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Abstract 10

Hyperspectral dimensionality reduction (HDR), an important preprocessing step prior

to high-level data analysis, has been garnering growing attention in the remote sensing

community. Although a variety of methods, both unsupervised and supervised models,

have been proposed for this task, yet the discriminative ability in feature representa-

tion still remains limited due to the lack of a powerful tool that effectively exploits the

labeled and unlabeled data in the HDR process. A semi-supervised HDR approach,

called iterative multitask regression (IMR), is proposed in this paper to address this

need. IMR aims at learning a low-dimensional subspace by jointly considering the

labeled and unlabeled data, and also bridging the learned subspace with two regres-

sion tasks: labels and pseudo-labels initialized by a given classifier. More significantly,

IMR dynamically propagates the labels on a learnable graph and progressively refines

pseudo-labels, yielding a well-conditioned feedback system. Experiments conducted

on three widely-used hyperspectral image datasets demonstrate that the dimension-

reduced features learned by the proposed IMR framework with respect to classifica-

tion or recognition accuracy are superior to those of related state-of-the-art HDR ap-

proaches.
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1. Introduction13

Recently, hyperspectral imaging in sensing techniques has garnered growing at-14

tention for many remote sensing tasks [1], such as land-use and land-cover classifica-15

tion [2, 3, 4], large-scale urban or agriculture mapping [5, 6, 7, 8], spectral unmixing16

[9, 10, 11, 12], object detection [13, 14, 15, 16], and multimodal scene interpretation17

[17, 18, 19, 20], as forthcoming spaceborne spectroscopy imaging satellites (e.g., En-18

MAP [21]) make hyperspectral imagery (HSI) available on a larger scale. Although19

HSI features richer spectral information than RGB [22] and multispectral (MS) data20

[23], yielding more accurate and discriminative detection and identification of un-21

known materials, yet the very high dimensionality in HSI also introduces some crucial22

drawbacks that need to be taken seriously: high storage cost, information redundancy,23

and the performance degradation resulting from the curse of dimensionality, to name a24

few. A general but effective solution to these issues is dimensionality reduction, also25

referred to as subspace learning. In this process, we expect to compress the HSI to a26

low-dimensional subspace along the spectral dimension while preserving the highest27

possible spectral discrimination.28

With the significant support in both theory and practice as well as a fact that29

the learning-based strategy is somehow superior to the manually-designed feature ex-30

traction [24], a considerable number of subspace learning approaches have been de-31

signed and applied to hyperspectral data processing and analysis in the past decades32

[25, 26, 27, 28, 29, 30, 31], particularly hyperspectral dimensionality reduction (HDR)33

[32, 33, 34] and spectral band selection [35, 36]. Depending on their different learn-34

ing strategies, HDR techniques are roughly categorized as unsupervised, supervised,35

or semi-supervised strategies.36

The classic principal component analysis (PCA) [37] is a user-friendly dimension-37

ality reduction method for that is limited to capturing the underlying topology of the38

data. Rather, manifold learning techniques (e.g., locally linear embedding (LLE) [38],39

Laplacian eigenmaps (LE) [39], local tangent space alignment (LTSA) [40], and their40

variants: locality preserving projections (LPP) [41], neighborhood preserving embed-41

ding (NPE) [42], large-scale LLE [43], enhanced-local tangent space alignment (ENH-42
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LTSA) [44]), by and large, follow the graph embedding framework presented in [45]. 43

This framework starts with the construction of graph (topology) structure and aim at 44

learning a low-dimensional data embedding while preserving the topological struc- 45

ture. Some popular and advanced methods have been proposed based on the graph 46

embedding framework for HDR. For example, Ma et al. [46] proposed to locally em- 47

bed the intrinsic structure of the hyperspectral data into a low-dimensional subspace 48

for hyperspectral image classification. Li et al. [47] modeled the locally neighboring 49

relations between hyperspectral data in a linearized system for HDR. In [48], a multi- 50

feature manifold discriminant analysis was developed on the basis of graph embedding 51

framework for hyperspectral image classification. Authors of [49] upgraded the exist- 52

ing landmark isometric mapping approach for the fast and nonlinear HDR. The same 53

investigators [50] further extended their work to linearly extract the low-dimensional 54

representation with sparse and low-rank attribute embeddings for HSI classification. In 55

[33], a joint spatial-spectral manifold embedding is developed to extract the discrimi- 56

native dimension-reduced features. Subsequently, Huang et al. [51] proposed a general 57

spatial-spectral manifold learning framework to reduce the dimension of hyperspectral 58

imagery. 59

In supervised HDR strategies, the main consideration is the discrimination between 60

intra-class and inter-class, where different discriminative rules are followed: local dis- 61

criminative analysis (LDA) [37], local fisher discriminative analysis (LFDA) [52], 62

sparse discriminant analysis [26], noise-adjusted discriminant analysis [53], feature 63

space discriminant analysis [54], and so on. Despite the superior class separability, 64

these methods still might fail to robustly represent the features due to sensitivity to var- 65

ious complex noises and ill-conditioned statistical assumptions, especially in the case 66

of small-scale samples. Unlike the aforementioned approaches that seek to project 67

the original data directly into a discriminative subspace, Ji et al. [55] simultaneously 68

performed dimensionality reduction and classification under a regression-based frame- 69

work, in order to find an optimally latent subspace where the decision boundary is 70

expected to be better determined. With the local manifold regularization in the pro- 71

jected subspace, this strategy has been successfully applied and extended to learn the 72

discriminative representation for supervised HDR [56]. 73
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Most previously-proposed HDR methods adhere to either the unsupervised or the74

supervised strategy, yet the labeled and unlabeled information is less frequently taken75

into consideration. A straightforward way to consider the unlabeled samples is the76

graph-based label propagation (GLP) [57], which has been successfully applied to77

semi-supervised HSI classification [58] together with the support vector machine (SVM)78

classifier. To effectively improve the discrimination and generalization of dimension-79

reduced features, some proposed semi-supervised HDR works have been proposed by80

the attempt to preserve the potentially global data structure that lies in the whole high-81

dimensional space. For example, [59] followed a graph-based semi-supervised learning82

paradigm for HDR and classification, where the graphs are constructed by different lo-83

cal manifold learning approaches. A general but effective work integrating LDA with84

LPP, called semi-supervised local discriminant analysis (SELD), was proposed in [60]85

for a semi-supervised hyperspectral feature extraction.Inspired by GLP, [61] enhanced86

the performance of LDA by jointly utilizing the labels and “soft-labels” predicted by87

GLP for the semi-supervised subspace dimensionality reduction. Wu et al. [62] pro-88

posed a similar approach to achieving a semi-supervised discriminative dimensionality89

reduction of HSI by embedding pseudo-labels (instead of the similarity measurement90

in LPP [60]) into LFDA rather than LDA in [61].91

1.1. Motivation and Objectives92

Although these proposed semi-supervised approaches have been proven to be ef-93

fective in handling the issue of HDR to some extent, yet their graph structures for94

unlabeled samples are constructed either from the similarity measurement (e.g., using95

RBF) or from the pseudo-labels inferred by GLP or pre-trained classifier. The resulting96

features by using this type of graph construction strategy is neither robust nor gener-97

alized, due to the noisy data and labels as well as the scarce labeled samples. Also,98

these semi-supervised algorithms, as often as not, attempt to find a single transforma-99

tion that connects the original data and the subspace to be estimated. On account of100

the complexity in the learning process, the optimal subspace search is hardly accom-101

plished only by a single transformation. On the other hand, in spite of being guided102

by label information, there is still lack of an explicit and direct connection between103
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the learned subspace and the label space in the subspace learning strategy interpreted 104

by a single projection, further causing the performance bottleneck. In addition, these 105

subspace-learning-based models are commonly treated as a disjunct feature learning 106

step before classification. In other words, it is unknown what kinds of features in the 107

learning process may be capable of improving classification accuracy. 108

According to these factors, our objectives in this paper can be summarized as fol- 109

lows: 1) to bridge the to-be-estimated subspace with the label information more explic- 110

itly and effectively; 2) to introduce many unlabeled samples for improving the model’s 111

generalization ability; 3) and to refine the quality of class indicators of unlabeled sam- 112

ples for high discriminative HDR. 113

1.2. Method Overview and Contributions 114

Towards the aforementioned goals, a novel regression-induced learning model mo- 115

tivated by the joint learning (JL) framework [55, 56] is proposed, which seeks to learn 116

an optimal subspace by considering the correspondences between the training samples 117

and labels on a to-be-estimated latent subspace. We further extend the JL framework 118

to a multitask regression model with the joint embedding of labeled and unlabeled 119

samples. In the multitask framework, we also propose to adaptively learn a soft-graph 120

structure from the data rather than utilizing a hard-graph (fixed graph) constructed 121

manually or generated by additional algorithms, yielding a high-performance and more 122

generalized label propagation. In the meantime, to facilitate the use of pseudo-labels 123

more effectively, the learned graph can be updated after each outer iteration ends, and 124

the pseudo-labels accordingly refined, thereby enabling the learned features to be pro- 125

gressively optimized. More specifically, the main contributions of this work can be 126

highlighted as follows. 127

• We propose a JL-based variant: a novel iterative multitask regression (IMR) 128

framework by simultaneously considering few labeled samples and unlabeled 129

samples in quantity, with the application to semi-supervised HDR. 130

• We adaptively learn the connectivity (graph structure) between samples by align- 131

ing the labeled and unlabeled samples in the estimated subspace. 132
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Figure 1: An overview of the proposed IMR framework. In fact, each iterative (t-step) starts with the input
of labeled and unlabeled data and ends up the output of the subspace projections (S(t)), regression matrix
(A(t)), and learned graph (W(t)) aligning the labeled with unlabeled samples. With the t-step learned
graph, the pseudo-labels (t+ 1) can be refined.

• We deeply integrate the adaptive graph learning with the proposed multitask re-133

gression framework in an iterative manner, making it possible for pseudo-labels134

to be gradually updated using the learned graph in each outer iteration.135

• We also design a general solver that originates from the alternating direction136

method of multipliers (ADMM) optimizer for the solution of our proposed IMR137

method.138

2. The Proposed Methodology139

In this section, we start with a brief review of our model’s cornerstone, the JL140

framework, and then extend it to a variant of multitask learning by synchronously re-141

gressing the labeled and unlabeled data. We will further introduce the proposed iter-142

ative multitask regression (IMR) model by integrating the JL framework with the ad-143

vanced graph learning technique, which more effectively propagates labels. Finally, an144
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ADMM-based optimizer is used for the IMR solution. Fig. 1 illustrates the workflow 145

of the proposed IMR method. 146

2.1. Review of the JL Model 147

Let Xl ∈ Rd×N be the unfolded hyperspectral data with d bands by N pixels (or 148

samples), and Yl ∈ Rl×N be the corresponding one-hot encoded label matrix with l 149

classes by N pixels. We model the original JL problem [55] as follows. 150

min
A,S

1

2
‖Yl −ASXl‖2F +

α

2
‖A‖2F s.t. SST = I, (1)

where S ∈ Rdsub×N and A ∈ Rl×dsub denote the subspace projection and the regres- 151

sion matrix linking the estimated subspace with label information, respectively, and 152

dsub represents the subspace dimension. || • ||F denotes the Frobenius norm and α is 153

the regularization parameter . 154

Slightly different from the original JL, an improved model with manifold (graph) 155

regularization is formulated by optimizing the following objective function. 156

min
A,S

1

2
‖Yl −ASXl‖2F +

α

2
‖A‖2F +

β

2
tr(SXlLlX

T
l S

T) s.t. SST = I, (2)

where Ll ∈ RN×N = Dl−Wl is the Laplacian matrix, Wl ∈ RN×N is an adjacency 157

matrix (graph), and Dl(ii) =
∑

i 6=j WL(i,j) is the corresponding degree matrix. The 158

term tr denotes the trace of matrix parameterized by β. The JL-based models in Eqs. 159

(1) and (2) have been proven to be effectively solved with the ADMM optimizer [63]. 160

Once the projection matrix S is learned, the subspace features can be computed by SX. 161

2.2. Iterative Multitask Regression (IMR) 162

Labeling in Earth Vision is extremely costly and time-consuming, as the remote 163

sensing images have a larger-scale and more complex visual field. This leads to a lim- 164

ited number of labeled samples, which further hinders improvement of the model’s 165

learning and generalization capability. To this end, we effectively utilize the informa- 166

tion of unlabeled samples that are largely available by making a regression between the 167

unlabeled samples and pseudo-labels in the form of multitask learning. 168
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Figure 2: A showcase for joint adjacency matrix (W) (in red), where WL (in blue) is a LDA-like graph
constructed by labels.

2.2.1. Multitask Regression with Graph Learning169

In the multitask framework, we propose a learning-based graph regularization in-170

stead of a fixed graph artificially constructed with the known kernels (e.g., using Gaus-171

sian kernel function), in order to depict the connectivity (or similarity) between sam-172

ples. Accordingly, a multitask regression framework is proposed for semi-supervised173

HDR by optimizing the following objective function.174

min
A,S,L



γ

2
‖Yl −ASXl‖2F +

1− γ
2
‖Ypl −ASXpl‖2F +

α

2
‖A‖2F

+
β

2
tr(SXLXTST)

s.t. SST = I, L = LT, Li,j,i 6=j � 0, Li,j,i=j � 0, tr(L) = s


, (3)

where Xpl ∈ Rd×M and Ypl ∈ Rl×M denote unlabeled hyperspectral data and a one-175

hot encoded pseudo-label matrix, respectively, while X = [Xl, Xpl] ∈ Rd×(N+M)
176

and L ∈ R(N+M)×(N+M) is a joint Laplacian matrix. The term s > 0 is a constant to177

control the scale. Furthermore, the two fidelity terms in multitask learning are balanced178

by a penalty parameter γ.179

To solve (3) effectively, we rewrite the trace term as180

tr(SXLXTST) =
1

2
tr(WZ) =

1

2
‖W � Z‖1,1 , (4)

where W ∈ R(N+M)×(N+M) is the to-be-learned joint adjacency matrix (see Fig. 2181

8



in red). In W, the similarities between X can be measured by a pair-wise distance 182

matrix (Z ∈ R(2N+M)×(2N+M)) on Euclidean space; this matrix can be computed by 183

Zi,j = ‖(SX)i − (SX)j‖2. Moreover, the operator � is interpreted as a term-wise 184

Schur-Hadamard product. 185

By means of Eq. (4), optimizing problem (3) on a smooth manifold can be equiva- 186

lently converted on a sparse graph as follows. 187

min
A,S,W


γ

2
‖Yl −ASXl‖2F +

1− γ
2
‖Ypl −ASXpl‖2F +

α

2
‖A‖2F +

β

4
‖W � Z‖1,1

s.t. SST = I, W = WT, Wi,j � 0, ‖W‖1,1 = s

 .

(5)

In Eq. (5), the ‖W� Z‖1,1 is specified as a point-wise weighted `1-norm with respect 188

to the variable of W, yielding a weighted sparsity. 189

2.2.2. Optimizing Pseudo-Labels with Graph-based Label Propagation 190

In Eq. (3), the pseudo-labels are predicted by using a trained classifier, e.g., SVM 191

or random forest. Although the model’s performance can be moderately improved 192

through the use of unlabeled samples and pseudo-labels, yet the discrimination of 193

the dimension-reduced HSI still remains limited by only regressing the static pseudo- 194

labels. For this reason, the labels are dynamically propagated on the learned graph 195

using GLP, when the model converges in each step1, aiming at iteratively refining or 196

optimizing pseudo-labels, as illustrated in Fig. 1. The updated pseudo-labels together 197

with the other inputs of Xl, Xpl, and Yl can be re-fed into the next round of model 198

training, thus progressively improving the learning and generalization ability of the 199

proposed multitask model. 200

2.3. Modal Learning 201

Unlike the previous HDR methods following the graph embedding framework [46, 202

49, 33, 48, 51] that solve low-dimensional embedding as a problem of generalized 203

eigenvalues decomposition (GED) [45], our model learning process is to iteratively and 204

1Given the inputs of Xl and Xpl as well as Yl and Ypl, we estimate the variables of A, S, and L by
solving problem (3). This process is defined as a “step” or in our case an “iteration”.
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Algorithm 1: Iterative Multitask Regression (IMR)
Input: Yl, Xl, Xpl, L, maxIter, and regularization parameters α, β, γ.
Output: A,S,L, and Ypl

1 t = 1, ζ = 1e− 4, ε = 1e− 6, Obj = 1 + ζ;
2 Initializing At, St, Wt, and Yt

pl

3 while Obj ≥ ε or t ≤ maxIter do
4 k = 1, ObjIn = 1 + ζ;
5 while ObjIn ≥ ζ or i ≤ maxIter do
6 Fix others to update Ak . Learning Regression Matrix

7 Fix others to update Sk . Learning Subspace Projections

8 Fix others to wisely update Wk instead of directly optimizing Lk

9 1. compute Wk . Graph Learning

10 2. construct the LDA-like graph (Wk
L) for the labeled samples

11 3. replace the part of Wk learned by the labeled samples with Wk
L

12 4. obtain Lk = Dk −Wk, where Dk
ii =

∑
i 6=j W

k
ij

13 Check the convergence condition of the inner loop: if the condition is
satisfied then

14 Stop iteration;
15 Output Wt = Wk, Zt

l = SkXl, Zt
pl = SkXpl;

16 else
17 k ← k + 1;
18 end
19 end
20 Update Yt+1

pl with Yt
l , Z

t
l , Y

t
pl, Z

t
pl, W

t using LP . Updating Pseudo-labels

21 Check the convergence condition of the outer loop: if Wt==Wt−1 or
Obj = ‖Wt −Wt−1‖F � ε then

22 Optimization finished.
23 else
24 t← t+ 1;
25 end
26 end

alternately optimize several convex subproblems with respect to the variables A, S, and205

W as well as to-be-updated Ypl instead of directly solving the non-convex problem206

(5) by the separable strategy of the variables. An implementation of the proposed207

IMR is summarized in Algorithm 1. Such optimization strategy has been proven to208

be effective for solving the aforementioned issue [64, 65] and successfully applied in209

many real cases [55, 56, 63, 66].210
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pl = S(t)Xpl denote the low-dimensional feature representation for the labeled and unlabeled samples,

respectively.

2.3.1. Learning Regression Matrix (A) 211

Intuitively, the optimization problem for solving the variable A is a Tikhonov- 212

regularized least square regression, which is formulated as follows. 213

min
A

γ

2
‖Yl −ASXl‖2F +

1− γ
2
‖Ypl −ASXpl‖2F +

α

2
‖A‖2F. (6)

A closed-form solution of Eq. (6) is given by 214

A = (γYlHl + (1− γ)YplHpl)× (γHlH
T
l + (1− γ)HplH

T
pl + αI)−1, (7)

where Hl = SXl and Hpl = SXpl. 215

2.3.2. Learning Subspace Projections (S) 216

The variable S can be estimated by solving the following optimization problem. 217

min
S

γ

2
‖Yl −ASXl‖2F+

1− γ
2
‖Ypl −ASXpl‖2F +

β

2
tr(SXlLlX

T
l S

T)

s.t. SST = I.

(8)

The orthogonality-constrained regression problem in Eq. (8) has been effectively solved 218

by using an ADMM-based optimization algorithm [63]. 219

2.3.3. Learning Graph Structure (W) 220

In the sub-problem, we learn the connectivity (or similarity) between samples from 221

the data rather than using certain existing distance measurements. Therefore, the re- 222
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Figure 4: Convergence analysis of the proposed IMR method on three different datasets: Indine Pines,
Houston2018, and Berlin EnMap. Note that the relative loss recorded in the convergence curve is obtained
by averaging the loss values of multiple outer iterations in our proposed method.

sulting optimization problem can be formulated as223

min
W

β

4
‖W � Z‖1,1 s.t.W = WT, 1/Nk �Wi,j � 0, ‖W‖1,1 = s, (9)

whose solution has been obtained with an effective ADMM as well, as presented in224

[66]. Please note that for those samples with labels, we construct a graph-based local225

discriminant analysis (LDA) [39] in the place of the corresponding part in the learned226

graph W, as shown in Fig. 2. The LDA-like graph (WL) can be expressed by227

WL(i,j) =


1

Nk
, Xi and Xj are the samples belonging to the k-th class;

0 , otherwise,
(10)

where Nk denotes the number of samples belonging to k-th class.228

2.3.4. Updating Pseudo-labels (Ypl)229

Given the labels (Yl) and pseudo-labels (Y(t)
pl ) of the t-th step, and the labeled (Xl)230

and unlabeled (Xpl) samples, we can correspondingly learn the joint graph structure231

(W(t)) in the t-th step from the t-th latent feature spaces (Z(t)). The learned W(t) can232

then be further applied to infer the pseudo-labels of next step (Y(t+1)
pl ) by LP, and then233

the updated pseudo-labels can be fed into a next-round model learning. This process is234

illustrated in Fig. 3. Please note that the model’s iteration will be suspended as long as235

the to-be-learned adjacency matrix W is not changed or the residual error (ε) between236

the current W(t) and the former step W(t−1) are close to zero (e.g., 10−6).237
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2.4. Convergence Analysis and Computational Complexity 238

Considering the non-convexity of Eq. (5) when all variables are considered si- 239

multaneously, a common and effective solution for the optimization problem is using 240

a block coordinate descent (BCD) by alternatively optimizing each subproblem with 241

respect to A, S, and W in an alternating strategy. The BCD algorithm has been guar- 242

anteed in theory to converge to a stationary point, if and only if each to-be-estimated 243

variable in Eq. (5) can be exactly minimized [64]. Owing to the convexity in each 244

independent task, an unique minimum can be ideally found in our case when the La- 245

grangian parameters used in ADMM are updated within finitely iterative steps [65]. 246

The same or similar criterion has been successfully applied in various practical appli- 247

cations [10, 67, 68, 69]. In addition, we also draw the convergence curves correspond- 248

ing to the three used datasets, respectively, by recording the relative loss of objective 249

function of Eq. (5) in each iteration, as shown in Fig. (4). One can be seen from the 250

figure is that our model is able to fast reach the state of convergence with more or less 251

20 steps. 252

As observed in Section 2.3: Model Learning, the computational cost in our IMR 253

model is mainly dominated by matrix products, where the most costly step lies in solv- 254

ing S, yielding an overall O(d(2N +M)2t) computational cost for Eq. (5). 255

3. Experiments 256

3.1. Data Description 257

Three popular and promising HSI datasets – Indian Pines [70], Houston2018 [71], 258

and Berlin EnMap [72] – are used to assess the quantitative and qualitative performance 259

of the IMR method, as briefly described below. 260

3.1.1. Indian Pines Dataset 261

The hyperspectral scene located in the northwestern Indiana, USA, has been widely 262

used in various HSI-related tasks, such as dimensionality reduction [27, 56] and clas- 263

sification [73]. It consists of 145 × 145 pixels with 220 spectral bands covering the 264

wavelength from 400 nm to 2500 nm at intervals of 10 nm. There are 16 classes in 265
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Table 1: Scene categories of the three HSI datasets used and the corresponding number of training and test
samples for each class.

No. IndianPine dataset Houston2018 dataset Berlin EnMap dataset
Class Name TR TE Class Name TR TE Class Name TR TE

1 CornNotill 50 1384 HealthyGrass 711 9088 Forest 656 11075
2 CornMintill 50 784 StressedGrass 3323 29179 Residential 825 56601
3 Corn 50 184 ArtificialTurf 171 513 Industrial 446 3735
4 GrassPasture 50 447 EvergreenTrees 954 12634 Low Plants 673 12006
5 GrassTrees 50 697 DeciduousTrees 350 4698 Soil 688 3040
6 HayWindrowed 50 439 BareEarth 664 3852 Allotment 415 2427
7 SoybeanNotill 50 918 Water 82 184 Commercial 367 4938
8 SoybeanMintill 50 2418 Residential 5375 34387 Water 184 1242
9 SoybeanClean 50 564 NonResidential 7794 215890 – – –

10 Wheat 50 162 Roads 3824 41986 – – –
11 Woods 50 1244 Sidewalks 1455 32547 – – –
12 BuildingsGrassTrees 50 330 Crosswalks 148 1368 – – –
13 StoneSteelTowers 50 45 Thoroughfares 4645 41713 – – –
14 Alfalfa 15 39 Highways 271 9578 – – –
15 GrassPastureMowed 15 11 Railways 391 6546 – – –
16 Oats 15 5 PavedParking 1271 10204 – – –
17 – – – UnpavedParking 20 95 – – –
18 – – – Cars 532 6046 – – –
19 – – – Trains 154 5211 – – –
20 – – – StadiumSeats 503 6321 – – –

Total 695 9671 Total 9867 116123 Total 4254 95064

the scene that are mostly vegetation, as detailed in Table 1 along with the number of266

training and test samples. Fig. 6 shows the false-color image of the studied scene as267

well as the distribution of training and test samples used in [74, 56].268

3.1.2. Houston2018 Dataset269

This dataset is multi-modal data provided for the 2018 IEEE GRSS data fusion270

contest, where the HSI was acquired by an ITRES CASI 1500 sensor. The HSI, with271

dimensions of 601× 2384× 50, was collected from the wavelengths between 380 nm272

to 1050 nm at a ground sampling distance (GSD) of 1 m. This is a complex city scene273

with 20 challenging classes (see Fig. 7 and Table 1 for more details, including the274

specific training and test information). Note that we downsampled the ground truth275

map to the same GSD with the HSI by the nearest-neighbor-interpolation.276

3.1.3. Berlin EnMap Dataset277

The EnMap HSI with a GSD of 30 m was simulated by the corresponding HyMap278

data [75] over a hybrid area that includes urban, rural, and vegetation in Berlin, Ger-279
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many, this data is openly and freely available from the website2. This image consists 280

of 797× 220 pixels and 244 spectral bands in the wavelength ranging from 400 nm to 281

2500 nm. The ground truth in the scene is generated by the OpenStreetMap [76] in the 282

form of land cover and land use, and further refined and corrected by means of Google 283

Earth. Table 1 lists the scene categories and the number of training and test samples, 284

while the false-color image and corresponding distribution of training and test samples 285

are given in Fig. 8. 286

3.2. Experimental Configuration 287

3.2.1. Evaluation Metrics 288

With the input of different dimension-reduced features, we adopt the pixel-wise 289

classification as a potential application for quantitative evaluation in terms of classifi- 290

cation or recognition accuracy. More specifically, three commonly-used indices, Over- 291

all Accuracy (OA), Average Accuracy (AA), and Kappa Coefficient (κ), are computed 292

to quantify the experimental results using two simple but effective classifiers: nearest 293

neighbor (NN) and linear SVM (LSVM). In our case, the two classifiers were selected 294

because those more powerful classifiers (e.g., kernel SVM, random forest, deep neural 295

network) tend to result in confusing evaluation, as it is unknown whether the perfor- 296

mance improvement originates from either these advanced classifiers or the features 297

itself. 298

3.2.2. Comparison with State-of-the-Art Baselines 299

We evaluate the performance of the proposed IMR model visually and quantita- 300

tively in comparison with eight state-of-the-art baselines, including 301

• Non-HDR: original spectral features (OSF); 302

• Supervised HDR: feature space discriminant analysis (FSDA) [54], joint learn- 303

ing (JL) [63]; 304

2(http://doi.org/10.5880/enmap.2016.002)
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• Semi-supervised subspace learning for HDR: semi-supervised local discrim-305

inant analysis (SELD) [60], collaborative discriminative manifold embedding306

(CDME) [77];307

• GLP-based semi-supervised HDR: soft-label LDA (SL-LDA) [61], semi-super-308

vised fisher local discriminant analysis (SSFLDA) [62].309

3.2.3. Implementation Preparation310

The parameter settings for the algorithms play a key role in performance assess-311

ment. A common tactic for model selection is to run cross-validation on the train-312

ing set. Following that, we conducted a 10-fold cross-validation to determine the313

optimal parameter combination for the different algorithms. In detail, there param-314

eters that need to be tuned to maximize the classification performance on the train-315

ing set were subspace dimension3 (dsub), selected from 5 to 50 at intervals of 5; the316

number of nearest neighbors (k); the standard deviation (σ) in SELD and SSLFDA,317

ranging from {10, 20, ..., 50} and {10−2, 10−1, 100, 101, 102}, respectively; and the318

regularization parameters (e.g., α and β) in JL, CDME, and IMR in the range of319

{10−2, 10−1, 100, 101, 102}, while another regularization parameter γ in IMR can be320

selected from {0.1, 0.2, . . . , 0.9}. Moreover, initializing the adjacency matrix (W) and321

pseudo-labels (Ypl) in IMR is also an important factor in determining the model’s per-322

formance. We first predict the unlabeled samples using a pre-trained classifier on the323

training set; then the predicted results can be naturally input into the model as pseudo-324

labels. Likewise, the initialized W can be given by the labels and pseudo-labels. In325

addition, note that the clustering technique (e.g., K-means) is applied to handle the326

highly computational complexity caused by the large quantity of unlabeled samples327

during the process of model learning. As a trade-off, the number of cluster centers328

used in our case is approximately set to be the same as that of the training samples.329

3For LDA-based approaches, e.g., FSDA, SELD, SL-LDA, and SSLFDA, the class number minus 1 is
set to be dsub [37].
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(c) Berlin EnMap dataset

Figure 5: Visual and quantitative (OA) performance analysis with the different number of iterations in IMR
on the three datasets.

3.2.4. The Number of Iterations in the Proposed IMR 330

According to the model’s stopping criteria in Algorithm 1, our IMR method gen- 331

erally converges to a desirable solution that corresponds to a well-learned adjacency 332
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Figure 6: False-color image, the distribution of training and test samples as well as classification maps of the
compared methods using two different classifiers on the Indian Pines dataset.

matrix (W) out of three or four iterations. To support the results more effectively, we333

further investigate the effects of assigning a different number of iterations in IMR for334

the three datasets. Fig. 5 gives both visual and quantitative results with the increase335

of the IMR’s iterations4. Note that the IMR with iterative 0 equivalently degrades to a336

version without label propagation. The OAs are clearly much lower without using an it-337

erative strategy to update pseudo labels (iterative 0) than when using several iterations.338

Intuitively, this proves the superiority of the iterative strategy by gradually optimizing339

the pseudo-labels. It is worth noting, however, that the performance gain starts to slow340

down after two iterations and then remains essentially stable in the follow-up iterations,341

as the variable W is hardly changed any further. Similarly, for the different number of342

iterations, there is a consistent trend in the compactability of intra-class and the separa-343

bility of inter-class. To summarize, we determine the number of iterations in the IMR344

to be 3 (IMR-3 for short); it will be used for comparison in the following experiments.345

3.3. Results and Analysis346

3.3.1. The Indian Pines Dataset347

Fig. 6 presents the classification maps for different HDR compared methods using348

two classifiers on the Indian Pines dataset; Table 2 correspondingly lists the quantitative349

results obtained under the optimal parameter combination.350

Using the NN classifier, there is basically the same classification performance in351

OSF and FSDA. Despite an improved supervised criteria, FSDA still yields poor clas-352

4Here, we just showcase the results of four iterations, since in our case the model has usually converged
around the number of iterations.
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Table 2: Quantitative performance comparison among the different algorithms with the optimal parameters
on the IndianPines dataset in terms of OA, AA, and κ as well as accuracy for each class. The best is shown
in bold. Note that IMR-3 denotes the IMR with three iterations.

Methods OSF (%) FSDA (%) JL (%) SELD (%) CDME (%) SL-LDA (%) SSLFDA (%) IMR-3 (%)

Parameter d d (α, β, d) (k, σ, d) (α, β, d) d (k, σ, d) (α, β, γ, d)
220 15 (0.01, 0.01, 20) (10, 0.1, 15) (0.01, 0.01, 20) 15 (5, 0.1, 15) (0.01, 0.1, 0.8, 20)

Classifier NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM
OA 65.89 64.12 64.14 63.67 76.89 71.51 72.09 69.52 74.63 71.41 70.93 73.20 75.26 72.67 82.80 76.04
AA 75.71 73.62 74.52 72.98 84.94 82.54 80.09 75.33 83.25 83.06 82.20 83.96 85.91 83.71 86.27 81.80
κ 0.6148 0.5974 0.5964 0.5912 0.7379 0.6785 0.6838 0.6543 0.7117 0.6773 0.6713 0.6980 0.7200 0.6915 0.8033 0.7266

Class1 51.66 57.15 51.45 49.86 66.47 64.60 63.80 58.02 59.47 56.79 57.73 64.09 70.23 65.46 74.64 73.05
Class2 57.40 53.57 48.47 47.19 72.19 64.54 62.76 56.12 65.31 67.47 59.69 66.84 67.35 61.86 66.20 58.29
Class3 70.65 81.52 69.57 74.46 86.96 83.70 76.09 71.74 73.91 85.87 71.74 83.15 87.50 88.59 86.96 80.98
Class4 88.14 87.25 90.60 83.45 94.63 90.83 93.06 90.60 94.63 92.84 94.63 93.74 94.85 93.51 89.26 82.10
Class5 81.78 80.06 86.80 86.37 90.10 88.09 91.39 85.65 91.25 87.37 88.52 88.95 93.54 89.96 95.55 91.68
Class6 95.90 91.34 97.95 97.49 99.32 95.67 98.63 97.95 97.72 97.72 98.41 97.72 98.41 97.49 98.41 98.18
Class7 66.56 66.45 58.06 62.31 73.31 66.45 63.40 58.93 74.95 72.66 73.20 79.63 75.16 71.90 82.79 64.71
Class8 55.21 42.51 42.97 43.59 63.52 53.80 55.96 55.54 62.82 53.89 54.43 53.23 55.21 52.69 78.41 68.53
Class9 53.01 65.96 71.45 66.49 81.56 75.18 75.53 75.18 68.44 68.44 68.44 69.15 78.01 81.91 83.51 70.74

Class10 98.15 95.06 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38
Class11 82.88 82.56 85.53 84.57 89.31 86.25 88.83 89.07 92.12 88.18 87.94 88.91 89.87 88.99 94.50 94.05
Class12 50.91 67.27 77.88 80.61 82.12 80.00 77.58 78.79 80.91 83.64 81.21 85.76 81.52 75.15 74.55 71.82
Class13 97.78 95.56 97.78 95.56 95.56 97.78 95.56 93.33 95.56 97.78 97.78 93.33 97.78 95.56 88.89 91.11
Class14 79.49 58.97 74.36 56.41 84.62 74.36 79.49 64.10 84.62 76.92 82.05 79.49 94.87 76.92 87.18 64.10
Class15 81.82 72.73 100.00 100.00 100.00 100.00 100.00 90.91 90.91 100.00 100.00 100.00 90.91 100.00 100.00 100.00
Class16 100.00 80.00 40.00 40.00 80.00 100.00 60.00 40.00 100.00 100.00 100.00 100.00 100.00 100.00 80.00 100.00

sification accuracy, since directly projecting the original data into a discriminative sub- 353

space with the limited amount of labeled samples is very challenging, especially when 354

dealing with noisy data (e.g., HSI) with various spectral variabilities. Overall, the clas- 355

sification performance by considering the unlabeled samples is better than that without 356

considering them. It should be noted, however, that inspired by latent subspace learn- 357

ing, the JL model dramatically outperforms FSDA (more than 10% improvement), but 358

also improves the OAs of around 4%, 6%, 2%, and 1%, respectively, compared to those 359

semi-supervised HDR approaches (SELD, CDME, SL-LDA, and SSLFDA). This intu- 360

itively indicates the superiority of the regression-based JL model for feature learning. 361

Following the JL-like model, the proposed IMR framework achieves the best perfor- 362

mance owing to the multitask learning framework, where the labeled and unlabeled 363

samples can be jointly regressed, and to the iterative updating strategy of pseudo-labels. 364

There is a similar trend in classification performance using the LSVM classifier, yet its 365

performance is relatively weaker than those with the NN classifier. The possible reason 366

for that is the few training samples available, further leading to the poor estimation of 367

decision boundary for the SVM-like classifier learning. 368

Furthermore, we can observe from Table 2 that our IMR not only outperforms 369

other HDR methods in terms of OA, AA, and κ, but it also obtains highly competitive 370

results for each class, particularly for those classes with a relatively limited number 371

of training samples in comparison with the number of test samples, such as Corn- 372
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Figure 7: False-color image, the distribution of training and test samples as well as classification maps of
compared methods using two different classifiers on the Houston2018 dataset.

Notill, Grass-Trees, Soybean-Notill, Soybean-Mintill, Soybean-Clean, and Wheat. This373

provides powerful evidence of the effectiveness of transferring the unlabeled samples374

to the learned subspace and the superiority of iteratively optimizing pseudo-labels.375
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Table 3: Quantitative performance comparison among the different algorithms with the optimal parameters
on the Houston2018 dataset in terms of OA, AA, and κ as well as accuracy for each class. The best is shown
in bold. Note that IMR-3 denotes the IMR with three iterations.

Methods OSF (%) FSDA (%) JL (%) SELD (%) CDME (%) SL-LDA (%) SSLFDA (%) IMR-3 (%)

Parameter d d (α, β, d) (k, σ, d) (α, β, d) d (k, σ, d) (α, β, γ, d)
50 19 (0.01, 0.01, 25) (10, 0.1, 19) (0.01, 0.01, 20) 19 (10, 0.1, 19) (0.01, 0.01, 0.9, 30)

Classifier NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM
OA 52.75 59.14 60.92 63.12 62.93 63.50 61.10 62.72 62.02 63.62 58.78 64.62 63.59 63.70 71.55 68.37
AA 46.77 42.97 55.15 50.85 56.72 50.87 55.21 50.71 54.81 51.07 53.26 52.65 58.51 52.94 81.41 67.07
κ 0.4232 0.4883 0.5161 0.5397 0.5390 0.5450 0.5187 0.5352 0.5261 0.5462 0.4921 0.5534 0.5506 0.5501 0.6468 0.6065

Class1 78.43 89.50 59.65 71.67 72.42 83.11 59.56 71.24 65.14 69.06 58.23 69.91 72.56 82.59 80.46 80.75
Class2 81.91 89.35 82.86 89.19 83.52 88.92 84.58 89.11 83.12 88.91 83.96 89.08 89.05 91.46 86.38 89.25
Class3 100.00 100.00 100.00 100.00 100.00 99.21 100.00 100.00 100.00 97.62 100.00 100.00 100.00 100.00 100.00 99.21
Class4 74.15 88.95 86.38 81.57 86.12 91.12 85.53 87.39 81.89 82.44 84.01 87.81 87.97 90.70 87.97 f90.90
Class5 14.94 9.68 30.05 15.03 27.33 12.14 28.86 15.79 27.84 14.60 27.25 19.78 28.10 16.64 80.05 30.05
Class6 11.32 12.00 13.45 12.00 19.28 17.26 15.25 12.00 20.18 15.70 12.89 12.00 12.00 12.00 95.07 31.17
Class7 60.00 31.11 60.00 57.78 60.00 55.56 60.00 55.56 60.00 55.56 84.44 60.00 60.00 51.11 100.00 95.56
Class8 77.97 85.46 85.46 87.89 84.63 86.37 85.54 86.92 81.33 88.84 85.90 85.70 87.29 89.95 86.67 89.37
Class9 56.49 63.84 65.25 68.01 67.23 67.52 64.88 67.45 68.41 68.27 62.54 71.53 65.07 65.58 71.81 68.84

Class10 37.17 39.19 39.79 46.20 43.24 49.03 40.53 45.15 39.07 50.21 38.07 46.77 48.92 47.65 45.00 49.92
Class11 31.97 34.29 34.42 40.81 38.91 39.14 35.94 37.45 35.72 39.67 31.33 36.21 43.78 41.38 43.17 45.00
Class12 5.95 0.00 6.25 0.00 10.12 0.30 5.65 0.00 6.55 0.30 5.65 0.00 17.86 0.00 37.20 1.79
Class13 48.04 65.54 57.83 59.12 63.10 63.52 60.34 62.03 59.57 62.04 58.51 64.73 65.54 69.59 67.30 73.69
Class14 10.89 0.00 18.48 9.43 20.98 4.01 15.52 7.76 16.40 8.18 18.56 4.80 16.52 8.09 86.02 29.24
Class15 8.10 1.35 62.92 34.50 37.75 18.85 54.51 29.65 67.77 32.17 40.64 34.19 31.00 24.80 99.63 81.09
Class16 52.11 42.82 70.81 73.87 76.58 73.17 74.02 70.96 62.02 66.74 64.73 58.19 85.17 73.75 91.13 85.13
Class17 88.89 0.00 72.22 22.22 88.89 16.67 77.78 27.78 72.22 33.33 61.11 61.11 100.00 44.44 100.00 88.89
Class18 48.59 72.46 63.98 73.15 67.98 76.54 59.01 76.26 56.38 77.50 59.49 62.66 72.81 73.43 87.85 70.95
Class19 23.55 0.93 35.60 29.03 35.44 19.61 34.21 25.71 34.05 25.41 30.35 30.89 43.78 29.27 90.73 69.88
Class20 24.98 32.89 57.69 45.57 50.85 55.43 62.46 46.08 58.51 44.95 57.63 57.69 42.69 46.26 91.71 70.56

3.3.2. The Houston2018 Dataset 376

Classification performance using the different low-dimensional feature represen- 377

tations is evaluated on the Houston2018 dataset both visually and quantitatively, as 378

shown in Fig. 7 and listed in Table 3, respectively. The optimal parameters used for 379

different compared methods are given in Table 3 as well. Likewise, due to more chal- 380

lenging categories in this scene and small-scale training set, the ability to classify the 381

materials for the LSVM is limited. This might explain a phenomena in Table 3, that is, 382

why the NN-based classifier, to some extent, performs better than the SVM-based one 383

for many compared methods. 384

More specifically, OSF yields a poor classification performance, due to the highly 385

redundant spectral information and the sensitivity to noise. Unlike OSF that directly 386

uses the original spectral features as the input features, FSDA and JL are apt to discrim- 387

inate the materials due to the utilization of the label information. Further, taking the 388

unlabeled samples into account is of great benefit in finding a better decision bound- 389

ary, yielding a possible performance improvement, as shown in those subspace-based 390

learning semi-supervised HDR methods (e.g., SELD, CDME). It is worth noting that 391

the regression-based JL model is provided with nearly identical performance to those 392

semi-supervised HDR approaches using both NN and LSVM classifiers, even though 393
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Table 4: Quantitative performance comparison among the different algorithms with the optimal parameters
on the Berlin EnMap dataset in terms of OA, AA, and κ as well as accuracy for each class. The best is shown
in bold. Note that IMR-3 denotes the IMR with three iterations.

Methods OSF (%) FSDA (%) JL (%) SELD (%) CDME (%) SL-LDA (%) SSLFDA (%) IMR-3 (%)

Parameter d d (α, β, d) (k, σ, d) (α, β, d) d (k, σ, d) (α, β, γ, d)
244 7 (0.01, 0.1, 20) (10, 0.1, 7) (0.01, 0.01, 15) 7 (25, 0.1, 7) (0.1, 0.01, 0.8, 20)

Classifier NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM
OA 53.97 67.87 61.51 67.77 62.56 68.47 61.55 69.86 60.88 69.05 60.53 66.01 60.87 70.13 67.39 75.03
AA 57.47 66.04 64.61 65.98 64.71 65.90 63.79 65.76 62.88 65.13 63.87 65.34 65.96 67.36 69.05 69.36
κ 0.3781 0.5372 0.4711 0.5299 0.4821 0.5392 0.4702 0.5540 0.4621 0.5469 0.4619 0.5142 0.4668 0.5620 0.5411 0.6222

Class1 61.82 79.41 76.14 74.43 78.50 76.25 75.54 78.57 73.35 80.55 78.61 80.15 74.18 80.26 80.48 81.91
Class2 51.39 67.42 57.50 68.11 58.89 68.94 57.70 70.92 57.80 69.92 55.75 64.37 55.92 70.32 64.81 77.61
Class3 43.72 55.56 55.26 56.79 56.79 57.40 51.35 54.00 49.16 58.31 49.02 53.47 51.94 53.65 61.95 61.85
Class4 60.06 70.63 70.66 69.71 70.40 70.66 72.62 71.78 71.16 71.02 72.51 72.83 71.71 72.91 74.76 73.60
Class5 89.54 87.63 89.90 91.68 90.46 92.43 90.89 92.47 92.11 92.96 90.69 93.36 92.83 90.59 91.87 88.82
Class6 59.21 66.50 61.93 65.55 61.48 64.40 58.71 60.77 61.35 62.22 60.53 64.81 67.33 64.94 68.44 65.06
Class7 32.46 40.06 38.01 40.54 37.04 38.29 37.26 38.80 30.96 28.03 33.29 30.34 42.89 42.45 36.55 42.79
Class8 61.51 61.11 67.47 61.03 64.09 58.78 66.26 58.78 67.15 58.05 70.53 63.37 70.85 63.77 73.51 63.29

the powerful GLP is utilized (e.g., SL-LDA, SSLFDA). As expected, the performance394

of the IMR framework, which optimizes the pseudo-labels in an iterative fashion, is395

dramatically superior to that of others with the OA’s increase of approximately 8%396

(NN) and 5% (LSVM).397

More intuitively, the proposed IMR performs better at identifying each material398

than other methods. In particular, when facing the extremely unbalanced sample distri-399

bution (see Table 1), our method gradually improves the quality of the pseudo-labels,400

thereby making the model develop a more powerful learning ability. Table 3 also re-401

veals an interesting but unsurprising result: for those classes with a very limited number402

of training samples (e.g., Deciduous Trees, Bare Earth, Water, Crosswalks, Highways,403

Unpaved Parking, and Stadium Seats), the IMR makes a significant performance gain404

(an increase of at least 50% for these classes) with the aid of iterative pseudo-label405

learning.406

3.3.3. The Berlin EnMap Dataset407

For the Berlin EnMap dataset, the visual comparison of eight different algorithms408

in the form of classification maps is shown in Fig. 8. Table 4 details the comparison by409

means of three quantitative indices: OA, AA, and κ.410

With a very high spectral dimension (244), OSF only holds a 53.97% accuracy411

when using the NN classifier. The performance of supervised HDR methods (SFDA412

and JL) is obviously superior to that of OSF, with an increase of at least 8% using413

the NN classifier. This reveals the importance of HDR in the follow-up hyperspec-414

tral data analysis. Furthermore, these methods exhibit balanced accuracies using the415
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Figure 8: False-color image, the distribution of training and test samples as well as classification maps of
compared methods using two different classifiers on the EnMap Berlin dataset.
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LSVM classifier, where JL shows a better classification performance owing to its well-416

designed architecture in the regression-based latent subspace learning. SELD learns the417

subspace projections by not only considering the label information but also computing418

the similarities between the unlabeled samples, yielding an effective semi-supervised419

low-dimensional embedding. However, the similarities between samples are usually420

measured by certain fixed functions, i.e., radial basis function (RBF), in the high-421

dimensional space, leading to poor robustness and ability to generalize. CDME imple-422

ments an automatic similarity measurement by collaboratively representing the con-423

nectivity between the samples for the low-dimensional embedding. By the means of424

the soft (or pseudo) labels instead of using similarity measurement, SL-LDA and SS-425

FLDA jointly use the labels and pseudo-labels to find a high discriminative subspace426

in a semi-supervised embedding approach.427

Beyond the two subspace-based (SELD and CDME) and two GLP-based (SL-428

LDA and SSFLDA) semi-supervised strategies, we propose to iteratively optimize the429

pseudo-labels and feed them into a multitask regression framework in order to find a430

latent optimal subspace where the final decision boundary for different classes can be431

easily determined. On the other hand, our proposed IMR for each of the classes in432

the studied image exceeds the vast majority of compared methods except the material433

of Commercial, thereby further revealing the IMR’s advantages in low-dimensional434

representation learning.435

3.4. Parameter Sensitivity Analysis436

3.4.1. On the Regularization Parameters437

The quality of low-dimensional features extracted by the proposed IMR model is,438

to some extent, sensitive to the selection of three regularization parameters (α, β, and439

γ) as shown in Eq. (5). For this reason, we experimentally investigate the effects of440

different parameter setting in terms of OA via the NN classifier. The resulting analysis441

on the three datasets is quantified in Fig. 9, where the parameter combinations of (γ =442

0.8, α = 0.01, β = 0.1), (γ = 0.9, α = 0.01, β = 0.01), and (γ = 0.8, α = 0.1, β =443

0.01) obtain the optimal classification performance on the test set for the Indine Pines444

dataset, Houston2018 dataset, and Berlin EnMap dataset, respectively. The results445
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Figure 9: Sensitivity analysis on the regularization parameters (e.g., α, β, and γ) of the IMR in Eq. (5).
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Figure 10: Sensitivity analysis on the subspace dimension in the proposed IMR method.

regrading the parameter setting are basically consistent with those obtained by cross- 446

validation on the training set (see the Section 3.2.3: Implementation Preparation). 447

Thus, the cross-validation strategy can be effectively used to determine the model’s 448

parameters so that other researchers can produce the results for their tasks. 449

3.4.2. On the Subspace Dimension 450

Apart from the regularization parameters, we analyze the performance gain in us- 451

ing the different subspace dimension of our IMR method, since a proper subspace 452

dimension tends to reach a trade-off between discrimination and redundancy of the 453

dimension-reduced product. For this purpose, the corresponding experiments are con- 454

ducted by using the NN classifier to see the classification performance with the gradually- 455

reducing dimension. As can be seen from Fig. 10, with the increase of subspace di- 456

mension, the IMR’s performance sharply increases to around 20 for first dataset, 30 for 457

the second dataset, and 20 for the last dataset, respectively, then starts to reach a rel- 458

atively stable state, and finally decreases with a slight perturbation when the subspace 459

dimension is approaching to that of original spectral signature. 460
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Figure 11: Sensitivity analysis to the size of training set using the NN and LVSM classifiers for the used
three datasets.

3.4.3. On the Training Set Size461

Although the IMR adopts the semi-supervised learning strategy by jointly account-462

ing for the labeled and unlabeled samples, yet the HDR’s performance is determined463

by the number of training samples to a great extent. This is, therefore, indispensable to464

investigate the sensitivity with an increasing size of training set. To highlight and em-465

phasize the effectiveness and superiority of our proposed method in the HDR issue, we466

arrange the classification task by resetting the training set randomly selected from all467

labeled samples out of 10 run with the different proportions in the range of 5% to 50%468

at a 5% interval and the rest as the test set, and the average classification accuracies are469

reported by integrating the ten outputs in the end. Fig. 11 shows a similar trend in OAs470

with two classifiers (NN and LSVM) on the three different datasets, that is, the clas-471

sification performance improves with the size of training set, faster in the early, and472

later basically stabilized. This also indicates that our semi-supervised method is not473

heavily dependent on a large-scale training set, which can hold a desirable and com-474

petitive performance in HDR, even when only small-scale labeled samples are used475

for training. On the other hand, we can observe an interesting conclusion on the first476

two datasets from the Fig. 11 that the NN classifier outperforms the LSVM one when477

the training samples are insufficient, e.g., less than around 15% of total samples. This478

could be well explained by the fact that LSVM is a learning-based classifier depending479

on the adequate samples for training an effective model, which is also supported by the480

experimental results yielding the higher OAs using the LSVM than those using the NN481

while using more training samples. Furthermore, with the increasing of training sam-482

ples, the performance gain is prone to gradually become slow and meet the bottleneck,483
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Table 5: Time cost for the HDR of different methods on the three datasets.

Datasets Time Cost (s)
OSF FSDA JL SELD CDME SL-LDA SSFLDA IMR

Indine Pines – 0.06 4.60 9.68 1.85 2.32 3.13 51.05
Houston2018 – 0.09 41.25 192.22 12.06 12.77 24.88 132.41
Berlin EnMap – 0.22 48.81 57.81 10.82 11.48 25.20 75.72

probably due to the lack of the spatial information modeling. 484

3.5. Computational Cost in Different Methods 485

The experiments for HDR conducted by different methods are implemented for 486

simulation on a laptop with the CPU i7-6700HQ (2.60GHz) and a 32GB random access 487

memory (RAM). Herein, we assess the operational efficiency of the compared HDR 488

approaches in terms of running time, as listed in Table 5. 489

In general, the running time of supervised HDR is much less than that of semi- 490

supervised HDR, such as between supervised discriminant analysis (FSDA) and semi- 491

supervised discriminant analysis (SELD, CDME, SL-LDA, and SSFLDA). The conclu- 492

sion is just as much applicable to another group, that is, JL and our proposed IMR. Re- 493

markably, although the newly-proposed IMR model seems to be operationally complex 494

compared to other HDR methods, yet as it turns out, the IMR shows the computation- 495

ally efficiency and the time cost is acceptable, mainly owing to the fast matrix-based 496

computing power in regression-based techniques. 497

4. Conclusions 498

To facilitate the use of unlabeled samples effectively and efficiently, we propose a 499

novel regression-based semi-supervised HDR model, called iterative multitask regres- 500

sion (IMR), which 1) simultaneously bridges the labeled and unlabeled samples with 501

the labels and pseudo-labels in a multitask regression framework; and 2) progressively 502

updates the pseudo-labels in an iterative fashion. This model provides us a new insight 503

into the solutions of HDR-related problems. We conducted extensive experiments on 504

three convincing and challenging HSI datasets, demonstrating that our method (IMR) 505

is capable of extracting more discriminative features by allowing for the unlabeled 506

samples and by optimizing the pseudo-labels. 507
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It should be noted, however, that while there has been a desirable performance boost508

in IMR, it is still limited to working well only by linearly learning the low-dimensional509

feature representations for complex nonlinear cases. For this reason, our future work510

will address the HDR issue in a more complex scene and extend our framework to a511

nonlinear one with possible spatial information modeling.512
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