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Abstract 

Transitions of Control (ToC) play an important role in the simulative impact 

assessment of automated driving because they may represent major perturbations of 

smooth and safe traffic operation. The drivers' efforts to take back control from the 

automation are accompanied by a change of driving behavior and may lead to increased 

error rates, altered headways, safety critical situations, and, in the case of a failing 

takeover, even to minimum risk maneuvers. In this work we present modeling 

approaches for these processes, which have been introduced into SUMO recently in the 

framework of the TransAID project. Further, we discuss the results of an evaluation of 

some hierarchical traffic management (TM) procedures devised to ameliorate related 

disturbances in transition areas, i.e., zones of increased probability for the automation to 

request a ToC. 

1 Introduction 

The automation of the dynamic driving task is foreseen to revolutionize the existing paradigm in 

the road transportation sector. In the past two decades, driving automation systems of different 

capabilities, ranging between semi-autonomy and full autonomy, were researched and developed. 

Currently, many production-series vehicles are equipped with Advanced Driver Assistance Systems 

(ADAS), that can undertake different aspects (longitudinal, lateral or both) of the dynamic driving 

task (ERTRAC Working Group, 2017). Adaptive Cruise Control (ACC), Lane Keeping Assist (LKA), 

and Forward Collision Warning (FCW) are among the most common ADAS that market available 

vehicles are manned with. Recently, conditional automation (SAE Level 3) was also introduced into 

specific market ready passenger cars in the form of Traffic Jam Assist. Although conditionally 

automated driving systems are designed to monitor the road environment, the vehicle operator still 

remains the failsafe in case of automation disengagement. However, the automotive industry and self-

driving technology providers have announced that highly automated vehicles (AVs) should be 

expected to enter the roads on the dawn of the upcoming decade. These vehicles will explicitly 

operate within confined geographical areas named Operational Design Domains (ODDs). Moreover, 

they will be capable to control the fallback performance of the dynamic driving task if the driver is 

unresponsive to take-over requests (TORs) when system-initiated automation disengagements 
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commence. Thus, vehicle automation will gradually alter road traffic composition in the next decades 

(PTOLEMUS Consulting Group, 2017) and significantly impact the fronts of traffic safety and 

efficiency. 

Evidence based on field operational testing (controlled and real traffic experiments) of automated 

and autonomous vehicles indicated that automation disengagements can result from a multitude of 

reasons. System failures, human factors, complex traffic situations and improper infrastructure (e.g. 

ambiguous or absent lane markings) were proven as the primary causes of  downward (from 

automated to manual driving) transitions of vehicle control (Favarò, Eurich, & Nader, 2018).  

ToCs are expected to exert a profound impact on traffic operations due to erratic vehicle behavior 

and potential minimum risk maneuvers (MRMs). This phenomenon will be amplified in the presence 

of mixed traffic (coexistence of manual and automated/autonomous vehicles on the roads) due to 

heterogeneous vehicle behavior that will induce complex vehicle interactions. Although future 

autonomous vehicles are designed to predict the intentions and imminent actions of other road users 

even in the absence of connectivity (Bansal, Krizhevsky, & Ogale, 2018), developers of self-driving 

technology expect that the long tail of edge cases that vehicle automation will be incapable to cope 

with will prevent a complete release of the human driver from fallback responsibilities for a long 

time. Thus, the investigation of the effects of ToC/MRM on road traffic is of prominent significance. 

ACC activation and deactivation was thoroughly investigated by many previous studies 

(Pauwelussen & Feenstra, 2010; Pauwelussen & Minderhoud, 2008; Viti, Hoogendoorn, Alkim, & 

Bootsma, 2008) based on the Fulltraffic project dataset (Alkim, Bootsma, & Hoogendoorn, 2007). 

The latter studies demonstrated that desired time headway in car-following episodes is contingent 

upon ACC deactivation and reactivation. Findings from the Fulltraffic project were also used to 

simulate control transitions from ACC to manual driving in microscopic traffic simulation tools 

(Klunder, Li, & Minderhoud, 2009; Xiao, Wang, Schakel, & van Arem, 2018). Simulation results 

suggested that transitions can reduce throughput and disrupt traffic flow performance.  

However, the most detrimental effects of control transitions are expected to occur if vehicles of 

higher automation enter public roads. Operators of these vehicles will not be required to monitor the 

primary driving task. Thus, increased driver distraction prior to a TOR issued by the vehicle 

automation might ensue reduced driver performance after the ToC, or even an MRM if the ToC is 

unsuccessful (i.e., the driver fails to respond to the TOR). Nonetheless, there is limited information 

publicly available with respect to control transitions pertinent to vehicles of higher automation levels. 

Most relevant studies address human factors and ergonomics aspects of the transitions either with the 

use of driving simulators or based on real world experiments (Eriksson & Stanton, 2017; Gold, 

Damböck, Lorenz, & Bengler, 2013; Gold, Körber, Lechner, & Bengler, 2016; Lu, Coster, & de 

Winter, 2017; Merat, Jamson, Lai, Daly, & Carsten, 2014) 

. These studies set the ground for the development of a novel ToC model, which is introduced in 

this paper that can replicate driver behavior during a ToC and vehicle motion during a MRM. The 

ToC model is integrated into the Simulation of Urban Mobility (SUMO) microscopic traffic simulator 

(Lopez et al., 2018) to facilitate the simulative assessment of ToCs/MRMs with respect to safety, 

traffic efficiency and the environment. 

Additionally, this paper examines traffic management measures that were developed in the context 

of the TransAID project (Wijbenga et al., 2018) to mitigate the adverse effects of ToCs/MRMs in 

areas of the road network where traffic operations favor the occurrence of ToCs/MRMs (i.e. work 

zones, merging areas, lane drops, no automation zones etc.). These areas are referred as “Transition 

Areas” in the context of this study. The measures presented in this paper were crafted to either prevent 

ToCs/MRMs by providing vehicle path information or distribute ToCs/MRMs by scheduling their 

occurrence in space and time assuming that vehicle connectivity (V2X) is available. These measures 

are investigated with the use of the microscopic traffic simulation tool SUMO. Simulation 

experiments encompassing driver models both for manual and automated vehicles (including the 

proposed ToC model) are run with and without the devised traffic management measures. The 



efficacy of the measures is assessed in terms of generated safety, traffic efficiency and environmental 

benefits. 

The modelling and simulation of manual and automated driving in SUMO is presented in Chapter 

2. The traffic management services that were developed by the TransAID project to alleviate the 

impacts of ToCs/MRMs are described in Chapter 3. Simulation experiments and corresponding 

results pertaining to each service are discussed and presented in Chapter 4. Finally, this study is 

concluded in Chapter 0 where outlooks for future work are also introduced. 

2 Modelling 

For the modelling and simulation of traffic scenarios with control transitions from automated to 

manual driving we have employed the microscopic traffic simulation suite SUMO (Lopez et al., 

2018). A major benefit of SUMO is that it is open source, which renders our research transparent and 

reproducible. The code for the car-following models, the driver state and the ToC device, and the gap 

controller, which are discussed below, has been made available from the SUMO repository
1
. 

2.1 Car following model for automated vehicles 

In this work, we adopted the ACC car-following model developed in (Liu, Kan, Shladover, Lu, & 

Ferlis, 2018; V. Milanés et al., 2014; Vicente Milanés & Shladover, 2014a; Xiao, Wang, & van Arem, 

2017), wherein the proposed ACC control algorithm is comprised of the following three sub-

controllers: a) speed (or cruising) controller, b) gap-closing controller, and c) gap controller. A fourth 

sub-controller, namely collision avoidance controller, is also introduced in order to prevent rear-end 

collisions when safety-critical conditions arise. In what follows, the basic definitions and equations 

corresponding to each control mode (sub-controller) are presented.   

 

Speed Control Mode 

The control objective of the speed control mode is to maintain the pre-defined desired driving 

speed by the driver and is activated when the preceding vehicle is absent or beyond the on-board 

sensors’ detection range (120 meters in this study). In particular, this mode aims to eliminate the 

deviation between the vehicle speed and the desired speed and is given in Eqn. (1):   

 

𝛼𝑖,𝑘+1 = 𝑘1(𝑣𝑑 − 𝑣𝑖,𝑘),     𝑘1 > 0, (1) 

 

in which 𝛼𝑖,𝑘+1 (𝑚/𝑠
2) is the acceleration recommended by the ACC controller to the 𝑖 − 𝑡ℎ subject 

vehicle for the next time step 𝑘 + 1; 𝑣𝑑  (𝑚/𝑠) and 𝑣𝑖,𝑘  (𝑚/𝑠) indicate the desired free flow speed 

and the current speed of the subject vehicle respectively; 𝑘1 is the control gain in the speed difference 

between the free flow speed and the subject vehicle’s current speed. Typical values for this gain range 

between 0.3 − 0.4 𝑠−1 according to (Xiao et al., 2017); in this study 𝑘1 = 0.4 𝑠
−1. 

 

Gap Control Mode 

When the spacing between the subject and the preceding vehicle is smaller than a pre-specified 

minimum threshold (100 meters in this study), and the gap and speed deviations are concurrently 

smaller than 0.2 m and 0.1 m/s respectively, the ACC controller activates the gap control mode to 
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enable the subject vehicle to follow the preceding vehicle’s motion. This mode is described by the 

following second-order transfer function based on the gap and speed deviations with respect to the 

preceding vehicle: 

 

𝛼𝑖,𝑘+1 = 𝑘2𝑒𝑖,𝑘 + 𝑘3(𝑣𝑖−1,𝑘 − 𝑣𝑖,𝑘),      𝑘2, 𝑘3 > 0, (2) 

 

where 𝑒𝑖,𝑘 (𝑚) represents the gap deviation of the 𝑖-th subject vehicle at the current time step 𝑘, and 

𝑣𝑖−1,𝑘  (𝑚/𝑠) is the current speed of the preceding vehicle (index 𝑖 − 1 refers to the leader of vehicle 

𝑖 ); 𝑘2  and 𝑘3  are the control gains on both the spacing and speed deviations, respectively. The 

proposed optimal values for the gains are 𝑘2 = 0.23 𝑠
−2 and 𝑘3 = 0.07 𝑠

−1 (Xiao et al., 2017).  

The gap deviation of the 𝑖-th subject vehicle (𝑒𝑖,𝑘 (𝑚)) is defined in Eqn. (3): 

 

𝑒𝑖,𝑘 = 𝑥𝑖−1,𝑘 − 𝑥𝑖,𝑘 − 𝑡𝑑𝑣𝑖,𝑘 ,  (3) 

 

where , 𝑥𝑖−1,𝑘  (𝑚) is the current position of the preceding vehicle, 𝑥𝑖,𝑘 (𝑚) is the current position of 

the subject vehicle, 𝑣𝑖,𝑘 (𝑚/𝑠) is the current speed of the subject vehicle and 𝑡𝑑 (𝑠) is the desired time 

gap of the ACC controller.  

 

Gap-closing Control Mode 

The gap-closing controller enables the smooth transition from speed control mode to gap control 

mode and is triggered when the spacing to the preceding vehicle is shorter than 100 m. This mode 

was derived by reducing the gain related to the gap deviation and increasing the gain related to the 

speed deviation of the gap mode (Xiao et al., 2017). Hence, the control gains of Eqn. (2) are set equal 

to 𝑘2 = 0.04 𝑠
−1 and 𝑘3 = 0.8 𝑠

−1 in this sub-controller. If the spacing is between the minimum and 

maximum threshold, the subject ACC vehicle retains the previous control strategy during the previous 

time step (either speed or gap-closing control mode) to provide hysteresis in the control loop and 

perform a smooth transfer between the two strategies.  

Collision Avoidance Control Mode 

This study introduced the collision avoidance control mode to prevent rear-end collisions 

occurring during simulations due to safety critical conditions (i.e. low time-to-collision (TTC) values, 

follower’s speed significantly higher than the leader’s). The collision avoidance mode was also 

derived by tuning the control gains of the existing gap mode and is triggered when the spacing to the 

preceding vehicle is smaller than 100 𝑚 and concurrently the gap deviation is negative. In this case, 

the control gains of Eqn. (2) are set as 𝑘2  =  0.8 𝑠
−2 and 𝑘3  =  0.23 𝑠

−1 to ensure that ACC vehicles 

can brake hard enough to avoid an imminent collision 

2.2 Car following model for manually controlled vehicles 

In the following we describe the extensions we have incorporated into SUMO to model manually 

controlled vehicles. The main difference we take into account when differentiating manual from 

automated driving is the imperfection of the human driver. Indeed, a number of studies report that for 

some time after the transition of control the driver performance is decreased, which seems to be 

correlated to a reduced awareness of the traffic situation while the driver is redirecting his or her focus 

to the driving task (Fuller, 2005; Lu et al., 2017; Merat et al., 2014; Young & Stanton, 2002).  

Characteristic measures of performance or involvement regarding the driving task that possess a 

correlate in a microscopic simulation are for instance: 



 reaction time,  

 lane keeping,  

 headway fluctuations,  

 lane change reluctance, or 

 braking intensity. 

To reproduce these phenomena of reduced driver performance, we have developed and 

implemented a model for the driver’s state into SUMO. It is available as a vehicle device
2
 since 

SUMO version 1.0. Besides lateral inaccuracies, i.e., lane keeping, it affects all of the above points in 

a direct or indirect way. 

In the simulation study presented in Sections 3 and 4 we employ SUMO’s standard car following 

model as a basis for manually controlled vehicles (MV). It is a variant of the Krauss model (Krauß, 

1998; Krauß, Wagner, & Gawron, 1997; Lopez et al., 2018), which , in turn, is based on the same 

principle as the Gipps car following model (Gipps, 1981; Wilson, 2001). That is maintenance of a 

safe following speed at all times, expressed by the equation 

 

(𝑣𝑓
 + 𝜏 ⋅ 𝑎)

2

2𝑏𝑓⏟        
braking distance
of follower

+ 𝑣𝑓
 ⋅ 𝜏⏟  

reaction distance
of follower

≤
𝑣𝑙
2

2𝑏𝑙⏟
braking distance

of leader

+ Δ𝑥⏟
current
headway

, 
(4) 

 

which defines a desired acceleration 𝑎 = 𝑓(𝑣𝑓 , Δ𝑣, Δ𝑥) for the follower, where Δ𝑣 = 𝑣𝑙 − 𝑣𝑓, by 

choosing 𝑎 as the maximal value fulfilling (4). Note that some additional provisions are made for the 

case 𝑏𝑙 < 𝑏𝑓,  see (Lücken, 2019).  Here, 𝑣𝑓 and 𝑣𝑙  are the current velocities of the follower and the 

leader, respectively, 𝑏𝑓  and 𝑏𝑙  are the corresponding assumed braking rates, 𝜏 is interpreted as the 

desired reaction time buffer for the follower and equals to the stationary temporal headway in 

equilibrium flow. Since the  model is based on the principle of safety, it is a popular choice for a 

simulative evaluation of traffic safety related aspects (Saifuzzaman, Zheng, Haque, & Washington, 

2015; Xin, Hourdos, Michalopoulos, & Davis, 2008).In the following we give the technical details for 

the driver state model. The dynamical core component is a stochastic process Η, which models the 

amplitude of the driver’s  errors. Its dynamics are given as 

 

𝑑Η𝑡 = −𝜃𝑡 ⋅ Η𝑡 ⋅ 𝑑𝑡 + 𝜎𝑡 ⋅ 𝑑𝑊𝑡 . (5) 

 

Note that for a fixed timescale 𝜃𝑡 ≡ 𝜃0 and fixed intensity 𝜎𝑡 ≡ 𝜎0, this is an Ornstein-Uhlenbeck 

process (Gardiner, 2009; Kesting & Treiber, 2013). However, in the proposed model, 𝜃 and 𝜎 are 

considered non-constant to reflect the variability of the driver’s awareness over time. Stipulating a 

time variant quantity 𝐴(𝑡) ∈ [0,1], called awareness in the following, we assume that  

 

𝜃𝑡 = 𝑐𝜃 ⋅ 𝐴(𝑡) and 𝜎𝑡 = 𝑐𝜎 ⋅ (1 − 𝐴(𝑡)). (6) 

 

with scaling coefficients 𝑐𝜃 and 𝑐𝜎 . Roughly speaking, this implies that the higher the awareness, the 

faster the errors decay and the smaller is their range. 

As a general mechanism applicable to a wide range of car-following models, we propose to 

impose the generated errors at the level of perception as described in the following. Given undisturbed 

car-following dynamics of the form 

𝑎 = 𝑓(𝑣𝑓 , Δ𝑣, Δ𝑥), (7) 

                                                           
2 https://sumo.dlr.de/wiki/Driver_State 

https://sumo.dlr.de/wiki/Driver_State


 

we model the dynamics under reduced driving performance as 

 

𝑎 = 𝑓(𝑣𝑓 , Δ𝑣̃, Δ𝑥̃), (8) 

 

where  

Δ𝑥̃ = Δ𝑥 + 𝜂𝑥 and Δ𝑣̃ = 𝑣 + 𝜂𝑣 , (9) 

 

are the perceived spacing and the perceived speed difference with effective spacing error 𝜂𝑥  and 

effective speed difference error 𝜂𝑣 . These effective errors are assumed to be proportional to the 

distance Δ𝑥 to the leading vehicle (Xin et al., 2008) and the main error term Η𝑡, that is,  

 

𝜂𝑥(𝑡) = 𝑐𝑥 ⋅ Δ𝑥(𝑡) ⋅ Η𝑡  and 𝜂𝑣(𝑡) = 𝑐𝑣 ⋅ Δ𝑥(𝑡) ⋅ Η𝑡 , (10) 

 

with constant coefficients 𝑐𝑥 and 𝑐𝑣.  

As an additional, generic mechanism for imperfect driving, perception specific action points are 

taken into account (Todosiev, 1963; Xin et al., 2008). An action point is a time point 𝑡 where the 

acceleration 𝑎(𝑡) is changing its value according to the dynamical equation of the given car-following 

model, i.e. Eqn. (8). 

Further, it is assumed that a change in a perceived quantity is only recognized if its magnitude 

surpasses a certain threshold value. Accordingly a corresponding change in action, here, a change of 

acceleration, is only taken out when the currently perceived speed difference Δ𝑣̃(𝑡)  deviates 

sufficiently from the last recognized value Δ𝑣̃rec or the currently perceived gap Δ𝑥̃(𝑡) deviates from 

the value estimated based on the last recognized quantities. That is, time 𝑡 is assumed an action point 

if either 

 

|Δ𝑥̃rec + (𝑡 − 𝑡rec) ⋅ Δ𝑣̃rec − Δ𝑥̃(𝑡)| > 𝜃𝑥 ,  or |Δ𝑣̃rec − Δ𝑣̃(𝑡)| > 𝜃𝑣 . (11) 

 

If not mentioned explicitly, we use the following values for the parameters of the driver state model:  

 

 𝑐𝜃 = 100, 𝑐𝜎 = 0.2, 𝑐𝑣 = 0.15, 𝑐𝑥 = 0.75, 𝜃𝑣 = 0.1, 𝜃𝑥 = 0.1 (12) 

 

These are also the default values assigned on device initialization by SUMO. 

In Figure 1 we show an example for a trajectory generated by a Krauss car-following model equipped 

with a driver state device, i.e., with superimposed dynamic perception errors and a constant awareness 

level 𝐴(𝑡) ≡ 0.1.The Krauss vehicle was inserted just behind a leading vehicle, whose speed was 

controlled via TraCI to match an empirically measured trajectory, see black line in Figure 1(a). The 

empirical trajectory of the true follower vehicle is shown in green color for the purpose of qualitative 

comparison with the model trajectory (magenta). The underlying driving episode of approximately 

three minutes duration was extracted from the sim
TD

 database
3
. The experimental parametrization for 

the driving error dynamics was obtained from a manual fit of the mean headway (Figure 1(c)) and the 

region covered by the trajectory in the (Δ𝑥, Δ𝑣)-plane (Figure 1(d)). This preliminary calibration led 

to qualitatively matching characteristics of the empirical and model trajectory in the respective 

dimensions (panels (c) and (d)). However, panels (a) and (b) of Figure 1 suggest that further work is 

required to achieve a more realistic behavior, especially regarding amplitude and frequency of speed 

oscillations, i.e., the acceleration behavior. 
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Figure 1: Car-following trajectories for an episode extracted from empirical data [simTD database3] (green 

line), and generated by a Krauss car-following model with superimposed driver-state device at constant 

awareness level 𝑨(𝒕) ≡ 𝟎. 𝟏 (magenta line). The black trajectory in (a) is the empirically measured speed of 

the leading vehicle. 

2.3 SUMO’s ToC model 

The modelling of vehicles with changing control regimes, i.e. manual and automated driving 

modes, has to incorporate a mechanism to switch between these. This ability of dynamically choosing 

different parameter sets for, e.g., the underlying car-following or lane changing models, or even 

exchanging one model for a different one, is a minimal requirement for such a model. However, for 

the purpose of representing control transitions it seems desirable to include elements that describe the 

processes surrounding the takeover. The complete model for depicting control transitions in SUMO 

has been incorporated into a vehicle device
4
. Besides managing the switching between different 

models for automated and manual driving, it optionally controls the processes during ToC preparation 

and a phase of decreased driving performance after a downward transition, i.e., when manual control 

is resumed, see Figure 2.  

 

 
Figure 2: State transition diagram for SUMO’s ToC model. The main operational modes (Automated and 

Manual) each possess various submodes associated to processes during a takeover. 
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Firstly, we have incorporated a gap control mechanism into SUMO, which allows the user to 

impose a continuous adaptation of a vehicle’s desired headway. On one hand this mechanism may be 

employed to smoothly adapt the desired headway of the regime, which is currently operational, 

towards the new value of the regime targeted by the transition. In particular, when switching 

discontinuously from a small towards a large desired headway smoothing the transition may prevent 

artificially high braking resulting from the discontinuity. Moreover, we employ the gap control to 

depict a preparatory phase in case of a downward transition (from automated to manual), where it 

seems reasonable to assume that the vehicle automation may enlarge the headway to the leading 

vehicle in order to simplify the takeover situation for the human driver. The gap control mechanism 

can be either triggered automatically by an appropriate configuration of the ToC model (as described 

below), or directly via SUMO’s online interface TraCI
5
. 

The user can configure the following aspects of the process: 

a) the new desired time, which acts on the car-following model’s parameter tau,  

b) the new desired spacing, which is incorporated in an additive fashion (i.e., the effective 

value is subtracted from the space gap argument Δ𝑥 of the car-following model),  

c) the duration, for which the control stays active after the desired gap has been established,  

d) the linear rate, at which the old headways are adapted towards the given values, 

e) an upper bound for the braking rate employed to comply with the imposed headway 

(optional),  

f) a fixed reference vehicle to which the headway should be established (optional).  

The functionality (f) is not needed for the objectives of modeling control transitions, but was 

included with applications for cooperative maneuvering in mind. Automated triggering of the gap 

control simultaneously to a TOR can be added to the ToC model by setting at least one of the 

corresponding device parameters (prefixed with og…). 

Further, to incorporate the decreased driving performance after a downward transition, i.e., after 

the driver resumes the vehicle control, the ToC device allows specifying the level of awareness 𝐴0 at 

which the driver resumes control, as well as the linear rate, at which the awareness recovers to the full 

value 𝐴 = 1.0, i.e. normal performance (see Section 2.2 and Figure 3). 

The ToC model adds an online interface, which allows triggering control transitions between 

specified models for automated and manual driving modes
6
. Such a TOR specifies the lead time 

available for the driver to take back the control. If the driver does not act in time, a MRM will be 

initiated, bringing the vehicle to a full stop at a constant deceleration rate, if the driver does not 

intervene in the meantime, cf. Figure 3. 

 

 
Figure 3: Timelines for a successful and a failing takeover. 

To configure a ToC device for a vehicle the user has to specify the SUMO vehicle types for the 

manual and automated regime. Other, optional parameters, which take default values if not specified 
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by the user, may be given to control the driver’s response time, the time the driver abstains from lane 

changes after the takeover, and the deceleration rate applied during a minimum risk maneuver. 

Further, the temporal characteristics of the post-ToC phase of reduced driver performance may be 

controlled by two parameters: the driver’s initial awareness 𝐴0 , and the corresponding awareness 

recovery rate 𝑟,  giving for the post-ToC awareness: 

 

𝐴(𝑡0 + 𝑡) = min(1.0, 𝐴0 + 𝑟𝑡) , (13) 

 

which affects the driver state dynamics as described in Section 2.2. 

3 Simulation of TransAID Services 

Using different modeling schemes (pessimistic and optimistic with respect to safety and 

efficiency) and scenario parameters (traffic demand and share of automated vehicles), we have 

simulated different scenarios of transition areas, i.e. road sections where an accumulated occurrence 

of control transitions may occur (Evangelos Mintsis et al., 2018; Maerivoet et al., 2019). These 

scenarios were intended as use cases for the application of specific traffic management services 

devised in the framework of the TransAID project. For each scenario, we have compared the values of 

several indicators regarding traffic safety, efficiency, and emissions in presence and absence of the 

traffic management measures. In the following we report on the results for two of these use cases. 

 

3.1 Scenario 1: Providing path information 

In some situations AVs may not be able to trespass an obstacle, where an advised circumvention is 

not conceived by the automation. In these cases the proportion of vehicles, which need to issue a ToC, 

may be reduced significantly if according path information informing the vehicle of an alternative 

trajectory for passing the obstacle is provided via a road side unit (RSU). This information is assumed 

to take the form of an update suggestion for the vehicle’s digital map, e.g., as a MAPEM (ETSI, 

2016). 

 

 
Figure 4: Schematic representation of Scenario 1. AVs and MVs approach an obstacle on a two-lane urban 

corridor with an extra lane usually reserved for public transport. 

 We consider a two-lane road section with an additional lane reserved for public transport, where a 

construction site is installed across both main lanes, see Figure 4. During the time of the road closure, 

vehicles are permitted to use the public transport lane as indicated by customized road signs. We 

assume that only a fraction of the AVs in the scenario can process the information of these signs and 

the others request a control transition in the absence of traffic management measures, i.e. if no further 

information is provided. For the simulations presented here we assumed that the rate of automated 

merge area TOR area 
RSU 



passages would increase from 25 to 75 percent if information about the usability of the bus lane is 

regularly broadcasted to all AVs. That means in the scenario without traffic management, we assumed 

that 75 percent of all AVs undertake a downwards transition, and that in presence of traffic 

management this rate would drop to 25 percent.  

Besides the additional path information provided, the TM addresses individual AVs and 

recommends enlarging headways in the merging area before the lane reduction to facilitate merging of 

vehicles on adjacent, ending lanes.  

The roadside infrastructure (RSI) monitors the approaching vehicles, especially within the 

merging area (see Figure 4), and regularly broadcasts the information regarding the alternative path 

around the construction side, i.e. the release of the lane restrictions for the rightmost lane. For vehicles 

on the rightmost lane, that are located within the merging area, the RSI sends an individual advise to 

increase the headway to their leading vehicles if other vehicles are present on the other lanes within 

the merging area. AVs that receive a headway suggestion are assumed to comply with that suggestion, 

and AVs that receive the path information will incorporate it into their trajectory planning. 

To model the reception of the path information for a AV, that is the update of its digital map to 

incorporate the permission to drive on the rightmost lane, we used SUMO lane permissions in 

combination with manipulating the vehicle class of the corresponding SUMO vehicle. That is, the 

rightmost lane disallows usage by vehicles with vClass=custom1, but allows vehicles with 

vClass=custom2. Thus, we initiate the vehicle type of AVs to be of class custom1 at insertion 

and set the vehicle class to custom2 at reception of the map information from the RSU. 

 

3.2 Scenario 2: Broaden the distribution of takeover requests 

In the second scenario considered, a two-lane motorway, we assume the existence of a road 

section where automated driving is not possible (No-AD zone), e.g., due to adverse road conditions or 

legal regulation. Without further assumptions one may expect that automated vehicles, which 

approach the No-AD zone, request a takeover as close as feasible to the No-AD zone. An approximate 

distance for the latest point to request a takeover with a given lead time 𝑇lead, anticipated speed 𝑣0 and 

assuming a constant braking rate 𝑏MRM during an eventual minimum risk maneuver, can be estimated 

as 

 

𝑑min = 𝑇lead ⋅ 𝑣0⏟    
distance travelled

until MRM

+
𝑣0
2

2𝑏MRM⏟  
stopping distance
in case of MRM

. 
(11) 

 

 

To ensure that only manually controlled vehicles enter the No-AD zone, an automated vehicle 

should request a takeover at least at a distance 𝑑min before the begin of the No-AD zone. 



 
Figure 5: Schematic representation of Scenario 2.  

Figure 5 shows the schematic representation of the scenario and locations of significance for the 

control algorithm. The area, wherein AVs are expected to receive TORs and perform ToCs stretches 

from position 𝑥𝑏𝑒𝑔 to 𝑥𝑚𝑎𝑥 , denoting the location where either a ToC must have been taken out, or an 

MRM must be initialized latest to assure that only manually driven vehicles enter the No-AD zone 

beginning at 𝑥𝑒𝑛𝑑 = 𝑥𝑚𝑎𝑥 + 𝑣𝑚𝑎𝑥
2 /2𝑏MRM . The depicted situation shows two AVs, CAV_0 and 

CAV_1, with current position 𝑥1(𝑡) and 𝑥2(𝑡), respectively, approaching the No-AD zone. The TMC 

has already scheduled TOR positions for these vehicles at 𝑥𝑇𝑂𝑅
0  and 𝑥𝑇𝑂𝑅

1 . When the TMC recognizes 

that a vehicle passes its assigned TOR position, a TOR is sent to this vehicle. 

The RSI monitors the position and speed of the approaching vehicles and the total traffic density 

within the TOR area, cf. Figure 5. As the sequential scheduling of TORs for strings of AVs is an 

essential component for the distribution algorithm (see also Figure 6) the TMC organizes AVs 

entering the TOR area in such groups and assigns TOR positions for all AVs of a group when it is 

finalized. The finalization of a group is taken out if no more vehicles will be added since the distance 

of the last vehicle to the TOR area entry at 𝑥𝑏𝑒𝑔 exceeds a threshold or an MV is trailing the last 

vehicle. Further, the TMC updates the assigned TOR positions according to the current vehicle speeds 

in every control step as described in detail in (Maerivoet et al., 2019). AVs regularly broadcast their 

current state (position and speeds, e.g. via CAM messages), wait for TORs from the RSU, and initiate 

the ToC at reception.  

Our simulations show that under some circumstances, it can be favorable to issue a part of the 

TORs earlier to prevent the accumulation and summation of possible traffic perturbations related to 

the takeover processes (see Section 4.2), especially if the takeover process involves a, possibly only 

temporary, increased headway at some point in time. To illustrate this we assumed that a AV begins 

to smoothly (braking with ≤ 1.0 m/s²) establish a gap of 3.5 seconds after it has firstly communicated 

a TOR to the driver. 

 

       
Figure 6: Numerical experiments for collective disengagement in a string of automated vehicles with 

preparatory headway increment. (a) Quasi-synchronous disengagement at a specific location; (b) managed 

sequential disengagement. 

To demonstrate the possible benefits of distributing takeovers in this case we use a simple 

distribution algorithm based on the vehicle density on the road section approaching the No-AD zone, 

(a) (b) 



which could in reality be made available for the traffic management by traffic detectors, e.g. cameras 

or induction loops, on that section. TORs are directed to the approaching AVs the earlier if the 

observed density is high, since the density can be used as an indicator of present disruptions within 

the approaching section. More importantly, within groups of AVs we apply a sequential scheduling of 

TORs preventing a collective transition that would add up to a larger perturbation of the flow, see 

Figure 6. 

4 Results  

To evaluate the impact of the proposed TM measures we have taken out simulations covering a 

broad range of parameter combinations, where we varied the traffic demand level, the share of 

C(A)Vs in the vehicle fleet mix, and the parametrization scheme for the vehicle models regarding 

traffic safety and efficiency (Maerivoet et al., 2019). For each combination we executed ten 

simulation runs, each of one hour simulated time, see the Appendix for the model parametrization. 

Here we show results for a moderate choice of model parameters (see Appendix) and traffic demand 

level C (i.e. 77% of the assumed capacity), which results in 1155 vehicles/hour for Scenario 1 and 

3234 vehicles/hour for Scenario 2. 

Simulation experiments encompass the following different vehicle types: a) manually driven 

vehicles (MVs), b) connected vehicles (CVs), and c) connected and automated vehicles (CAVs). The 

motion of each vehicle type in the SUMO simulation environment is dictated by the models presented 

in Table 1. CVs are assumed to be only longitudinally automated, while AVs can both throttle/brake 

and steer during automated driving mode. Moreover, ToCs are considered instantaneous for CVs 

(driver is in the loop and instantly resumes vehicle control), while AV drivers are allowed to be 

involved in secondary tasks and thus might not respond in a timely fashion to the TOR. Both vehicle 

types (CVs and CAVs) have communication capabilities with the infrastructure (V2I). 

 
Table 1: SUMO models emulating the motion of the considered vehicle types 

SUMO Model 
Vehicle Type 

MV CV CAV 

Krauss CF Model ✔ ✖ ✖ 

ACC CF Model ✖ ✔ ✔ 

Default LC Model7 
✔ ✔ ✖ 

Parametrized LC Model8 
✖ ✖ ✔ 

ToC Model ✖ ✔ ✔ 

 

The traffic mix was varied across three different penetration rates of automated vehicles 

resembling the shares in the following Table 2.  

 
Table 2: Simulated traffic mixes 

 
MV CV CAV 

Mix 1 70% 15% 15% 

Mix 2 50% 25% 25% 

Mix 3 20% 40% 40% 

                                                           
7 The default SUMO lane change model is thoroughly presented in (Erdmann, 2014). 
8 The parametrized lane change model that reflects CAV lane change behavior is described in (Evangelos Mintsis et al., 

2018). 



4.1 Scenario 1: Providing path information 

In Scenario 1 we examined the impact of informing CAVs of an alternative pathway around an 

upcoming obstacle, thereby preventing the occurrence of ToCs for more AVs than in the case of not 

providing any information. Figure 7 shows a snapshot of the merge area in the corresponding 

simulation scenario. One may observe a CAV merging in front of another CAV, which increased its 

headway to the leading MV in order to facilitate the merging. The presence of automated vehicles on 

the rightmost lane indicates that they incorporated the suggestion to pass the obstacle using the 

reserved lane.  

 

 
Figure 7: Detail view of the merging area in the SUMO scenario. The grey lane is usually reserved for 

public transport but opened temporarily to provide a possibility to pass the construction works stretching 

over the two main lanes. Vehicle colors indicate the vehicle type: yellow – MV; blue – CAV; white – CV. 

Preliminary results for scenario 1 show that the main effects of the proposed TM measures seem 

to regard traffic safety while it has little effect on traffic efficiency and emissions (see Figure 8). As 

an indicator for safety we used the number of episodes where the TTC of two vehicles in a lead-

follow relation undercuts a critical threshold of 3 seconds, see Figure 8(b). For the definition and 

implementation of the TTC, we refer to (Gettman & Head, 2003) and the SUMO wiki
9
, respectively. 

The number of critical events dropped significantly when traffic management measures were 

introduced in the scenario, which can be attributed to the decreased number of ToCs, which also 

reduces delayed reactions to decreasing headways.  

We also hypothesize that the increased headways assumed for CAVs in general but specifically in 

the merging section contribute to this safety improvement. Differentiating between the effect 

originating from driving errors during the post-ToC phase and headway effects would require the 

classification of TTC episodes with respect to the interacting vehicles’ automation states, which is 

work to be done at the day of writing. Especially in view of the increased average headways in the 

presence of traffic management measures it is remarkable that the traffic efficiency (Figure 8(a)) is 

not affected by the increased number of vehicles traveling in automated mode. 

Figure 8(c) shows the CO2 emissions per kilometer traveled. Similar as for the throughput, no 

large impact can be observed here. The amount of emitted CO2 was calculated using SUMO’s 

PHEMlight module
10

. 

 

                                                           
9 https://sumo.dlr.de/wiki/Simulation/Output/SSM_Device  
10 https://sumo.dlr.de/wiki/Models/Emissions/PHEMlight  

https://sumo.dlr.de/wiki/Simulation/Output/SSM_Device
https://sumo.dlr.de/wiki/Models/Emissions/PHEMlight


     
Figure 8: Comparison of cumulative measures for Scenario 1 in presence (orange) and absence (blue) of 

traffic management. (a) Average throughput (arrived vehicles) within the first hour of simulation over all 

runs; (b) Average number of TTC episodes with TTC value less than three seconds; (c) Average amount of 

emitted CO2 per kilometer driven, as calculated by SUMO’s PHEMlight model. 

4.2 Scenario 2: Broaden the distribution of takeover requests 

This section presents preliminary results for the impact of distributing TORs spatially over an 

approaching road section upstream of a No-AD zone. Firstly, we observe that the throughput 

decreases with an increasing share of CAVs in absence as well as in presence of TM, c.f. Figure 9(a). 

This result is expectable because of the parametrization of CAV models, in particular larger headways 

and less agile acceleration. However, the results also indicate that the TM measures taken may 

dampen the capacity drop induced by larger shares of CAVs.  

The effects on traffic safety are more pronounced as shown in Figure 9(b). While the number of 

critical TTC occurrences rises significantly with the number of present CAVs (and hence the number 

of ToCs), it stays approximately constant in presence of TM measures. This strongly indicates that the 

sequential scheduling of ToCs as orchestrated by the TMC for a string of CAVs is highly preferable 

to a decentralized disengagement, which may be expected to occur in a more synchronized fashion at 

a specific distance to the No-AD zone entry and would lead to higher amplitudes of corresponding 

traffic perturbations as suggested by the numerical experiments shown in Figure 6.  

Larger perturbations do not only induce unsafe situations but also increase speed variations and 

consequently higher amounts of deceleration and acceleration, which in turn, cause increased 

emissions per kilometer traveled as illustrated by Figure 9(c). 

 

   

Figure 9: Comparison of cumulative measures for Scenario 2 in presence (orange) and absence (blue) of 

traffic management. (a) Average throughput (arrived vehicles) within the first hour of simulation over all 

runs; (b) Average number of TTC episodes with TTC value less than three seconds; (c) Average amount of 

emitted CO2 per kilometer driven, as calculated by SUMO’s PHEMlight model.  

 

(a) (b) (c) 

(b) (a) (c) 



Figure 10 shows the spatiotemporal dynamics for a specific simulation run in absence [panels (a), 

(c)] and presence [panels (b), (d)] of TM measures. In absence of the TMC a perturbation due to 

simultaneous ToCs of several AVs leads to the development of an extended traffic jam pinned to the 

entry of the No-AD zone, which does not dissolve until one hour simulation time has elapsed (cf. red 

area in panel (a)), as opposed to the overall smooth flow preserved in presence of the TMC (cf. panel 

(b),(d)). For other runs we observed that traffic jams form later and sometimes dissolve during the 

course of the simulation but the overall result clearly shows that a distribution of TORs may be highly 

beneficial for a smooth and safe traffic flow. 

           
Figure 10: Spatiotemporal diagrams for the mean speed along the simulated road section for an exemplary 

simulation run. The white, dashed line indicates the entry of the No-AD zone at km 2.5. (a) Formation of 

an extended congested area in absence of TM measures; (b) Predominantly smooth flow for a distributed 

scheduling of TORs. 

5  Discussion 

In the present paper we have described several extensions, which have been implemented into 

SUMO in order to reflect mixed traffic conditions, where automated and manual vehicles coexist in 

one scenario. More specifically, we have implemented an ACC model, which is often applied to 

model automated controllers (Milanés & Shladover, 2014; Xiao, Wang, & van Arem, 2017) and a 

generic mechanism to impose perception errors upon an arbitrary car-following model. Further, we 

have presented simulation results for two scenarios where the new models have been applied to 

evaluate the effects of different TM measures for transition areas, where an increased amount of ToCs 

can be expected to occur. These results suggest that both cases bear the potential for considerable 

benefits if the TM is applied. In the simulation the TMC significantly increased either traffic safety 

(see Section 3.1) or traffic efficiency (see Section 3.2). 

Although it is highly probable that the results will hold qualitatively for a wide range of situations 

as they seem to depend on rather generic properties of the different scenarios (such as the vehicle mix, 

desired headways, the accepted gaps for lane changes, or the imprecisions of the driver’s performance 

after the takeover), several possible improvements are conceivable regarding the realism and accuracy 

of the simulations.  

Firstly, since the proposed TM measures essentially rely on vehicular communications, it would 

be important to estimate the reduction of the TM performance caused by error rates and latencies in 

(a) (b) 



the message transmission. It seems likely that the amount transmission failures would decrease the 

degree of the observed improvements induced by the TM by a proportional quantity. However, the 

foreseen changes may depend non-linearly on the transmission error rate and, moreover, the error rate 

might relate non-trivially to the traffic density, such that it is a subject worth further studies. 

Also, the parameter choices for automated vehicle control are rather speculative since empirical 

data is not available and may influence the results quantitatively. Nevertheless, as long as the driving 

behavior of automated vehicles is assumed more conservative than that of MVs, we expect the 

reported results to persist. In this context, it could be important to include the factor of cooperative 

maneuvering, which, for instance, might allow automated vehicles to follow each other with highly 

decreased headways, thereby inverting the assumption of larger headways for CAVs, which we 

supposed for our simulations so far. It is clear that such a scenario would even raise the profit of 

reducing ToCs due to a persistent capacity drop associated to the mode switch from automated to 

manual. 

Moreover, the models of human driving may be improved, especially to obtain more reliable 

results regarding the estimation of traffic safety implications of the evaluated TM procedures. Here, 

we see potential in refining the error characteristics, which might be achieved by a different 

calibration of the driver state model, or require additional model components. Our preliminary efforts 

to achieve a qualitative agreement of the model behavior with a trajectory of a human driver (in a 

non-critical car-following situation) did not lead to an ultimately satisfactory result (see the discussion 

of Figure 1). Here, a more careful calibration could take into account the power spectrum or 

autocorrelation of the speed differences, or distributions of safety surrogate measures as the TTC. In 

particular, the model’s behavior in critical situations has not been tested at all. This is not a 

straightforward task, though, since corresponding data is very scarce. Possible, additional model 

components to be considered are situation (e.g. traffic complexity) dependent awareness levels, in 

particular the mechanism of task difficulty homeostasis (Fuller, 2005; Saifuzzaman et al., 2015). Also, 

lateral control represents an important factor in the driving process and for traffic safety. Its 

impairment by reduced awareness must be taken into account for a complete picture. Concerning the 

neglect of other error sources than the perception level in the error model, we do not think that this is 

a major limiting factor for the accuracy at the moment. Although errors appear also at other levels 

such as processing or actuation, the perceptive error propagates through all levels of the driving task 

and we have no indications that the resolution of different levels would add to the predictive 

capabilities of the model. 
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Appendix – Model Parameter  

The parametrization scheme utilized for the simulations presented in Section 3 is a balanced 

scheme, where intermediate parameter values are chosen with respect to the originally considered 

parameter range. Table 1 shows the parametrizations for the different vehicle categories. Where the 

entry is not a single number, it has the format normal(<mean>, <std>); [<min>,<max>], specifying a 

cut off Gaussian distribution for the vehicle instances in the corresponding category. 

 
Table 3: Parametrization of vehicle models 

Parameter Name Parameter 

description 

Parameter values 

MV  

(CF Model 

Krauss) 

CV 

(CF Model 

ACC) 

CAV 

(CF Model 

ACC) 

sigma Driver 

imperfection 

normal(0.2, 0.5); 

[0.0, 1.0] 
0.0 0.0 

tau [s] Desired time 

headway 

normal(0.6, 0.5); 

[0.5, 1.6] 

normal(1.6,0.2); 

[1.3,1.8] 

normal(1.6,0.2); 

[1.3,1.8] 

decel [m/s²] Preferred maximal 

deceleration 

normal(3.5, 1.0); 

[2.0, 4.5] 

normal(3.0,1.0); 

[2.0,4.0] 

normal(3.0,1.0); 

[2.0,4.0] 

accel [m/s²] Maximal 

acceleration 

normal(2.0, 1.0); 

[1.0, 3.5] 

normal(1.5,1.0); 

[0.75,2.0] 

normal(1.5,1.0); 

[0.75,2.0] 

emergencyDecel 

[m/s²] 

Physically 

maximal 

deceleration 

9.0 9.0 9.0 

lcAssertive Lane-change 

aggressiveness 

(willingness to 

accept lower gaps) 

1.3 1.0 
normal(0.7,0.1); 

[0.6,0.8] 

actionStepLength 

[s] 

Interval length at 

which vehicle 

maneuver logic is 

executed 

(~reaction time) 

0.1 0.1 0.1 

speedFactor 

 

Proportionality 

factor for the 

desired speed 

normal(1.1, 0.2); 

[0.8, 1.2] 
1.0 1.0 

responseTime [s] Time to takeover 

after request 
- 1.0 

normal(7,2.5); 

[2,60] 

timeTillMRM Available lead 

time to takeover 
- 1.0 10.0 

initialAwareness Driver awareness 

after takeover 
- 

normal(0.5,0.3); 

[0.1,1.0] 

normal(0.5,0.3); 

[0.1,1.0] 

recoveryRate [s
-1

] Relaxation rate of 

post-ToC 

awareness 

- 
normal(0.2,0.1); 

[0.01,0.5] 

normal(0.2,0.1); 

[0.01,0.5] 

mrmDecel [m/s²] Constant 

deceleration rate 

during MRM 

- 3.0 3.0 
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