
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Jan Moppel

Socratic chatbot

Bachelor’s Thesis (9 ECTS)

Supervisor: Taivo Pungas, MSc

Co-supervisor: Sven Aller, MSc

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Socratic chatbot

Abstract: Conversational systems become more popular with each day. They are
still cannot communicate with humans like other humans, but with the development
of technologies chatbots become an inherent part of our life. Applying new methods
of communication is very important for their progress and this work is reviewing the
possibility of using the Socratic questioning method on the conversational systems.

Keywords:
conversational system, chatbot, socratic method, natural language processing

CERCS: P170 - Computer science, numerical analysis, systems, control

Sokraatiline juturobot

Lühikokkuvõte: Vestlussüsteemid muutuvad iga päevaga üha populaarsemaks. Nad ei
suuda veel suhelda inimestega sarnaselt teiste inimestega, kuid tehnoloogia arenguga
saavad juturobotid tulevikus meie elu lahutamatuks osaks. Uute kommunikatsioonimeeto-
dite rakendamine on nende arengu jaoks väga tähtis. Selles töös vaadeldakse sokraatilise
meetodi kasutusvõimalusi vestlussüsteemides.

Võtmesõnad:
vestlemissüsteem, juturobot, sokraatiline meetod, keeletehnoloogia

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

2

Contents
1 Introduction 4

2 Overview 6
2.1 Socratic Method . 6
2.2 Chatbot . 6

2.2.1 Conversational systems today 6
2.2.2 Chatbots using the Socratic Method 7

2.3 Elizabeth . 8

3 Design 10
3.1 Conversation rules . 10
3.2 Applying the Socratic Method . 10
3.3 Conversations. 11

3.3.1 Dialogues setup. 11
3.3.2 Conversation example. 12
3.3.3 Conversations output. 15

4 Implementation 16
4.1 Modules and libraries . 16
4.2 User input analyzing and Response generating 17

5 Validation 20
5.1 First iteration . 20

5.1.1 Experiment setup . 20
5.1.2 Feedback . 20
5.1.3 Changes . 21

5.2 Second iteration . 22
5.2.1 Experiment setup . 22
5.2.2 Feedback . 22
5.2.3 Results . 26

5.3 Future development . 27

6 Conclusion 28

References 31
I. Licence . 32

3

1 Introduction
Sometimes people face a problem, which they don’t know how to solve or even not
sure that it is a problem. In both cases, they try to describe it to others to get advice.
Moreover, very often, it happens that people find a solution without even receiving a
suggestion. They just analyze their issue and find an answer that they needed. The
analytical procedure in this case is stimulated by clarification questions. The interlocutor
or the person himself can ask them. Frequently these questions do not require any kind
of additional knowledge except for information that is used in the current dialogue. This
critical-thinking stimulation method is called the Socratic Method.

It is used in different areas, such as teaching [1], psychotherapy [2] etc. In theory,
the Socratic Method makes possible to use a conversational system or a chatbot to better
understand the issue and solve it, without other person’s help.

There were some attempts to bring this idea to life. For example, one of the first
conversational systems was ELIZA [3]. It simulated a Rogerian psychotherapist and
responded with non-directional questions to user inputs. Whereas ELIZA could keep up
a conversation, its technical solution (pattern matching without input’s saving) makes it
impossible to sustain a long-conversation with specific clarification questions. Another
good example is a Woebot [4]. It makes user to analyze himself by asking general and
clarification questions about the mood, activities, etc. Although, Woebot uses more
advanced Natural Language Processing techniques, it cannot sustain a long conversation
and ask specific questions based on user input.

Right now Artificial Intelligence and Conversational Systems are very widespread
and continue to grow in popularity. Siri [5], Amazon Alexa [6], Google Assistant [7] can
do different tasks for human. Besides that, with the development of messaging platforms
and their popularity growth (in 2015 their usage has surpassed the social media usage) [8],
chatbot integration became very easy. Most popular platform for bots implementation is
Facebook Messenger: 100 000 bots (April 2017) [9]. The biggest popularity chatbots got
in the business field: by 2020, over 80% of businesses are expected to have some sort of
chatbot automation implemented [10]. They help to personalize the customer experience
and minimize cost on customer support [11].

In such a way, conversational systems will continue to become an inherent part of
everyday life and a bot that would make a problem-solving process faster and easier
would be a very useful assistant. The goal of this thesis is to explore chatbots, Socratic
Method and try to create a conversational system that will use this method. Consequently,
this conversational system’s title is the Socratic chatbot [12].

If this system is able to memorize, extract useful information from the user input, ask
adequate questions based on this information, carry dialogue and make user rethink his
problem at least in some cases, then the work may be considered as successful.

To achieve these results, some restrictions should be defined. The main one is based
on the Socratic Method itself: user can only write statements, bot can only ask questions.

4

The user also has to answer to them accurately and not too broad. It would make input
understanding much easier and achievable.

This thesis consists of 4 parts. The first part - Design - gives an overview about
the vision of this project: examples of dialogues, which are considered as a desired
result; representation of bot’s behavior strategy. The second part - Implementation - is
a detailed building process description: what modules and libraries are used; how user
input analyzing goes and response generating processes. The third part - Validation -
gives an overview about the validation process: who and how tested the solution; what
was the feedback; how the system was changed during this process and what are the
results. The last part - Conclusion - summarizes the thesis.

5

2 Overview

2.1 Socratic Method
As written below, the Socratic Method is an irreplaceable tool for developing critical
thinking. The goal of this method may be finding the truth, teaching new concepts,
helping in deeper understanding of things, etc. The structure [13] of it may be formulated
like this:

1. Define common sense statement;

2. Find an exception to that statement;

3. If the exception is found - reformulate the statement according to it;

4. Repeat the cycle until the exception cannot be found.

This algorithm can be reproduced both in dialogue with somebody and without anyone.
Sometimes people specify two main types of this tool [14]: classic and modern. The

classic Socratic Method is used to find an answer to questions, which don’t have a clear
answer. For instance, questions like "What is love?", "What is justice?" etc. Finding a
clear answer (statement) to these everlasting inquiries, which won’t have any exceptions,
is impossible. A good example of using the classic Socratic Method is the dialog between
preacher and "Socrates" about the essence of the moral person [15]. This approach
forms the basis of cognitive therapy [16]. By using it, patient and doctor deepen into the
problem and start to understand it, which helps to define the treatment.

The modern Socratic Method is more applicable in everyday life and conversations.
Its goal is not to discover the truth, but to lead the interlocutor to its understanding. In
other words, it is used, when one of the dialog partners already knows the answer, but the
other one doesn’t. This approach is very widespread in teaching. For example, geometry
experiment in Plato’s "Meno" [17], Garlikov’s experiment [1], etc.

2.2 Chatbot
Chatbot or conversational system is "a computer program designed to simulate conversa-
tion with human users, especially over the Internet." [18] Conversations are carried on
via textual or auditory methods.

2.2.1 Conversational systems today

Different scales can classify chatbots: implementation design, domain usage, tasks and
goals and so on [19]. For example, by implementation design the Google Assistant [7] is
an intelligent agent, because it doesn’t require human intervention to correctly perform

6

its routines [20]. By domain usage, it is a generalist bot, because depending on the
user desire, it can do very different tasks from playing music to telling the weather
forecast. In addition, by tasks and goals, Google Assistant can be classified as a chatbot,
because it can sustain conversations. At the same time, it can provide some requested
information and play different games with user, which makes it also an informational and
entertainment bot. So consequently, bots can be classified in various manners depending
on selected scale.

As mentioned in the introduction, the popularity of chatbots is growing. Primarily this
is due to simplicity of building them for concrete business. Now, not only big companies
such as Uber [21] or CNN [22] use chatbots, but also even for small businesses it became
accessible because of platforms for building conversational systems. Dialogflow [23],
Wit.ai [24] and other platforms make the implementation process fast and easy.

To build a simple chatbot using these platforms, user need to add some text there and
manually choose specific parts of this input, that bot should be looking for. These parts
are called entities. Then user defines what these entities mean. In other words, he names
them. It can be a very new name or already existing one from the platform. Finally, user
defines action needs to be performed, when bot recognizes these named entities during
the conversation.

In general, by implementation design these bots are classified as scripted, because
their interactions are based on scripts (pre-determined models), and as specialists by
domain usage classification, which means that they have narrow-minded functionality for
specific tasks. For example, there is a pizza delivery bot and user inserts: "I want to order
big Margarita pizza". This chatbot understands, what does user wants, by recognizing
three predefined entities: intent ("order"), size ("big") and title ("Margarita"). Then
system can act according to it.

The biggest companies in IT field are also working on their virtual assistants, but
they are focused on creating an intelligent agent and generalist bot. For example, already
mentioned Alexa by Amazon [6] and Google Assistant [7], Cortana by Microsoft [25],
etc. These systems can perform many different tasks from ordering items from the
internet to finding the closest restaurant, converse with the user about different subjects
and so on.

2.2.2 Chatbots using the Socratic Method

Talking about the Socratic Method, there are self-help chatbots that use it in some ways.
For example, Woebot [4] and X2 AI (Tess) [26]. They both are therapist-bots and use
the cognitive-behavioral therapy (CBT). As already mentioned above, CBT is based on
the Socratic Method [16].

Woebot and Tess aim to help users suffering from depression and anxiety through
talking about interlocutor’s mood and feelings. Tess uses only text-based communication.
Woebot, on the other hand, very often uses pictures and buttons with predefined answers

7

in the dialogues [27].
However, the Socratic chatbot is more like a companion, not a therapist-bot. There-

fore, the closest to it and the most well-known chatbot that can be used to help users
better understand their problems, remains Elizabeth.

2.3 Elizabeth
Elizabeth [28] is an interpretation of Joseph Weizenbaum’s original conversational
system ELIZA [3]. It has the same personality (Rogerian psychotherapist, who is always
asking questions) and uses the same technique (scripts and pattern matching) for input
understanding and output generating, but Elizabeth’s approach is more advanced, which
leads to increased performance. For example, in distinction to ELIZA, Elizabeth is
able to change its scripts, if the interlocutor continuously uses language patterns. It is
an example of scripted, but generalist chatbot. The bot’s response generating process
consists of 4 steps (see Figure 1):

1. Text preprocessing;

2. Pattern matching;

3. Dynamic processing;

4. Grammatical rules implementation.

On the first step, Elizabeth transforms text into required form. User input is converted
to lower case, tokenized and cleaned from unnecessary characters, except for: ! " ’ () , - .
0...9 : ; ? A...Z a...z.

On the second step, initial response is generated. Firstly, the system generalizes user
input by applying input transformation rules. E.g. converting words "mum" and "dad"
into "mother" and "father" respectively. Secondly, Elizabeth tries to find keywords in the
input. If the text contains a keyword, then initial response will be selected according to it.
Otherwise, initial response will be randomly selected from the list of broad predefined
sentences made for this type of case. If the response is not static, output-transforming
rules are applied to it. Finally, the response is uppercased.

On the third step, the system updates the script file with all the rules according to the
previous step. It adds, removes and memorizes script commands (rules).

On the last step, Elizabeth corrects some grammatical mistakes that may appear
during response generating. Grammatical rules are also predefined. E.g., word "readed"
converts into "red".

Elizabeth (ELIZA) and Socratic chatbot have a lot in common. E.g., both ask
clarification questions that are based on the user input, both can memorize user answer to
use it later and can help people rethink their problems. Nevertheless, Elizabeth doesn’t

8

Figure 1. Elizabeth working process according to the script. [28]

have any clear end goal in the communication. It just reacts to the user input, and no
reactions are connected with the flow of conversation. Elizabeth also uses only pattern
matching as a main technique, which makes its potential for the future development very
low.

However, the specific underlying method with well-defined algorithm in it (classic
Socratic Method), modern technologies (dependency tree parsing, sentiment analysis,
named entities recognition, automatic grammar correction) and clear focus on helping
people better understand their problems through activating critical-thinking, is what
drastically distinguish the Socratic chatbot from any other conversational system.

9

3 Design
The design of any chatbot is very important, because it defines the implementation and
expectations from the final result. How this conversational system will be used, what
personality it has and how it will communicate with users? All these questions are
addressed during the design stage.

3.1 Conversation rules
As already mentioned above, the main difference between the Socratic chatbot and other
conversational systems is the direct use of the Socratic Method. In order to apply its
classic approach effectively, some general rules for the bot needed to be specified:

1. Bot starts the conversation;

2. Bot can only ask questions;

3. User can only answer them;

4. Questions are based on the user input only;

5. User answers should not be too long or broad;

6. The conversation subject doesn’t have any limits;

7. Conversation continues until user stops responding.

Applying these principles empowers to build human-bot communication based on the
Socratic Method, which is understandable for user and obtainable for conversational
system.

3.2 Applying the Socratic Method
The conversation itself is built according to the method’s structure, but with a more
practical approach. The dialogue for the chatbot consists of 6 steps or stages:

1. Get user statement. User defines the problem to discuss with the bot.

2. Get Reasons. Bot asks about reasons of the statement. Mostly used in the
beginning.

3. Get Past Experience. Bot asks about past experience, using every received reason
individually.

10

4. Get Exception. Considering available data, bot asks about possible exception in
the statement.

5. Control. Check whether all available data should be stored (relevant).

6. Finish. User decides to finish the dialogue.

Out of every user input, depending on the stage, bot extracts valuable information
and uses it in its questions. Each step has its own set of predefined questions or patterns,
but the filling of the question depends on the stage itself and available data. The Socratic
chatbot continuously repeats these stages, according to available data, until user won’t
finish the conversation.

3.3 Conversations.
To better understand, how bot should use this algorithm to communicate, several dia-
logues were created.

3.3.1 Dialogues setup.

These dialogues had to represent the ideal cases of using the Socratic chatbot. In order to
do this, every communication was made according to these rules, which are similar to
the Wizard of Oz simulating method [29]:

1. 2 people participated in each dialogue, where one person acted as a bot and the
another one as a user;

2. The person, who played bot’s role could only ask questions, user could only answer
them;

3. Bot asked questions according to the dialogue structure described above.

To get an idea, what information the bot extracts from the interlocutor and how it
uses it - each user input is provided with a dataset that system has on the current stage.
It includes 7 fields (see Figure 2): problem, object, reasons, experience, circumstances,
exception and stage. Problem contains problems defined by user. Object includes
objects affected by these problems. Reasons are causes of these issues. Experience
contains reasons, which user already experienced. Circumstances, where user had these
experiences are situated in the circumstances field. Exception is a found exception from
user issue. Stage is a step of the Socratic Method, which defines what data should be
gathered, and what response user will get.

11

3.3.2 Conversation example.

At the beginning, dataset is empty. Only has a default value in it (see Figure 2).

Figure 2. The dataset before the start of the dialogue.

Then the chatbot starts the conversation (see Figure 3). Out of user input, the Socratic
chatbot extracts 2 main entities: problem and object. The stage is also changes to number
2. After this, the system upgrades dataset.

Figure 3. Stage 1 - get user statement.

Using data from the user’s statement, Socratic asks for user perspective on the
problem. With interlocutor’s response, bot upgrades current data and gets a new one (see
Figure 4).

Figure 4. Stage 2 - get reasons.

Then the chatbot tries to draw user past experience by using each described earlier
reason separately (see Figure 5).

12

Figure 5. Stage 3 - get past experience.

From the user response bot understands that there are other circumstances with the
same "reason" (when the dog is very tired). Therefore, it tries to get an exception, by
connecting found circumstances and other reasons (see Figure 6).

Figure 6. Stage 4 - get exception.

However, user response meant that proposed exception was wrong. It signifies
that Socratic has to get back to the stage earlier. However, to be sure, to what stage
exactly, it controls the available data. In other words, on this stage bot checks received
data and removes the unnecessary one. In this dialogue, it became clear that out of 2
proposed reasons at the beginning, only one of them was still valid. So data was updated
accordingly to that (see Figure 7).

Figure 7. Stage 5 - control.

After the control stage, the system gets back to the stage 3, because it still has another
"reason" (see Figure 8).

13

Figure 8. Stage 3 - get past experience.

Received user response meant that there is a chance to get the right exception out of
the available data. Therefore, the chatbot attempts to get it, by using new circumstances
(see Figure 9).

Figure 9. Stage 3 - get exception.

To confirm found exception, the chatbot goes to the control stage again (see Figure
10).

Figure 10. Stage 4 - control.

In such a manner, the chatbot found an exception to user statement: the dog might not
be sick, but just doesn’t like new food. In addition, user decides to finish the conversation
(see Figure 11).

14

Figure 11. Stage 6 - finish the dialogue.

3.3.3 Conversations output.

As already mentioned above, this concrete dialogue and others, made during the design
stage, were done to represent the ideal cases of using the Socratic chatbot. Moreover,
the main output from them, is that this approach of the Socratic Method worked for the
interlocutors. These dialogues made them reconsider their problems and think through
the whole situation.

In such a manner, the Socratic chatbot aspires to this conversational model. The
next chapter - Implementation, describes precisely, how this system is built and how it
applies this model.

15

4 Implementation
The implementation of any conversational system may be divided by 2 main stages.
The first one is user input analyzing, and the other one is response generating. For the
Socratic chatbot, user input analyzing involves text preprocessing, useful information
extraction, its modification and saving.

Response generating process consists of method’s stage detection, making a response,
using predefined patterns and extracted information from user input, and grammar
checking. However, in this thesis and current version of the chatbot, user input analyzing
is much more complicated than response generating. For that reason, they are combined
together. However, before detailed investigation of it, used modules and libraries have to
be specified.

4.1 Modules and libraries
This project uses multiple Natural Language Processing libraries for functioning. The
main one is spaCy [30]. According to the information in the official spaCy reposi-
tory: "spaCy is a library for advanced Natural Language Processing in Python and
Cython." [31] It was chosen for the Socratic chatbot, because it is very fast, provides
precise dependency parsing and tokenization, has integrated named entity recognition
and continues to actively develop [32].

Along with spaCy, the Socratic chatbot uses textacy for text preprocessing, Natural
Language Toolkit (nltk) for sentiment analysis and language-check for the final grammar
check.

As written in the official documentation: "textacy is a Python library for performing
higher-level natural language processing (NLP) tasks, built on the high-performance
spaCy library." [33] Due to its compatibility with spaCy and easy preprocessing approach,
it suited the Socratic chatbot. NLTK or Natural Language Toolkit is a "leading platform
for building Python programs to work with human language data." [34] With its help the
Socratic chatbot does sentiment analysis, which helps in the response generating phase.

Language-check [35] is a "Python wrapper for LanguageTool." LanguageTool [36] is
a proofreading service that checks and corrects grammar and style of the text. By using
language-check, the chatbot controls and corrects the response for user.

16

4.2 User input analyzing and Response generating
The whole system’s high-level architecture may be represented by a flow-chart (see
Figure 12):

Figure 12. The Socratic chatbot high-level system architecture.

When user starts the chatbot, it automatically generates the default dataset already

17

described in the Design section above. The bot greets user: "Hello, I am a Socratic
Chatbot. My goal is to help people better understand their problems. And I’ll try my
best to help you, my friend! So tell me, what is your problem? What you would like to
understand?"

Then user responses to it with his problem, that he would like to discuss. The system
checks, does the user reply contains words thank or bye. If it does, it means the end of
conversation, and bot displays the farewell message - "Good luck!" - and finishes the
communication.

If conversation continues, then the Socratic chatbot generates default response: "Sorry,
I don’t understand you. Can you say it again?" This value is used as a backup, so if any
error appears, the bot could still sustain the conversation.

After this, user input goes through preprocessing stage. Using tools and libraries de-
scribed in the previous subsection, the system tokenizes user input, removes punctuation
and contraction and applies truecasing. Once it is done, the bot uses dependency parsing
to get the root of the sentence. It is necessary for information extraction.

Then system checks stage’s number. They are the same as described above in the
Design section, except that get user statement and get reasons are combined into 1.
However, the system also has two additional stages for numbers 3 (get exception) and 4
(control). Their goal is to make transitions between steps more user friendly.

As described in the Design section, in general, the logic behind every stage is very
similar - check, what information is available in the data, extract useful and missing
details, and use it in the response generation. The 1. stage (get user problem and ask for
reasons) is a good example of it.

On this stage, system determines in the first place, whether data contains any problems.
It is necessary, because every stage may be used multiple times during the conversation
(see "Applying the Socratic Method" in the Design section above) and bot’s response
changes depending on it. If the data doesn’t have any problem, it means, that before
response generating, the chatbot has to extract from user input problem and objects.

In order to find the problem, Socratic determines the problem root first. The problem
root - is a word, from which the Socratic chatbot finds all problem’s components. By
using dependency tree parsing, system finds all sentence root’s children. Then, it searches
for the necessary component by its syntactic relation. To understand, for which relation
system should look for, every problem statement from the design stage’s dialogues was
parsed and analyzed. This kind of preliminary analysis was done for every place of the
system, where was needed to check syntactic dependency. Consequently, it became clear,
that problem root is either a clausal component (ccomp) or sentence root itself. For that
reason, the chatbot tries to find a ccomp, but if it doesn’t find one - the sentence root is
considered to be the problem root.

To get the problem, the system goes through every child of the problem root and
checks its syntactic dependency. If it is not nominal subject (nsubj), marker (mark) or

18

auxiliary (aux) then it is saved as a problem.
Objects are extracted the same way, but with different syntactic dependencies. Then

problem and objects are transformed. The transformation consists of converting pronouns
into the form suitable for bot’s response. E.g., "I" changes to "you". In addition,
transformation process includes lemmatization. After this, found problem and objects
are imported into the data. Hereafter, system upgrades the dataset by changing the stage
depending on the available information in the data.

When the dataset is updated, the next step is response generating. Every stage
contains an individual set of questions (patterns), from where chatbot randomly choose
one and adds the necessary data to it. On the first stage, this data is object and problem.
For example, if dataset contained problem at the beginning of the stage, pattern would
be: "So you are saying that [object] [problem]. Why do you think like that?" Otherwise,
bot’s question is: "I am sorry, but I’m a little bit confused. Can you please repeat, why
do you think that [object] [problem]?"

These bot’s questions with data placed into them have many grammar mistakes that
need to be corrected. For that reason, the next step is grammar correction, which is
automatically done by the language-check library. Then response is displayed to the user
and bot waits again for his response.

This logic works for every stage, but with small changes according to its number. On
the 2. stage (get past experience), the system searches not for problems, but for reasons,
on the 3. (get exception) for circumstances and so on.

The only change happens on the stage number 4 (control) and 41, where bot’s
response depends up not on the available data, but on the text sentiment. For that reason
on these stages system uses sentiment analysis to determine, whether user input was
affirmative or negative, and chooses response pattern based on it.

To see, how well this system completed its tasks, it was tested multiple times. It is
described in the next chapter - Validation.

19

5 Validation
Validation is the essential step of any development. It helps to check current solution from
different perspectives and make product better. The validation process of the Socratic
chatbot consisted of 2 iterations. Iteration included 3 steps:

1. The chatbot was given to testers. They communicated with it, and their conversa-
tions were stored;

2. Testers gave their feedback on the solution and the idea of the bot;

3. Chatbot was improved according to their feedback and interactions.

5.1 First iteration
5.1.1 Experiment setup

The first iteration was done with 3 testers. All of them had different backgrounds:
software engineering, biology and computer science. None of them was aware of the
Socratic Method, but they have communicated with chatbots before. However, their
interactions were limited by asking about the weather, suggesting restaurants, etc.

Testers were told about the Socratic Method and about the purpose of this chatbot.
After that, testers were asked to communicate with the bot. Also, were defined next rules
for dialogues:

1. User can only answer to questions;

2. Answers should be direct and clear;

3. User responses might be maximum 2-3 sentences.

During conversations, supervisor helped testers to formulate responses to make them
more understandable to the bot. Were created multiple dialogues, but they have all been
very similar in case of technical issues. One of these conversations can be seen below
(Figure 13).

5.1.2 Feedback

It was clear that bot has many problems. The main ones are data extraction, grammar,
questions and short affirmative responses.

The feedback from testers was taken in a free form. They were positive about the
idea of this chatbot, but at the same time, due to poor implementation, they could not
experience any good outcome from these conversations. A lot of grammar mistakes
and inability to sustain a logical conversation flow, made it impossible for testers to
understand bot’s responses and rethink problems defined in the dialogues.

20

Figure 13. Dialogue from the first iteration.

5.1.3 Changes

In order to improve the chatbot, testers’ dialogues were debugged sentence by sentence
to find and correct issues. List of changes during this iteration:

1. The data extraction algorithm was updated. Before system checked and added to
data only children, which were closest to the root. After this update, system walks
through every acceptable child. Also, were updated applicable syntactic relations,
and words order of the extracted information is now the same as in the user input.

2. The lemmatization of the extracted information was removed to prevent some
grammar mistakes. Grammar correction module didn’t need it, and also bot’s
lemmatized response was harder to understand then the one without it.

3. Questions were reconsidered and updated, so that users’ answers to them could be
interpreted in only one way possible. Also after the update, extracted information
could be placed into bot’s responses more accurately. For example, on the 2. stage
(get past experience), bot could response with: "So [object] has never [problem]?";
"Can you remember, did [object] ever [problem]?". In this case, user answer
"yes", meant different things. As a response for the first question, it indicated that
[object] has no experience of the [problem]. However, as a response for the second
question, it indicated exactly the opposite. To eliminate these inaccuracies, these
questions were changed to: "Has [object] ever experienced, that [problem]?", "Do
you remember, that [object] has ever experienced, that [problem]?".

4. To process shirt responses during the second stage (get past experience), the new
stage was added. Its goal is to process affirmative or negative responses from user
about his past experiences. With this added stage, the dialogue flow became much

21

more user-friendly, and now when interlocutor will answers monosyllabically, bot
will accept it and ask questions based on it.

After these changes, the chatbot became capable of sustaining these conversations.
For example, bot was able to extract information so, that it is understandable for user
(see Figure 14). To test this solution again on different people and under near-natural
conditions, the 2. iteration was done.

Figure 14. Fixed reason extraction.

5.2 Second iteration
5.2.1 Experiment setup

The second iteration was done with other 7 testers. Their backgrounds were different as
well: 2 - computer science, 2 - law, 1 - law and political science, 1 - software engineering
and 1 - biology. This time, 2 testers were aware of the Socratic Method and used its
modern approach in real life to teach other people new concepts. However, the experience
of using chatbots was the same - only ordering or buying something through them.

This time testers were also briefed about the used Socratic Method approach, goal of
this bot and conversation rules. After this, they started to communicate with the chatbot.

However, the main difference between 1. and 2. iterations was that the supervisor
didn’t help testers to formulate responses or understand bot’s questions. In other words,
these conditions were really close to real: full freedom of conversation and only 2
participate in the dialogue - user and bot. And again, most of the dialogues were similar
in terms of technical issues. See one of these conversations on Figure 15.

5.2.2 Feedback

This time feedback was gathered through the questionnaire. It was made in such a way as
to validate current solution - generalist and rule-based chatbot that uses classic Socratic
Method - from user perspective. The questionnaire included 7 questions.

The first question was about the background of testers. As already mentioned above
2 users had a background in computer science, 2 in law, and 1 in biology, 1 in software
engineering and 1 in law and political science.

22

Figure 15. Dialogue from the 2. iteration about work.

In the second question (see Figure 16), testers chose about what topic, they were
communicating with the bot. 4 of them were talking about academic topic, 2 about
personal relationships and 1 about health.

Figure 16. Topics for dialogues.

The third questions was about rethinking user’s problems (see Figure 17). This was
one of the main bot’s goals, and results showed that 2 testers reconsidered their problem
and other 2 weren’t sure.

23

Figure 17. How well bot made testers rethink their problems.

The next question checked, how understandable were bot’s questions (see Figure
18). All 7 testers answered that chatbot responses were clear, but for 4 of them, replies
weren’t always clear.

Figure 18. How well bot formulated its responses.

24

The fifth question showed that for 2 testers, the bot was not able to sustain a logical
conversation flow, for 1 tester it happened only sometimes and for 1 it always worked
(see Figure 19).

Figure 19. How well bot sustained a logical conversation flow.

The next question showed that for 3 people their dialogues ended suddenly. However,
the other 4 testers answered positively (see Figure 20).

Figure 20. How many testers reached the end of the dialogue.

25

The last question was about the ability of the bot to help in finding possible solution
for user’s problem (see Figure 21). Out of 7 testers, only 1 answered positively, 2 were
not sure and 4 people answered negatively.

Figure 21. Testers feedback about finding possible solution.

5.2.3 Results

The feedback shows that this bot can work in some cases and really help users to rethink
and get an idea of possible problem’s solution. Although, it happens very seldom. The
second iteration proved that, when the user doesn’t have any limits in communication, it
is very hard for the bot to sustain logical conversation flow, make replies understandable,
and therefore, help users to rethink and find problems’ solutions.

It is clearly seen in the dialogue (see Figure 15), when up to the get experience stage,
the chatbot was able to reply adequately and extract right information. However, the
system was not able to "understand" the big and hard sentence on this stage: "Sometimes
we discuss about different ideas for projects and ways to do the activities, but everyone has
different ideas". Therefore, it led to the wrong information extraction and consequently
to incomprehensible response: "Are you sure that you not ideas about to activities do at
the moment?"

In addition, this bot’s reply shows the other problem, which causes illogical conver-
sation flow: pre-defined questions. The chatbot tries to find an exception by applying
user’s past experience to the current moment. However, in some dialogues, testers talked
about general problems, which don’t have to happen "at the moment". Moreover, it

26

cannot be solved by just pattern matching words like "sometimes" or "now and then",
because people don’t always use them to show that something happens in general and
not in concrete time.

These tests made it clear, that the Socratic chatbot, which is generalist and rule-based
bot, can work as it supposed to, but only in some cases. Most of the time it fails to
get the right information, because there are always exceptions to the rules, and scripted
system that has a clear goal (find an exception to the user’s statement) is unable to handle
them. However, the fact that it helped some users to rethink and better understand their
problem, proves that the chatbot, which directly uses the Socratic Method, can be built
and work successfully.

5.3 Future development
In order to make this system better with the current approach, will require more dialogues
(use cases) to create more rules. It will especially help with data extraction. Some
grammar rules can be defined manually as well, if there is no better automatic solution.

Also should be implemented functionality to handle multi-level problems. E.g. in
the dialogue about heart problems (see Figure 13), the problem in the first user response
sounds like: "I have heart problems". Although, the second user input can be also
considered as a problem, but inside the first one: "When I’m stressed my heartbeats
become more frequent and I feel pain in my left lung". It can be done by using more
complicated database system.

Finally, to make the Socratic chatbot more user friendly, it should have more diverse
response patterns.

No changes will remove the rules’ limitations, but it will definitely improve the user
experience and the number of cases, where it works correctly, will be increased.

27

6 Conclusion
The goal of this thesis was to explore conversational systems, the Socratic questioning
method and try to build a chatbot that would use this method.

During this work, were examined chatbots in general, from their classification and
implementation process to their role in society. Some exemplars such as Woebot, X2 AI,
ELIZA and Elizabeth were explored in more depth.

The Socratic Method, its algorithm, different approaches and use cases were examined
in details. Its classic approach was used in several conversations.

By combining gained knowledge about conversational systems and the Socratic
Method, was implemented and tested the Socratic chatbot. Its goal was to use the classic
Socratic Method to make people rethink and better understand their problems. The
Socratic chatbot [12] was built according to the multiple real dialogues and by using
Natural Language Processing techniques and tools such as dependency tree parsing,
named entity recognition, sentiment analysis and automatic grammar correction.

To validate the solution, was done 2 iterations, which included testing, gathering feed-
back and bot’s upgrading according to it. Overall, 10 people with different backgrounds
tested the Socratic chatbot. During testing, the system could sustain conversations using
the Socratic Method and in some cases made users to rethink their concerns. However, in
most instances, bot failed to extract the right information from the user input, use correct
grammar and sustain a logical conversation flow.

In the end of the 2. iteration current solution was analyzed, considering users’
feedback. Was drawn a conclusion, that the Socratic chatbot works correctly only in
some cases, because as a generalist and rule-based bot it cannot handle appearing in the
user input exceptions to these rules.

Although, despite this inference, system possible future improvements were also
described. Further development plans include creation of more rules, implementing
multi-level problem functionality and more diverse response patterns. It will require
more dialogues (use cases) for analysis.

Judging by the result and testers’ feedback, the Socratic chatbot [12] fulfilled its
goals and has a potential for the future development.

28

References
[1] Rick Garlikov. Teaching by Asking instead of Telling. http://www.garlikov.

com/Soc_Meth.html. (14.05.2018).

[2] Jeffrey G. Rutter, Robert D. Friedberg. Guidlines for the effective use of Socratic
dialogue in cognitive therapy. Innovations in clinical practice, 1999, 481–490.

[3] Joseph Weizenbaum. ELIZA A Computer Program For the Study of Natural
Language Communication Between Man And Machine. Communications of the
ACM, 1966, nr 1, 36–45.

[4] Woebot official website. https://woebot.io/. (14.05.2018).

[5] Siri official website. https://www.apple.com/ios/siri/. (14.05.2018).

[6] Amazon Alexa official website. https://developer.amazon.com/alexa.
(14.05.2018).

[7] GoogleAssistant official website. https://assistant.google.com/.
(14.05.2018).

[8] Messaging apps are now bigger than social networks. http://www.
businessinsider.com/the-messaging-app-report-2015-11. (14.05.2018).

[9] Johnson K. Facebook Messenger hits 100,000 bots. Venture Beat, https:
//venturebeat.com/2017/04/18/facebook-messenger-hits-100000-bots/.
(14.05.2018).

[10] 80% of businesses want chatbots by 2020. http://www.businessinsider.com/
80-of-businesses-want-chatbots-by-2020-2016-12. (14.05.2018).

[11] Foye L. Chatbot conversations to deliver $8 billion in cost savings by 2022. Ana-
lyst Xpress, https://www.juniperresearch.com/analystxpress/july-2017/
chatbot-conversations-to-deliver-8bn-cost-saving. (14.05.2018).

[12] The Socratic chatbot - official github repository. https://github.com/
janmoppel/socratic-chatbot. (14.05.2018).

[13] Gregory Vlastos. The socratic elenchus. Oxford Studies in Ancient Philosophy.
Volume 1., Oxford University Press, 1983, vol. I, 27–58.

[14] Maxwell M., Melete. How To Use the Socratic Method. http:
//www.socraticmethod.net/how_to_use_the_socratic_method/using_
the_socratic_method.html. (14.05.2018).

29

http://www.garlikov.com/Soc_Meth.html
http://www.garlikov.com/Soc_Meth.html
https://woebot.io/
https://www.apple.com/ios/siri/
https://developer.amazon.com/alexa
https://assistant.google.com/
http://www.businessinsider.com/the-messaging-app-report-2015-11
http://www.businessinsider.com/the-messaging-app-report-2015-11
https://venturebeat.com/2017/04/18/facebook-messenger-hits-100000-bots/
https://venturebeat.com/2017/04/18/facebook-messenger-hits-100000-bots/
http://www.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://www.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
https://www.juniperresearch.com/analystxpress/july-2017/chatbot-conversations-to-deliver-8bn-cost-saving
https://www.juniperresearch.com/analystxpress/july-2017/chatbot-conversations-to-deliver-8bn-cost-saving
https://github.com/janmoppel/socratic-chatbot
https://github.com/janmoppel/socratic-chatbot
http://www.socraticmethod.net/how_to_use_the_socratic_method/using_the_socratic_method.html
http://www.socraticmethod.net/how_to_use_the_socratic_method/using_the_socratic_method.html
http://www.socraticmethod.net/how_to_use_the_socratic_method/using_the_socratic_method.html

[15] Maxwell M. The Moral Bankruptcy of Faith. http://www.socraticmethod.net/
morality/page1.htm. (14.05.2018).

[16] Padesky C. A. Socratic Questioning: Changing Minds or Guiding Dis-
corvery? https://padesky.com/newpad/wp-content/uploads/2012/11/
socquest.pdf. (14.05.2018).

[17] Plato. Meno. https://www.staff.ncl.ac.uk/joel.wallenberg/
ContextsJoelGeoff/meno.pdf. (14.05.2018).

[18] Chatbot definition. https://en.oxforddictionaries.com/definition/
chatbot. (14.05.2018).

[19] Types of Bots: An Overview. http://botnerds.com/types-of-bots/.
(14.05.2018).

[20] I’m Home Routine. https://assistant.google.com/services/a/uid/
0000001b6a2ed272. (14.05.2018).

[21] Rahul. Say Hello To Uber On Messenger. https://www.uber.com/newsroom/
messengerlaunch/. (14.05.2018).

[22] CNN bot. https://botlist.co/bots/cnn. (14.05.2018).

[23] Dialogflow official website. https://dialogflow.com/. (14.05.2018).

[24] Wit.ai official website. https://wit.ai/. (14.05.2018).

[25] Cortana official website. https://www.microsoft.com/en-us/cortana.
(14.05.2018).

[26] X2 AI - Mental Health chatbot. http://x2ai.com. (14.05.2018).

[27] Fitzpatrick KK, Darcy A, Vierhile M. Delivering Cognitive Behavior Therapy to
Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated
Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment
Health https://mental.jmir.org/2017/2/e19/. (14.05.2018).

[28] Shawar B.A., Atwell E. A Comparsion between Alica and Elizabeth. White Rose
Research Online http://eprints.whiterose.ac.uk/81930/. (14.05.2018).

[29] Masayuki Okamoto, Yeonsoo Yang, and Toru Ishida. Wizard of oz method for
learning dialog agents. In Matthias Klusch and Franco Zambonelli, editors, Coop-
erative Information Agents V, page 22, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

30

http://www.socraticmethod.net/morality/page1.htm
http://www.socraticmethod.net/morality/page1.htm
https://padesky.com/newpad/wp-content/uploads/2012/11/socquest.pdf
https://padesky.com/newpad/wp-content/uploads/2012/11/socquest.pdf
https://www.staff.ncl.ac.uk/joel.wallenberg/ContextsJoelGeoff/meno.pdf
https://www.staff.ncl.ac.uk/joel.wallenberg/ContextsJoelGeoff/meno.pdf
https://en.oxforddictionaries.com/definition/chatbot
https://en.oxforddictionaries.com/definition/chatbot
http://botnerds.com/types-of-bots/
https://assistant.google.com/services/a/uid/0000001b6a2ed272
https://assistant.google.com/services/a/uid/0000001b6a2ed272
https://www.uber.com/newsroom/messengerlaunch/
https://www.uber.com/newsroom/messengerlaunch/
https://botlist.co/bots/cnn
https://dialogflow.com/
https://wit.ai/
https://www.microsoft.com/en-us/cortana
http://x2ai.com
https://mental.jmir.org/2017/2/e19/
http://eprints.whiterose.ac.uk/81930/

[30] spaCy official website. https://spacy.io/. (14.05.2018).

[31] spaCy official github repository. https://github.com/explosion/spaCy.
(14.05.2018).

[32] spaCy Facts and Figures. https://spacy.io/usage/facts-figures.
(14.05.2018).

[33] textacy: higher-level NLP built on spaCy. https://textacy.readthedocs.io/
en/stable/. (14.05.2018).

[34] Natural Language Toolkit official website. https://www.nltk.org/.
(14.05.2018).

[35] language-check official page. https://pypi.org/project/language-check/.
(14.05.2018).

[36] Language Tool official website. https://languagetool.org/. (14.05.2018).

31

https://spacy.io/
https://github.com/explosion/spaCy
https://spacy.io/usage/facts-figures
https://textacy.readthedocs.io/en/stable/
https://textacy.readthedocs.io/en/stable/
https://www.nltk.org/
https://pypi.org/project/language-check/
https://languagetool.org/

I. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Jan Moppel,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Socratic chatbot
supervised by Taivo Pungas and Sven Aller

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2018

32

	Introduction
	Overview
	Socratic Method
	Chatbot
	Conversational systems today
	Chatbots using the Socratic Method

	Elizabeth

	Design
	Conversation rules
	Applying the Socratic Method
	Conversations.
	Dialogues setup.
	Conversation example.
	Conversations output.

	Implementation
	Modules and libraries
	User input analyzing and Response generating

	Validation
	First iteration
	Experiment setup
	Feedback
	Changes

	Second iteration
	Experiment setup
	Feedback
	Results

	Future development

	Conclusion
	References
	I. Licence

