
UNIVERSITY OF TARTU 

Institute of Computer Science 

Software Engineering Curriculum 

Kaur Järvpõld 

Leveraging Multi-Perspective A-priori 
Knowledge in Predictive Business Process 

Monitoring 
Master’s Thesis (30 ECTS) 

                                                Supervisors: Fabrizio Maria Maggi  

Chiara Di Francescomarino 

                                                            Chiara Ghidini 

                                                                    

  

Tartu 2018 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

Leveraging Multi-Perspective A-priori Knowledge in Predictive Business 

Process Monitoring 

Abstract: 

Predictive business process monitoring is an area dedicated to exploiting past process exe-

cution data in order to predict the future unfolding of a currently executed business process 

instance. Most of the research done in this domain focuses on exploiting the past process 

execution data only, leaving neglected additional a-priori knowledge that might become 

available at runtime. Recently, an approach was proposed, which allows to leverage a-priori 

knowledge on the control-flow in the form of LTL-rules. However, cases exist in which 

more granular a-priori knowledge becomes available about perspectives that go beyond the 

pure control-flow like data, time and resources (multi-perspective a-priori knowledge). In 

this thesis, we propose a technique that enables to leverage multi-perspective a-priori 

knowledge when making predictions of complex sequences, i.e., sequences of events with 

a subset of the data attributes attached to them. The results, obtained by applying the pro-

posed technique to 20 synthetic logs and 1 real-life log, show that the proposed technique is 

able to overcome state-of-the-art approaches by successfully leveraging multi-perspective 

a-priori knowledge. 

Keywords: 

Predictive Process Monitoring, Deep Learning, Recurrent Neural Networks, A-priori 

Knowledge, MP-Declare 

CERCS: P170 – Computer Science, Numerical Analysis, Systems, Control 

Pealkiri eesti keeles 

Lühikokkuvõte: 

Äriprotsesside ennestusseire on valdkond, mis on pühendunud käimasolevate äriprotsesside 

tuleviku ennustamiseks kasutades selleks minevikus sooritatud äriprotsesside kohta käivaid 

andmeid. Valdav osa uurimustööst selles valdkonnas keskendub ainult seda tüüpi 

andmetele, jättes tähelepanuta täiendavad teadmised (a-priori teadmised) protsessi teostum-

ise kohta tulevikus. Hiljuti pakuti välja lähenemine, mis võimaldab a-priori teadmisi kasu-

tada LTL-reeglite näol. Kuid tõsiasjana on antud tehnika limiteeritud äriprotsessi kontroll-

voole, jättes välja võimaluse väljendada a-priori teadmisi, mis puudutavad lisaks kontroll-

voole ka informatsiooni protsessis leiduvate atribuutide kohta (multiperspektiivsed a-priori 

teadmised). Me pakume välja lahenduse, mis võimaldab seda tüüpi teadmiste kasutuse, te-

hes multiperspektiivseid ennustusi käimasoleva äriprotsessi kohta. Tulemused, milleni jõuti 

rakendades väljapakutud tehnikat 20-le tehis-ärilogile ning ühele elulisele ärilogile, näitavad 

et meie lähenemine suudab pakkuda konkurentsivõimelisi ennustusi. 

Võtmesõnad: 

Äriprotsesside ennestusseire, Sügavõpe, Rekurrentsed närvivõrgud, A-priori teadmised, 

MP-Declare 

CERCS: P170 – Arvutiteadus, Arvutusmeetodid, Süsteemid, Juhtimine 



3 

 

Table of Contents 

1 Introduction ................................................................................................................... 5 

2 Background ................................................................................................................... 7 

2.1 Process Mining ....................................................................................................... 7 

2.2 Predictive Business Process Monitoring ................................................................ 7 

2.3 Event Log ............................................................................................................... 8 

2.4 Linear Temporal Logic ........................................................................................... 8 

2.5 Multi-Perspective Declare ...................................................................................... 8 

2.6 Artificial Neural Networks ................................................................................... 10 

2.7 Recurrent Neural Networks .................................................................................. 11 

2.8 Long Short Term Memory Cells .......................................................................... 12 

2.9 LSTMs in Predictive Business Process Monitoring ............................................. 14 

2.10 Complex Symbolic Encoding ........................................................................... 15 

2.11 Breadth-First Beam-Search ............................................................................... 15 

3 Related Work .............................................................................................................. 17 

3.1 The Early Approaches .......................................................................................... 17 

3.2 Predicting Next Events ......................................................................................... 17 

3.3 Predicting Next Events Using Deep Learning ...................................................... 18 

3.4 Predicting with A-priori Knowledge .................................................................... 19 

4 The Problem ................................................................................................................ 22 

5 Conceptual Framework ............................................................................................... 23 

6 Architecture of the Solution Proposed ........................................................................ 25 

6.1 Predicting an Additional Categorical Attribute .................................................... 25 

6.2 Beam-Search with Data Payload .......................................................................... 25 

6.3 Multi-perspective Knowledge Expression ........................................................... 26 

6.4 Leveraging Multi-Perspective A-priori Knowledge ............................................. 27 

7 Implementation Details ............................................................................................... 28 

8 Evaluation ................................................................................................................... 29 

8.1 Experimental Framework ..................................................................................... 29 

8.2 Event logs ............................................................................................................. 29 

8.3 Knowledge injection ............................................................................................. 30 

8.4 Rule Mining .......................................................................................................... 31 

8.5 Experimental Procedure ....................................................................................... 31 

8.6 Results and Discussion ......................................................................................... 32 

9 Conclusion ................................................................................................................... 35 



4 

 

10 References ................................................................................................................... 36 

I. License ..................................................................................................................... 40 

 



5 

 

1 Introduction 

It is inevitable to notice that in the modern business world it is not enough to merely have a 

good product or service. The survival and success of an organization is highly dependent on 

the level of quality in which the product or service is being delivered. This means delivering 

it in a shorter amount of time, with lower costs and higher customer satisfaction. Organiza-

tions are constantly looking for ways to have a clearer overview of the strengths and weak-

nesses of their operations in order to improve the managerial side of their business. In this 

light, the field of Process Mining has evolved. Process mining is a family of techniques that 

exploits available information about past executions of a business process to analyse and 

improve it.  

Exploiting knowledge about the past is possible thanks to the rapid evolution of advanced 

information systems which store detailed information about business activities in event logs. 

An event log is a dataset consisting of unique process execution instances called traces. A 

trace in turn consists of events which are executed and stored in the trace. Additional infor-

mation about events, traces or the entire log, is held in data attributes. The existence of this 

valuable data has led to the possibility to predict the future behaviour of an organization. 

The idea of seeing the future has attracted tremendous attention in the process mining com-

munity and has led to a sub-domain of process mining called Predictive Business Process 

Monitoring (PBPM). More specifically, it aims to foresee how an ongoing process instance 

unfolds. Typical prediction scenarios include predicting the remaining time of an ongoing 

trace, the fulfilment of a Service Level Agreement, the next event or the full sequence of 

events until the end of the trace. The latter is the type of prediction we focus on in this thesis. 

The idea behind PBPM is simple – a prediction model is built based on the available past 

information, the model is then queried with an unfinished trace and the corresponding pre-

diction is made. The latest trend in PBPM is the usage of deep learning which has become 

increasingly popular thanks to the availability of powerful computational hardware and in-

novations in algorithmics. The application of neural networks in PBPM has a lot of common 

grounds with Natural Language Processing (NLP). We can think of an event log as a block 

of text, the individual process instances as sentences and the events occurring as words. 

After drawing these parallels it is easy find motivation from NLP when applying deep learn-

ing to PBPM.  

However, what motivates this work, is the fact that most of the research in PBPM distinctly 

focuses on using information abstracted from past event logs only, leaving neglected addi-

tional knowledge that might be available about the future unfolding of the process. Recently, 

an approach was proposed in [2], which leverages a-priori knowledge on top of the infor-

mation extracted from the logs to enhance the prediction accuracy. The paper proves that a-

priori knowledge can efficiently be used to increase the accuracy of predicting the suffixes 

of ongoing traces. Although this approach has proven to be effective, it has not reached its 

full potential. The current solution quickly hits its limits when multi-perspective a-priori 

knowledge is concerned. In particular, the proposed technique allows for specifying 

knowledge exclusively on the control-flow, without the possibility of specifying more gran-

ular knowledge including information about data attributes attached to the events (a.k.a. the 

payload). In many cases a-priori knowledge about the payload could be a valuable asset 

when the future of a running case is predicted. Let us consider an example about a treatment 

process in a hospital where treatment A can only be performed by Dr. Smith. If a patient 

comes to the hospital with the need for treatment A, but Dr. Smith is out of office due to 

illness, then treatment A can not be performed. Instead an alternative treatment B is per-

formed which by Dr. Brown. This example illustrates how multi-perspective a-priori 

knowledge can give us insights about the future unfolding about the treatment process of 



6 

 

this particular patient. Therefore an approach for leveraging multi-perspective a-priori 

knowledge is necessary when making multi-perspective predictions. In the light of this mo-

tivation, and as a direct extension to the work done in [2], we propose an approach which 

enables to leverage a-priori knowledge not only on the control-flow, but also on the accom-

panying data payload. 



7 

 

2 Background 

2.1 Process Mining 

Process mining [47] can help organizations understand how their processes actually work 

in reality, measure the performance of the processes and find out to which extent the pro-

cesses are following a predefined set of business rules. All of these questions are answered 

by analysing event logs which contain data about the activities carried out in an organiza-

tion. Event logs are normally created by business process management systems and stored 

in XES1 format. They contain data about individual process execution instances and the 

accompanying data payload. The data payload usually includes, but is not limited to, the 

timestamp of each event and the resource used to carry out the corresponding activity. The 

resource attribute is conjointly the data attribute we focus on in this thesis. 

The tasks performed in the process mining domain are categorized into three main families. 

Namely process discovery, conformance analysis and process enhancement. Process dis-

covery aims at learning structural patterns from an event log. The outcome is a process 

model giving insights about the real life operational patters of an organization. Conformance 

analysis takes an already existing process model and uses it to measure a process’ perfor-

mance, i.e. it checks if a process is following a predefined set of business rules. The results 

of the conformance analysis are then used during process enhancement to alter the existing 

process model with the aim of making it more efficient. 

Process mining itself can be divided into two mechanisms – process controlling and process 

monitoring. Process controlling is an aggregated approach used to get insights about how a 

process has been performing during a certain period of time and is typically an offline anal-

ysis, i.e. the logs of already completed process executions are used. Process monitoring is 

an online analysis and takes as input currently running process executions. The aim is to 

monitor whether processes are executed conformingly and in the case of violations trigger 

counter measures.  

2.2 Predictive Business Process Monitoring 

A subfield of process mining called Predictive Business Process Monitoring (PBPM) is an 

area dedicated to predicting the future unfolding of currently running traces. As a descendant 

of process mining, PBPM also exploits event logs to gain information. Although in this case, 

the information is used to build predictive models which are purposed to predict an outcome 

of a case as early as possible. The predictive models are able to perform by taking as input 

the part of an ongoing trace executed so far. Some of the common prediction tasks include 

the remaining cycle time prediction, next activity prediction, the fulfilment of a Service 

Level Agreement. 

Many mathematical models have been used to complete the prediction tasks, out of which, 

some of the most common methods are regression [32][41][49][50], clustering 

[49][41][30], decision trees [48][24][51][11] and hidden Markov models [24][51][37]. In 

this thesis we are following the latest trend in PBPM, deep learning, and use neural networks 

as a prediction model. The state-of-the-art work done in this domain can be found in 

[21][1][2]. 

                                                 
1 XEX (eXtensible Event Stream) is an xml-based standard for capturing systems behaviors (http://www.xes-

standard.org/ ) 

http://www.xes-standard.org/
http://www.xes-standard.org/


8 

 

2.3 Event Log 

An event log is a representation of the execution history of a certain business process. It 

consists of a set of traces, which represent specific executions of the business process. A 

trace, in turn, is a set of temporally ordered events which specify the control-flow of the 

process execution. Traces and events represent the structure of a log, but do not hold any 

informational knowledge themselves. Accompanying information of a log, trace or activity 

is held in its attributes. An attribute is a key-value pair, which can contain temporal, textual 

or numerical information. Attributes can be divided into two families – static attributes, 

which remain the same throughout the trace and dynamic attributes, which can change from 

event to event, e.g. a dynamic attribute can be the timestamp of an event (event level attrib-

ute) and a static attribute can be the gender of a medical patient (trace level attribute).  

Definition 1.  A trace 𝜎 = ⟨𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛⟩ ∈ 𝐸∗ is a sequence of events where 𝐸∗ is a 

multi set of events over a finite set of all possible events 𝐸. 

A prefix 𝑝𝑘(𝜎) = ⟨𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑘⟩ ∈ 𝐸∗ is the subsequence of the first 𝑘 events of a trace 

𝜎 = ⟨𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛⟩ ∈ 𝐸∗ where 𝑘 ≤ 𝑛. The suffix of the prefix 𝑝𝑘(𝜎) is the remaining 

part of the trace 𝜎 defined as 𝑠𝑘(𝜎) = ⟨𝑒𝑘+1, 𝑒𝑘+2, 𝑒𝑘+3, … , 𝑒𝑛⟩ ∈ 𝐸∗. E.g the prefix 𝑝3(𝜎) 

of the trace 𝜎 = ⟨𝑎, 𝑏, 𝑐, 𝑑, 𝑏, 𝑏, 𝑎, 𝑐⟩ is ⟨𝑎, 𝑏, 𝑐⟩ and the suffix 𝑠3(𝜎) is ⟨𝑑, 𝑏, 𝑏, 𝑎, 𝑐⟩.  

2.4 Linear Temporal Logic 

Linear Temporal Logic (LTL)[16], first described by A. Pnueli in 1977, is a modal logic 

which enables to express temporal knowledge about a sequential structure. A fraction of 

LTL dedicated to describing finite sequences is used in this thesis. LTL specifications are 

composed by defining rules on sequential units using boolean operators together with LTL 

operators dedicated to express temporal aspects. To understand the semantics of MP-De-

clare templates (see 2.5) the following knowledge about the LTL operators is necessary. 

The 𝑂 and 𝑌 operators represent temporal knowledge about the past, namely 𝑂𝜑1 indicates 

that 𝜑1 has to hold true at some point in the past, and 𝑌𝜑1 indicates that 𝜑1 has to hold true 

in the previous position of the sequence. The 𝐹, 𝑋, 𝐺 and 𝑈 operators represent temporal 

knowledge about the future, namely 𝐹𝜑1 indicates that 𝜑1 has to hold true at some point in 

time in the future, 𝑋𝜑1 indicates that 𝜑1 has to hold true in the next position of the sequence, 

𝐺𝜑1 indicates that 𝜑1 has to always hold true in the future, 𝜑1𝑈𝜑2 indicates that 𝜑2 has to 

hold true at some point in time in the future, and until that point 𝜑1 has to hold true. 

2.5 Multi-Perspective Declare 

Declare [52] is a declarative process modelling language which aims at offering balance 

between flexibility and support when defining a business process. It is based on LTL se-

mantics and enables to specify constraints on business behaviour creating an open-world 

assumption, i.e. there is no specification of allowed behaviour but rather a specification of 

illegal behaviour. 



9 

 

Multi-Perspective Declare (MP-Declare) is an extension of Declare which allows to de-

scribe process behaviour also from the perspective of time and data. Similarly to Declare, it 

works by specifying constraints over traces, including constraints about additional infor-

mation accompanied with the control-flow, i.e. the payload. An MP-Declare model consists 

of a set of constraints which are based on MP-Declare templates.  

The templates are behavioural patterns which characterize the constraints. They consist of 

five parameters, namely the activation, the target, the activation condition, the correlation 

condition and the time condition. An activation of a constraint is an event whose occurrence 

causes requirements on another event (the target) in the same trace to be effective. An acti-

vation condition is a constraint on the payload of the activation event, which has to hold true 

in order for the constraint to be activated. Note that a constraint is not activated if the acti-

vation condition does not hold, even though the activation event has occurred. The correla-

tion condition has to hold when the target event occurs in order for the constraint to be 

fulfilled. Finally, the time condition can be expressed in the form of an interval 𝐼 = [𝜏0, 𝜏1) 

where 𝜏0 and 𝜏1 represent the minimum and the maximum temporal distances between the 

activation and the target events accordingly.  

Following is the explanation of the MP-Declare templates presented in Table 1. Template 

existence demands that the activation event 𝐴 has to happen at least once in the trace while 

the activation condition 𝜑𝑎 is fulfilled. Template absence demands the activation event 𝐴 

must not to take place in the trace if the activation condition 𝜑𝑎 is fulfilled. The choice 

template demands that activation event 𝐴 or the activation event 𝐵 has to happen at least 

Table 1.  Semantics of MP-Declare Templates (source: [13]) 

Template MFOTL Semantics 

Existence 𝐹𝐼(𝐴 ∧ ∃𝑥. 𝜑𝑎(𝑥))  
Absence ¬𝐹𝐼(𝐴 ∧ ∃𝑥. 𝜑𝑎(𝑥))  
Choice 𝐹𝐼(𝐴 ∧ ∃𝑥. 𝜑𝑎(𝑥)) ∨ 𝐹𝐼(𝐵 ∧ ∃𝑥. 𝜑𝑎(𝑥))  

Exclusive choice (𝐹𝐼(𝐴 ∧ ∃𝑥. 𝜑𝑎(𝑥)) ∨ 𝐹𝐼(𝐵 ∧ ∃𝑥. 𝜑𝑎(𝑥))) ∧ ¬(𝐹𝐼(𝐴 ∧
∃𝑥. 𝜑𝑎(𝑥)) ∧ 𝐹𝐼(𝐵 ∧ ∃𝑥. 𝜑𝑎(𝑥)))  

Responded existence 𝐺(∀𝑥. ((𝐴 ∧ 𝜑𝑎(𝑥)) → (𝑂𝐼(𝐵 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦)) ∨ 𝐹𝐼(𝐵 ∧

∃𝑦. 𝜑𝑐(𝑥, 𝑦))))))  

Not responded exist-

ence  
𝐺(∀𝑥. ((𝐴 ∧ 𝜑𝑎(𝑥)) → ¬(𝑂𝐼(𝐵 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦)) ∨ 𝐹𝐼(𝐵 ∧
∃𝑦. 𝜑𝑐(𝑥, 𝑦))))) 

Response 𝐺(∀𝑥. ((𝐴 ∧ 𝜑𝑎(𝑥)) → 𝐹𝐼(𝐵 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦))))))  

Not response  𝐺(∀𝑥. ((𝐴 ∧ 𝜑𝑎(𝑥)) → ¬𝐹𝐼(𝐵 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦))))  

Alternate response 𝐺(∀𝑥. ((𝐴 ∧ 𝜑𝑎(𝑥)) → 𝑋𝐼(¬(𝐴 ∧ 𝜑𝑎(𝑥))𝑈𝐼(𝐵 ∧

∃𝑦. 𝜑𝑐(𝑥, 𝑦)))))  
Chain response 𝐺(∀𝑥. ((𝐴 ∧ 𝜑𝑎(𝑥)) → 𝑋𝐼(𝐵 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦)))  

Not chain response 𝐺(∀𝑥. ((𝐴 ∧ 𝜑𝑎(𝑥)) → ¬𝑋𝐼(𝐵 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦)))  

Precedence 𝐺(∀𝑥. ((𝐵 ∧ 𝜑𝑎(𝑥)) → 𝑂𝐼(𝐴 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦)))  

Not precedence  𝐺(∀𝑥. ((𝐵 ∧ 𝜑𝑎(𝑥)) → ¬𝑂𝐼(𝐴 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦)))  

Alternate precedence 𝐺(∀𝑥. ((𝐵 ∧ 𝜑𝑎(𝑥)) → 𝑌𝐼(¬(𝐵 ∧ 𝜑𝑎(𝑥))𝑆𝐼(𝐴 ∧

∃𝑦. 𝜑𝑐(𝑥, 𝑦))))  
Chain precedence 𝐺(∀𝑥. ((𝐵 ∧ 𝜑𝑎(𝑥)) → 𝑌𝐼(𝐴 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦)))  

Not chain precedence 𝐺(∀𝑥. ((𝐵 ∧ 𝜑𝑎(𝑥)) → ¬𝑌𝐼(𝐴 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦)))  

 



10 

 

once in the trace while the activation condition 𝜑𝑎 is fulfilled. The occurrence of both ac-

tivities specified in the choice template is allowed. Exclusive choice is identical to the choice 

template with the exception that only one of the specified activities is allowed to take place. 

Template responded existence demands that if the activation event 𝐴 takes place while the 

activation condition 𝜑𝑎 is fulfilled then the target event 𝐵 has to happen either before or 

after event 𝐴 while the correlation condition 𝜑𝑐 is fulfilled. Template response demands that 

if activation event 𝐴 takes place while the activation condition 𝜑𝑎 is fulfilled, then the target 

event 𝐵 has to eventually happen after event 𝐴 while the correlation condition 𝜑𝑐 is fulfilled. 

Template alternate response demands that if activation event 𝐴 takes place while the acti-

vation condition 𝜑𝑎 is fulfilled then the target event 𝐵 has to eventually happen after event  

𝐴 while the correlation condition 𝜑𝑐 is fulfilled. Activity 𝐴 with the activation condition 𝜑𝑎 

holding true is not allowed to take place again until activity 𝐵 with correlation condition 𝜑𝑐 

fulfilled has taken place. Template chain response demands that if activation event 𝐴 takes  

place while the activation condition 𝜑𝑎 is fulfilled then the target event 𝐵 has to happen  

straight after event 𝐴 with the correlation condition 𝜑𝑐 fulfilled. Template precedence de-

mands that the activation event 𝐵 with the activation condition 𝜑𝑎 fulfilled can only take  

place if event 𝐴 with the correlation condition 𝜑𝑐 fulfilled has taken place at some point in  

time before 𝐵. Template alternate precedence demands that the activation event 𝐵 with the 

activation condition 𝜑𝑎 fulfilled can only take place if event 𝐴 with the correlation condition 

𝜑𝑐 fulfilled has taken place before 𝐵. Another occurrence of A in the time interval [𝜏𝐴, 𝜏𝐵) 

is not allowed. Template chain precedence demands that the activation event 𝐵 with the 

activation condition 𝜑𝑎 fulfilled can only take place if event 𝐴 with the correlation condition 

𝜑𝑐 fulfilled has taken place straight before 𝐵. Template not responded existence demands 

that if activation event 𝐴 takes place with the activation condition 𝜑𝑎 fulfilled then the target 

event 𝐵 can not take place either before or after event 𝐴 with the correlation condition 𝜑𝑐 

fulfilled. Template not response demands that if activation event 𝐴 takes place with the 

activation condition 𝜑𝑎 fulfilled then the target event 𝐵 can not take place after event 𝐴 with 

the correlation condition 𝜑𝑐 fulfilled. Template not precedence demands that the activation 

event 𝐵 with the activation condition 𝜑𝑎 fulfilled can only take place if event 𝐴 with the 

correlation condition 𝜑𝑐 fulfilled has not taken place before 𝐵. Template not chain response 

demands that if activation event 𝐴 takes place with the activation condition 𝜑𝑎 fulfilled then 

the target event 𝐵 can not take place straight after event 𝐴 with the correlation condition 𝜑𝑐 

fulfilled. Template not chain precedence demands that the activation event 𝐵 with the acti-

vation condition 𝜑𝑎 fulfilled can only take place if event 𝐴 with the correlation condition 

𝜑𝑐 fulfilled has not taken place straight before 𝐵. 

2.6 Artificial Neural Networks 

An Artificial Neural Network (ANN) is a widely used deep learning model designed to 

mimic the human brain. It consists of building blocks called neurons, which act together to 

conduct complex classification tasks. The neurons operate by receiving standardized input 

values {𝑥1, 𝑥2, . . , 𝑥𝑛} and calculating an output value 𝑦 based on an activation function. The 

input values are always adjusted by weights {𝜔1, 𝜔2, . . , 𝜔𝑛}, which are parameters that the 

ANN learns during the training phase and which give the neural network the ability to learn 

from past experience. Inside the ANN all the neurons are connected to each other forming 

multiple units called the hidden layers. These units conjointly include two special layers 

called the input layer and the output layer. The input layer receives a feature vector 𝑋 as an 

initial input, while the following hidden layers receive the input from the output values of 

their previous layers. This behaviour carries on until the output layer, which outputs the 



11 

 

probability of the initial feature vector 𝑋 belonging to a class 𝑌. Mathematically this can be 

expressed as follows:  

𝑝(𝑌|𝑋) =  𝑓𝑁𝑁(𝑋; 𝜃)   (1) 

Where 𝑓𝑁𝑁 is the aggregated function of all the neurons of the ANN. 𝑋 is the feature vector 

given as input to the first hidden layer, 𝑌 is the output class and 𝜃 the parameters learned by 

the ANN. Although artificial neural networks have been proven to be efficient in many dif-

ficult classification tasks, the approach quickly hits its limits when making sequential pre-

dictions. Simple ANNs are only able to establish a long-term memory by adjusting the pa-

rameters 𝜃 mentioned earlier. Using only this long-term memory means that given the same 

input, the ANN will always give the same output no matter what point in time the prediction 

is made. The method fails at obtaining information from previous inputs, meaning that when 

making a prediction at time step 𝑡, the neural network is not able to leverage the information 

that became available at time step 𝑡 − 1. This problem is tackled by a subclass of ANNs 

called Recurrent Neural Networks (RNN). 

2.7 Recurrent Neural Networks 

RNNs differ from simple ANNs in the sense that their neurons are in addition to other neu-

rons, also recursively connected to themselves, forming a directed loop. This kind of archi-

tecture enables the network to establish short-term memory by taking into consideration the 

new input 𝑥𝑡  at time step 𝑡 as well as the previous information received from past states 

{𝑠𝑡−𝑛, . . , 𝑠𝑡−2, 𝑠𝑡−1} at time steps {𝑡 − 𝑛, . . , 𝑡 − 2, 𝑡 − 1}. RNNs have been successfully ap-

plied in sequential classification tasks where this kind of short-term memory is valuable, 

such as machine translation, image description, speech processing and recently also in pre-

dictive business process monitoring [1]. For illustration let us take a look at the following 

example involving machine translation: the sentence “the girl is glad” translates to Russian 

as “devushka rada” while the sentence “the boy is glad” translates to Russian as “mal'chik 

rad”. In the example given, the word “glad” translates to Russian differently depending on 

its preceding inputs. The word “boy” preceding “glad” indicates that the actor in the sen-

tence is male and therefore the male version of the word “glad” should also be used and the 

same applies for the female version. The example shows that in some classification tasks it 

is important to know the context in which the classification task is executed. In mathematical 

terms RNNs can be expressed as follows:  

𝑝(𝑌|𝑋𝑡, . . , 𝑋𝑡−𝑘) =  𝑓𝑅𝑁𝑁(𝑋𝑡, . . , 𝑋𝑡−𝑘; 𝜃)   (2) 

 

Figure 1 Recurrent Neural Network 

 



12 

 

Where 𝑋𝑡 , . . , 𝑋𝑡−𝑘 is the input sequence of length 𝑘 and 𝑓𝑅𝑁𝑁 the aggregated function over 

all the neurons of the RNN. In more detail let us take a look at how a single unit inside an 

RNN computes its output values at time step 𝑡.   

ℎ𝑡 = 𝜎(𝑊𝑋𝑡 + 𝑈ℎ𝑡−1 + 𝑏)   (3) 

In (3) ℎ𝑡 is the output value at time step 𝑡, 𝜎 a sigmoid function (or other non-linear function) 

applied to each element of the unit separately,  𝑋𝑡 the input at timestep 𝑡, ℎ𝑡−1 the output 

value of the same unit at timestep 𝑡 − 1, 𝑊, 𝑈 and 𝑏 the weight matrices and bias learned 

by the RNN respectively.  

Unfortunately, the usage of Recurrent Neural Networks in turn quickly introduces a learning 

problem because of its recursive course of action. Namely, it gets more difficult to adjust 

the weights of the RNN, the more time steps it passes. The vanishing gradient or the ex-

ploding gradient problem causes the weights of the RNN to either vanish or explode the 

more it gets recursively multiplied. This means that regular RNNs are not capable of learn-

ing long-term dependencies which is a major drawback. These problems are discussed in 

detail in [4]. 

2.8 Long Short Term Memory Cells 

Long Short Term Memory model (LSTM) introduced in [3] alleviates this learning problem. 

LSTMs are a special type of RNNs which are able to establish long-term memory using a 

complex cell system illustrated in Figure 3. Instead of recurrent neurons, an LSTM uses 

recurrent modules containing a memory cell 𝑐𝑡 which accumulates information from previ-

ous inputs. As seen in Figure 3, an LSTM unit consists of four gates 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 and č𝑡 which 

work as a controlling mechanism to remove or add information to the memory cell 𝑐𝑡. Look-

ing at a layer of LSTM units we can group all the gates of same kind together and name 

them as follows:  

 forget gate layer:   𝑓𝑡 

 input gate layer:   𝑖𝑡 

 output candidate layer: 𝑜𝑡 

 cell state candidate layer:  č𝑡 

 

Figure 2 Standard RNN Unit 

 



13 

 

The first layer in the LSTM is the forget gate layer which uses a sigmoid function to calcu-

late a value between 0 and 1 where 0 means that all the previous knowledge from 𝑐𝑡−1 

should be forgotten and 1 that all the information from 𝑐𝑡−1 should be remembered. Math-

ematically this can be expressed as follows:  

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (4) 

Where ℎ𝑡−1 is the output vector of the LSTM layer at time step 𝑡 − 1, 𝑥𝑡 is the new input 

vector and 𝑊𝑓 and 𝑏𝑓 the weights and biases learned by the neural network respectively. 

The next step is to decide what new information should be added to the memory cell. This 

step consists of two parts where first, the input gate layer uses a sigmoid function to decide 

which are the values that should be updated. Then the cell state candidate layer uses a hy-

perbolic tangent function to create a vector of the new candidate values Č𝑡 which are possi-

bly added to the memory cell. Mathematically this can be expressed as follows:  

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (5) 

Č𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)   (6) 

The third step is to update the memory cell according to the decisions made by 𝑓𝑡, 𝑖𝑡 and Č𝑡. 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Č𝑡   (7) 

In (7) the old state of the memory cell 𝐶𝑡−1 is multiplied by the forget gate layer 𝑓𝑡 to get 

rid of any information that is unwanted. Then the new information stored in Č𝑡 is added by 

first multiplying it with the input gate layer 𝑖𝑡. Finally, the new output ℎ𝑡 is calculated based 

on the output candidate layer 𝑜𝑡 and the updated memory cell 𝐶𝑡.  

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   (8) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)   (9) 

The described LSTM version is considered as the classical version and exists as only one of 

many. The state-of-the-art in LSTMs include many variations specifically designed for dif-

ferent tasks. In [6] the authors introduce a very popular version of LSTM where all the gates 

have peephole connections which allow the gates to inspect the current memory cell. This 

approach allows the LSTM to extract information from the size of the time lags. In other 

words it is able to count and leverage rhythmical patterns that occur in the time lags. Another 

increasingly popular version is introduced in [7]. The authors merge the input and update 

gates together forming a novel update gate. The approach is called the Gated Recurrent Unit 

(GRU) and the idea behind it is to have the input and output gates work closely together so 

 

Figure 3 LSTM Unit (source [5]) 

 



14 

 

that the LSTM only updates something that is forgotten and only forgets something that is 

updated. The authors in [8] introduce Depth-Gated LSTMs which add a linear dependency 

to the memory cells of the LSTM at time steps {𝑡 − 1, 𝑡, 𝑡 + 1}. A radically different ap-

proach to solve the classical RNN learning problem is introduced in [9]. In [9] the authors 

describe ClockWork Recurrent Neural Networks which modify the RNN so that subsets of 

the neurons compute at different speeds. A detailed comparison of different RNN architec-

tures is provided in [10]. 

2.9 LSTMs in Predictive Business Process Monitoring 

The state-of-the-art approaches [1][21] for predictive business process monitoring with 

LSTMs use one-hot encoding to convert the prefixes of traces into feature vector matrices 

which are used to train and later query the LSTM model. Each event in the prefix 𝑝𝑘(𝜎) is 

converted into a vector 𝑔𝑘 = (𝑔𝑘1, 𝑔𝑘2, . . , 𝑔𝑘𝑗) where 𝑗 = |𝐴| and 𝐴 is the set of all possible 

activities (a.k.a. the activity alphabet). Every value in the vector gets set to 0 except for the 

value representing the event which occurred at that specific step of the suffix which is set to 

1.  

Given the set of all possible activities 𝐴 = {𝑎1, 𝑎2, . . , 𝑎𝑛} the ordering function idx : 𝐴 →
{1, . . , |𝐴|} ⊆ 𝑁 determines the indexes of the activities which are used to navigate in the 

feature vector matrix. E.g. if the set of all possible activities in a trace is 𝐴 = {𝑎, 𝑏, 𝑐} then 

idx : 𝐴 → {1,2,3} and 𝑖𝑑𝑥(𝑎) = 1, 𝑖𝑑𝑥(𝑏) = 2, 𝑖𝑑𝑥(𝑐) = 3. For illustration let us examine 

the following example of one hot encoding of a prefix 𝑝𝑘(𝜎), which is illustrated in Table 

2. If 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and the prefix 𝑝3(𝜎) = ⟨𝑐, 𝑑, 𝑎⟩, then the one-hot encoding of this 

prefix would be a matrix of size 𝑘 ∗ |𝐴| where 𝑘 represents the length of the prefix. 

During the training phase of the LSTM, the encoded traces are used to build the model. 

After training the LSTM, an inference algorithm is used to query the model and predict the 

suffix. Algorithm 1 describes the inference algorithm. The function takes as parameters the 

prefix 𝑝𝑘(𝜎), the trained LSTM model 𝑙𝑠𝑡𝑚 and a variable 𝑚𝑎𝑥 which represents the max-

imum number of iterations allowed, i.e. the maximum number of activities predicted . The 

𝑚𝑎𝑥 parameter is usually set to 𝑚𝑎𝑥𝐿𝑒𝑛 + 𝑙𝑒𝑛(𝑝𝑘(𝜎)) where 𝑚𝑎𝑥𝐿𝑒𝑛 represents the 

length of the longest trace in the log. Firstly the algorithm initializes a counter 𝑖 = 0 which 

counts the iterations the algorithm has made or in other words how many activities it has 

already predicted (line 2). In line 3 the trace that will eventually be returned is initialized as 

𝑝𝑘(𝜎). In line 4 the algorithm starts a loop which predicts a new activity at every iteration 

until the end event is predicted or the maximum number of iterations is reached. Inside the 

loop, 𝑝𝑘(𝜎) is one-hot encoded as described previously (line 5). The encoded trace is then 

used to query the LSTM model which outputs a vector of probabilities over the set of all 

possible activities 𝐴 (line 6). In line 7 the most probable next symbol is chosen and then 

Table 2 Examples of One-Hot Encoding 

 𝑎 𝑏 𝑐 𝑑 𝑒 

𝜀1 0 0 1 0 0 

𝜀2 0 0 0 1 0 

𝜀3 1 0 0 0 0 

 



15 

 

concatenated to 𝑡𝑟𝑎𝑐𝑒 (line 8). If the end symbol is predicted or the maximum number of 

allowed iterations is reached then the inference algorithm returns the full trace (line 11). 

The results are evaluated by comparing the predicted suffixes to the actual suffixes. The 

most used evaluation method in this scope is the Damerau-Levenshtein similarity metric 

described in detail in [12]. Damerau-Levenshtein distance is a metric which is computed 

based on the minimum number of changes necessary to transform one trace into the other. 

There are four kinds of operations allowed which include deleting, adding or substituting an 

event and switching the positions of two consecutive events.  

2.10 Complex Symbolic Encoding 

Although the previously described encoding method works well in cases where the payload 

of the activities is arbitrary, it quickly hits its limits when considering the payload of activ-

ities is necessary. The authors of [14] propose two complex sequence encodings to alleviate 

this problem. The first encoding is index-based and is directly expanding the simple se-

quence encoding discussed earlier by mapping additional features to the feature vector. This 

approach divides the data associated with traces into static and dynamic data. Static data 

(a.k.a. trace attributes) is the same for every event in a trace. Dynamic data (a.k.a. event 

attributes) are dynamic and change from event to event. The resulting vector for a trace 𝜎𝑘 

is the following: 

𝑔𝑘 = (𝑠𝑘
1, . . , 𝑠𝑘

𝑢, 𝑒𝑣𝑒𝑛𝑡𝑘1, 𝑒𝑣𝑒𝑛𝑡𝑘2, . . , 𝑒𝑣𝑒𝑛𝑡𝑘𝑚, ℎ𝑘1
1 , ℎ𝑘2

1 , . . ℎ𝑘𝑚
1 , . . , ℎ𝑘1

𝑟 , ℎ𝑘2
𝑟 , . . , ℎ𝑘𝑚

𝑟 )   (11) 

(taken from [11]) 

Where 𝑠𝑘
𝑢  represents static features and ℎ𝑘

𝑟   dynamic features. The second encoding pro-

posed in [14] is based on Hidden Markov Models but is not discussed here because it is out 

of the scope of this thesis.  

2.11 Breadth-First Beam-Search 

Beam-Search is a heuristic based search algorithm designed to alleviate the problems which 

arise with large search spaces. A version of Beam-Search, the Breadth-First Beam-Search 

uses breadth-first2 search to build its exploration graph and then prioritizes the nodes based 

on some heuristics. But unlike the simple breadth-first search, it only keeps a predefined 

                                                 
2 Breadth-first means the search-space exploration is started from the root and all the neighboring (i.e. on the 

same level) nodes are explored first, before moving on to the next level. 

Algorithm 1: Inference algorithm for predicting the suffix of 𝑝𝑘(𝜎) 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PredictSuffix(𝑝𝑘(𝜎), 𝑙𝑠𝑡𝑚, 𝑚𝑎𝑥) 

    𝑖 = 0 

    𝑡𝑟𝑎𝑐𝑒 = 𝑝𝑘(𝜎) 

    𝐝𝐨 

        𝑡𝑟𝑎𝑐𝑒_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = 𝑒𝑛𝑐𝑜𝑑𝑒(𝑡𝑟𝑎𝑐𝑒) 

        𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙_𝑝𝑟𝑜𝑏𝑠 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑁𝑒𝑥𝑡𝑆𝑦𝑚𝑏𝑜𝑙𝑠(𝑙𝑠𝑡𝑚, 𝑡𝑟𝑎𝑐𝑒_𝑒𝑛𝑐𝑜𝑑𝑒𝑑) 

        𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙 = 𝐺𝑒𝑡𝑆𝑦𝑚𝑏𝑜𝑙(𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙_𝑝𝑟𝑜𝑏, 𝑡𝑟𝑎𝑐𝑒_𝑒𝑛𝑐𝑜𝑑𝑒𝑑) 

        𝑡𝑟𝑎𝑐𝑒 = 𝑡𝑟𝑎𝑐𝑒 ∙ 𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙 

        𝑖 = 𝑖 + 1 

    𝐰𝐡𝐢𝐥𝐞 (not 𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙 == 𝑒𝑛𝑑_𝑠𝑦𝑚𝑏𝑜𝑙) and (𝑖 < 𝑚𝑎𝑥) 

    𝐫𝐞𝐭𝐮𝐫𝐧 𝑡𝑟𝑎𝑐𝑒 

𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 

Figure 4 Pseudo-code for Standard Inference Algorithm (source [2]) 

 



16 

 

number of nodes as candidates, making it a computationally much lighter approach. These 

characteristics are essential for PBPM as it aims at making predictions at run time. 

Algorithm 2 starts by initializing two priority queues3 𝑞1 and 𝑞2 (lines 1 and 2). 𝑞1 is then 

initialized with the initial node (line 3). In the case of process prediction the initial node 

would indicate a prefix 𝑝𝑘(𝜎). The algorithm then starts an iteration over the nodes stored 

in 𝑞1 by starting from the most promising4 node (line 6). If the currently active node is the 

solution then it is returned (line 8), otherwise the node is expanded (line 10) and the elements 

are added to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (line 10). After all the elements from 𝑞1 are expanded, 𝑏𝑒𝑎𝑚𝑆𝑖𝑧𝑒 

most promising next nodes from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 are added to 𝑞2 (line 11). The priority queue 

𝑞1 is then repopulated with the elements from 𝑞2 (line 13) and 𝑞2 is emptied (line 14). The 

process is then repeated until the solution is found. 

  

                                                 
3 In computer science, a priority queue is an abstract data structure where every element is associated with a 

priority. The priority queue serves elements starting with element associated with the highest priority.  
4 By most promising, we mean the node which has the highest priority. 

Algorithm 2: Breath First Beam Search 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

𝑞1 = PriorityQueue() 

𝑞2 = PriorityQueue() 

𝑞1. put(initial node) 

𝐰𝐡𝐢𝐥𝐞 solution is not found 𝐝𝐨 

    𝐰𝐡𝐢𝐥𝐞 𝑞1 is not empty 𝐝𝐨 

        𝑛𝑜𝑑𝑒 =  𝑞1. get()         

        𝐢𝐟 𝑛𝑜𝑑𝑒 is solution 𝐭𝐡𝐞𝐧 

            return 𝑛𝑜𝑑𝑒 

        𝐞𝐥𝐬𝐞 

        𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑛𝑜𝑑𝑒. expand() 

        𝑞2. put(𝑏𝑒𝑎𝑚𝑆𝑖𝑧𝑒 𝑏𝑒𝑠𝑡 elements from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) 

    𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

    𝑞1 = 𝑏𝑒𝑎𝑚𝑠𝑖𝑧𝑒 best elements from 𝑞2 

    𝑞2 = 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒() 

𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

Figure 5 Pseudo-code for the Beam Search Algorithm (source [2]) 

 



17 

 

3 Related Work 

The following section covers the state-of-the-art research papers concerning predictive busi-

ness process monitoring which are considered relevant in the scope of this thesis. The related 

work is categorized as follows: first a chronologically ordered overview of the early ap-

proaches in predicting business process outcomes is given. Secondly, we explore the work 

related to prediction of trace suffixes. Thirdly we describe the methods which use deep 

learning and finally the current state-of-the-art in leveraging a-priori knowledge during the 

prediction of trace outcomes is described in depth.  

3.1 The Early Approaches 

Most of the early works on predictive process monitoring focus on predicting binary out-

comes. [26][27][28] use decision trees to predict whether an ongoing trace accommodates 

a certain Service Level Agreement. [29] uses Support Vector Machines to predict the final 

performance of an ongoing trace, i.e. whether or not the trace will be executed continually. 

[30] tackles the same prediction task with a clustering based approach and [31] with decision 

trees. The next distinguishable wave of research is predicting the remaining cycle time of 

an ongoing trace. [32] uses boosted regression, [33] proposes a prediction technique based 

on Hidden Markov Models, [34] uses annotated transition systems and [35][36] use predic-

tive clustering trees. The remaining cycle time prediction has continually received a lot of 

attention in the research community; some of the later work include 

[38][39][40][41][42][43][44]. Also a noticeable sub-cluster of research is predicting binary 

outcomes in the form of LTL-violations – [45] uses decision trees while [11][48] use ran-

dom forests.  

3.2 Predicting Next Events 

The work done in [37] kick-started another wave of predictive monitoring techniques – the 

prediction of next events. The authors of [37] propose an approach based on Hidden Markov 

Models with sequence alignment to predict a single next event of an ongoing trace. Other 

approaches quickly followed. In [23] a clustering based approach with a sliding window 

model is proposed for predicting the next activity and its attributes. A predictive clustering 

tree (PCT) is constructed similarly to standard decision trees by choosing a test at each 

internal node given an evaluation function. In order to predict multiple target variables at 

once, the clusters are identified based on both the descriptive space and the target space 𝑋, 𝑌. 

In [24] the authors propose an approach based on Markov chains to estimate the probability 

of a potential future task happening in an ongoing trace. The paper also provides an analysis 

and discussion about the problem of dealing with loops and parallelism in a business process 

model.  

The authors of [25] tackle a more ambitious prediction task of predicting the complete suffix 

on an ongoing trace. With the motivation of predicting the cash flow of a Dutch hospital, a 

method using a shortest path algorithm over a process graph is proposed. Their work is 

separated into four prediction tasks: a) a classification model is applied to a prefix 𝑝𝑘(𝜎) to 

predict the case outcome 𝑌 b) a function 𝑐𝑜𝑠𝑡(𝑌) is applied to the outcome to determine its 

cost c) given a process graph 𝐺 the shortest path from 𝜋𝐴(𝑒𝑘) to 𝑌 is mined – it is important 

to note that the shortest path is mined from the current activity, not from the whole prefix 

d) the mined suffix 𝑠𝑘(𝜎) then determines the duration of the trace. The authors also address 

a problem of three kinds of noise in their data that were encountered during the experimental 

setup. Namely sequence noise which are deviances in the structure of the control-flow, du-

ration noise i.e. errors in the timestamps of the activities, and human noise which are human 



18 

 

made errors e.g. incorrect diagnosis in a care taking process. Our approach differs from [25] 

in the sense that we predict next events incrementally until the end of the trace while [25] 

works the opposite way, starting the predictions from the end of the trace. The authors of 

[18] use Probabilistic Finite Automata (PFA)[19] to predict the next activity of an ongoing 

trace. The paper introduces a modification of the PFA based on Bayesian regularization 

which alleviates the overfitting problem characteristical of regular PFA. The Bayesian 

framework enables to take into account that extreme probabilities are unlikely to happen 

and ensures a smoother estimation of probabilities.  

3.3 Predicting Next Events Using Deep Learning 

The method introduced in [20] is the first in the field to use recurrent neural networks with 

LSTM cells for predicting the next event of a running trace. Most of the prior work before 

[20] is explicitly reliant on a process model in giving estimations about the future activities. 

The use of deep learning enables to leverage the actual execution history of the underlying 

business process. Although the results are not ground breaking, this paper gives a kick start 

for using deep learning in predictive monitoring and explores different neural network ar-

chitectures suitable for this scope. The authors also investigate the inclusion of the resource 

attribute using a simple symbolic encoding both in the predictors and the predictands. The 

method used is the following: the activity alphabet size |𝐴| is expanded by concatenating 

every element in 𝐴 with every element in the attribute vocabulary 𝑅 (in this case the resource 

attribute). E.g. if |𝐴| = 5 and |𝑅| = 3 then the final alphabet size used for training the RNN 

would have size 5 ∗ 3 = 15. This enables to additionally predict the next resource of an 

ongoing trace and it showed that including the resource attribute in the predictor increases 

the precision of predicting the next event. This conclusion is also one of the underlying 

motivations for this master thesis. Although, differently from [20], we use complex symbolic 

encoding for including an additional attribute. 

The work presented in [21] is a direct continuation of [20] where the authors explore various 

neural network architectures and parameters and take counter measures to prevent over-

fitting [22], a well known problem in the world of deep learning. The method is expanded 

to predict suffixes, and encoding of temporal information is explored. The paper also in-

cludes a method for visually representing what the neural network has learned. The surpas-

sing results demonstrate the usefulness of using deep learning in predictive business process 

monitoring and motivates this thesis to also use deep learning. 

The use of deep learning is further exploited in [1] where the authors investigate how 

LSTMs perform under different prediction tasks, event logs and prediction points. A method 

for predicting the next activity simultaneously with its timestamp is proposed. Two func-

tions 𝑓𝑎
1 and 𝑓𝑡

1 are learned to predict the next most probable activity and its timestamp 

accordingly such that 𝑓𝑎
1(𝑝𝑘(𝜎)) = 𝑝1(𝑠𝑘(𝜋𝐴(𝜎))) and 𝑓𝑡

1(𝑝𝑘(𝜎)) = 𝑝1(𝑠𝑘(𝜋𝑇(𝜎))) 

where 𝜋𝐴(𝑒) = 𝐴 is a function that assigns an activity to an event and 𝜋𝑇(𝑒) = 𝑇 is a func-

tion that assigns a timestamp to an event. The neural network is trained and later queried by 

encoding the prefixes using complex symbolic encoding that allows to include also time-

related features into the matrix. The authors of [1] describe an algorithm where every event 

of a trace is encoded into a vector with size |𝐴| + 3 where the extra three slots represent the 

time increase since the last occurred activity, the time since midnight5 and the time since the 

beginning of the week6 respectively. This approach enables the prediction of time-related 

                                                 
5  The time since midnight allows to differentiate business hours from non-business hours. 
6 The time since the beginning of the week allows to distinguish the weekday. 



19 

 

information. The generalized approach is then empirically compared against ad-hoc solu-

tions at different prediction points. The experiments prove once again the usefulness of deep 

learning in predictive monitoring. We highlight the fact that differently from the approach 

proposed in this thesis, none of the previously described approaches takes into account a-

priori knowledge while making predictions.  

3.4 Predicting with A-priori Knowledge 

To the best of our knowledge the only approach that leverages a-priori knowledge while 

making predictions is introduced in [2]. Therefore this work is considered as the baseline 

for this thesis and described in depth. The authors base their work on [1] and use Recurrent 

Neural Networks with LSTM cells as a prediction model for predicting the suffix of an on-

going trace. Two methods are proposed to increase the accuracy of the current state of the 

art. The first method called NoCycle tackles the problem of cyclic traces which cause the 

prediction of unnaturally long cyclic suffixes, i.e. the prediction algorithm getting caught in 

a loop. The second method called A-Priori is a further extension of the latter and allows to 

take into account a-priori knowledge in the form of LTL rules.  

The research conducted by the authors of [2] and [1] showed that the state of the art ap-

proaches work less efficiently on logs which contain traces with high number of cycles. The 

problem is traced down to the fact that frequent presence of cycles causes the RNN to devi-

ate from the correct continuation of probability distributions, i.e. the RNN gets stuck in 

always predicting the first element of the cycle after the last element of the cycle. The No-

cycle method offers remedy to this problem by weakening the back-loop probability. In the 

 

Figure 7 Probability Estimation with Cycles Present 

 

 

Figure 6 Probability Estimation with Cycles Present and NoCycle Algorithm Applied 

 



20 

 

light of this an extension is proposed to Algorithm 1 by the following means: for every 

prefix 𝑝𝑘(𝜎) the algorithm checks if there are more than one consecutive cycles 𝐶𝑛 =
⟨𝑎𝑐1

, . . , 𝑎𝑐𝑛
⟩ present such that 𝑎𝑐𝑛

= 𝑎𝑘. After the idendification of cycles, the probability 

of  𝑎𝑐1
 occuring is decreased by 

𝑃(𝑎𝑐1)

𝑒𝑗  where 𝑗 is the number of consecutive occurences of 

𝐶𝑛. Figure 6 visualizes how the next symbol is normally chosen in the presence of consec-

utive cycles while Figure 7 depicts how the NoCycle algorithm alters the decision making. 

The pseudo-code of the NoCycle algorithm is presented in Algorithm 3. The proposed algo-

rithm is identical to Algorithm 1 with the exception of line 7, where the weakening function 

is applied to the probabilities returned by the LSTM.  

The A-Priori algorithm is based on Algorithm 3 to estimate the probabilities of next activi-

ties, but instead of predicting just the most probable suffix, it explores a set of possible 

suffixes and chooses the most probable suffix that is compliant with the a-priori knowledge 

available, represented in the from of LTL constraints. In order to avoid computational over 

flow by exploring all the possible suffixes, the beam search algorithm is applied. This allows 

to prune suffixes which are heuristically not promising. Algorithm 4 depicts the inner-work-

ings of the A-Priori algorithm. It takes as parameters the prefix 𝑝𝑘(𝜎), the trained LSTM 

model 𝑙𝑠𝑡𝑚, an integer value 𝑚𝑎𝑥 representing the maximum number of iterations allowed, 

beam size 𝑏𝑆𝑖𝑧𝑒 which determines how many possible next symbols are returned at each 

explored node, 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 representing the maximum number of branches explored at the 

same time, and the available a-priori knowledge 𝐾(𝜎). On line 2 a counter is initialized to 

determine the number of iterations conducted. On line 3 a priority queue for storing 

𝑚𝑎𝑥𝑆𝑖𝑧𝑒 unexplored branches is initialized with the initial prefix 𝑝𝑘(𝜎). The algorithm then 

starts to iterate over the priority queue until a conformant trace is found or the maximum 

number of iterations is reached (line 4). For each trace in 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠, 𝑏𝑆𝑖𝑧𝑒 next possible 

activities are predicted and stored in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑥𝑡 as a concatenation of the prefix and 

the predicted activity (line 5). This function is carried out by Algorithm 3, where the 

𝑛𝑜𝑐𝑦𝑐𝑙𝑒 algorithm is used to prevent the problems caused by cyclic traces. 𝑐𝑎𝑛𝑑𝑖𝑡𝑎𝑡𝑒_𝑛𝑒𝑥𝑡 

is a |𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠| ∗ 𝑏𝑆𝑖𝑧𝑒 sized priority queue out of which the 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 most probable traces 

are obtained (line 6). The algorithm then iterates over 𝑡𝑜𝑝_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (line 7). If the last 

symbol of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is not the end symbol then it is added to the 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠 priority queue 

(lines 8-9) and in the case the last symbol is 𝑒𝑛𝑑_𝑠𝑦𝑚𝑏𝑜𝑙, a check is conducted on 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 to see whether or not it is compliant with the a-priori knowledge 𝐾(𝜎) (line 11). 

Algorithm 3: NoCycle Extension for Algorithm 1 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PredictSuffixNoCycle(𝑝𝑘(𝜎), 𝑙𝑠𝑡𝑚, 𝑚𝑎𝑥) 

    𝑖 = 0 

    𝑡𝑟𝑎𝑐𝑒 = 𝑝𝑘(𝜎) 

    𝐝𝐨 

        𝑡𝑟𝑎𝑐𝑒_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = 𝑒𝑛𝑐𝑜𝑑𝑒(𝑡𝑟𝑎𝑐𝑒) 

        𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙_𝑝𝑟𝑜𝑏 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑁𝑒𝑥𝑡𝑆𝑦𝑚𝑏𝑜𝑙𝑠(𝑙𝑠𝑡𝑚, 𝑡𝑟𝑎𝑐𝑒_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 ) 

        𝑤𝑒𝑎𝑘_𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙_𝑝𝑟𝑜𝑏 =  𝑤𝑒𝑎𝑘𝑒𝑛𝑃𝑟𝑜𝑏(𝑡𝑟𝑎𝑐𝑒, 𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙_𝑝𝑟𝑜𝑏) 

        𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙 = 𝐺𝑒𝑡𝑆𝑦𝑚𝑏𝑜𝑙(𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙_𝑝𝑟𝑜𝑏, 𝑡𝑟𝑎𝑐𝑒_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 ) 

        𝑡𝑟𝑎𝑐𝑒 = 𝑡𝑟𝑎𝑐𝑒 ∙ 𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙 

        𝑖 = 𝑖 + 1 

    𝐰𝐡𝐢𝐥𝐞 (not 𝑛𝑒𝑥𝑡_𝑠𝑦𝑚𝑏𝑜𝑙 == 𝑒𝑛𝑑_𝑠𝑦𝑚𝑏𝑜𝑙) and (𝑖 < 𝑚𝑎𝑥) 

    𝐫𝐞𝐭𝐮𝐫𝐧 𝑡𝑟𝑎𝑐𝑒 

𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 

Figure 8 Pseudo-code for the NoCycle Algorithm (source [2]) 

 



21 

 

If that is the case then 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is returned (line 12). If no trace is returned the iterations 

counter 𝑖 is increased (line 16) and the next 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 paths are explored. 

Algorithm 4: A-Priori Algorithm 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 Apriori(𝑝𝑘(𝜎), 𝑙𝑠𝑡𝑚, 𝑚𝑎𝑥, 𝑏𝑆𝑖𝑧𝑒, 𝑚𝑎𝑥𝑆𝑖𝑧𝑒, 𝐾(𝜎)) 

    𝑖 = 0 

    𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠 = {𝑝𝑘(𝜎)} 

    𝐰𝐡𝐢𝐥𝐞 𝑘 ≤ 𝑚𝑎𝑥 and not empty(𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠) 𝐝𝐨 

        𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑥𝑡 = predictPrefNextSymbols(𝑙𝑠𝑡𝑚, 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠, 𝑏𝑆𝑖𝑧𝑒) 

        𝑡𝑜𝑝_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = topRank(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑛𝑒𝑥𝑡, 𝑚𝑎𝑥𝑆𝑖𝑧𝑒) 

        𝐟𝐨𝐫 𝐚𝐥𝐥 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 in 𝑡𝑜𝑝_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝐝𝐨 

            𝐢𝐟 last_symbol(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) <> 𝑒𝑛𝑑_𝑠𝑦𝑚𝑏𝑜𝑙 𝐭𝐡𝐞𝐧 

                push(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠) 

            𝐞𝐥𝐬𝐞 

                𝐢𝐟 check(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝐾(𝜎)) 𝐭𝐡𝐞𝐧 

                    𝐫𝐞𝐭𝐮𝐫𝐧 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 

                𝐞𝐧𝐝 𝐢𝐟 

            end if 

        𝐞𝐧𝐝 𝐟𝐨𝐫 

        𝑖 = 𝑖 + 1 

    𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞  

𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 

Figure 9 Pseudo-code for the A-Priori Algorithm (source [2]) 

 



22 

 

4 The Problem 

Predicting the future unfolding of an ongoing trace has attracted a lot of attention amongst 

the PBPM community in the past decade. The reason behind it is the emergence of accurate 

system tracking software and computers capable of high-level data processing. This has 

created the conditions to generate valuable insights about the future of organizations. Hav-

ing a solid understanding of the future unfolding of a company business flow can help its 

managers with budget planning, resource allocation and taking timely counter measures to 

a possible mishap in the business flow. Taking into consideration that deviations inevitably 

happen in small and large organizations, we can assume that some conditions will often 

emerge that could alter the normal execution. For example a hospital could have a technical 

issue which leads to one or many surgery rooms to be out of order. This could cause signif-

icant delays in the treatment process of a patient or have an effect on the control-flow of 

parallel executed traces. One might also think of a situation where new regulatory require-

ments have been suddenly forced to take effect, e.g. an additional analysis has been deemed 

obligatory before a certain treatment. This may result in substantial deviations in the up-

coming control-flow. Unprepared, the organization under question may end up in a “bottle-

neck” situation where the current financial or resource planning is not viable. This could 

mean that the organization is not able to fulfil its operational goals or obligations. In the 

case of a hospital this could mean a patient not receiving a treatment in time, although, when 

leveraging the freshly emerged knowledge in the course of predictive monitoring, it would 

be possible to foresee the possible unwanted culminations. Realizing the fact that often times 

this type of knowledge emerges at runtime means that an already trained predictive model 

would not be able to adapt to the new situation. That is why a solution for injecting a-priori 

knowledge to the predictive model at runtime is necessary. The solution provided in [2] is a 

great kick start to offer remedy to this problem. The proposed approach is able to leverage 

a-priori knowledge on the control-flow of an ongoing business case and shows the potential 

of this type of techniques.  

Now let us consider another example in the hospital scenario. A hospital worker (a resource 

from the perspective of a business process) suddenly being sick would  mean a temporary 

unavailability of the resource. This means that the activities usually carried out by this 

worker have to be carried out by another worker. This could have a major impact on the 

future resource allocation and possibly affect the control-flow causing unexpected situations 

to occur. By ruling out the usage of the prediction of the unavailable resource it would be 

possible to forecast these situations. The problem lies in the fact that this kind of knowledge 

is not reflected in the control-flow and therefore can not be leveraged by using the approach 

introduced in [2]. Currently there exists no solution which would allow to leverage multi-

perspective knowledge while making predictions. This leads us to research question 1. 

RQ1: How does leveraging multi-perspective a-priori knowledge affect the prediction ac-

curacy of multi-perspective sequences? 

In the course of answering research question 1, another unexplored area revealed itself. Alt-

hough experiments conducted in [20] explore how the inclusion of the resource attribute in 

the predictor affects the prediction accuracy, they do so by concatenating the resource with 

the activity, though still remaining in the scope of simple symbolic sequence encoding. The 

work conducted in this paper explores the same area using complex symbolic encoding 

which leads us to research question 2. 

RQ2: How does the inclusion of an additional categorical data attribute to the predictor 

using complex symbolic sequence encoding affect the prediction accuracy? 



23 

 

5 Conceptual Framework 

 

Table 3 Conceptual Framework 

Predictor 

Category Explanation 

Control-Flow  

Control-Flow Sequence of events 

Payload  

Timestamps Timestamps attached to individual activities 

Case Attributes Static attributes attached to a trace which remain the same throughout a case 

Event Attributes Dynamic attributes attached to individual events 

Derived values A sequence of values derived from existing attributes 

Intercase  

Intercase Features Features related to more than one concurrent trace, e.g. the number of cases run-

ning concurrently 

Predictand 

Category Explanation 

Control-Flow  

Next Activity A single next activity of the ongoing trace 

Sequence of Next Activities The entire sequence of next events until the end of the trace 

Binary Case Outcome The binary end result of a case based on the control-flow, e.g. whether or not a 

loan is granted 

Categorical Case Outcome The categorical end result of a case based on the control-flow 

Payload  

Categorical Sequence A sequence of categorical event attributes 

Continuous Sequence A sequence of continuous event attributes 

Binary Case Outcome The binary end result of a case based on an attribute or a combination of attrib-

utes. i.e. this can be any yes or no question which can be answered based on the 

payload 

Specific Categorical Value A categorical value of a specific attribute belonging to a specific event, e.g. what 

is the diagnosis of a particular patient on a particular analysis going to be 

Specific Continuous Value A numerical value of a specific attribute belonging to a specific event 

Next Timestamp A single timestamp of the next event 

Remaining cycle time The remaining cycle time until the end of the trace 

Sequence of timestamps The sequence of timestamps corresponding to the predicted event sequence 

A-priori 

Category Explanation 

Control-Flow  

LTL Constraints Constraints over the control-flow expressed with LTL rules, e.g. activity A has 

to be followed by activity B 

Intercase Constraints Constraints spanning over more than one trace 

Payload  

Timestamp Constraints Constraints over timestamps, e.g. activity B has to happen within 600 seconds 

after activity A 

Case Attribute Constraints Constraints over case attributes, e.g. a patient who is older than 70 years has to 

undergo analysis C 

Event Attribute Constraints Constraints over event attributes, e.g. activity A has to be performed by resource 

C 

Aggregate Intercase Constraint  Constraints spanning over the complete event log, e.g. the waiting time between 

two events should be less than 25 minutes 

Concurrent Trace Constraints Constraints on a data value over concurrent traces, e.g. a resource can not be 

allocated to multiple cases simultaneously 

Multi-perspective  

MP-Declare Constraints MP-Declare constraints are a combination of control-flow and payload con-

straints.  

 



24 

 

When talking about predictive process monitoring with a-priori knowledge, we can identify, 

besides the type of information we want to leverage for learning the predictive model, and 

what we want to predict, also the type of a-priori knowledge we want to consider. Moving 

into the multi-perspective domain, taking into account not only the control-flow, but also 

the payload, further increases the number of possible scenarios that can be considered.  

In this section we provide a conceptual framework including all these different scenarios 

which unbundles the different possible conditions and is explained in Table 3. Namely, we 

have defined 3 dimensions – the predictor, which is the type of data used for building the 

prediction model, the predictand, which is the type of prediction being made and a-priori, 

which represents the type of a-priori knowledge applied. Combinations of the first two di-

mensions are used for different prediction tasks. Usually, the predictor type matches the 

predictand type, e.g. when predicting the sequence of next activities then work flow is used 

as the predictor, when predicting the next timestamp, timestamps are used as predictors, and 

so on. Although it is difficult to predict a predictand without the corresponding predictor, 

often times a combination of predictors are used to predict a single predictand, e.g. adding 

case attributes to the control-flow predictor could significantly boost the prediction accuracy 

when predicting the sequence of next activities. On top of the possible combinations origi-

nating from the predictor and predictand dimensions, we can apply the different types of a-

priori knowledge defined in Table 3. In this light, we can imagine the whole conceptual 

framework as a three-dimensional hypercube. In this thesis we will focus on a specific point 

of this hypercube where we use: 

1. as predictors, the control-flow together with an event attribute, 

2. as predictands, the sequence of next activities and a categorical sequence  associated 

to these activities, 

3. and as a-priori, MP-Declare constraints spanning over the predictands. 

We also compare our work against the work done in [2] which can be placed in the hyper-

cube as follows: 

1. as predictors, the control-flow is used, 

2. as predictans, the sequence of next activities is used, 

3. and as a-priori, LTL constraints are used. 



25 

 

6 Architecture of the Solution Proposed 

In this section a solution is proposed which enables to leverage multi-perspective a-priori 

knowledge on top of an already trained neural network. This is a direct extension for the 

work done in [2], that leverages a-priori knowledge on the control-flow in the form of LTL-

rules. It is important to stress again the fact that similarly to [2] we propose a solution that 

enables to leverage knowledge on top of an already trained neural network. This is necessary 

due the fact that a-priori knowledge is dynamic and could change from case to case. Re-

training the neural network for each prediction would quickly lead to scalability issues. 

6.1 Predicting an Additional Categorical Attribute 

Since we are dealing with sequential predictions, the first milestone for leveraging multi-

perspective a-priori knowledge is to additionally predict the data attribute we wish to apply 

a-priori knowledge to. In this thesis we focus on the resource attribute. Complex symbolic 

encoding (see 2.10)  is used to map the additional attribute to the event feature vector used 

for training the LSTM and later querying it. We use an LSTM architecture with one shared 

layer and two single task layers as visualized in Figure 10. The proposed LSTM architecture 

outputs two probability distributions for the activity and resource alphabets respectively. 

The prediction of an additional categorical attribute is also possible with an LSTM architec-

ture that outputs only one sequence. Namely the activity and data attribute alphabets can be 

concatenated, creating a unified alphabet. Though, a high number of categorical values 

could rapidly result in a state space explosion. In theory, having two separate sequences, 

sets the foundation for a more scalable solution.  

6.2 Beam-Search with Data Payload 

Having two separate probability distributions emerges as a problem when applying the 

Beam search algorithm for exploring the prediction graph. In a simple scenario the algorithm 

always explores the element with the highest probability first, then the element with the 

second highest probability and so on. Following the same linear pattern with two separate 

probability distributions would leave neglected the different possible combinations of the 

two alphabets. To tackle this problem, we create a probability matrix with size |𝐴| ∗ |𝑅|, 
where 𝐴 and 𝑅 are the activity and resource alphabets respectively. The values in the matrix 

 

Figure 10 LSTM Architecture of the Proposed Solution 

 



26 

 

represent the sum of the natural logarithms of the probabilities7. Mathematically this can be 

expressed as follows: 

𝑃(𝑎𝑖𝑟𝑗) = ln(𝑃(𝑎𝑖)) + ln(𝑃(𝑟𝑗))   (12) 

The beam size number of elements of the probability matrix are then explored decreasingly 

starting from the most probable activity-resource combination. Table 4 depicts a probability 

matrix of size 3 ∗ 5 = 15 where probabilities are ordered decreasingly starting from the 

upper left corner. The grey cells represent the 𝑏𝑒𝑎𝑚 𝑠𝑖𝑧𝑒 = 3 elements which are explored 

by the beam search algorithm. We can see how this approach removes the linearity and 

explores the search space in a more sophisticated way. The same approach can easily be 

expanded to multiple data attributes by expanding the probability space with the product of 

all alphabet sizes under consideration.  

A further visualization of how the two separate probability distributions are combined can 

be found in Figure 11. The blue circles represent the activity sequence of a prefix 𝑝𝑘(𝜎) and 

the green circles represent the resource sequence of the same prefix. 

6.3 Multi-perspective Knowledge Expression 

For expressing multi-perspective a-priori knowledge, we propose the usage of MP-Declare. 

Like mentioned earlier (see 2.5) it is a declarative process modelling language which enables 

to specify constraints over traces including constraints about data attributes. The language 

is suitable to represent a-priori knowledge taking into consideration control-flow and pay-

loads. It indeed does not create a “closed world” effect where the prediction model can only 

choose between the specified behaviour. MP-Declare merely states what behaviour is not 

                                                 
7 Instead of multiplying the simple probabilities, we calculate the formula in the logarithmic space to avoid 

computational over-flow due to the recursive dynamics of the inference algorithm. 

 

Figure 11 Node Expansion with Data Payload 

 

Table 4 Probability Matrix for Beam-Search 

 𝑷(𝒂𝟏) 𝑷(𝒂𝟐) 𝑷(𝒂𝟑) 𝑷(𝒂𝟒) 𝑷(𝒂𝟓) 

𝑷(𝒓𝟏) 𝑃(𝑎1𝑟1) 𝑃(𝑎2𝑟1) 𝑃(𝑎3𝑟1) 𝑃(𝑎4𝑟1) 𝑃(𝑎5𝑟1) 

𝑷(𝒓𝟐) 𝑃(𝑎1𝑟2) 𝑃(𝑎2𝑟2) 𝑃(𝑎3𝑟2) 𝑃(𝑎4𝑟2) 𝑃(𝑎5𝑟2) 

𝑷(𝒓𝟑) 𝑃(𝑎1𝑟3) 𝑃(𝑎2𝑟3) 𝑃(𝑎3𝑟3) 𝑃(𝑎4𝑟3) 𝑃(𝑎5𝑟3) 

 



27 

 

allowed and guides the prediction model to more accurate predictions by rejecting non com-

pliant predictions. Note that MP-Declare can still be used for specifying only simple 

knowledge about the control-flow. The language also supports time interval specifications, 

which enables to set specific constraints on the timestamps of activities. These characteris-

tics make MP-Declare a scalable solution for expressing complex types of a-priori 

knowledge.  Leveraging a-priori knowledge about timestamps is motivation for future work. 

6.4 Leveraging Multi-Perspective A-priori Knowledge 

We extend Algorithm 4 by replacing the LTL conformance checker module with the MP-

Declare conformance checker module. Algorithm 5 depicts the pseudo-code for the Multi-

Perspective A-priori algorithm. Instead of the simple a-priori knowledge, Algorithm 5 takes 

as a parameter the more granular knowledge 𝐾𝑀𝑃(𝜎) in the form of MP-Declare constraints. 

Similarly to Algorithm 4, a priority queue 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠 is initialized (line 3) with the initial 

prefix 𝑝𝑘(𝜎) given as input. Line 5 then expands all the traces from 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠 with 𝑏𝑆𝑖𝑧𝑒 

nodes by using the beam search algorithm adapted to multi-perspective predictions (see 6.2). 

The 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 most probable traces are then obtained (line 6). The 𝑡𝑜𝑝_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 are then 

iterated over, to check whether an end event symbol has been predicted (line 8). If the last 

symbol of the trace in 𝑡𝑜𝑝_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is not the end event symbol then it is added to the 

𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠 priority queue. If the last symbol is the end symbol, then a conformance check is 

conducted with the MP-Declare knowledge 𝐾𝑀𝑃(𝜎) (line 11). The trace is returned as the 

final prediction if the check gives a positive response (line 12). Otherwise the algorithm 

continues to explore the search space until it exhausts 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠 or reaches the maximum 

number of iterations allowed 𝑚𝑎𝑥. 

 

Algorithm 5: MP A-Priori algorithm 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 Apriori(𝑝𝑘(𝜎), 𝑙𝑠𝑡𝑚, 𝑚𝑎𝑥, 𝑏𝑆𝑖𝑧𝑒, 𝑚𝑎𝑥𝑆𝑖𝑧𝑒, 𝐾𝑀𝑃(𝜎)) 

    𝑖 = 0 

    𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠 = {𝑝𝑘(𝜎)} 

    𝐰𝐡𝐢𝐥𝐞 𝑘 ≤ 𝑚𝑎𝑥 and not empty(𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠) 𝐝𝐨 

        𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑥𝑡 = predictPrefNextSymbolsMP(𝑙𝑠𝑡𝑚, 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠, 𝑏𝑆𝑖𝑧𝑒) 

        𝑡𝑜𝑝_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = topRank(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑛𝑒𝑥𝑡, 𝑚𝑎𝑥𝑆𝑖𝑧𝑒) 

        𝐟𝐨𝐫 𝐚𝐥𝐥 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 in 𝑡𝑜𝑝_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝐝𝐨 

            𝐢𝐟 last_symbol(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) <> 𝑒𝑛𝑑_𝑠𝑦𝑚𝑏𝑜𝑙 𝐭𝐡𝐞𝐧 

                push(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠) 

            𝐞𝐥𝐬𝐞 

                𝐢𝐟 check(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝐾𝑀𝑃(𝜎)) 𝐭𝐡𝐞𝐧 

                    𝐫𝐞𝐭𝐮𝐫𝐧 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 

                𝐞𝐧𝐝 𝐢𝐟 

            end if 

        𝐞𝐧𝐝 𝐟𝐨𝐫 

        𝑖 = 𝑖 + 1 

    𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞  

𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 

Figure 12 Pseudo-code for Multi-perspective Declare Algorithm (source [2]) 

 



28 

 

7 Implementation Details 

A prototype of the proposed solution has been implemented in Python 2.7. We use the 

Keras8 library together with the Tensorflow9 framework for building the recurrent neural 

networks. Tensorflow allows parallel GPU computing and offers RNN specific functional-

ities, making it a suitable solution for online predictions where time efficiency is important. 

We train the RNNs with batch size of 20 and with the maximum number of epochs of 100.  

The conformance checker module is a separate Java application and is accessed by the 

Py4J10 library which is a gateway for accessing Java objects from a Python program. For 

checking the conformance of the a-priori knowledge, we use a lightweight adaptation of the 

Declare Analyzer [13] plugin implemented for the ProM toolkit. Originally the plugin takes 

as input an entire event log with a Declare model11 and provides an aggregated report to-

gether with a detailed analysis about the activations, fulfilments and violations of each in-

dividual Declare rule with respect to each individual trace in the event log. It also has a 

visual component for visualizing the event logs’ conformance with respect to the Declare 

model. The plugin is adapted according to the needs of Algorithm 5, i.e. the functionality is 

reduced down so it takes as input a single trace with a declare model and returns a boolean 

value representing whether or not the trace is compliant with the a-priori knowledge speci-

fied. A trace is compliant if there are no violations of the a-priori knowledge. The complete 

source code of the implementation is available in github12. 

                                                 
8 https://keras.io/   
9 https://www.tensorflow.org/  
10 https://www.py4j.org/  
11 A declare model is a xml-based document for specifying declare rules. 
12https://github.com/kaurjvpld/Incremental-Predictive-Monitoring-of-Business-Processes-with-A-priori-

knowledge  

https://keras.io/
https://www.tensorflow.org/
https://www.py4j.org/
https://github.com/kaurjvpld/Incremental-Predictive-Monitoring-of-Business-Processes-with-A-priori-knowledge
https://github.com/kaurjvpld/Incremental-Predictive-Monitoring-of-Business-Processes-with-A-priori-knowledge


29 

 

8 Evaluation 

In this section we provide a comparison of the proposed approach leveraging multi perspec-

tive a-priori knowledge against two baseline methods. The first baseline method is proposed 

in [1] and uses LSTM neural networks for predicting the suffix of an ongoing trace without 

using any a-priori knowledge. The second baseline method is [2] which uses a-priori 

knowledge only on the control-flow. Both the baseline methods are direct predecessors to 

our approach as we extend the work done in [2] and the work done in [2] is, in turn, based 

on [1]. We thoroughly examine how the three approaches perform with logs with different 

characteristics and also explore how the inclusion of an additional data attribute by training 

the RNN with complex symbolic sequences affects the prediction accuracy compared to 

only using the activity sequences. By doing this, we answer the research questions defined 

in Section 4 and reviewed here: 

RQ1: How does leveraging multi-perspective a-priori knowledge affect the prediction ac-

curacy of multi-perspective sequences? 

RQ2: How does the inclusion of an additional categorical data attribute to the predictor 

using complex symbolic sequence encoding affect the prediction accuracy? 

A similar study to the latter has been made in [20] with the difference of encoding the re-

source attribute in a simple symbolic sequence (see 4). But as stated by the authors of [20] 

the feasibility of this approach is limited as the number of resources in large organizations 

is quite high. Therefore the alphabet would quickly become a computational burden. Our 

approach treats both the activities and resources as separate sequences avoiding the explo-

sion of the alphabet size. 

8.1 Experimental Framework 

To test our approach, we defined an experimentation framework based on the three dimen-

sions of the conceptual framework defined in Section 5. The first dimension is the infor-

mation which is used for training the prediction model, i.e. the predictor. Both the baseline 

methods are being tested with a prediction model that is trained only with the control-flow 

and with a model that is trained using the control-flow together with the corresponding re-

sources; the proposed approach, instead, is only being tested with a model trained using both 

control-flow and resource information, as, by construction, it needs to be trained with com-

plex symbolic sequences. The second dimension is the predictor, for which we follow the 

same pattern as for the first dimension. For the baseline methods we predict a) only the 

sequence of activities and b) the control-flow together with the resource attribute. As for the 

proposed approach we predict the control-flow together with the resources. The third di-

mension is the presence of a-priori knowledge in the scope of which, the effect of MP-

Declare rules with different complexity and strength is explored.  

As a further aspect, we explore the effect of the activity and alphabet sizes characterizing 

the logs on the three approaches. We hypothesize that the alphabet size of the attributes has 

an effect on the performance of the multi-perspective A-priori algorithm. The idea is that 

the bigger the alphabet size the more difficult it is for the algorithm to find compliant traces 

as the search space increases. 

8.2 Event logs 

Basing our decision on the experimental framework, we use synthetic logs in our experi-

mentation, as it gives us the possibility to test our approach on logs with systematic charac-

teristics. Motivated by alphabet sizes and a-priori injection, we created 20 synthetic logs 



30 

 

with the characteristics defined in Table 5. The horizontal header represents the size of the 

activity and resource alphabets respectively, e.g. the column header 10𝑥5 indicates a log 

with activity alphabet of size 10 and resource alphabet of size 5. The vertical header repre-

sents the a-priori knowledge that is injected to the log, where 𝑊 represents a weak rule (see 

8.3) and 𝑆 represents a strong rule (see 8.3), e.g. the row header 1𝑊 indicates a log where 

1 weak rule is injected.  

The logs were generated with a prototypical tool13 which enables to generate synthetic logs 

based on multi-perspective declarative process models by generating a specified amount of 

random traces compliant with the process model. Each of the synthetic logs consists of 2000 

traces and the trace lengths vary from 9 to 17. We stress the fact that declarative models 

have an open-world assumption which means that the traces are not necessarily following a 

strict structure and have a certain level of unpredictability in them, i.e. we do not know for 

sure what trends an RNN is able to pick up from the logs.  

We additionally tested our approach on the BPI 201714 dataset to prove that the proposed 

approach is able to perform well also on a real life log. We used a small fraction of the log 

which contains 3000 traces (approximately 10% of the complete log). The activity alphabet 

size of the fraction of traces we use is 25 and the resource alphabet size is 80.  

8.3 Knowledge injection 

We aim at testing a-priori knowledge with different levels of strengths, and therefore distin-

guish two strength levels of a-priori knowledge – weak a-priori knowledge and strong a-

priori knowledge. In terms of MFOTL we define weak a-priori knowledge as of type 

𝐹𝐼(𝐴 ∧ ∃𝑥. 𝜑𝑎(𝑥)) which represents the MP-Declare template existence and the strong a-

priori knowledge as of type (𝐺(∀𝑥. ((𝐴 ∧ 𝜑𝑎(𝑥)) → 𝐹𝐼(𝐵 ∧ ∃𝑦. 𝜑𝑐(𝑥, 𝑦))))))) ∧ (𝐹𝐼(𝐴 ∧

∃𝑥. 𝜑𝑎(𝑥))) which represents the response template together with an existence template 

imposed on the activation 𝐴 with 𝜑𝑎 holding true. 

During the log generation we specified two declarative process models for each log: 

1. The first model characterizes the normal behaviour of the process and is used for 

generating 80% of the traces of the log  

2. The second model is identical to the first one, with the exception that some additional 

constraint(s) are specified which are forced to take effect in every trace. This model 

is used to generate the remaining 20% of the cases. 

We then concatenated the two sets of traces and shuffled the traces to form the log. For 

every newly formed log, we consider the additional constraints enforced in the second model 

as the a-priori knowledge. 

                                                 
13 https://github.com/darksoullock/MPDeclareLogGenerator   
14 https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b  

Table 5 Log Characteristics 

 10x2 10x5 10x20 5x5 50x5 

1W Log 1 Log 5 Log 9 Log 13 Log 17 

3W Log 2 Log 6 Log 10 Log 14 Log 18 

1S Log 3 Log 7 Log 11 Log 15 Log 19 

3S Log 4 Log 8 Log 12 Log 16 Log 20 

 

https://github.com/darksoullock/MPDeclareLogGenerator
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b


31 

 

8.4 Rule Mining 

When it comes to the BPI2017 log, we did the opposite, i.e. instead of injecting knowledge, 

we mined already existing rules with a prototypical tool15. The tool enables to mine specific 

MP-Declare rules with respect to the specified data attributes. In our case we mined response 

(see 2.5) rules. To find a rule comparable to the knowledge injected in the synthetic logs, 

we imposed existence (see 2.5) on the activation of the response rule to create strong a-

priori knowledge. We then used the DeclareAnalyzer plugin to analyse the knowledge with 

the aim of identifying a rule which has a support of ~0.20, i.e. the rule is activated and 

fulfilled in approximately 20% of the traces. We took the first rule that met the requirements 

and used it as strong a-priori knowledge and the existence of the activation of that rule, as 

weak a-priori knowledge. 

8.5 Experimental Procedure 

Every log was separated into training and testing sets with sizes of 67% and 33% respec-

tively. During the testing phase we selected, out of the testing set, only the traces which are 

compliant with the injected a-priori knowledge and used the same testing set for each infer-

ence algorithm in the course of one log. This procedure aims at simulating an effect where 

a-priori knowledge has emerged during a process execution. We then predicted suffixes at 

four different prediction points, i.e. we used prefixes with four different lengths. The prefix 

lengths were determined by the median trace length and were in the range of {𝑘 − 2;  𝑘 −
1; 𝑘; 𝑘 + 1}, where 𝑘 is the median trace length divided by 2. For baseline 2 we set the beam 

size equal to 3 and for the MP A-priori we set the beam size equal to 5. The bigger beam 

size for the MP A-priori is justified by the fact that the multi-perspective a-priori knowledge 

is more constraining than simple a-priori knowledge, hence the beam search needs to ex-

plore a bigger amount of nodes before finding a compliant trace.  

                                                 
15 https://github.com/volodymyrLeno/CorrelationMinerForDeclare  

https://github.com/volodymyrLeno/CorrelationMinerForDeclare


32 

 

8.6 Results and Discussion 

We use the Damerau-Levenshtein similarity metric (see last paragraph of 2.9) as a compar-

ison measure to showcase the difference between the predicted traces and the actual traces. 

A higher value indicates a more accurate performance. In Table 6 and 7, the grey cells indi-

cate the best activity and resource accuracy for each log respectively, and to better under-

stand the two tables we define 𝐴 as sequence of activities and 𝑅 as sequence of resources. 

We indicate the most accurate activity-resource combination for each log with bold cell 

borders. 

Table 6 reports the results of the three inference algorithms’ performances on the synthetic 

logs described in Table 5. The overall performance of the multi-perspective a-priori algo-

rithm is positive and the results match our expectations – the dominant algorithm is MP A-

priori. In terms of predicting the sequence of next activities, it managed to outperform the 

two baseline methods in 45% of the times and landed close to the most accurate result in the 

remaining 55% of the times. In terms of predicting the sequence of next resources, the MP 

A-priori algorithm managed to outperform the baseline methods in 75% of the times and 

followed the most accurate result closely in the remaining 25% of the times. We also com-

pared the combined accuracies (a.k.a. multi-perspective predictions) of the activity and re-

source sequences where it was applicable. In this setting, the MP-A-priori outperformed the 

baseline methods in 75% of the cases (RQ1).  

Table 6 does not indicate any noticeable trends in the sense of log alphabet sizes. The pro-

posed approach shows steady performance throughout all logs, with the exception of Log 

12, where the algorithm was not able find compliant traces with the given beam size. With 

further investigation we can notice that Log 12 (see Table 5) belongs to the group of logs 

with the biggest alphabet sizes and the most constraining a-priori knowledge, i.e. it contains 

3 strong a-priori rules. The large search space combined with strong constraints explains the 

inability for the algorithm to perform well. Although Table 6 reports the performance of the 

algorithm with beam size 5, we also experimented the same test with bigger beam sizes, 

namely 10, 20 and 50. We discovered that when increasing the beam size extremely high 

Table 6 Results on Synthetic Logs 

 Baseline 1 Baseline 2 MP A-Priori 

Predictor   → A A + R A  A + R A + R 

Predictand → A R A R A R A R A R 

10x2 | 1W 0.693 N/A 0.643 0.674 0.649 N/A 0.665 0.640 0.646 0.649 

10x2 | 3W 0.742 N/A 0.806 0.682 0.742 N/A 0.806 0.682 0.803 0.679 

10x2 | 1S 0.511 N/A 0.258 0.803 0.682 N/A 0.536 0.760 0.695 0.763 

10x2 | 3S 0.658 N/A 0.629 0.793 0.682 N/A 0.662 0.826 0.667 0.833 

10x5 | 1W 0.804 N/A 0.810 0.800 0.803 N/A 0.813 0.800 0.780 0.790 

10x5 | 3W 0.729 N/A 0.723 0.605 0.719 N/A 0.723 0.605 0.831 0.824 

10x5 | 1S 0.390 N/A 0.695 0.700 0.479 N/A 0.720 0.717 0.802 0.792 

10x5 | 3S 0.765 N/A 0.831 0.741 0.769 N/A 0.846 0.761 0.849 0.761 

10x20 | 1W 0.727 N/A 0.864 0.579 0.909 N/A 0.855 0.579 0.864 0.575 

10x20 | 3W 0.784 N/A 0.761 0.583 0.784 N/A 0.723 0.571 0.838 0.738 

10x20 | 1S 0.827 N/A 0.784 0.608 0.884 N/A 0.884 0.627 0.884 0.704 

10x20 | 3S 0.849 N/A 0.774 0.566 0.556 N/A 0.620 0.449 N/A N/A 

5x5 | 1W 0.618 N/A 0.645 0.677 0.616 N/A 0.639 0.684 0.601 0.785 

5x5 | 3W 0.729 N/A 0.749 0.574 0.729 N/A 0.750 0.574 0.754 0.758 

5x5 | 1S 0.727 N/A 0.655 0.642 0.726 N/A 0.691 0.650 0.718 0.763 

5x5 | 3S 0.409 N/A 0.806 0.644 0.413 N/A 0.806 0.643 0.846 0.679 

50x5 | 1W 0.553 N/A 0.735 0.642 0.746 N/A 0.707 0.561 0.697 0.687 

50x5 | 3W 0.314 N/A 0.506 0.308 0.674 N/A 0.819 0.514 0.735 0.742 

50x5 | 1S 0.231 N/A 0.466 0.377 0.874 N/A 0.825 0.623 0.870 0.875 

50x5 | 3S 0.623 N/A 0.802 0.803 0.732 N/A 0.789 0.799 0.811 0.815 

 



33 

 

with respect to the alphabet size, the algorithm may exhaust the search space and forcefully 

find a  compliant trace in the early iterations. By saying that, we mean that during the first 

iterations, the algorithm tries out a large fraction of all the possible activity-resource com-

binations and finds a compliant trace with very low probability which, most likely, is very 

inaccurate. This outlier result points out a vulnerability of the proposed approach. As future 

work we aim at developing an algorithm, which similarly to the NoCycle algorithm, is able 

to intelligently manipulate the probability distributions in order to locate the compliant trace 

with a smaller beam size without exhausting the search space, e.g. if the algorithm has pre-

dicted the activation for a response rule, then we can increase the probability of the target 

to take place. 

The inclusion of the resource attribute to the predictor showed an increased accuracy in 

activity prediction in 60% of the cases, which is not a strong trend as we expected (RQ2). 

Although, this can be explained by the fact that the RNN outputs two separate probability 

distributions which are treated as two independent values. The RNN predicts the most prob-

able next activity given the prefix 𝑝𝑘(𝜎), and does the same for the next resource, given the 

prefix 𝑝𝑘(𝜎). This means that the activity and resource are not treated as a single unit and 

eventually two sequences are accummulated which can be asynchronous. We aim at finding 

remedy to this problem as future work. We suggest that the RNN architecture should be 

accommodated as follows: (i) first, the most probable next activity 𝑎𝑘+1 is predicted given 

the prefix 𝑝𝑘(𝜎), (ii) then, the most probable next resource 𝑟𝑘+1 should then be predicted 

given the prefix 𝑝𝑘(𝜎) together with the already predicted next activity 𝑎𝑘+1. This approach 

would treat the activity and resource as a single unit and would possibly lead to more accu-

rate predictions.  

During the experimentation, we also noticed an interesting phenomenon; the detection of a 

fulfilled prediction constraint causes the RNN to predict the end event symbol of a trace 

prematurely. We see remedy to this problem in taking into consideration the average trace 

length (intercase a-priori knowledge) when making predictions, which has the potential to 

assist the RNN in predicting traces whose length is closer to the ground truth. 

Table 7 reports the performances of the three inference algorithms applied to the BPI 2017 

dataset. In this setting we used only one type of predictor, namely the control-flow combined 

with the resource. When applying weak a-priori knowledge, baseline 1 managed to outper-

form the other methods at predicting the activity sequence. However, we can notice a sig-

nificant dominance of the MP A-Priori when predicting the resource sequence; and in the 

combination of activity and resource predictions, the proposed approach manages to outper-

form the two baseline methods. When applying strong a-priori knowledge, the proposed 

approach manages to outperform the baseline methods in both the activity and resource se-

quence predictions, confirming the positive results from Table 6 and proving that the pro-

posed approach is able to successfully perform on a real life log (RQ1).  

Based on the results we answer RQ1 by assessing that leveraging multi-perspective a-priori 

knowledge improves the accuracy of multi-perspective predictions. Concerning RQ2, we 

Table 7 Results on BPI 2017 dataset 

 Baseline 1 Baseline 2 MP A-Priori 

Predictor A + R A + R A + R 

Predictand A R A R A R 

WEAK 0.700  0.266  0.695 0.269 0.636 0.400  

STRONG 0.694  0.366 0.687 0.346 0.695  0.394 

 



34 

 

found weak evidence that the inclusion of an additional categorical data attribute to the pre-

dictor using complex symbolic sequence encoding improves the prediction accuracy. Alt-

hough, we deem further research necessary to strengthen this statement.  



35 

 

9 Conclusion 

The main contribution of this thesis is a technique for leveraging multi-perspective 

knowledge on top of an already trained RNN while making predictions of complex symbolic 

sequences. We proved that the proposed approach is able to provide state-of-the-art results 

and successfully expands the work done in [2]. We systematically proved that the approach 

is effective on synthetic logs with different characteristics and confirmed that the approach 

is able to perform well also on a real life log. The proposed approach can easily be extended 

to categorical attributes other than resources and it is scalable to leveraging a-priori 

knowledge on multiple categorical attributes simultaneously, including constraints on 

timestamps. The second contribution is a conclusion that the activity and resource predic-

tions should not be treated as two separate output sequences. Rather they should be treated 

as a single prediction unit. 

For future work we plan to address the problems discussed in Section 8.6. Firstly, we aim 

at finding a more suitable RNN architecture, which treats the control-flow and the corre-

sponding attributes as a single unit. Secondly, we aim at finding a solution to the search 

space exhaustion problem with a more sophisticated search space exploration algorithm 

which enables to give advantage to possible traces which naturally accommodate the a-priori 

knowledge. Thirdly, we plan to explore the effects of leveraging intercase features, namely 

the average trace length time for traces with similar structures, to prevent premature end-

event predictions. We also see great potential in using time-related a-priori knowledge when 

making predictions about timestamps and remaining cycle time. 

 



36 

 

10 References 

[1] Tax, N., Verenich, I., La Rosa, M., & Dumas, M. (2017, June). Predictive business 

process monitoring with LSTM neural networks. In International Conference on 

Advanced Information Systems Engineering (pp. 477-492). Springer, Cham. 

[2] Di Francescomarino, C., Ghidini, C., Maggi, F. M., Petrucci, G., & Yeshchenko, A. 

(2017, September). An Eye into the Future: Leveraging A-priori Knowledge in 

Predictive Business Process Monitoring. In International Conference on Business 

Process Management (pp. 252-268). Springer, Cham. 

[3] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural 

computation, 9(8), 1735-1780. 

[4] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies 

with gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-

166. 

[5] Navarin, N., Vincenzi, B., Polato, M., & Sperduti, A. (2017). LSTM Networks for 

Data-Aware Remaining Time Prediction of Business Process Instances. arXiv 

preprint arXiv:1711.03822. 

[6] Gers F., Schmidhuber J. (2000) Recurrent nets that time and count. Proceedings of 

the International Joint Conference on Neural Networks 

[7] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, 

H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-

decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. 

[8] Yao, K., Cohn, T., Vylomova, K., Duh, K., & Dyer, C. (2015). Depth-gated 

recurrent neural networks. arXiv preprint. 

[9] Koutnik, J., Greff, K., Gomez, F., & Schmidhuber, J. (2014). A clockwork 

rnn. arXiv preprint arXiv:1402.3511. 

[10] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. 

(2017). LSTM: A search space odyssey. IEEE transactions on neural networks and 

learning systems, 28(10), 2222-2232. 

[11] Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., & Maggi, F. M. 

(2015, August). Complex symbolic sequence encodings for predictive monitoring of 

business processes. In International Conference on Business Process 

Management (pp. 297-313). Springer, Cham. 

[12] Damerau, F. J. (1964). A technique for computer detection and correction of spelling 

errors. Communications of the ACM, 7(3), 171-176. 

[13] Burattin, A., Maggi, F. M., & Sperduti, A. (2016). Conformance checking based on 

multi-perspective declarative process models. Expert Systems with Applications, 65, 

194-211. 

[14] Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of 

the IEEE, 77(4), 541-580. 



37 

 

[15] Van der Aalst, W. M. (1998). The application of Petri nets to workflow 

management. Journal of circuits, systems, and computers, 8(01), 21-66. 

[16] Pnueli, A. (1977, October). The temporal logic of programs. In Foundations of 

Computer Science, 1977., 18th Annual Symposium on (pp. 46-57). IEEE. 

[17] Petri, C. A(1962)., Kommunikation mit Automaten, Ph.D. thesis, Technische 

Hochschule Darmstadt 

[18] Breuker, D., Matzner, M., Delfmann, P., & Becker, J. (2016). Comprehensible 

Predictive Models for Business Processes. MIS Quarterly, 40(4), 1009-1034. 

[19] Rabin, M. O. (1963). Probabilistic automata. Information and control, 6(3), 230-245. 

[20] Evermann, J., Rehse, J. R., & Fettke, P. (2016, September). A deep learning 

approach for predicting process behaviour at runtime. In International Conference 

on Business Process Management (pp. 327-338). Springer, Cham. 

[21] Evermann, J., Rehse, J. R., & Fettke, P. (2017). Predicting process behaviour using 

deep learning. Decision Support Systems, 100, 129-140. 

[22] Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the 

bias/variance dilemma. Neural computation, 4(1), 1-58. 

[23] Pravilovic, S., Appice, A., & Malerba, D. (2013, September). Process mining to 

forecast the future of running cases. In International Workshop on New Frontiers in 

Mining Complex Patterns (pp. 67-81). Springer, Cham. 

[24] Lakshmanan, G. T., Shamsi, D., Doganata, Y. N., Unuvar, M., & Khalaf, R. (2015). 

A markov prediction model for data-driven semi-structured business 

processes. Knowledge and Information Systems, 42(1), 97-126. 

[25] Van Der Spoel, S., Van Keulen, M., & Amrit, C. (2012, June). Process prediction in 

noisy data sets: a case study in a dutch hospital. In International Symposium on 

Data-Driven Process Discovery and Analysis (pp. 60-83). Springer, Berlin, 

Heidelberg. 

[26] Castellanos, M., Salazar, N., Casati, F., Dayal, U., & Shan, M. C. (2005, March). 

Predictive business operations management. In International Workshop on 

Databases in Networked Information Systems (pp. 1-14). Springer, Berlin, 

Heidelberg. 

[27] Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., & Shan, M. C. (2004). 

Business process intelligence. Computers in industry, 53(3), 321-343. 

[28] Grigori, D., Casati, F., Dayal, U., & Shan, M. C. (2001, September). Improving 

business process quality through exception understanding, prediction, and 

prevention. In VLDB(Vol. 1, pp. 159-168). 

[29] Kang, B., Kim, D., & Kang, S. H. (2012). Periodic performance prediction for real-

time business process monitoring. Industrial Management & Data Systems, 112(1), 

4-23. 



38 

 

[30] Kang, B., Kim, D., & Kang, S. H. (2012). Real-time business process monitoring 

method for prediction of abnormal termination using KNNI-based LOF 

prediction. Expert Systems with Applications, 39(5), 6061-6068. 

[31] Conforti, R., De Leoni, M., La Rosa, M., & Van Der Aalst, W. M. (2013, June). 

Supporting risk-informed decisions during business process execution. 

In International Conference on Advanced Information Systems Engineering (pp. 

116-132). Springer, Berlin, Heidelberg. 

[32] van Dongen, B. F., Crooy, R. A., & van der Aalst, W. M. (2008, November). Cycle 

time prediction: When will this case finally be finished?. In OTM Confederated 

International Conferences" On the Move to Meaningful Internet Systems"(pp. 319-

336). Springer, Berlin, Heidelberg. 

[33] Pandey, S., Nepal, S., & Chen, S. (2011, October). A test-bed for the evaluation of 

business process prediction techniques. In Collaborative Computing: Networking, 

Applications and Worksharing (CollaborateCom), 2011 7th International 

Conference on (pp. 382-391). IEEE. 

[34] Van der Aalst, W. M., Schonenberg, M. H., & Song, M. (2011). Time prediction 

based on process mining. Information systems, 36(2), 450-475. 

[35] Folino, F., Guarascio, M., & Pontieri, L. (2012, September). Context-aware 

predictions on business processes: an ensemble-based solution. In International 

Workshop on New Frontiers in Mining Complex Patterns (pp. 215-229). Springer, 

Berlin, Heidelberg. 

[36] Folino, F., Guarascio, M., & Pontieri, L. (2012, September). Discovering context-

aware models for predicting business process performances. In OTM Confederated 

International Conferences" On the Move to Meaningful Internet Systems"(pp. 287-

304). Springer, Berlin, Heidelberg. 

[37] Le, M., Gabrys, B., & Nauck, D. (2012). A hybrid model for business process event 

prediction. In Research and Development in Intelligent Systems XXIX (pp. 179-192). 

Springer, London. 

[38] Schwegmann, B., Matzner, M., & Janiesch, C. (2013, June). preCEP: facilitating 

predictive event-driven process analytics. In International Conference on Design 

Science Research in Information Systems (pp. 448-455). Springer, Berlin, 

Heidelberg. 

[39] Rogge-Solti, A., & Weske, M. (2013, December). Prediction of remaining service 

execution time using stochastic petri nets with arbitrary firing delays. 

In International Conference on Service-Oriented Computing (pp. 389-403). 

Springer, Berlin, Heidelberg. 

[40] Rogge-Solti, A., & Weske, M. (2015). Prediction of business process durations using 

non-Markovian stochastic Petri nets. Information Systems, 54, 1-14. 



39 

 

[41] Bevacqua, A., Carnuccio, M., Folino, F., Guarascio, M., & Pontieri, L. (2013, July). 

A data-driven prediction framework for analyzing and monitoring business process 

performances. In International Conference on Enterprise Information Systems(pp. 

100-117). Springer, Cham. 

[42] Bolt, A., & Sepúlveda, M. (2013, August). Process remaining time prediction using 

query catalogs. In International Conference on Business Process Management (pp. 

54-65). Springer, Cham. 

[43] Polato, M., Sperduti, A., Burattin, A., & de Leoni, M. (2014, July). Data-aware 

remaining time prediction of business process instances. In Neural Networks 

(IJCNN), 2014 International Joint Conference on (pp. 816-823). IEEE. 

[44] Polato, M., Sperduti, A., Burattin, A., & de Leoni, M. (2016). Time and activity 

sequence prediction of business process instances. arXiv preprint arXiv:1602.07566. 

[45] Maggi, F. M., Di Francescomarino, C., Dumas, M., & Ghidini, C. (2014, June). 

Predictive monitoring of business processes. In International Conference on 

Advanced Information Systems Engineering (pp. 457-472). Springer, Cham. 

[46] Chomicki, J. (1995). Efficient checking of temporal integrity constraints using 

bounded history encoding. ACM Transactions on Database Systems (TODS), 20(2), 

149-186. 

[47] Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2013). Fundamentals of 

business process management (Vol. 1, p. 2). Heidelberg: Springer. 

[48] Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F. M., & 

Rizzi, W. (2016, June). Predictive business process monitoring framework with 

hyperparameter optimization. In International Conference on Advanced Information 

Systems Engineering (pp. 361-376). Springer, Cham. 

[49] Folino, F., Guarascio, M., & Pontieri, L. (2015, September). A prediction framework 

for proactively monitoring aggregate process-performance indicators. In Enterprise 

Distributed Object Computing Conference (EDOC), 2015 IEEE 19th 

International (pp. 128-133). IEEE. 

[50] Ceci, M., Lanotte, P. F., Fumarola, F., Cavallo, D. P., & Malerba, D. (2014, 

October). Completion time and next activity prediction of processes using sequential 

pattern mining. In International Conference on Discovery Science (pp. 49-61). 

Springer, Cham. 

[51] Unuvar, M., Lakshmanan, G. T., & Doganata, Y. N. (2016). Leveraging path 

information to generate predictions for parallel business processes. Knowledge and 

Information Systems, 47(2), 433-461. 

[52] van Der Aalst, W. M., Pesic, M., & Schonenberg, H. (2009). Declarative workflows: 

Balancing between flexibility and support. Computer Science-Research and 

Development, 23(2), 99-113. 

 



40 

 

I. License 

Non-exclusive licence to reproduce thesis and make thesis public 

I, Kaur Järvpõld, 

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to: 

1.1. reproduce, for the purpose of preservation and making available to the public, 

including for addition to the DSpace digital archives until expiry of the term of 

validity of the copyright, and 

1.2. make available to the public via the web environment of the University of Tartu, 

including via the DSpace digital archives until expiry of the term of validity of the 

copyright, 

of my thesis 

Leveraging Multi-Perspective A-priori Knowledge in Predictive Business Process 

Monitoring, 

supervised by Fabrizio Maria Maggi, Chiara Di Francescomarino and Chiara Ghidini 

2. I am aware of the fact that the author retains these rights. 

3. I certify that granting the non-exclusive licence does not infringe the intellectual property 

rights or rights arising from the Personal Data Protection Act.  

Tartu, 24.05.2018 

 

 


