices. The purpose of the front-end application is to
provide the satellite operator with means to view the satellite data, interact with this

11

data and issue control commands to the satellite. This functionality is supported by
the back-end applications that accept user’s input transmitted from the front-end,
execute server-side commands, have means to access the data and pass commands
to the satellite.

3.5 Previously	Used	Camera	Software	

Among other hardware and software developed during the ESTCube-1 project, an
application called PyCAM was created to handle camera-related tasks. The
application was implemented in Python programming language and provided an
integrated graphical user interface. It was an all-in-one solution that allowed
satellite operator to browse and view the satellite images, inspect the image
metadata, set image download options, run integrated tests of the satellite camera.
Some software libraries used in this application are currently deprecated.

3.6 Problem	Statement	

Taking into consideration the intention to create a completely new version of the
Mission Control System, based on the web-based approach and the software
architecture inferred from such approach, it is necessary to conclude that it is not
possible to fully reuse the programs that were developed for the ESTCube-1 mission.
It is therefore necessary to analyse strategies for replacement of this software with
updated subsystems, define and implement components as microservices.

12

4 Camera	Component	Analysis	

4.1 Definition	

The name camera component describes a subset of Mission Control System that
provides satellite operator with functionality required to view images created by the
satellite camera, inspect the image metadata and use the graphical user interface to
issue commands to the satellite.

4.2 Requirements	Engineering	

In software engineering, the cornerstone of the development activity is the part
called requirements engineering. It is a process that consists of requirements
gathering, requirements analysis and requirements specification [6, p. 68]. The end
goal of a requirements engineering effort is to gain better understanding of the
problem and formalise a list of functional requirements for the future software.
These requirements can change in the course of the development process, but the
initial record still serves as a strong starting and reference point.

In order to gather functional requirements for the camera component, several
interviews with ESTCube-2 team members were conducted. The people directly
involved in the past and the present development of the satellite camera, as well as
persons likely to be involved in the satellite operator role for ESTCube-2 mission,
answered a series of questions about their understanding of the system and their
expectations regarding interaction with the Mission Control System camera
component in the future. Following these interviews and discussions, it became
possible to compile the initial functional requirements list.

13

Table 1. Initial functional requirements for the camera component

Requirement Priority

1 Display an image received from the satellite Critical

2 Trigger acquisition of an image by the satellite High

3 Zoom in/out the selected image High

4 Pan the selected image High

5 Rotate and flip the selected image High

6 Select a region of interest on the image High

7 Display a list of images stored on the satellite and in
the Mission Control System

High

8 Save the selected image using PNG or FITS standard High

9 Switch between colour channels of the selected image Medium

10 See thumbnails of satellite images Medium

11 See a histogram of the selected image Medium

Presented in Table 1, the requirement #1, "display an image received from the
satellite" was assigned a critical priority level because it is not possible to work on
development of any other functionality of the camera component until this
requirement is fulfilled. Meeting this requirement also provides the biggest
technical challenge, as described in the section Displaying the Images.

Some functional requirements were revisited and modified in the development
process, as a progress was made in various parts of the system and new decisions
and realisations happened between parties involved.

14

Table 2. Additional functional requirements for the camera component

Requirement Priority

12 Plot the full-size images on top of thumbnail images Low

13 Display original pixel value on hover/click Low

14 Display average/high/low pixel value for region of
interest

Low

Having formalised the functional requirements, it is possible to proceed with the
architectural definitions and first iterations of prototyping.

4.3 Architecture	

Mission Control System development team decided to provide the graphical user
interface in the form of a dashboard which consists of multiple subsystem tabs. Each
tab presents satellite operator with a clearly defined subset of the MCS functionality.
It was therefore suggested to develop the camera component front-end part in a
such way that would make it possible to integrate it into one dashboard tab in the
future. The website wireframes were created to illustrate how the camera
component features are expected to fit into the dashboard view.

Figure 1. Website wireframe of the camera component in the MCS dashboard

15

The back-end applications developed in a micro-service architecture do not
necessary need to be merged into one project, as they can communicate between
each other over the APIs. Using the same approach in the front-end application
would create unnecessary replication of dashboard elements and logic over all the
subsystems. Therefore, to allow effortless integration in the future, extra effort must
be dedicated to developing the parts of the front-end application, since the code
base needs to be merged with the work of other developers into a single project.

Figure 2. Camera component architecture in the MCS context

4.4 Displaying	the	Images	

To display the images sent from the satellite, it is necessary for the camera
component software to read the image data from the files saved using certain file
standards. One of these standards, the Joint Photographic Experts Group (JPEG),
is used widely for encoding of digital images. Such images are saved using a “lossy”
compression algorithms, therefore do not preserve the original pixel values. In the
ESTCube-2 software the JPEG compression is used to create the camera image
thumbnails that provide a preview of the original full-size images, allowing more
efficient data transfers. Displaying a JPEG image in a web interface is a routine task
that typically does not require knowledge of the standard definitions.

16

The second file standard that is used in the ESTCube software, on the other hand,
does not appear frequently on the web. The Flexible Image Transport System (FITS)
is a data standard that is designed specifically for use in astronomy. The standard
allows transport, analysis and archival storage of scientific data sets [7]. The first
version of FITS was developed in 1981, and the latest release of the standard is
version 4.0 that is described in the FITS Standard Document, published on 22 July
2016 [8].

A FITS file consists of several FITS structures: a primary header and data unit
(HDU), optional extensions, optional special records. The header contains the
image metadata in a human-readable key-value format. A Basic FITS file consists
of a single (also known as primary) header-data unit that may contain a single image
data array. Each value in such array represents an image pixel value. It is a common
practice to apply a scaling function to the data in the array because of the different
methods used for integer value representation. To extract the real values, the BZERO
and BSCALE keyword values must be extracted from the header and applied to the
data using the following formula:

physical value = BZERO + BSCALE × array value

Unlike JPEG, FITS files can't be displayed simply in a web browser, as such support
is not integrated into the browser software. The FITS Support Office at NASA/GSFC
compiled a list of software libraries and packages written by enthusiasts in many
programming languages. The functionality varies between libraries, some of them
provide only basic methods for reading the image data, some allow writing and
working with multidimensional data tables.

Taking into consideration the separation between the back-end and the front-end
applications imposed by the Mission Control System architecture design, it is
necessary to address an important development problem. Since the images in FITS
standard cannot be displayed to the user in the browser, the FITS image data must
be converted into another format suitable for display.

17

4.5 Image	Data	Operations	

The conversion form one data format to another can be performed both in the front-
end and in the back-end applications. As the images stored in ESTCube-2 FITS files
have a maximum resolution of 2752 by 2004 pixels, or 5 515 008 pixels, a one-time
operation to read and manipulate these values could require a significant amount
of hardware resources.

Delegating such task to the back-end application would minimise the load on the
client’s machine, but it could potentially create a high load on the mission servers
in a situation when many clients would connect simultaneously, sending multiple
requests to the same API endpoint. Such scenario cannot be ruled out, especially
because some parts of the Mission Control System API may be made accessible to
the public in the future. Eventually, the excessive load on the server would have to
be addressed by a software scaling, load balancing and network security solutions.

Delegating the data conversion task to the front-end application would impose
certain requirements to the user’s computer hardware, specifically on the amount
of available Random-Access Memory (RAM) and the Central Processing Unit (CPU)
performance.

Both approaches were studied and prototyped in the following phase of
development.

18

5 Camera	Component	Prototyping	

5.1 Methods	

Agile software development refers to a widely accepted approach in software
engineering. According to a survey, the success rate of agile methods is much more
positive than that of classical project management [9]. Among the core principles
of agile software development are:

• early and continuous delivery of valuable software;

• delivering working software frequently;

• welcoming changing requirements [10].

Following these principles, the Mission Control System development team creates
software prototypes, some of which are later discarded in favour of a better solution.
The same strategy was used in the development of the camera component.

5.2 Initial	Development	

The first Mission Control System dashboard prototype was implemented using
Angular, a front-end web application platform maintained by Google [11]. No
significant camera component functionality was developed in this iteration, and in
few months the entire prototype was replaced with a new project based on React, a
JavaScript library for building user interfaces, which is developed and maintained
by Facebook [12]. The reasons for switching from Angular to React included:

• better tooling and development environment;

• smaller code base, therefore smaller data transfers;

• bigger and more active development community [13].

Another clear advantage of the React library for the Mission Control System GUI
development is its component-based nature. React components are encapsulated
and therefore can be easily moved between projects, supplemented only with a
formal list of external dependencies. Following this approach, the camera
component application was set up in a separate project, with an aim to develop the
React components for future integration. The project has minimal dependency on
the current state of development in other parts of the MCS.

19

5.3 The	React	Project	Setup	

JavaScript is the only programming language that is supported by all modern web
browsers. It is executed by a JavaScript engine that is built into the web browser,
therefore it does not require installation of any plug-ins. JavaScript can be used to
make web pages interactive by manipulating the pages content [14].

A conventional modern front-end application makes use of external JavaScript
packages [15]. Packages can be installed into the project using software such as
Node Package Manager (NPM). A special file called package.json is created inside
every project to store, among other important metadata about the project, the list
of external dependencies. As every direct package dependency can infer multiple
indirect package dependencies that are required for correct work, a dependency tree
is created and saved by the package manager in an auto-generated lock-file.
Dependencies in the camera component front-end application are managed with
help of Yarn, a package manager software developed by Facebook [16].

The React library allows developer to organise code in components that are written
using special syntax called JSX. Every component declares explicitly how it is meant
to be rendered in the web browser. Components can transfer data between each
other using component properties and state. To create a production software
distribution, it is necessary to compile the JSX syntax into conventional JavaScript.
To simplify the task of setting up and managing the development process of a
project based on the React library, we used a tool called create-react-app [17]. The
application can be served for local development with an integrated HTTP server
using only two commands:

yarn

yarn start

A production distribution can be created by running the following commands:

yarn

yarn build

After running the above script, the build folder in the project will contain a compiled
and minified version of the code that can be served to the user using an HTTP
server.

20

5.4 Development	of	the	React	Components	

Based on the functional requirements described in the section 4.2 and on the initial
wireframes such as the ones presented in the section 4.3, we focused our effort on
development of two React components:

• a canvas component that can display satellite images (requirement #1) and
provides the functionality for the image manipulation (requirements #3, #4,
#5, #6);

• a gallery component that can display a list of images stored both on the
satellite and in the Mission Control System (requirement #7) and provides
means to trigger image-related commands (requirements #2, #8).

These two components are grouped under a parent component that describes the
positioning of elements relative to each other. The parent component also plays an
important role of the data flow controller within the application. The following
scenario describes the internal workflow triggered when the application is first
loaded into the user’s browser:

1. The parent component sends an HTTP GET request to the backend
application in order to retrieve the list of the files from the Mission Control
System.

2. The parent component passes the received data through the properties to the
gallery component.

3. The gallery component renders a list of the images and maps the function
buttons in the GUI to correct back-end application API requests.

When the user selects an image to display from the galley list, another scenario
unfolds:

1. The click event is passed up from the gallery component to the parent
component through the properties.

2. The parent component sends an HTTP GET request to the backend
application in order to retrieve the selected image data.

3. The received data is processed in the parent component and then passed to
the canvas component through the properties.

4. The canvas component renders the image in the image area.

21

Figure 3. The canvas component displaying an image from a FITS file

Figure 4. The gallery component displaying a list of images

22

5.5 Displaying	Thumbnails	on	HTML	Canvas	

The core concept used in implementation of the canvas component is the HTML

canvas element. The element was introduced in the HTML 5 specification [18]. It
provides an interactive context and a JavaScript API for rendering of graphics on
the fly. To display an image on canvas, the image source must be provided as one of
the following data types:

• HTML image element;

• SVG image element;

• HTML video element;

• HTML canvas element [19].

Since the image files received from the satellite are transmitted as a bit array, the
most suitable way to transfer this data onto a canvas is to create an HTML image
element. It can be created with JavaScript using the Image() constructor:

const myImage = new Image(width, height);

myImage.src = 'http://webhost:port/image.jpg';

The image can now be placed onto a canvas in two steps. Firstly, we must fetch a
reference to the two-dimensional rendering context of the canvas element.
Secondly, we need to draw the image onto the canvas using the drawImage() method
of the Canvas API.

const context = canvas.getContext('2d');

myImage.onload = () => {

context.drawImage(myImage, 0, 0);

}

It is important to notice the usage of onload event handling in the previous code
example. Since the loading of the image does not happen instantly, we must wait for
the loading to complete before placing the element onto the canvas, otherwise the
drawImage() method would instantly create an empty image on the canvas.

Using the method described above, it is possible to display the satellite image
thumbnails saved using JPEG standard. It is only required to provide the correct
address to the image that can be fetched from the back-end application.

23

Nevertheless, as discussed in the section 4.4, the files stored using the FITS
standard have significantly more complex structure, and cannot be used as a direct

data source to create an HTML image element.

5.6 Displaying	FITS	Images	on	HTML	Canvas	

One of the following solutions can be implemented to address the problem of
showing the FITS images and the raw image data on an HTML canvas element.

1. Save the image data as a file in a common image format.
a. Extract the required image data from the FITS file.
b. Use the image data to create an image file in a conventional image format,

such as Portable Network Graphics (PNG).
c. Store the image file in a temporary data storage.
d. Use the file as a data source for the Image() constructor and draw on the

canvas.
2. Draw the raw image data pixel by pixel onto the canvas.

a. Extract the required image data from the FITS file.

b. Use the context.createImageData() method to create an array of pixel
values in RGBA format.

c. Place the imageData object contents onto the canvas using the
two-dimensional context method context.putImageData().

3. Use the experimental technology of the canvas API.
a. Extract the required image data from the FITS file.
b. Create an ImageData JavaScript object using the experimental ImageData()

constructor.
c. Place the imageData object contents onto the canvas using the

two-dimensional context method context.putImageData().

It is evident that all solutions require reading the contents of the FITS file and
working with the raw image data. While it is possible to create a custom file-reading
and data-parsing program, it is highly preferable to use an existing solution, as it
allows to save significant amount of the development time and avoid accidental
mistakes in the code. As mentioned in the section 4.4, many code libraries were
written in different programming languages with an aim to simplify the process of
working with the data stored using the FITS standard.

24

We inspected them to find the most suitable and commonly used solutions that
could be integrated into our project.

As mentioned in the section 4.5, it is possible to work with the FITS files and the
raw image data both in the front-end and in the back-end application. While server-
side application has direct access to the filesystem, the client-side application would
need to retrieve the file first. Unfortunately, since working with a file contents on
the client side is not a common task, the FITS libraries written in JavaScript are few,
and they do not have an active development community. Moreover, the existing
JavaScript libraries, such as fitsjs [20], have not been updated for many years and
cannot be used in a modern JavaScript project.

The fitsjs library relies on direct manipulation of the HTML Document Object
Model (DOM) elements. Such approach produces errors in a React application,
because React relies on the virtual DOM, which is a lightweight and detached from
browser-specific implementation abstraction of the HTML DOM. The typical
approach to using an external code library in React application is to import it as an
isolated software module. The library code must be organised in a certain way to
allow such use. Unfortunately, we did not discover any JavaScript libraries for FITS
file operations that would meet this requirement.

Therefore, to read the data from a FITS file in the client-side application, it would
be necessary to create a modern software library from scratch, or modify an existing
open-source library such as fitsjs with the aim of “modernising” it. Unfortunately,
this task could not be completed in the scope of the present work. We focused,
instead, on analysing the FITS libraries written in other programming languages,
and prototyping server-side solutions using such libraries. Since NASA’s HEASARC
FITSIO library is written in C programming language, and using C for web
development is by far not a conventional approach [21], we inspected libraries
written in other languages that would be more suitable for a microservice
environment.

 	

25

5.7 Development	of	the	Go	Prototype	

While developing a new application in a microservice architecture, it is preferable
to keep the number of programming languages involved as low as possible. This way
it is not required for the present and future system developers to be proficient with
too many languages and technologies. Following this principle, we chose to
implement the first server-side application prototype with Go [22], as the language
was previously used in the development of other server-side applications inside the
ESTCube-2 Mission Control System.

Go, also known as Golang, is a programming language created by Google. Some
experts compare Go to C and C++, pointing out excessive complexity of the latter
languages and praising Go for simplicity in working on the same tasks [23]. The
language is used for server-side computing at companies such as Google, Netflix,
Dropbox, SoundCloud, Uber etc. [24]

The FITS I/O Libraries guide composed by the FITS Support Office at NASA/GSFC
lists three FITS libraries written in Go [7]. For our project we used the fitsio library,
as it is actively maintained and provides documentation. With help of the fitsio
library it is possible to read the contents of the primary header-data unit of a FITS
file and access the original data values with only few lines of code:

import (

 "os"

 fits "github.com/astrogo/fitsio"

)

func getFitsData(fname string) []int16 {

 r, err := os.Open(fname)

 f, err := fits.Open(r)

 hdu := f.HDU(0)

 hdr := hdu.Header()

 img := hdu.(fits.Image)

 nelmts := 1

 for _, axe := range hdr.Axes() {

 nelmts *= int(axe)

 }

 v := make([]int16, 0, nelmts)

 err := img.Read(&v)

 return v

}

26

The function getFitsData() in the code sample above reads a FITS file form the
specified system path and returns the original image data values extracted from the
primary HDU as an array of 16-bit integers. Unfortunately, we did not find a way to
perform the scaling of data with help of this library, so the scaling would have to be
implemented manually. Due to the lack of documentation, examples and experience
with Go, we could not achieve server-side conversion of the image data to a
conventional file format such as PNG in the scope of the present work. At this point
several ESTCube-2 team members suggested to use a more common library, such
as Astropy, which is implemented in Python. Since the Go prototype had several
major issues, it was discard in favour of a new Python prototype.

5.8 Development	of	the	Python	Prototype	

The Python programming language, together with a third-party NumPy library, is
often used for numerical data processing and manipulation. It is, therefore, logical
that the most popular software library for working with FITS file format is
implemented in Python. As per definition, the Astropy Project is a community effort
to develop a core package for astronomy using the Python programming language
and improve usability, interoperability, and collaboration between astronomy
Python packages [25]. As of March 2018, the open-source code repository consists
of contributions of more than 200 individuals, producing 66 product releases.

The astropy.io.fits package provides functionality for working with FITS files. We
used it in combination with Flask, a microframework for Python, to create a
lightweight web server capable of reading and transmission of an image data.

27

from flask import Flask, jsonify, send_from_directory

from flask_cors import CORS

from astropy.io import fits

from astropy.visualization import make_lupton_rgb

app = Flask(__name__)

CORS(app)

@app.route('/api/v1/fits/<string:name>')

def fitsFile(name):

 data = fits.getdata('fits/' + name + '.fit').astype('float64')

 tempName = 'temp/' + name + '.png'

 make_lupton_rgb(data, data, data, filename = tempName))

 return jsonify(path = tempName)

@app.route('/temp/<path:path>')

def send_temp(path):

 return send_from_directory('temp', path)

In the code snippet presented above, we use the fits.getdata() function to extract
the original image data from the primary HDU of the provided FITS file. A similar
convenience function fits.getheader() can be used to extract the primary header
information. Moreover, the extracted data is scaled automatically upon access, so
the data array already contains the actual pixel values.

In the code example, we also make use of the Astropy visualisation function
make_lupton_rgb() that allows us to automatically convert the actual pixel values into
an array of 8-bit RGB values. This data can be used to plot the individual pixel values

onto the HTML canvas. Calling this function also creates a PNG file in the temporary
folder. This file, with adjusted white balance, can be displayed on a canvas or
downloaded by user (see the requirement #8).

5.9 Canvas	Image	Operations	

Once the satellite image is plotted onto the canvas element of the front-end
application, it should be possible to perform a few image manipulations such as
zooming in and out, panning, rotating, flipping and selecting a region of interest
(requirements #3, #4, #5, #6). These actions can be performed in the client-side
application using the HTML canvas API.

28

The functionality can be developed with JavaScript and the canvas API, using such
two-dimensional context methods as ctx.translate() and ctx.scale(). This
approach also requires implementation of a complex logical system for handling of
the user’s input (JavaScript mouse events mousedown, mouseup, mousemove) and
calculating the relative positions of the canvas elements. It is, therefore, preferable
to look for existing solutions for canvas manipulations, in order to simplify the task
and rule out accidental code errors.

Following this logic, we used a popular canvas manipulation library that is
compatible with React, React Konva. The library allows complex graphic operations
on canvas and follows the React principle of component-based architecture [26].
The usage of the library provides valuable shortcuts compared to the direct API
development. For example, to allow panning of the image (make it “draggable”)
with JavaScript and canvas API, it would be necessary to handle three mouse events
and calculate the position, producing dozens of lines of code [27].

In React Konva, the interactive area consists of a combination of several canvas
elements called Stage, Layer and Image.

<Stage

 ref={(stage) => { this.stage = stage }}

 scale={{x: this.state.stageScale.x, y: this.state.stageScale.y}}

 width={this.props.width}

 height={this.props.height}

>

 <Layer>

 <Image

 ref={(image) => { this.image = image }}

 scale={{x: this.state.imageScale.x, y: this.state.imageScale.y}}

 rotation={this.state.rotation}

 image={this.state.image}

 draggable

 />

 </Layer>

</Stage>

In the code example above, we create a Stage with a single Layer and a single Image,
passing such parameters as image scale and rotation using the component
properties and state. With React Konva panning of the image can be achieved by

29

applying a single argument to the Image object, draggable. It is still necessary to
capture and handle the mouse events using JavaScript to update the component
state and re-render the image upon change, but using the Konva library allows to
significantly reduce the total code base.	

30

6 Conclusions	

In this work, we studied the possible approaches to creating a new software
component for the ESTCube-2 Mission Control System. We gathered the functional
requirements, inspected useful libraries, and described the implementation
following the state of the art principles of software development. Taking into
consideration the microservice architecture of the system, we analysed the
technology capabilities, outcomes and drawbacks of delegating certain tasks to the
client-side or the server-side execution. The summary of our findings follows:

1. Due to the lack of modern JavaScript libraries, there is no simple way to
handle the Flexible Image Transport System files in the client-side
application. A modern JavaScript library must be developed to perform the
FITS file operations on the client side.

2. Due to the abundance of the FITS libraries developed in other programming
languages, and the active involvement of the community with these libraries,
handling of the FITS files in the server-side application does not require
significant development effort.

3. Usage of the existing libraries, such as React Konva, can provide valuable
shortcuts for the image manipulation tasks in the client-side application and
significantly reduces the size of the code base.

Based on these findings, we developed several code prototypes and created the
proof-of-concept software that implements the required functionality, following the
approaches described in this paper. The screenshots of the React components are
provided as Figure 3 and Figure 4 in the section 5.4. The links to the software source
code can be found in the appendix I.

The work on the Mission Control System is ongoing and the presented solution is
not a production-grade version of the software. A subset of required functionality
remains to be developed, and the intention of the author is to continue the work on
the software in collaboration with the ESTCube-2 team and to integrate the
component fully into the system.

31

7 Bibliography	

[1] SpaceWorks Enterprises, Inc. (SEI), “2014 Nano / Microsatellite Market
Assessment,” 2014. [Online]. Available:
http://www.sei.aero/eng/papers/uploads/archive/SpaceWorks_Nano_Micro
satellite_Market_Assessment_January_2014.pdf. [Accessed 28 02 2018].

[2] The CubeSat Program, Cal Poly SLO, “CubeSat Design Specification (CDS)
REV 13,” 20 2 2014. [Online]. Available:
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b6
2337013b6c063a655a/1458157095454/cds_rev13_final2.pdf. [Accessed 28 02
2018].

[3] A. Slavinskis, M. Pajusalu, H. Kuuste, E. Ilbis, T. Eenmae, I. Sunter, K.
Laizans, H. Ehrpais, P. Liias, E. Kulu, J. Viru, J. Kalde, U. Kvell, J. Kutt, K.
Zalite, K. Kahn, S. Latt, J. Envall and P. Toivanen, “ESTCube-1 in-orbit
experience and lessons learned,” Aerospace and Electronic Systems
Magazine, IEEE, vol. 30, no. 8, pp. 12-22, 2015.

[4] H. Ehrpais, I. Sünter, E. Ilbis, J. Dalbins, I. Iakubivskyi, E. Kulu, I. Ploom, P.
Janhunen, J. Sate, R. Trops and A. Slavinskis, “ESTCube-2 mission and
satellite design,” in Small Satellites Systems and Services Symposium, 2016.

[5] M. Mendez, The Missing Link. An Introduction to Web Development and
Programming, Open SUNY Textbooks, 2014.

[6] I. Marsic, Software Engineering, New Brunswick, New Jersey: Rutgers
University, 2012.

[7] NASA/GSFC, “The FITS Support Office,” [Online]. Available:
https://fits.gsfc.nasa.gov. [Accessed 28 02 2018].

[8] FITS Working Group, “FITS Standard Document, version 4.0,” 22 07 2016.
[Online]. Available:
https://fits.gsfc.nasa.gov/standard40/fits_standard40aa.pdf. [Accessed 28 02
2018].

32

[9] The BPM Laboratory at the Koblenz University of Applied Sciences, “Status
Quo Agile 2016/17,” 2017. [Online]. Available: http://www.status-quo-
agile.net. [Accessed 28 02 2018].

[10] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M.
Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R.
C. Martin, S. Mellor, K. Schwaber, J. Sutherland and D. Thomas, “Principles
behind the Agile Manifesto,” 2001. [Online]. Available:
http://agilemanifesto.org/principles.html. [Accessed 28 02 2018].

[11] Google, “Angular Documentation,” [Online]. Available:
https://angular.io/docs. [Accessed 28 02 2018].

[12] Facebook, “React Documentation,” [Online]. Available:
https://reactjs.org/docs. [Accessed 28 02 2018].

[13] J. Neuhaus, “Angular vs. React vs. Vue: A 2017 comparison,” 28 08 2017.
[Online]. Available: https://medium.com/unicorn-supplies/angular-vs-react-
vs-vue-a-2017-comparison-c5c52d620176. [Accessed 28 02 2018].

[14] D. Crockford, JavaScript: The Good Parts, Sebastopol: O’Reilly Media, Inc.,
2008.

[15] M. Ostruszka, “It depends. The art of dependency management in JavaScript,”
06 02 2018. [Online]. Available: https://blog.softwaremill.com/it-depends-
the-art-of-dependency-management-in-javascript-f1f9c3cde3f7. [Accessed 28
02 2018].

[16] Facebook, “Yarn Documentation,” [Online]. Available:
https://yarnpkg.com/en/docs. [Accessed 28 February 2018].

[17] Facebook, “Create React App,” [Online]. Available:
https://github.com/facebook/create-react-app. [Accessed 28 February 2018].

[18] W3C, “HTML5. A vocabulary and associated APIs for HTML and XHTML,” 28
October 2014. [Online]. Available:
https://www.w3.org/TR/html52/semantics-scripting.html#the-canvas-
element. [Accessed 28 February 2018].

33

[19] Mozilla, “Canvas API. Using images,” 27 November 2017. [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/API/Canvas_API/Tutorial/Using_images. [Accessed 2 March
2018].

[20] astrojs, “fitsjs,” [Online]. Available: https://github.com/astrojs/fitsjs.
[Accessed 2 March 2018].

[21] L. Perkins, “Web development in C: crazy? Or crazy like a fox?,” 17 September
2013. [Online]. Available: https://medium.com/@lucperkins/web-
development-in-c-crazy-or-crazy-like-a-fox-ff723209f8f5. [Accessed 3 March
2018].

[22] The Go Programming Language, “The Go Project,” [Online]. Available:
https://golang.org/project/. [Accessed 3 March 2018].

[23] B. Eckel, “Calling Go from Python via JSON-RPC,” 27 August 2011. [Online].
Available: https://www.artima.com/weblogs/viewpost.jsp?thread=333589.
[Accessed 3 March 2018].

[24] Wikipedia, “Go (programming language),” [Online]. Available:
https://en.wikipedia.org/wiki/Go_(programming_language). [Accessed 3
March 2018].

[25] Astropy , “About The Astropy Project,” [Online]. Available:
http://www.astropy.org/about.html. [Accessed 4 March 2018].

[26] A. Lavrenov, “React Konva,” [Online]. Available:
https://github.com/lavrton/react-konva. [Accessed 4 March 2018].

[27] markE, “Make image drawn on canvas draggable with JavaScript,” [Online].
Available: https://stackoverflow.com/questions/15036386/make-image-
drawn-on-canvas-draggable-with-javascript. [Accessed 4 March 2018].

34

Appendix	

I. Source	Code	

The source code of the software developed in the course of this work is available
online in the ESTCube-2 Bitbucket repositories.

• The front-end React prototype:
https://bitbucket.estcube.eu/projects/ECIIMCS/repos/cam-fe

• The back-end Go prototype:
https://bitbucket.estcube.eu/projects/ECIIMCS/repos/cam-be

• The back-end Python prototype:
https://bitbucket.estcube.eu/projects/ECIIMCS/repos/cam-be2

Permission to access the code repositories is managed by the Estonian Student
Satellite Foundation.

35

II. License	

Non-exclusive licence to reproduce thesis and make thesis public

I, Rodion Krjutškov,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry of
the term of validity of the copyright, and

1.2. make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Camera Component for the ESTCube-2 Mission Control System,

supervised by Dr. Andris Slavinskis and Alo Peets,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 09.03.2018

