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The prediction of complex nonlinear dynamical systems with the help of machine learning techniques has
become increasingly popular. In particular, reservoir computing turned out to be a very promising approach
especially for the reproduction of the long-term properties of a nonlinear system. Yet, a thorough statistical
analysis of the forecast results is missing. Using the Lorenz and Rössler system we statistically analyze
the quality of prediction for different parametrizations - both the exact short-term prediction as well as
the reproduction of the long-term properties (the “climate”) of the system as estimated by the correlation
dimension and largest Lyapunov exponent. We find that both short and longterm predictions vary significantly
among the realizations. Thus special care must be taken in selecting the good predictions as predictions which
deliver better short-term prediction also tend to better resemble the long-term climate of the system. Instead
of only using purely random Erdös-Renyi networks we also investigate the benefit of alternative network
topologies such as small world or scale-free networks and show which effect they have on the prediction
quality. Our results suggest that the overall performance with respect to the reproduction of the climate of
both the Lorenz and Rössler system is worst for scale-free networks. For the Lorenz system there seems to
be a slight benefit of using small world networks while for the Rössler system small world and Erdös-Renyi
networks performed equivalently well. In general the observation is that reservoir computing works for all
network topologies investigated here.

The application of machine learning techniques
to various fields in science and technology yields
very promising and fast advancing results. How-
ever, the robustness of these methods is a criti-
cal aspect that is often not adequately addressed.
Particularly when trying to predict complex non-
linear systems – here by using a recurrent neural
network based approach called reservoir comput-
ing – it is very useful to know how likely it is
to end up with a good prediction and how differ-
ent the results can be in terms of quality. In our
context a good prediction is achieved when the
predicted trajectory matches those of the actual
system in the short-term while reproducing its
statistical properties in the long-term. In order
to thoroughly investigate the prediction quality
we run our analysis not only using a single predic-
tion but on many realizations which are based on
the same parameters but different random num-
ber seeds. As a result we find strong variability
among the quality of the predictions, indicating
that robustness seems to be an issue and show
the effect of varying the network topology of the
reservoir.
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b)Electronic mail: christoph.raeth@dlr.de

I. INTRODUCTION

In the recent years the use of machine learning (ML)
techniques has not only become increasingly important in
research but also popular in media, public perception and
businesses. The euphoric application in all possible areas,
however, carries the risk of misinterpreting the results if
deeper methodological knowledge is lacking. This is rem-
iniscent of the situation in the late 1980s and early 1990s
when chaos was a hot topic in the scientific community.
In the absence of adequate statistics analysis, many sys-
tems have been erroneously categorized as being chaotic
on the basis of e.g. assessing the attractor dimensions by
single measurements of short and noisy time series. Only
after Theiler et al.1 introduced the concept of surrogate
data the errors of the nonlinear measures for a given data
set could be assessed, and it turned out that many claims
of chaos had to be rejected. The lesson learned is that in
the absence of a proper (linear) model of the underlying
process credible results can only be obtained by applying
thorough statistical analyses involving averaging over a
large number of realizations of simulations or surrogates.
In recent years the use of reservoir computing for quanti-
fying and predicting the spatiotemporal dynamics of non-
linear systems has attracted much attention.2–9 Many of
the achievements – be it e.g. the cross-prediction of vari-
ables in two-dimensional excitable media6 or the repro-
duction of the spectrum of Lyapunov exponents in lower
dimensional (Lorenz or Rössler) and higher dimensional
(Kuramoto-Sivashinsky) systems2–4 – are impressive and
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guide the way to a range of new applications of ML in
complex systems research. However, all results shown
until now are based on a single or few realizations of
reservoir computing. It is thus so far impossible to judge
the robustness of the results on e.g. variations of the
set of random variables specifying the reservoir. Here,
we perform the first thorough statistical analysis of pre-
dicting short and long-term behaviour of nonlinear time
series by means of reservoir computing.
The heart of reservoir computing is – as the name al-
ready says – a so-called reservoir, which consists of Dr

nodes that are sparsely connected with each other. The
nodes are supposed to yield a proper “echo state” to a
given input, which is then transferred to the output layer.
That’s why most types of reservoir networks are often
called “echo state networks (ESN)”. Beginning with the
first introduction of ESNs by Maass and Jaeger10,11 the
reservoir has typically been modelled as a random Erdös
Rényi network, where two nodes are connected with
as certain probability p. However, the groundbreaking
works of Watts and Strogatz,12 Albert and Barabasi.13

and many others have shown that random networks are
far from being common in physics, biology, finance or so-
ciology. Rather, more complex networks like scale-free,
small world or intermediate forms of networks14,15 with
intriguing new properties are most often found in real
world applications. Having this in mind it seems natural
to ask whether also for reservoir computing the topology
of the network has a significant influence on the predic-
tion results.16 As a first step we use the three aforemen-
tioned prototypical classes of networks as reservoir and
compare them regarding their ability of short and long-
term prediction of time series.
The paper is organized as follows: Section II introduces
reservoir computing and the methods used in our study.
In section III we present the main results obtained from
the statistical analysis of the prediction results as well
as studying different reservoir topologies. Our summary
and the conclusions are given in section IV.

II. METHODS

A. Lorenz and Rössler system

As in Pathak et al.3 and Lu et al.8 we use the Lorenz
system17 as an example for replicating chaotic attractors
using reservoir computing. It has been developed as a
simplified model for atmospheric convection and exhibits
chaos for certain parameter ranges. The standard Lorenz
system, however, is symmetric in x and y with respect
to the transformation x → −x and y → −y. This can
be an issue for example when trying to infer the x and y
dimension from knowledge of the z dimension as outlined
in Lu et al..? In order to study a more general example
we would like to modify the Lorenz system such that this
symmetry is broken. This can be achieved by adding the

term x to the z-component which then reads:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz + x .

(1)

We use the standard parameters σ = 10, β = 8/3 and
ρ = 28. This system is referred to as modified Lorenz
system. The equations are solved using the 4th order
Runge-Kutta method with a time resolution ∆t = 0.02.

In addition to the Lorenz system we ran the same anal-
ysis also on the Rössler system18 which equations read

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c) ,
(2)

where we use the parameters a = 0.5 , b = 2.0 and c =
4.0. Again this is a D = 3 dimensional chaotic system
but said to be less chaotic than the Lorenz attractor.
Thus it is an interesting object to study in particular
when it comes to the short-term prediction capabilities
of reservoir computing. For the Rössler system the time
resolution is chosen to be ∆t = 0.05 in order to ensure
a sufficient manifestation of the attractor in the ttrain =
5000 training time steps.

B. Reservoir Computing

Reservoir computing is a machine learning technique
that falls into the category of artificial recurrent neu-
ral networks. The core of the model is a network called
reservoir which — in contrast to feedforward neural net-
works — exhibits loops. This means that past values feed
back into the system and thus allow for dynamics.19,20 In
order to complete the task of predicting time series, the
ability to capture dynamics is essential. Moreover, reser-
voir computing has a powerful advantage: While in other
methods the network itself is dynamical, here the train-
ing is based only on the linear output layer and therefore
allows for large reservoir dimensionality while still being
computationally feasible.8

In our implementation we stick to the setup used by
Pathak et al.3 which works as follows. We have an in-
put signal u(t) with dimension D that we would like to
feed into a reservoir A. The reservoir is chosen to be
a sparse Erdös-Renyi random network with Dr = 300
nodes and p = 0.02.21 Here p describes the probability of
connecting two nodes which then leads to an unweighted
average degree of d = 6. To obtain the weighted network
we then replace all nonzero elements of the adjacency
matrix by independently and uniformly drawn numbers
from [−1, 1]. It is important to highlight that the net-
work itself is static and thus does not change over time.
In order to feed the lower dimensional input signal u(t)
into the reservoir, an Dr ×D input function Win is re-
quired. The entries of Win are chosen here to be uni-
formly distributed random numbers within the range of
the nonzero elements of the reservoir.
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A key property of the system are its Dr × 1 reservoir
states r(t) which represent the scalar states of the nodes
of the reservoir network. We initially assume ri(t0) = 0
for all nodes and update the reservoir states in each time
step according to the equation

r(t+ ∆t) = αr(t) + (1− α)tanh(Ar(t) + Winu(t)) . (3)

As in Pathak et al.3 we set α = 0 and therefore do not
mix the input function with past reservoir states. Now we
have a fully dynamical system where the network edges
are constant and the states of the nodes are time depen-
dent.

The next step is to map the reservoir states r(t) back
to the D dimensional output v given by

v(t+ ∆t) = Wout(r(t+ ∆t),P) . (4)

Here we assume that Wout depends linearly on P and
reads Wout(r,P) = Pr. This means that the output
depends only on the reservoir states r(t) and the output
matrix P which contains a large number of adjustable
parameters - all its elements. Therefore, after acquiring
a sufficient number of reservoir states r(t) we have to
choose P such that the output v of the reservoir is as close
as possible to the known real output vR. This process is
called training. In general, the task is to find an output
matrix P using Ridge regression, which minimizes∑

−T≤t≤0

‖Wout(r(t),P)− vR(t) ‖2 − β‖ P ‖2 , (5)

where β denotes the regularization constant, that pre-
vents from overfitting by penalizing large values of the
fitting parameter. In this study we choose β = 0.01. The
notation, ‖ P ‖ describes the sum of the square elements
of the matrix P. For solving this problem, we are ap-
plying the matrix form of the Ridge regression22 which
leads to

P = (rT r + β1)
−1

rTvR . (6)

The notion r and vR without the time indexing denotes
matrices where the columns are the vectors r(t) and vR(t)
respectively in each time step. In our implementation we
chose ttrain = 5000 training time steps while allowing for
a washout or initialisation phase of tinit = 100. Dur-
ing this time we do not ”record” the reservoir states r(t),
which means that only 4900 time steps are used for the re-
gression. In order to ensure that 100 time steps washout
is sufficient we also ran the analysis with 1000 time steps
washout and found both results to be equivalent.

After P is determined we can now switch to the pre-
diction mode by giving the predicted state v(t) as input
instead of the actual data u(t). The update equation for
the network states r(t) then reads

r(t+ ∆t) = tanh(Ar(t) + WinWout(r(t),P))

= tanh(Ar(t) + WinPr(t)) .
(7)

This allows us to produce a predicted trajectory of any
length by just applying Eq. 4.

C. Alternative network topologies

So far it has been standard practice to use purely ran-
dom Erdös-Renyi networks for the reservoir A. However,
there is a variety of conceivable network topologies that
may have an influence on the results. In this study we
investigate the use of Small World12 and Scale Free23

networks as an alternative.

Small World networks are graphs where the distance
– in terms of steps via other nodes – between any pair
of nodes is small. At the same time the clustering coef-
ficient is relatively high which means that neighbouring
nodes tend to be connected. This so-called small world
property is observed in many real world networks such
as social networks, electric power grids, chemical reac-
tion networks and neuronal networks.24In order to have
the same average degree d = 6 as the random Erdös-
Renyi networks we construct the Small World networks
in the following way: First we connect each node with its
six nearest neighbours implying periodic boundary con-
ditions. This is equivalent to arranging all nodes as a
ring. Then we loop over each edge x− y and rewire it to
x− z with probability p = 0.2, where node z is randomly
chosen.

Scale Free networks are graphs where the distribution
of the number of edges per node decays with a power
law tail. This is again a property which is observed in
many real world networks. For example, the above men-
tioned electric power grid networks and neuronal net-
works exhibit not only the small world property but
are also scale free. Other examples include the world
wide web or networks of citations of scientific papers.24

Again, the network is constructed such that its average
degree is d = 6. For this we use the scale free graph
generator of the NetworkX package25 with parameters
α = 0.285, β = 0.665, γ = 0.05, δin = 0.2, δout = 0. Note
that in this case the graph is directed while the other two
network topologies result in undirected graphs. Here,
α sets the probability of adding a new node which is
connected to an already existing node which is chosen
randomly according to the in-degree distribution while γ
does the same except that the node is chosen according
to the out-degree distribution. In addition, β regulates
the probability of creating an edge between two existing
nodes where one is chosen according to the in-degree dis-
tribution and the other node according to the out-degree
distribution.26

D. Measures of the System

In order to assess the quality of the prediction we are
mainly using three different measures. The goal is to
adequately address both the exact short-term prediction
as well as the long-term reproduction of the statistical
properties of the system - its so called climate.



4

FIG. 1. Left: X coordinate of two predicted (blue) trajectories of the Lorenz system plotted over n = 2000 time steps. The
results are compared against the trajectory of the simulated actual Lorenz system (green). The upper plot shows a good
realization where both trajectories are overlapping while the lower part shows a bad prediction. Right: Three dimensional
attractor for both cases. The spectral radius is ρ = 0.3 and random Erdös-Renyi networks are used for the reservoir A.
The correlation dimension for is ν = 1.992 for the upper and ν = 0.007 for the lower realization while the largest Lyapunov
exponents are λ1 = 0.851 (upper) and λ1 = 0.420 (lower).

1. Forecast Horizon

To quantify the quality and duration of the exact pre-
diction of the trajectory we use a fairly simple measure
which we call forecast horizon. Here we track the number
of time steps during which the predicted and the actual
trajectory are matching. As soon as one of the three coor-
dinates exceeds certain deviation thresholds we consider
the trajectories as not matching anymore. Throughout
our study we use

|v(t)− vR(t)| > δ (8)

where the thresholds are δ = (5, 10, 5)T for the Lorenz
system and δ = (2.5, 2.5, 4)T for the Rössler system. The
values are chosen this way due to the different ranges of
the state variables in both systems. The aim is that
small fluctuations around the actual trajectory as well as
minor detours do not exceed the threshold. Empirically
we found that distances between the trajectories become
much larger than the threshold values as soon as short-
term prediction collapses.

2. Correlation Dimension

One important characteristic of the long-term proper-
ties of the system is its structural complexity. This can be
quantified by calculating the correlation dimension which
measures the dimensionality of the space populated by
the trajectory.27 It is based on the correlation integral

C(r) = lim
N→∞

1

N2

N∑
i,j=1

θ(r − |xi − xj |)

=

∫ r

0

d3r′c(r′) ,

(9)

which describes the mean probability that two states in
phase space are close two each other at different time
steps. The condition close to is met if the distance be-
tween the two states is less than the threshold distance
r. θ represents the Heaviside function while c(r′) de-
notes the standard correlation function. For self-similar
strange attractors the following power-law relationship
holds in a range of r:

C(r) ∝ rν . (10)
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FIG. 2. Forecast horizon scattered against the correlation dimension for each of the N = 1000 predictions of the Lorenz system
per spectral radius. Different spectral radii are differentiated by colours. Random Erdös-Renyi networks are used for the
reservoir A.

The correlation dimension is then measured by the scal-
ing exponent ν. We use the Grassberger Procaccia
algorithm28 to calculate the correlation dimension of our
trajectories. This approach is purely data driven and
therefore does not require any knowledge about the sys-
tem.

3. Largest Lyapunov Exponent

Another aspect of the long-term behaviour is the tem-
poral complexity of the system. When dealing with
chaotic systems, looking at its Lyapunov exponents is
an obvious choice. The Lyapunov exponents λi describe
the average rate of divergence of nearby states in phase
space and thus measure sensitivity to initial conditions.
For each dimension in phase space there is one exponent.
If the system exhibits at least one positive Lyapunov ex-
ponent it is classified as chaotic while the magnitude of
the exponent quantifies the time scale on which the sys-
tem becomes unpredictable.29,30 Therefore it is sufficient
for our analysis to determine only the largest Lyapunov
exponent λ1

d(t) = Ceλ1t , (11)

which makes the task computationally easier. Here,
d(t) is the average distance or separation of the initially

nearby states at time t and C is a constant that nor-
malizes the initial separation. To calculate the largest
Lyapunov exponent we use the Rosenstein algorithm.31

III. RESULTS

Although machine learning techniques and reservoir
computing in particular have become increasingly pop-
ular, a thorough statistical analysis of the forecast re-
sults is yet missing. Therefore we found it insightful to
not only perform one single prediction where prediction
means forecasting the trajectory for tprediction = 10000
time steps. As there are random numbers involved in
the construction of the reservoir A as well as the input
function Win we can run the prediction with N = 1000
different random number seeds while keeping all other
parameters of the network constant. Therefore, for dif-
ferent seeds both A and Win will vary. This allows us
to gain a statistical view on the quality of the prediction
instead of analysing only single realizations. In addition
to the parameters mentioned in Section II there is one
more parameter that we can tune. This is the spectral
radius ρ of the adjacency matrix of the reservoir A which
is defined as its largest absolute eigenvalue

ρ(A) = max{|λ1|, ..., |λDr
|} (12)
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FIG. 3. Forecast horizon scattered against the correlation dimension for each of the N = 1000 predictions of the Rössler
system per spectral radius. Different spectral radii are differentiated by colours. Random Erdös-Renyi networks are used for
the reservoir A.

and reflects some kind of average degree of the network.
We can adjust the spectral radius by

A∗ =
A

ρ(A)
ρ∗ , (13)

where ρ∗ is the desired spectral radius. Note that λi
here denote the eigenvalues of the adjacency matrix of
the reservoir A - not to be confused with the Lyapunov
exponent in Eq. 11 which is commonly called λ as well.
Other studies showed results for particular values of ρ
such as Pathak et al.3 e.g. claiming that the prediction
using a spectral radius of ρ = 1.2 accurately resembles
the long-term climate of the system while the same setup
with ρ = 1.45 does not. To possibly reproduce these re-
sults and to assess the best ranges for the spectral radius
we ran the reservoir computing with N = 1000 dif-
ferent random number seeds for each spectral radius ρ∗i ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.45
, 1.6, 1.8, 2.0, 2.2, 2.4} while all other parameters remain
constant. We simulate one trajectory which is used
for the training of the network as well as for the com-
parison of the predicted trajectory with the actual one.
Furthermore, we simulated additional 1000 trajectories
of the actual Lorenz and Rössler system with different
randomly chosen initial conditions in order to investigate
the statistical error when calculating the correlation
dimension and the largest Lyapunov exponent from the
time series with limited length.

Table I shows the means and standard deviations for
both measures indicating that the error is reasonably
small. As we use only 10000 data points, our results
are slightly below the expected values of around 2.04 for
the correlation dimension and 0.89 for the largest Lya-
punov exponent of the Lorenz system. For the Rössler
system the results for the correlation dimension are sig-
nificantly below the desired value of around 2 because the
Grassberger Procaccia algorithm is slower converging as
compared to the Lorenz system when using only 10000
data points. This is also reflected in the higher stan-
dard deviation σ of the correlation dimension. However,

Lorenz Mean σ

Correlation Dimension 2.026 0.014

Largest Lyapunov Exponent 0.878 0.029

Rössler Mean σ

Correlation Dimension 1.713 0.037

Largest Lyapunov Exponent 0.107 0.011

TABLE I. Mean and standard deviation σ of the two mea-
sures calculated from 1000 simulated trajectories with differ-
ent initial conditions.
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FIG. 4. Largest Lyapunov exponent scattered against the correlation dimension for each of the N = 1000 predictions per
spectral radius. Results are shown for the Lorenz (left) and Rössler system (right). Different spectral radii are differentiated
by colours. The red object represents the five sigma error ellipse of both measures calculated based on 1000 simulated true
trajectories.Random Erdös-Renyi networks are used for the reservoir A.

we verified through increasing the number of data points
that our calculations converge to the expected results.

Figure 1 shows two examples of predicted trajectories
using reservoir computing in the setup described above
with a spectral radius of ρ = 0.3. Although we ran the
prediction over n = 10000 time steps we plotted the re-
sults for n = 2000 time steps for the sake of clarity. On
the left side of the plot one can see the trajectory of
the X coordinate for the predicted system using reser-
voir computing (blue) and the simulated system based
on the Lorenz differential equations (green). In the up-
per plot both trajectories are overlapping for around 200
time steps and then deviate while still showing the char-
acteristic pattern of the Lorenz system. However, in the
lower plot both trajectories already separate after less
than 100 time steps leading to a pattern which looks
completely different.

This is remarkable given the fact that the setup for
both cases is identical except for a different random num-
ber seed which results in different realizations of the input
function Win and the reservoir A. Since looking solely
at the X coordinate yields insufficient information about
the overall prediction quality it is meaningful to investi-
gate the whole attractor as plotted on the right side of
Fig. 1. Here we can see that the Lorenz attractor is re-
constructed very well by the upper prediction while the

lower prediction has nothing to do with the butterfly-
shaped Lorenz attractor. Instead, the trajectory quickly
runs into a fixed point after detaching and partly forming
some kind of mirrored Lorenz attractor. The difference
in prediction quality is not only reflected in the ability to
match the original trajectory in the short-term but also
with respect to the correlation dimension and the largest
Lyapunov exponent. While in the upper case the result-
ing values of ν = 1.992 and λ = 0.851 are well within the
expectations for the Lorenz system, the lower realization
completely misses to reconstruct the long-term climate.
Immediately the question arises if this observation is an
exception or whether the prediction quality is not robust
with respect to different random number seeds. There-
fore we systematically investigated this effect by running
the same setup with N = 1000 different random number
seeds. Since it would be laborious to visually inspect the
trajectories and attractors of all realizations we rely on
the measures introduced in Section II in order to assess
if a prediction is good or bad.

Figure 2 shows a scatter plot where the forecast horizon
is plotted against the correlation dimension for all realiza-
tions. The colours represent different spectral radii and
for each spectral radius there is one point for each of the
N = 1000 random number seeds. In order to make the
results better readable we divided the plot into four sec-
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tions where we grouped the results for four to five differ-
ent spectral radii. The first thing we can observe is that
the prediction of the Lorenz system using reservoir com-
puting works better for smaller spectral radii. But more
importantly one can also see that the prediction quality
significantly varies even when using the same spectral ra-
dius - as already indicated by Fig. 1. This becomes not
only evident by the results for the forecast horizon but es-
pecially when considering the correlation dimension. Its
values quickly spread when increasing the spectral ra-
dius indicating that the resulting predicted trajectories
do not resemble the long-term climate of the system well
in many cases. Figure 3 shows the same results for the
Rössler system. In contrast to the Lorenz system not the
smallest spectral radius but a choice of ρ = 0.4 leads to
the best results. In addition, the short-term prediction
ability measured by the forecast horizon is significantly
better with a number of predictions matching the original
trajectory for 500 to almost 1000 time steps. However,
the spread of the results for the correlation dimension
seems to be larger as compared to the Lorenz system
with high variability even for the best working spectral
radii. This is partly due to the fact that the numerical
calculation of the correlation dimension converges slower
for the Rössler system as mentioned in the previous sec-
tion. As in Fig 2, there seems to be some “quantization”
of the Forecast Horizon for both systems. The reason is
that the predicted trajectory typically detaches from the
actual one after completing a loop around the attractor.

The variability becomes even clearer when looking at
Fig. 4. Here we can see another scatter plot where the
largest Lyapunov exponent is plotted against the corre-
lation dimension and thus both components of assessing
the long-term climate are reflected. The left plots shows
the results for the Lorenz system where those for the
Rössler system are shown on the right side. In addition,
the red ellipse shows the five sigma errors of the correla-
tion dimension and the largest Lyapunov exponent cal-
culated from 1000 simulations using the actual equations
of the Lorenz and Rössler system as shown in Table I.
When studying the left side it becomes clear that even
for the smallest and for the Lorenz system best work-
ing spectral radius ρ = 0.1 (top left plot, dark green)
the resulting ”bubble” of points is of the same size as
the σ = 5 error ellipse. This indicates strong variability
given that σ = 5 is a large error. For the larger spectral
radii shown in the bottom left plot - including the values
ρ = 1.2 and ρ = 1.45 as used in Ref.3 - there is not a
single point within the ellipse. This indicates that the
prediction completely fails to reproduce the long-term
climate for those cases. The results for the Rössler sys-
tem on the right side of the plot give a similar picture.
However, even for the best working spectral radius of
ρ = 0.4 there are many points outside of σ = 5 error el-
lipse. In addition, one can also see from the upper plots
of Fig. 4 that a good reproduction of the correlation di-
mension also tends to coincide with a better reproduction
of the largest Lyapunov exponent although this effect is

FIG. 5. Top plot: Cumulative distribution of χ2 for the best
working spectral radius ρ = 0.1 of the Lorenz system calcu-
lated for values between 0 and 10. Bottom plot: Same for the
Rössler system with ρ = 0.4 and values between 0 and 500

not very significant.
So far we only looked at the results based on the ran-

dom Erdös-Renyi networks. In order to compare the per-
formance of the three different network topologies on a
statistical level we perform a χ2 analysis of the long-term
climate prediction. This means that we calculate

χ2(i, ρ) =

2∑
j=1

[
Xj(i, ρ)− 〈Xj〉

σXj

]2
, (14)

where i is the i − th random number seed, ρ indexes
the spectral radius. The sum goes over the correlation
dimension (j = 1) and the largest Lyapunov exponent
(j = 2). 〈Xj〉 represents the average value derived from
1000 simulated actual Lorenz trajectories - as shown in
Table I while σXj

is the corresponding standard devia-

tion. Therefore the resulting χ2 describes how strong the
predicted results deviate from the actual values weighed
by the errors of the actual values.

Figure 5 shows the cumulative distribution of the χ2

for the three network topologies. The top plot contains
the results for the Lorenz system using the spectral radius
ρ = 0.1 and evaluation values of χ2 for 0 and 10. We can
see that Scale Free networks (red line) tend to work worst
while Small World networks (blue) line slightly outper-
forms the Erdös-Renyi networks (yellow line). However,
it becomes clear that the method of reservoir computing
works for all networks topologies tested here. In con-
trast, there is a difference between Scale Free networks
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and the other topologies in the case of the Rössler sys-
tem (bottom plot). Here, we calculated the cumulative
distribution for values of χ2 between 0 and 500 based
on ρ = 0.4. The reason is that even for the best work-
ing spectral radius the variability is significantly higher
as compared to the Lorenz system which leads to higher
values of χ2 with only very few data points in the 0 to 10
range. It is interesting to note that the performance of
Scale Free networks is now strongly below the other two
networks while Erdös-Renyi networks are slightly lead-
ing overall. Therefore, in contrast to the Lorenz system
network topology seems to matter in this case.

IV. CONCLUSIONS AND OUTLOOK

In this paper investigated the prediction of chaotic at-
tractors by using reservoir computing from a statistical
perspective. Instead of only predicting one trajectory we
simulated 1000 realizations each – where each realiza-
tion corresponds to another random number seed – for a
number of different spectral radii ρ. Analyzing both the
Lorenz and Rössler system we found that the ability to
exactly forecast the correct trajectory as well as the re-
construction of the long-term climate measured by corre-
lation dimension and largest Lyapunov exponent strongly
varies. Even for the exact same parameter setup there
can be very good results that match the true trajectory
for a large number of time steps and nicely reconstruct
the attractor. On the other hand there can be results that
completely fail in either one or both dimensions and are
not reflecting the desired properties of the system. The
results suggest that smaller spectral radii than typically
used work better for both systems while in case of the
Lorenz system even the smallest spectral radius ρ = 0.1
performed best. However, even in this case results show
strong variability as they completely fill the five sigma er-
ror ellipse of correlation dimension and largest Lyapunov
exponent. For the Rössler system there are several pre-
dictions exceeding the σ = 5 error ellipse for the best
working spectral radius of ρ = 0.4 and thus variability is
even stronger as compared to the Lorenz system. This
is an interesting observation given that the Rössler sys-
tem is considered less nonlinear. Overall our results indi-
cate that special care must be taken in selecting the good
predictions as predictions which deliver better short time
prediction also tend to better resemble the long-term cli-
mate of the system.

Furthermore, we ran the same analysis using two other
network topologies: Small world and scale free networks.
In essence they produced comparable results with a slight
outperformance of Small World networks and underper-
formance of Scale Free networks for the Lorenz sys-
tem. For the Rössler system the picture is different with
a slight outperformance of Erdös-Renyi networks while
Scale Free networks are showing worse results in terms
of the χ2 analysis. A tentative explanation for the lower
performance of Scale Free networks could be the follow-

ing: According to Singh,32 the more capable a brain or
neuronal system is, the less scaling is present in its de-
gree distribution. Overall it is important to point out
that despite the differences presented here, the general
methodology of reservoir computing works for different
network topologies. However, even after trying different
parameters and alternatively a setup where also the in-
put states are going into the regression as described by
Lukosevicius and Jaeger,19 the variability can always be
observed.

Once the network is trained, the prediction is deter-
ministic and depending strongly on the weights and only
weakly on the topology. It should thus be possible to as-
sociate good and bad predictions with differential proper-
ties of the respective realization of the reservoir in a sys-
tematic way. First attempts in this direction for a reser-
voir with unweighted edges have recently been reported
in Carroll and Pecora.33 Once based on those insights
more stable predictions are possible, a more precise anal-
ysis of the attractor properties e.g. with the spectrum
of Lyapunov exponents could be useful and necessary.
Furthermore, the role of the network size is also an in-
teresting aspect. Current and future work is dedicated
to the investigation of these questions - not the least be-
cause the answers to them will shed new light on the
complexity of the underlying dynamical system.
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