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Simulations of periodic fluidic excitations in the context of active flow control are per-
formed using a frequency domain solver for the efficient prediction of global air loads.
Frequency domain methods have become a viable choice whenever the disturbance of the
flow is small and periodic, and can reduce the computational effort substantially in compar-
ison to time-accurate unsteady simulations. Although time-accurate unsteady simulations
resolve the entire spectrum of the flow, they suffer from a long transient phase and thus
require an extensive use of computational resources. The goal is to extend the time-
linearized frequency domain method of the DLR TAU-code toward load control by blowing
fluidic actuators. This paper presents the set of discretized unsteady equations and as-
sociated boundary conditions for both the time accurate and frequency domain method.
The applied time-linearized frequency method decouples each harmonic, forming a linear
approach, which renders the sequential calculation of the individual harmonics to evaluate
the time response of air loads. At first, blowing actuation for a two-dimensional airfoil with
a single slot is considered for which constant as well as periodic excitations are used for
validation and investigation purposes of air loads between the time-accurate and nonlinear
frequency domain method. In addition, a 2-element high-lift wing with a flow separation
on the trailing edge flap is simulated that demonstrates the good prediction quality of air
load derivatives with the frequency domain method.

Nomenclature

Variables

f frequency, Hz
n unit outward normal vector with components nx, ny and nz
t physical time, s
τ dimensionless time
CL lift coefficient
α incidence angle

Superscripts

¯ time-invariant mean state
ˆ Fourier coefficient, perturbation amplitude
˜ time-dependent perturbation
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Abbreviations

FRF Frequency response function
ARF Amplitude response function

I. Introduction

Suction and blowing of air on aerodynamically heavily loaded surfaces to reduce structural loads in
transonic flight conditions or to maximize lift at low speed flight has been highly attractive for many years.
Decades of research have given insight into the air load behavior for active flow control (AFC) by steady or
periodic excitations elaborately discussed by Greenblat and Wygnanski,1 especially for periodic excitations.
Global air loads of aircraft can be sufficiently modified without deploying movable control surfaces to adjust,
for example the angle of attack in varying flight conditions. It is further an important feature, that the lifting
surfaces are significantly less disrupted in terms of integration on the wing surface, except for installation
difficulties. Therefore, numerous applications can be found for implementing AFC on aircraft or rotorcraft.
Historically, this large area of research was dedicated to boundary layer control, so that the time-averaged
mean flow is altered, Ref.2 . Nowadays the focus has shifted to flow control with the global approach to use
a reduced amount of energy (mass-flow) with a noticeable change of the reference flow without AFC. Flow
control for airfoil aerodynamics may postpone or even prevent separation for example reducing aerodynamic
stall for increasing maximum lift, Ref.3–5 , or reducing the blade-vortex interaction on rotor blades, Ref.6,7

Another viable application is the improved maneuverability such as roll control, Ref.8

It was demonstrated that oscillatory blowing can delay separation from a symmetrical airfoil more effec-
tively than the steady blowing used traditionally for this purpose by Seifert and Pack.9 Oscillatory suction
and blowing are several times more efficient for lift than steady blowing and becomes particularly efficient
if the excitation frequencies correspond to the most unstable frequencies of the free shear layer. Arrays of
spanwise vortices are generated which are transported downstream and continuously mix with the shear
layer. Hence, the frequency analysis of the flow around the lifting body has a significant influence for an
effective active flow control. Considering that small changes in the onflow parameters can change radically
the flow pattern around the body, it is critical to have a quick feedback to modify the parameters of the
actuator.

The numerical treatment of fluidic actuators has its challenges. Actuators for complex configurations are
mainly modeled in a simplified arrangement by considering a portion of the physical actuator, for example
a portion of an actuation slot, neglecting the physical components of the actuators such as membranes, or
switching valves. The size of an airfoil to a slot is by nature very different. Modeling of this arrangement for
viscous flow simulations requires much experience in generating the computational grid so that the robustness
of the numerical method is not overly affected by large changes in volume element sizes. In addition, the
boundary layer resolution in the narrow slot has to cope with a wide range of flow conditions, ranging from
zero up to two orders of magnitude in the jet velocity. Another numerical issue of periodic excitations is the
simulation of unsteady turbulent flows by Reynolds-averaged approaches, and requires special attention for
the treatment of motion and turbulent time-scales. To correctly capture all unsteady flow features, a proper
time-resolution is required and the simulation has to last at least several periods to overcome the transient
phase. Successful unsteady numerical simulations for high-lift multi-element airfoils with multiple slots on all
three elements were investigated by Shmilovich and Yadlin,10 and obtained a substantial gain in maximum
lift by carefully locating the actuators. A similar numerical approach was followed by Ciobaca et al.11 for a
two-dimensional high-lift configuration, and this study was extended to a high-lift wing-body aircraft,12 with
both configurations pre-tested in a wind tunnel campaign. Schatz et al.13 investigated separation control
for high-lift devices by simulating different excitation modes and frequencies to identify optimal control
parameters. The same group, with Hoell et al.14 , extended this survey with detached-eddy simulations.
It was shown in the works cited above that flow control physics is reproduced quite well by flow solvers.
Subsequently, this leads to numerical optimization of active flow control parameters. Locations and blowing
direction of multiple slots on the flap of a high-lift configuration are optimized by Nielsen and Jones15 with
a time-dependent adjoint technique.

For periodic excitations, frequency domain solvers have made major contributions in determining effi-
ciently dynamic response data, which can be used to model the nonlinear time periodic flow by a small-
disturbance approach. The effort for a time-accurate simulation of a flow problem can be reduced to about
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a similar time scale of a steady-state simulation, and time-saving factors of up to two orders of magnitude
are achieved. Frequency domain techniques can be utilized more efficiently to analyze a wide variety of per-
formances, flight dynamic and aeroelastic stability problems to cover a broad frequency band. Applications
to viscous flows range from blade-interaction in turbo machinery16 or improving RANS-based aeroelastic
instability predictions.17,18 The proposed Linear Frequency Domain (LFD) method19 obtained good results
for the prediction of dynamic responses for rigid body motions20–22 at viscous transonic flow conditions.

In the current work, the LFD method for actuation is first investigated for a NACA 4412 airfoil with a
single slot on the suction side with a perturbation on the blowing actuation velocity. Second, a high-lift wing
with actuation on the trailing edge flap is studied with a similar blowing actuation setup. Both configurations
are investigated for ambient viscous subsonic conditions and for various angles of attack. Derivatives of the
lift coefficient are compared to their URANS counterparts for sinusoidal, half-wave rectified sine and pulse
train jet velocity excitations for a multitude of frequencies. Fluidic periodic actuation is mostly based on
pulsating signals, and as a result, contains higher harmonic components in the air load time response. The
time-linearized small disturbance approach of the LFD decouples each harmonic, which is a simplification
to the general description of the discrete Fourier transform of the nonlinear set of flow equations. In the
following, a survey is conducted with the LFD, for the quality of reconstructing pulsed actuation in the time
domain with the superposition of several harmonics. Time-reduction factors for pulsed actuation of up to
two orders of magnitude are demonstrated in comparison with unsteady Reynolds-Averaged Navier-Stokes
(URANS) simulations.

II. Numerical Approach

The TAU flow solver23,24 uses the mass-weighted (Favre) averaged three-dimensional instantaneous
Navier-Stokes equations, commonly referred to as the RANS equations, with numerous turbulence mod-
els to choose from. For this investigation, however, only the one-equation turbulence model of Spalart-
Allmaras25,26 has been taken. The code is used to perform aerodynamic simulations for a wide range of
Mach numbers and provides an extensive list of options and solution algorithms27 for spatial discretizations
on general mixed-element unstructured meshes. A finite volume approach is applied for solving the dis-
cretized RANS equations based on second-order accurate schemes. The edge-based method is generalized
for three-dimensional unstructured meshes for which non-overlapping control volumes are bounded by an
arbitrary number of constitutive faces. An Arbitrarian Lagrangian-Eulerian approach28 is implemented to
extend the applicability to mesh motions. Parallel scalability to many-core processors is achieved through
domain decomposition and message passing communication.

The nondimensional time dependent compressible Navier-Stokes equations (URANS) can be written in
a semi-discrete form as

M
dW(t)

dt
+ R(W(t,ujet(t))) = 0, (1)

where M := diag |Ωi| denotes the mass matrix with dimension of total number of grid nodes np. The state

vector of conservative variables for each grid-node is given by W(t) := [ρ, ρU, ρe, ρν̌]
T ∈ RN×np for N = 6

flow state variables with ρ being the density, U := [u(t), v(t), w(t)]T is the velocity vector, e is the specific
total energy and ν̌ is the Spalart-Allmaras primitive working variable. R ∈ RN×np denotes the spatial
discretization of the convective and viscous flux density integrals. The blowing actuation velocity vector
ujet(t) at the slot domain inflow is described as a combination of a mean velocity and a time-dependent
periodic oscillation,

ujet(t) = ujet(t)(−n) = ū + ũ(t), ujet(t) = ū+ ũ(t), (2)

where ujet(t) > 0 represents blowing, ujet(t) < 0 represents suction, and ū is the magnitude of the mean
velocity. n is the outward facing unit normal vector per face at the slot domain inflow. The oscillatory part
of the jet velocity component is a function describing various periodic shapes of the velocity signal, and by
setting ũ(t) = 0 the actuation reduces to a constant blowing or suction.

II.A. Temporal Discretization

The temporal discretization is based on Jameson’s29 dual-time stepping scheme for the time-accurate solution
of the RANS equations. Using an implicit multi-stage backward differential formula (BDF) discretization
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in time, a large set of nonlinear equations is formed and marched in pseudo time to steady state for each
physical time step using a geometric multigrid algorithm.30,31 Applications to arbitrary mesh motions have
to preserve a time-accurate conservative scheme, which is satisfied using an approximation of the Geometric
Conservation Law (Thomas and Lombard32).

II.B. Actuation Boundary Condition

The physical constraints of the problem are combined with information from the interior of the domain to
evaluate the fluxes on the boundary. That means, depending on the flow into the domain (blowing) and flow
out of the domain (suction) a certain amount of state variables are extrapolated according to the theory
of characteristics. In the present implementation, the boundary condition is divided into purely suction or
blowing, as well as an option for applying zero net mass synthetic jets, Ref.33,34

n

right state

WL := Wi WR := WR(W1;Wi;B)

F := F(n; S;WL;WR)

left state

L

Figure 1. Flux and boundary states, L is the left (boundary/interior) state and R is the right (virtual/exterior) state.

As shown in fig. 1, the flux at the boundary (F := F(n, S,WL,WR)) is composed of the left and right
states (WL and WR), the direction or normal vector, n, and the face area, S. The left state is equal to the
interior state, Wi, and the right state is a function of the interior state, Wi, the free-stream, W∞, and/or
user-specified parameters, B, depending on the boundary condition. The TAU-code is a node-centered
scheme, the left-side L is the boundary node at the physical domain, and the right-side R is a virtual or
ghost node. To gain an appropriate boundary flux for the transport of quantities through the boundary, the
flux is based on a first order scheme; thus, a first order Roe35 scheme is used which is equivalent to a central
differencing scheme with a first order matrix dissipation.36 The convective flux evaluation on the boundary
for face ij with adjacent grid nodes i and j can be written as

Fij,Roenij = Fcijnij −Dij , Fcij =
1

2
(Fci (Wi) + Fcj(Wj)),

Fcknij =


ṁk

ṁkUk + pinij

ṁkhk

ṁkν̌k

 , ṁk = ρkUknij , k = i, j ,

Dij = |ARoe
ij |

[
1

2
(Wj −Wi)

]
, ARoe

ij :=
∂(Fcijnij)

∂W
[WRoe],

(3)

where ṁ is the mass flux through the surface area Sij . The static pressure p and temperature T is related
to the equation of state by p/ρ = T , and the specific total enthalpy can be evaluated with H = E + p/ρ.
Wi := WR = (ρ∞, ρ∞ujet(t), ρ∞e, ρ∞ν̌)T is the known state vector of conservative variables evaluated with
given actuation boundary values.

The construction of matrix ARoe
ij is described in detail by Langer,37 and WRoe denotes a Roe averaging35

of the flow variables. Applying an Eigendecomposition for ARoe
ij results in three matrices which can be used

to define

|ARoe
ij | :=

Nm∑
m

|λm|gmqm. (4)
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The two matrices g and q are composed of eigenvectors of the flux Jacobian. λm is a diagonal matrix
containing the characteristic eigenvalues of the flow:

λm = diag (λ+
ij , λ

−
ij , λ

n
ij , . . . , λ

n
ij). (5)

The components of the eigenvalue matrix are

λ+
ij = Uijnij + Sijaij ,

λ−ij = Uijnij − Sijaij ,
λnij = Uijnij .

(6)

where aij := 0.5(ai + aj) is the speed of sound.
The simplest handling of the turbulent quantity ν̌ in Eq. (3) is by extrapolation from the interior domain

to obtain the eddy-viscosity closure. However, an empirical relation for the eddy-viscosity from experimental
data for rounded jets is available from Hussein et al.38 . The turbulent viscosity at the actuation boundary
can be evaluated by

ν̌
(b)
t =: ν̌

(b)
t (ujet) = 0.11

√
2

3
Tu

1

2
Djet |ujet|, (7)

and the jet turbulence intensity Tu2 = 0.0053 has been taken from Hussein’s experiment, and Djet is the
slot width. The complete derivation of Eq. (7), starting from the turbulent fluctuation to the finally derived

ν̌
(b)
t , can be found in Knopp34 .

The linearization of the flux function in Eq. (3) is written as the change in the flux function, F , with
respect to the state vector, W, on the boundary node denoted as left side:

∂F

∂W

∣∣∣∣
L

=
∂F

∂WL
+

∂F

∂WR

∂WR

∂WL
. (8)

The first two derivatives, ∂F/∂WL and ∂F/∂WR, are the flux Jacobians for the numerical flux function on
the virtual node (R) and at the boundary node (L). The flux Jacobian terms of Roe’s scheme were derived ana-
lytically and handcoded term-by-term. Since the pressure is extrapolated for the blowing boundary condition,
the matrix of derivatives ∂WR/∂WL has only entries in the fifth row ∂WR,5/∂WL = [q2/2, ρU, 1/(γ−1), 0]
and q = (u2 + v2 + w2).

Variables with dimensions are denoted by the superscript ?. Non-dimensional variables are denoted
without any super- or subscript. Freestream values are denoted by the subscript ∞. The equations relating
the dimensional to the non-dimensional flow-field variables are as follows:

ρ? = ρρ?∞, U? = Ua?∞, p? = pp?∞, T ? = TT ?∞ =
a2
∞
γ
T ?∞,

ρ∞ = 1, p∞ = 1, T∞ = 1, a2
∞ = γ, U∞ = M∞a∞ = M∞

√
γ,

[u∞, v∞, w∞]T = Tba[U∞, 0, 0]T , Tba =

cosα cosβ − cosα sinβ − sinα

sinβ cosβ 0

sinα cosβ − sinα sinβ − cosα


e = cV T, h = cPT, cP =

γ

γ − 1
, cV =

1

γ − 1
, R = 1 .

(9)

The specific heat capacities are denoted as cP and cV , and R is the specific gas constant, and a∞ is the
speed of sound.

II.C. Frequency Domain Method

Postulating the considered actuation velocity time-dependent deflection to be of small amplitude, the flow
response to the excitation can be considered to be predominately dynamically linear. Thus, higher order
time-dependencies in the flow response can be neglected, allowing it to be separated into a time-invariant
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mean state and a time-dependent small perturbation. On this basis, W can be linearized about an individual
grid node’s steady-state location using a Taylor-series expansion, that terminates after the first-order term:

W(t) ≈W + W̃(t), ‖W̃‖ � ‖W‖, (10)

ujet(t) ≈ ū + ũ(t), ‖ũ‖ � ‖ū‖, (11)

R(W(ujet(t))) ≈ R(W(ū)) + R̃(W(ū),W̃(ũ)). (12)

Note, that R = 0 is neglected, which represents the steady-state solution, and the remaining term R̃ is
transferred into the frequency domain. The perturbations are expressed in terms of a Fourier series and
considering merely a first harmonic excitation and response

W −W ≈ Ŵ eiωt, Ŵ ∈ C
u− ū ≈ û eiωt, ûjet ∈ C

(13)

where ω = 2πf denotes the base angular velocity, which is in nondimensionalized form the reduced frequency
k = ωlref/U∞ introducing the reference chord length lref and the freestream velocity U∞. Applying Eqs. (10)-
(12) to Eq. (1) by neglecting higher order terms yields a separate linear system of equations linearized at
steady-state conditions (W, ū) for one harmonic excitation in the frequency domain. Thus, Eq. (1) becomes[

ikM +
∂R

∂W

]
Ŵ = − ∂R

∂W

∂W

∂ujet
ûjet. (14)

ûjet is the known complex-valued description of the actuator jet velocity and thus, the system of equations

can be solved for Ŵ. Note, that the right-hand side of Eq. (14) is defined on the actuator inlet boundary
only. With that approach, only the flux Jacobian derivatives per grid-node, ∂R/∂W ∈ RN×N , are necessary,
and are derived analytically, Ref.22,39 The derivative ∂W/∂ujet ∈ RN×3 is the linearization of the right-side
state variables in Eq. (8) with respect to the actuation jet velocity. It is defined only at the actuation
boundary for the virtual node, and with the velocity in Eq. (2), it is written as

∂W

∂ujet

∣∣∣∣
R

=


0

ρI

0

ρdν̌
(b)
t

 , dν̌
(b)
t =

∂ν̌
(b)
t

∂ujet
= 0.11

√
2

3
Tu

1

2
Djet

nT , ujet > 0

−nT , ujet < 0
(15)

where I ∈ R3×3 is a unitary matrix. Since perturbations of the actuation velocity are modeled with harmon-
ics, the general description is written as

ũ(τ) = û sin(kτ) = û Im(eikτ ), τ =
U∞
lref

t,

ûjet = −iû(−n),

(16)

where û denotes the magnitude of the excitation of the actuation velocity, and τ is the non-dimensional time.
All air load coefficients depend on the surface pressure cp and skin friction coefficient cf , and the de-

termination of ĉp and ĉf is provided in a further step to obtain the Fourier coefficients of the air loads,

Ĉi, i = L,D,m. After receiving the solution state vector in conservative formulation it will be transformed
into a primitive state vector to calculate real and imaginary pressure and skin friction coefficient distributions

on the surface grid nodes. Quantities of interest are computed from Ŵ such as

Ci(t) := Ci(t, cp(t), cf (t))⇒ Ĉi := Ĉi(ĉp, ĉf ),

cp =
pwall − p∞

1
2ρ∞U

2
∞

, ĉp := ĉp(p̂) =
2p̂

ρ∞U2
∞
, p̂ =

∂p

∂W
Ŵ,

cf =
τn

1
2ρ∞U

2
∞
, ĉf := ĉf (τ̂ ) =

2τ̂n

ρ∞U2
∞
, ĉf =

∂τ

∂W
Ŵ,

(17)

and pwall denotes the pressure at the wall. Freestream values ρ∞, U∞ and p∞ are density, velocity and
pressure, respectively. τ denotes the shear-stress tensor.
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If the velocity excitation in time is not purely harmonic, like for a periodic pulse signal for example, or if
the global air load coefficient’s time response is not covered by the fundamental frequency f0 (the nth Fourier
coefficient does not fall off exponentially), then the approach of superposition with N harmonics is a viable
approach. First, the actuation velocity signal is transformed into the frequency domain with a Fast Fourier
Transform40 to determine the maximum number of harmonics Nh so that the time signal can be restored
to some degree. Applying the LFD sequentially for each harmonic, the time response of the global air load
coefficients Ci(τ) can be recovered by

Ci(τ) = C̄i +

Nh−1∑
n=0

Re
(

Φ(nk0)Ĉi,n ei2πnk0τ
)
, n ∈ N, (18)

where C̄i is the mean value derived from the steady-state simulation and Ĉi,n are the complex-valued
Fourier coefficients evaluated for Nh frequencies with the LFD. The Φ(nk0) are the complex-valued weighting
functions obtained from the Fast Fourier Transform of the actuation jet velocity signal, and are multiplied
with the Fourier coefficients.

The most challenging part is to solve the large complex valued linear system, Eq. (14). Particularly, for
viscous separated flows and small reduced frequencies, experience has shown that the linear system often
becomes ill-conditioned and the iterative procedure may stall or diverge. Employing advanced techniques is
therefore a necessity, such as Krylov-GMRES41 with an Incomplete Lower-Upper (ILU)42 preconditioning.
Apparently, an ILU preconditioner based on a modified first and second order accurate flux Jacobian following
the approach in Ref.43,44 and extensions of the baseline GMRES,45 increases the robustness of the method
substantially.

III. Actuation Signals

Conventional shapes or signals for the jet velocity during one actuation cycle can be represented by
continuous or pulsating variations. The selection of signals includes three forms, the first of which represents
a harmonic oscillation. Two additional actuation signals are considered, a half-wave rectified sine and a
pulse train actuation jet velocity.

t/T

u
(t

)

0 0.2 0.4 0.6 0.8 1

sine

halfwave rectified sine

pulse train

(a) Type of signals, ū, û

# harmonics

D
F

T
 m

a
g

(u
(t

))

0 2 4 6 8 10 12 14 16 18 20
10

3

10
2

10
1

10
0 pulse train

halfwave rectified sine

(b) Magnitudes of the DFT(u(t)) for the half-wave rectified
sine (red) and pulse train (blue) jet velocity signal.

Figure 2. Excitation signals for the actuation jet velocity and the discrete Fourier transform (DFT) of the half-wave
rectified sine and pulse train.

Figure 2 describes the dynamic excitation shapes of the actuation jet velocity, ujet, composed of a mean
jet velocity part, ū, and an oscillating jet velocity part, ũ, (Eq. (2)). The description of the actuation jet
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velocities in fig. 2(a) is

sine : ujet = û sinωt, 0 < t ≤ T,

half-wave rectified sine : ujet =

û sin(ωt), 0 < t ≤ tc,
0, tc < t ≤ T,

,

pulse train : ujet =

û, 0 < t ≤ tc,
0, tc < t ≤ T,

(19)

where tc is the time of the actuation duty cycle and is taken for all investigations to be half of the period,
tc = T/2. The pulse train actuation velocity can be applied with smoothing at the discontinuities introduced
by Knopp.34 Signals in the time domain can be represented by a series of sines. A common applied algorithm
is the Fast Fourier Transform. It takes a signal and breaks it down into sine waves of different amplitudes
and frequencies. The discrete Fourier transform is then a set of fundamental and harmonic components. The
first jet velocity in Eq. (19) describes a harmonic signal and the second two are related to a discontinuous
velocity distribution. An harmonic signal in the frequency domain is represented entirely by its fundamental
frequency, so there is no zero frequency component. Since the latter two are discontinuous signals, the
Gibb’s phenomenon, apparent around t/T = 0, T/2, allows the restoration of the time signal only to a
certain degree. For this reason, the reconstruction of the time signals for the half-wave rectified sine is
carried out with the following approach: To reproduce an order of magnitude in u(t) (fig. 2(b)), about three
harmonics are necessary, for two orders of magnitude ten harmonics, respectively. Accordingly, the pulse
train is reconstructed with about seven harmonics for an order of magnitude of u(t), and with about seventeen
harmonics for two orders of magnitude. The pulse train reveals clearly that a high amount of frequencies
must be resolved to reconstruct a time signal. The half-wave rectified sine and pulse train shaped jet velocity
has the analytically inverse discrete Fourier-Transform of

half-wave rectified sine : IDFT (ujet(t)) =
û

π
+
û

2
sin(ω0t) +

2û

π

∞∑
n=2,4,6,...

cos(nω0t)

n2 − 1
, (20)

pulse train : IDFT (ujet(t)) =
û

2
+

∞∑
n=1

[
2û

nπ
sin(

nπ

2
)

]
cos(nω0t), DC = 0.5. (21)

Both Eqs. (20) and (21) have a zero frequency component equivalent to a mean value, which is û/π for the
half-wave rectified sine excitation and û/2 for the pulse train with a duty cycle of 0.5. Eq. (20) signifies
the influence of even multiples of the fundamental frequency only for the half-wave rectified sine, and these
multiples decay with 1/n2. The pulse train, Eq. (21), is influenced by odd multiples of the fundamental
frequency only, and these multiples decay with 1/n only. Therefore, fluidic actuators with pulsating jet
velocities have a wide frequency range with which the flow can be influenced.

The basis for the applicability of LFD to AFC is the accurate prediction of dynamic response data with
a harmonic shaped jet velocity actuation. The enormous dependence of pulsating jet velocities on higher
harmonics also raises the question to what extent a linearized method can still be used efficiently, given that
each harmonic is calculated sequentially.

Fluidic actuation is often characterized with the blowing momentum coefficient expressing the relationship
between the jet momentum and the dynamic pressure force. The blowing momentum coefficient was first
introduced by Poisson-Quinton46 and for this application is defined as

Cµ =
DC ṁjetujet
1
2ρ∞U

2
∞Sref

, ρjet ≈ ρ∞ : Cµ(%) = 2DC
Sjet

Sref

(
ujet

U∞

)2

× 100, (22)

being DC the actuation duty cycle, ṁ the time-averaged actuation mass-flow, and ujet is the time-averaged
jet velocity. It further contains free-stream values of the density (ρ∞) and velocity (U∞), and Sref is the
airfoil reference area and Sjet is the slot area.
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IV. Results

IV.A. NACA4412 with single slot

The computational setup consists of the NACA 4412 non-symmetrical airfoil with a high maximum camber
thickness of 4 % reaching the maximum camber thickness at 40 % of the cord length. It is a typical airfoil
for low speed and is suitable to high angles of attack to study viscous flow, Ref.47,48 Most fluidic actuation
applications on airfoils at low speed consider the control of lift, and thus, the validations and results contain
only this coefficient. The drag and pitching moment coefficient can also be determined simultaneously.

Table 1. Flow conditions for the baseline NACA 4412 airfoil.

ᾱ [deg] U∞ [m s−1] T∞ [K] p∞ [Pa] Re∞ [-] lref = c [-]

0 92.6 288 101 325 6.3× 106 1

Table 1 lists the flow conditions, which are set to U∞ = 92.6 m s−1 at wind tunnel conditions of 101 325 Pa
and an ambient temperature of 288 K, resulting in a Reynolds number of about 6.3× 106. Mainly two cases,
the baseline at α = 0 deg and a higher α = 12 deg, are considered for investigating both the amplitude-
response function (ARF) and the frequency response function (FRF) of the global load coefficients. An
intermediate case at α = 6 deg is included for certain validations as well.

Table 2. Considered cases for the NACA 4412 for constant blowing of ū = 50 m s−1, Cµ = 0.117 %.

Case ᾱ [deg] û[m s−1] f [Hz]

Stead-state static derivatives

baseline, intermediate, higher ᾱ [0,3,6,9,10,11,12] 10-90a 0

Sine wave

baseline, FRF 0.0 1 0.1-300b

baseline, FRF and ARF 0.0 1/12.5/25/50 0.1-300b

derivative, higher ᾱ 12.0 1 0.1-300b

Half-wave rectified sine

baseline 0.0 1 75

derivative, higher ᾱ 12.0 1 75

derivative, ᾱ, ARF 0 1-50c 75

Pulse train

baseline 0.0 1 75

derivative, higher ᾱ 12.0 1 75

a incremental, 9 instances together
b incremental, 16 instances together
c incremental, 4 instances together

Table 2 summarizes the computed cases for the NACA 4412 airfoil based on a constant blowing jet velocity
of 50 m s−1. The reasons for the validation with a nonzero mean actuation jet velocity is related to the slot
modeling. A well developed flow in the slot is of great advantage for validations with a small jet excitation,
since a velocity of zero easily forms vortices in the slot that affects the numerical behavior of the boundary
condition. The flux-based boundary condition has the unpleasant property of swaying back and forth between
suction and blowing at very low speeds and can prevent the convergence of the steady-state simulation, which
make validation more difficult. Steady-state static derivatives for the lift coefficient are evaluated for seven
angles of attack and a mean actuation jet velocity between 10 and 90 m s−1. Fluidic actuation is performed
with a constant, sinusoidal and pulsed blowing (half-wave rectified sine and pulse train). Frequency response
and amplitude response functions are simulated for about three orders of magnitude in frequency and for
four different amplitudes in the excitation jet velocity for cases ᾱ = 0 and ᾱ = 12 deg. The same α cases
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have been chosen for reconstructing the impulse response of the lift coefficient for the half-wave rectified sine
and pulse train excitation jet velocities.

(a) NACA 4412 airfoil (b) Actuation slot at x/c = 0.5

Figure 3. Nearfield computational grid (a) and actuation slot (b) for the NACA 4412 case.

Figure 3(a) shows the near body resolution of the structured computational grid around the NACA 4412
airfoil. This grid around the NACA 4412 airfoil with a bluff trailing edge consists of 57 666 grid nodes and is a
typical C-type grid, where the farfield is set to a maximum dimension of 60×c. With a chord length of c = 1,
the slot in fig. 3(b) is located at x/c = 0.5 on the upper side of the airfoil and it is inclined downstream by 25
degrees. The slot width measures 0.004c and the length is 0.04c. Steady-state flow (RANS) simulations were
performed for different constant blowing and for various angles of attack. The applied solution technique is
a full approximation storage acceleration technique, which is a 4 level W-cycle geometrical multigrid, Ref.27

All RANS simulations are converged to machine accuracy, that is 14 orders of magnitude for the density
residual. This strict termination criterion ensures the initial condition for the LFD method (R ≈ 0).
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Figure 4. RANS-obtained (a) surface pressure and (b) skin friction coefficient distribution for the NACA 4412 case,

U∞ = 92.6 m s−1, Re∞ = 6.34× 106, α = 0/6/12 deg, ū = 50 m s−1.

Figure 4 shows the surface pressure and skin friction coefficient for three distinct angles of attack, α =
0/6/12 deg for a constant blowing jet velocity of 50 m s−1. The cp as well as the cf distribution in figs. 4(a)
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and 4(b) at the actuation slot location, x/c = 0.5, on the upper side of the airfoil exhibits a strong peak.
Resulting from this strong influence of the actuation boundary condition on the cp and cf distributions,
this boundary condition is neglected for the evaluation of forces and moments on the airfoil. Figure 4(b)
indicates the first separation on the upper side of the airfoil near the trailing edge at α = 6 deg. The flow
on the upper side is separated in the case α = 12 deg from the trailing edge upstream to about 75 % of the
cord length. Based on these results, the investigation of the ARF and FRF includes the attached flow case
at α = 0 deg and a detached flow case at α = 12 deg.

Table 3. Computational parameters employed in the LFD and
URANS simulation of the NACA 4412 cases.

Parameter Value

LFD

minimum residual abort criterion (absolute) 10−10

Krylov-GMRES iterations 50

ILU, 2nd order preconditioning weight 0.5

CFL number (fine) 40/-

URANS

minimum residual abort criterion 1× 10−7

physical time-steps per period 100

maximum pseudotime iterations 500

multigrid cycle (level-type) 4W-sym

Number of periods 10

CFL number (fine/coarse grid) 40/40

Table 3 summarizes the computational parameters of the URANS and LFD simulations. Convergence
for the LFD method was reached throughout by aborting at a minimum residual of 1× 10−10. URANS
simulations are strongly subject to user experience, with slightly modified parameters leading to varying
CPU-times. Particularly, the CPU-time reduction factor between URANS and LFD can become skewed.
An abort criterion of 1× 10−7 for the inner loop convergence for the dual-time stepping approach for the
URANS calculations was set to sufficiently converge the flow variables and the turbulent transport variable
for attached and detached flow conditions. URANS simulations need an extensive search for the correct
number of time steps per period and number of periods, since the transient phase requires considerable time
by applying fluidic actuation. As investigasted by Ciobaca et. al.,12 100 time steps per period have been
selected with a total of ten periods, which satisfies a trade-off to guarantee well converged air load coefficients
as well as efficient simulation times.

For constant blowing (ū > 0), the derivative of air loads can be calculated with respect to changes in
the mean jet velocity. These derivatives are commonly referred as steady-state static derivatives. Figure 5
shows steady-state static derivatives of the lift coefficient versus the mean jet velocity and versus angle of
attack variation. In the nonlinear case for RANS simulations, a finite differencing (FD) is applied with a
steps size of ε = ± 0.1 m s−1 to the mean jet velocity. The LFD resolves static derivatives by setting f = 0.
Both figs. 5(a) and 5(b) reveal a lift gain for positive CL derivatives, and a lift reduction for negative CL
derivatives. In fig. 5(a), the sign switch appears from being negative to positive for the lower α = 0/6 deg
cases around ū = 60 m s−1. Both CL derivatives for the lower α cases indicate a shallow change over mean
actuation velocity. For case α = 12 deg, the switch between negative and positive CL derivative is shifted
to a lower mean jet velocity of about 50 m s−1, and the distribution shows an increased sensitivity to the
actuation velocity whenever large areas of flow separation are present. Figure 5(b) depicts for the lower
ūjet = 30 m s−1 an increasing lift reduction and for the higher ūjet = 70 m s−1 an increasing lift gain with
increasing angle of attack. The middle case for ūjet = 50 m s−1 presents a different behavior in comparison to
the other two cases. A moderate, almost linear, lift reduction is encountered from the lowest α to about nine
degrees, where it reaches its maximum lift reduction. Above α = 9 deg, the lift reduction reduces rapidly
and reaches nearly zero at α = 12 deg.

The first investigation regarding dynamic derivatives is performed for the behavior of the first harmonic
of the lift coefficient for various sinusoidal actuation velocities (û) versus frequency. The first harmonic of
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Figure 5. Steady-state static derivatives of CL versus mean jet velocity (a), and versus angle of attack (b) for different
constant blowing jet velocities for the NACA 4412 case obtained with central finite differencing of RANS (FD RANS)
solutions and the LFD method.

the CL magnitude is presented in a frequency (FRF) and amplitude response function (ARF) obtained with
URANS simulations.

Figures 6(a) and 6(c) shows the URANS-obtained ARF and FRF of the first harmonic magnitude of CL
for sinusoidal excitation of the actuation jet velocity with a constant blowing of ū = 50 m s−1. Two angles of
attack (α = 0/12 deg) are considered for a frequency band between 1-300 Hz and magnitudes of actuation jet
velocities of û = 0.5/12.5/25/50 m s−1 for the subsonic flow past the NACA 4412 airfoil. The magnitude of
the fluctuating actuation jet velocity of û = 50 m s−1 with a constant blowing of ū = 50 m s−1 marks the case,
where the blowing jet velocity reaches zero during one period at t/T = 3T/4, see fig. 2(a). The ARFs for an
excitation frequency of 75 Hz in figs. 6(b) and 6(d) include the results of the LFD method. The attached flow
of the baseline case at α = 0 deg, (fig. 6(a)), reveals a decrease in dynamic response with increasing blowing
excitation magnitudes. Note that the low frequency asymptotes reach the steady-state static derivatives,
see fig. 5. The FRF distributions for each û over the frequency are almost equal in shape with a decreasing
offset between the excitation magnitudes at the upper end of the frequency band. The dynamic transfer
behavior of û to the magnitude of the first harmonic of lift encloses a minimum at about 30 Hz, which then
rises steeply until about 100 Hz continued with a moderate drop at the highest frequencies. Figure 6(d)
shows the LFD/URANS-obtained ARF of the lift magnitude versus excitation jet velocity for an excitation
frequency of 75 Hz. The LFD result is constant, which satisfies the assumption for being dynamically linear
over û. Its URANS counterpart becomes dynamically nonlinear above û ≈ 10 m s−1. Yet, the drop in the
magnitude of CL is moderate to about 20 % of the LFD result for the highest û.

Figure 6(c) presents the FRF for various excitation jet velocities for the detached NACA 4412 airfoil
case at α = 12 deg. Also for this case, the dynamic response decreases over the frequency with increasing
excitation jet velocity, except for the low frequency asymptotes (f < 3 Hz). For the attached case at
α = 0 deg, (fig. 6(a)), the low frequency asymptotes decrease with increasing excitation magnitude which
conforms to the overall distribution. This behavior is reverted for the detached case in fig. 6(c) for frequencies
below 3 Hz. The low frequency asymptotes increase with increasing excitation magnitude and points out
the nonlinear behavior with such excitation magnitudes for detached flow cases. The dependence on the
excitation jet velocity is more distinctive between the individual FRFs, but the shape of the distributions is
almost the same, and approach each other at higher frequencies. Similar to the attached flow case (fig. 6(a)),
the FRFs become less sensitive for the magnitude of the excitation jet velocities with frequencies above
100 Hz. The local minimum of the CL magnitude is shifted to about 40 Hz for all FRFs, followed by an
intense rise reaching the same local maximum as the attached flow case at about 100 Hz. Above 100 Hz,
the FRFs drop suddenly with an intermediate local maximum at about 160 Hz. Regardless of the excitation
jet velocity and for that particular flow conditions, both cases reach the maximum dynamic response at an
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Figure 6. Obtained URANS FRF ((a), (c)) for jet excitation magnitudes of û = 0.5/12.5/25/50 m s−1, and ARF for
f = 75 Hz ((b),(d)) for the first harmonic magnitude of CL with sinusoidal jet excitation for the NACA 4412 at α = 0 deg

(top) and α = 12 deg (bottom), U∞ = 92.6 m s−1, ū = 50 m s−1.

excitation frequency of 100 Hz. The high dependence on the excitation jet velocity is also illustrated for
the ARF in fig. 6(d) for f = 75 Hz. Dynamically nonlinear behavior is already present for an excitation jet
velocity of 5 to 6 m s−1, and drops to about half the magnitude of the LFD result for the highest û. Thus,
linear scaling of the magnitude of CL is possible for a certain range of û for attached flow conditions, but it
becomes almost impracticable for the detached flow conditions.

Figure 7 shows the polar plots for the first harmonic of CL for a constant blowing of 50 m s−1 with a
sinusoidal excitation magnitude of 0.5 m s−1 in comparison with URANS and LFD results. Figures 7(a)
and 7(b) present a remarkable consistency between both numerical methods over the investigated frequency
range. Important is the switch between phase lead and phase lag: For the case α = 0 deg (fig. 7(a)), a phase
lag appears for the lowest frequencies to about f = 40 Hz, then between f = 40 − 270 Hz there is a phase
lead, and above f = 270 Hz it shifts to a phase lag again. A phase lead of a transfer function for actuation
has the advantage, that the lift response is instantly with regard to its input excitation. Contrarily, a phase
lag decreases the transfer speed allowing for a damping of low and high frequencies. The magnified detail
in fig. 7(a) discovers a loop of the CL response between 145-195 Hz with a local minimum at 167 Hz. It
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Figure 7. Polar plot of FRF of LFD/URANS-obtained of the first harmonic of CL for the NACA 4412 with sine

excitation, U∞ = 92.6 m s−1, ū = 50 m s−1, û = 0.5 m s−1 for both α = 0/12 deg cases.

indicates the same CL response for frequencies of 145 and 195 Hz. Figure 7(a) contains further important
information for the reconstruction of time signals. Is the fundamental frequency in the range with the
smallest magnitude at about 30-40 Hz, the first three to four multiple harmonics (nf0, n = 1, 2, 3, . . .) are in
the frequency range with the largest magnitude. It can thus be assumed that the time response is strongly
influenced by higher harmonic components. Whenever the fundamental frequency is in the frequency range
with the largest magnitude at approximately 75 - 125 Hz, the higher multiple harmonics are much smaller
in magnitude, and the lift response will remain mainly first harmonic dominant.

The helical lift response for the detached flow case in fig. 7(b) starts at 0 Hz with a phase shift of 0
degrees with the first local minimum of the magnitude at about 40-50 Hz, and steadily increases to about
100 Hz. Thereafter, the response drops steadily with a zero crossing of the phase at about 110 Hz. A second
zero crossing of the phase is at 225 Hz. Also for that case, higher harmonics of frequencies above 110 Hz have
a small influence on the time response of the lift. In comparison with the attached flow case, the first local
minima and maxima are slightly shifted to higher frequencies.

These sinusoidal oscillations can now be used to reconstruct time signals of air loads. A number of
multiple harmonics are sequentially calculated with the LFD and then superposed (Eq. (18)) to form the
final time response. The first investigative step is the study of the impulse response of the lift coefficient
with respect to excitation frequency obtained from URANS simulations.
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Figure 8. Evolution of the time response of CL for one period versus excitation frequency for the NACA 4412 for
α = 0 deg, ū = 50 m s−1, û = 1 m s−1 applying a half-wave rectified sine actuation jet velocity including the RANS mean
value as reference.
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Figure 8 depicts the evolution of the time response for one period for the lift coefficient with increasing
excitation frequency for the NACA 4412 applying a blowing half-wave rectified sine actuation jet velocity
on top of a constant blowing of 50 m s−1. The mean value of CL obtained from the RANS simulation is
included in all figures. Blowing actuation with half-wave rectified sine jet velocities yields a decrease in lift,
since all actuation mean values of CL are below the RANS mean value. The first fig. 8(a) presents the lift
coefficients time response for the lowest frequencies, and for 0.1 Hz the actuation jet velocity signal shape
is mainly preserved for the lift response. Excitation frequencies between 1-10 Hz downsize the time signal
minimally, but blur the response at the discontinuity with increasing frequency. The mid-range excitation
frequencies around 20-40 Hz, fig. 8(b), generate an irregular behavior on the time response. It is mainly
flattened with the presence of higher harmonics. As explained before for fig. 7, the fundamental excitation
frequency has its smallest influence, since its first harmonic magnitude reaches a minimum. The second to
fourth harmonics are present, which coincides with the frequency range where the maximum magnitude of
the lift coefficient response appears. Another reason is the interference of the actuation jet with the main
flow. Exactly at these excitation frequencies the interaction with the main flow is activated and at its highest.
Figure 8(c) contains an indication that the excitation frequencies of 75 and 100 Hz for the half-wave rectified
sine actuation jet generate first harmonic dominant time responses with a low presence of higher harmonics.
The peaks of the CL time response appear at almost T/2, at the discontinuity of the actuation jet.
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Figure 9. CL time response recovery for both α = 0 (a) and α = 12 deg (a) cases for the NACA 4412 applying a blowing

half-wave rectified sine actuation jet velocity, f = 75 Hz, ū = 50 m s−1, û = 1 m s−1.

In fig. 9, the recovery of the time response of the lift coefficient is performed with the LFD in comparison
with URANS for an excitation f = 75 Hz and a half-wave rectified actuation jet velocity with a magnitude
of û = 1 m s−1 for α = 0/12 deg. Two LFD results are included in both figs. 9(a) and 9(b), the recovery
with the zero frequency component and two harmonics (n=2) as well as with ten harmonics (n=10). A good
accuracy is achieved for the response representation with the LFD method by including a minimum of two
harmonics in comparison with URANS. Deviations appear at the discontinuities of the actuation jet signal
at t/T = 0 and at the signals peak t/T = 0.5 for n = 2, and almost entirely vanish by increasing the number
of harmonics to n = 10 for the LFD method. A certain mean CL offset between URANS and LFD method
is visible in both figs. 9(a) and 9(b), which increases from the baseline α = 0 deg to α = 12 deg. Fluidic
actuation is applied with blowing only, and thus, the kinetic energy increases constantly over one period,
Ekin(t) = 1/2|(ū+ ũ(t))|2, and that changes the mean flow variables. This change of the mean flow variables
is not captured by the RANS solution, the underlying steady-state solution for the LFD.

The evolution of the time response of CL for various excitation frequencies over one period is shown in
fig. 10 for the NACA 4412 applying a blowing pulse train actuation jet velocity on top of a constant blowing
of 50 m s−1. All figs. 10(a) to 10(c) include the RANS mean value as a reference. This blowing actuation with
pulse train jet velocities yields a higher decrease in lift compared with a half-wave rectified sine jet velocity
noticeable in the mean value shift. It is directly related to the zero frequency component, which is û/2 for the
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Figure 10. Evolution of the time response of CL for one period versus excitation frequency for the NACA 4412 for
α = 0 deg, ū = 50 m s−1, û = 1 m s−1 applying a pulse train actuation jet velocity including the RANS mean value as
reference.

pulse train and û/π for the half-wave rectified sine actuation. The lift coefficient response for the smallest
excitation frequency of 0.1 Hz in fig. 10(a) corresponds to the actuation jet velocity shape. With increasing
excitation frequency, f = 3 − 10 Hz, the magnitude of the CL response slightly decreases and gets blurred
at the discontinuity. For f = 10 Hz, two distinctive overshoots appear near the discontinuities at t = 0 and
t = T/2. Figure 10(b) shows again a flattening of the CL response for the mid-range excitation frequencies.
The ringing at each half period has intensified and expands to an increasing degree for almost half a period
(f = 40 Hz). Higher excitation frequencies in fig. 10(c) reveal an amplification of the CL response. The
shape of the time response is in the first half of the period likewise a bell curve, continued with an observable
overshoot at t = T/2, and an almost linear decrease similar to a sawtooth. At the highest frequency of
f = 100 Hz, the CL response has a increased tendency to oscillations shortly past t = T/2 caused by the
presence of high frequencies.
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Figure 11. CL time response recovery for both α = 0 (a) and α = 12 deg (b) cases for the NACA 4412 applying a blowing

pulse train actuation jet velocity, f = 75 Hz, ū = 50 m s−1, û = 1 m s−1.

Figure 11 displays the recovery of the time response of the lift coefficient with the LFD method in
comparison with URANS for a blowing pulse train excitation with a magnitude of ū = 50 m s−1 and û =
1 m s−1 for f = 75 Hz and for two angles of attack α = 0/12 deg. Both figs. 11(a) to 11(b) include the LFD
results with the zero frequency component with seven and seventeen harmonics. The LFD results with seven
harmonics show small overshoots for both α cases. The general shape of the CL response is well approximated
with seven harmonics. The reconstruction of the time signal with seventeen harmonics is almost spot on to
the URANS results, except for the mean value offset. For the α = 0 deg case (fig. 11(a)) the mean offset
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has nearly vanished, but for the α = 12 deg case, the mean offset is clearly visible. Particularly noticeably is
the ringing at the discontinuities (Gibbs phenomenon), around t/T = 0 and T/2, which naturally decreases
with the resolution of more harmonics in the time signal.
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Figure 12. LFD/URANS-obtained time response of CL for two different jet velocity magnitudes (û = 50/100 m s−1)
for the (a) half-wave rectified sine and (b) pulse train for the NACA 4412 with an excitation frequency of 75 Hz,

U∞ = 92.6 m s−1, ū = 0 m s−1, ᾱ = 0 deg.

Figure 12 shows the magnitude dependency on the time history for one period of CL for an excitation
frequency of 75 Hz based on ū = 0 m s−1 for the NACA 4412 airfoil at α = 0 deg obtained with LFD and
URANS simulations. Two different magnitudes of realistic actuation jet velocities, û = 50/100 m s−1, are
chosen for the half-wave rectified sine (fig. 12(a)) and pulse train (fig. 12(b)) actuation jet velocity. Both
figures include the mean value of CL derived from the RANS computation as a reference. Each result of the
rectified sine half-wave actuation in fig. 12(a) are similar to a certain degree for that excitation frequency,
see also fig. 9(a). The linear scaling in magnitude of the time response for the smaller actuation magnitude
is well resolved, but for very high actuation jet magnitudes, it will introduce accuracy losses (see also ARF
in fig. 6(b)). The peaks of the LFD results at t/T = 0.5, which are the maximum values, are exactly on
the RANS mean value, and that relation is given by applying Eq. (18). There are no overshoots in both
time responses that indicate the Gibbs phenomenon at the time instances near t/T = 0 and t/T = 0.5.
Both time responses are smooth. URANS results show an offset of the RANS mean value, since both peaks
have different maximum values at t/T = 0.5, and this offset is related to a lift gain or reduction which
is introduced by the energy impulse of the actuation jet. The change of the mean value over excitation
magnitude and excitation frequency cannot be modeled with the LFD approach. Figure 12(b) includes the
CL responses for the same magnitudes of a pulse train excitation. Again, the shape of the response can be
well captured even with the characteristic peak near t/T = T/2 for that excitation frequency. An accuracy
loss is eminent for a linear scaling of the response for excitation magnitudes above 50 m s−1. Contrarily to
the half-wave rectified sine actuation, the pulse train actuation indicates the Gibbs phenomenon near the
time instances of t/T = 0 and t/T = 0.5. The URANS results show the expected overshoots past the time
instances of the discontinuity, while these overshoots occur for the LFD results before and past those time
instances from the fifth harmonic onward.

IV.B. DLR-F15 high-lift wing section

The DLR-F15 wind tunnel model is a two-dimensional wall-to-wall high lift model investigated by Wild.49

The setup considered for flow control is a two-element configuration that features a clean leading edge and
a single-slotted flap.

Table 4 lists the subsonic flow conditions and geometrical properties of the DLR-F15 wing section in
wind tunnel conditions. The subsonic viscous flow past the DLR-F15 is set to a free-stream Mach number
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Table 4. Flow conditions for the DLR-F15 high-lift wing section.

ᾱ [deg] M∞ T∞ [K] p∞ [Pa] Re∞ [-] lref = c [-] cF

3 0.15 293 101 325 2× 106 0.6 28 %c

of 0.15 and a Reynolds number of 2× 106 million with an angle of attack of three degrees. It has a main
chord length of 0.6 m with a flap chord length of 28 % of the main chord length.

(a) DLR F15 high-lift wing section (b) Actuation slot at x/cF = 0.2

Figure 13. Nearfield computational grid (a) and actuation slot (b) for the DLR F15 wing section.

Figure 13(a) shows the near body resolution of the computation grid for the DLR-F15 wing section which
consist of about 377 000 grid nodes. The flap has a large deflection angle of 40 degrees. An additional refined
block is placed around the flap to resolve the flow effects of fluidic actuation downstream of the flap. The
single-slotted fluidic actuator in fig. 13(b) is inclined downstream by 45 degrees and located at x/cF = 0.2 of
the flap chord length with a constant width of 0.05 % of the main chord length. Actuation was performed to
suppress the flow separation on the trailing-edge flap with a blowing pulse train actuation of Cµ = 0.225 %
(ū = 0 m s−1, û = 157 m s−1) and an excitation period of 0.01 s (f = 100 Hz) with a duty cycle of 0.5.
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Figure 14. Convergence and time history of lift coefficient with constant blowing at ū = 0 m s−1, ū = 78.5 m s−1 and
ū = 157 m s−1 for the DLR F15 case.
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The initial experimental setup was designed so there was a flow separation at the trailing-edge of the flap.
However, an approach using the existing LFD method is only possible with an initial steady-state RANS
simulation. There are several ways to get a steady-state solution. Using another, more dissipative, numerical
method or the use of a more dissipative turbulence model is currently not possible because of the missing
linearization of such a scheme. Another approach is to increase the blowing jet velocity until a steady state
is established. Figure 14 shows the convergence and time history with three differently constant blowing
jet magnitudes of ū = 0 m s−1, 78.5 m s−1 and 157 m s−1 to obtain an initial steady-state RANS solution for
the DLR-F15. The former two URANS simulations were performed with a time step size of 0.000 33 s for
a total of 0.33 s resulting in 10 000 physical time steps. A steady-state simulation was achieved with the
maximum blowing actuation jet magnitude, which serves as the basis for the following computation of the
frequency response function with the LFD method. This test case is not subject to an in depth investigation
of physical properties with the LFD, but it serves as the basis for measuring the computational efficiency.
For more analysis on the physical behavior, the reader is advised to review Ciobaca et al.11
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Figure 15. Polar plot of LFD-obtained FRF for constant blowing of ū = 157 m s−1 with a sinusoidal actuation jet
perturbation of û = 0.5 m s−1 for the DLR-F15 at α = 0 deg and α = 3 deg, URANS-obtained values are in blue for
f = 100 Hz.

Figure 15 depicts the LFD-obtained FRF in a polar plot for the baseline DLR-F15 at α = 3 deg and for
a lower α = 0 deg for sinusoidal actuation jet excitation. The simulation of the FRF comprises a total of
134 frequencies in the range of f = 0− 2500 Hz. Two additional computations are performed with URANS,
marked as blue diamonds, which serve as a reference for the accuracy of the LFD results. Both helical
FRFs are almost inherent of the angle of attack, starting with the maximum magnitude at f = 0 Hz, with
a continuous decreasing in magnitude until reaching the maximum frequency. Regarding pulsed actuation,
where such sinusoidal excitations of the actuation jet velocities are superposed to form the final time signal,
higher harmonics above 300 Hz have in this case only a negligible influence on the time signal.

IV.C. Computational Efficiency

The key-benefit of a LFD solver is the commonly established efficiency gain in comparison to non-linear
URANS simulations. During the validation process the required CPU-time was assessed to substantiate the
realizable CPU-time reduction of LFD-TAU and its URANS counterpart.

Table 5 lists the CPU-times for selected URANS and LFD simulations as well as the derived CPU-time
reduction factor. The URANS as well as the LFD method need an initial RANS solution, which is dropped
in the time reduction factors. Both methods used the same well-converged RANS solution necessary for the
LFD method, although the requirements for an initial RANS solution may differ for the URANS method.
URANS simulations were performed with ten periods, which guarantee a sufficient transient phase. In
addition, the number of utilized processors are given. The CPU times of the LFD and URANS simulations
are scaled with the number of processors, assuming linear speed-up of parallelization. LFD simulations were
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Table 5. Quantitative comparison on the computational effort involved with the URANS
(10 periods) and LFD (ILU, GMRES, sg) simulation for the NACA 4412 case (CB =

50 m s−1, α = 0 deg) and high-lift configuration, as well as the derived CPU-time reduction
factor (ζCPU := CPU-time URANS/CPU-time LFD).

simulation CPU-time (min), URANS: 10 periods

Case URANS LFD CPU’s ζCPU

NACA4412 - sine excitation

α = 0 deg, f= 75 Hza 20317 3.3 24/1 10731

α = 0 deg, FRFb 408117 49.6 24/1 8221

NACA4412, f= 75 Hz - half-wave rectified sine excitation

α = 0 deg, n= 2 20317 7.9 24/1 2571

α = 0 deg, n= 10 20317 20.9 24/1 972

α = 12 deg, n= 2 20317 9.1 24/1 2230

α = 12 deg, n= 10 20317 22.8 24/1 891

NACA4412, f= 75 Hz - pulse train excitation

α = 0 deg, n= 7 20317 16.1 24/1 1262

α = 0 deg, n= 17 20317 31.4 24/1 647

α = 12 deg, n= 7 20317 18.0 24/1 1129

α = 12 deg, n= 17 20317 33.3 24/1 610

DLR-F15, f= 100 Hz - pulse train excitation

α = 3 deg, n= 7 72061 422 24/3 171

α = 3 deg, n= 17 72061 669 24/3 108

a fundamental frequency, n = 1
b 16 frequencies

performed entirely by using the Krylov-GMRES technique in combination with an Incomplete Lower-Upper
(ILU) preconditioner utilizing a first and second order weighting of the flux Jacobian. The residual abort
criterion was set to 10× 10−10 for all LFD simulations. All cases were performed on an Intel Xeon CPU
X5650 with 2.67 GHz and 12 MB cache size.

A single sinusoidal perturbation achieves a speed-up of about four order of magnitude for the NACA 4412
airfoil with a single slot. Almost four orders of magnitude in speed-up are gained for the complete simulation
of a FRF (f = 0 − 300 Hz) with sixteen instances for sinusoidal excitation including the zero frequency
component. This minor reduction is caused by the different computation times of the LFD method, since
lower frequencies need more simulation time as higher frequencies. In contrast, URANS simulations have
marginal differences in computational time; only the achieved minimum residual differs. Resolving more
than one frequency for a single time response, for example for a half-wave rectified sine actuation, yields a
speed-up of more than three orders of magnitude with two frequencies and about three orders of magnitude
with ten frequencies. The LFDs robust solution technique pays off regarding simulation times, which are
nearly inherent for the attached flow conditions (α = 0 deg) and the detached flow (α = 12 deg) case. Thus,
the speed-up of the LFD method is mainly driven by the number of computed frequencies in comparison
with a single URANS simulation. For resolving a pulse train actuation with seventeen frequencies with the
LFD method still gains a speed-up of about two and a half orders of magnitude in comparison with its
counterpart.

The speed-up changes noticeably for the DLR-F15 wing-section case with the LFD method as a parallel
application. Implicit solution techniques, like the Krylov-GMRES with the ILU-preconditioner, do not
scale well for massive parallel applications. However, a speed-up of about 200 is gained for simulating
seven harmonics including the zero frequency component, and about two orders of magnitude for seventeen
harmonics, respectively.
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V. Conclusions

The presented frequency domain method (LFD) is capable of computing dynamic response data for
global air loads for active flow control applications accurately and efficiently for small perturbations in the
jet velocity. Also steady-state static derivatives modeled as a small perturbation for the constant blowing
magnitude is resolved with a satisfying accuracy. These static derivatives are of great importance, since
they appear as zero frequency components in the time response by applying pulsed actuation jets. Constant
blowing over a longer time has many applications, and extends to flight control to support ailerons or non-
movable speed brakes. Static derivatives are of enormous importance for optimizing the ultimate blowing
rate for increased efficiency.

Pulsed actuation introduce discontinuous jet velocity distributions such as half-wave rectified sine or pulse
train jet velocities, and the number of harmonics retained in the time response may easily exceed twenty or
more to represent a detailed time signal of the air loads. It has been shown, that the time response for a half-
wave rectified sine actuation can be well resolved with about ten harmonics, and the pulse train with about
seventeen harmonics plus the zero frequency component. Small periodic pulsed fluidic actuation, which
behaves dynamically linear, can be computed accurately with the linear collocation of several harmonics
to represent the air loads behavior in the time domain. A good estimation of time responses for pulsed
excitations for fundamental frequencies above 70 Hz can be recovered qualitatively well with only two or
three harmonics. Concerning an attached and detached flow: An initially attached flow offers significantly
fewer restrictions for the actuation jet velocity magnitude than a detached flow. In principle, a detached
flow immediately results in a non-linear behavior regarding increasing the jet magnitude.

The LFD method computes periodic perturbations based on the underlying steady-state flow solution
and therefore cannot calculate a time change of the mean state variables. For example, pulsed blowing
increases the kinetic energy over time in the domain, and thus, changes the flow variables in time. Yet, the
small perturbation approach of the LFD for determining dynamic response data can be integrated well in
an uncertainty investigation and optimization. Uncertainty quantification often deals with a high amount
of data acquisition, and the speed-up of about two orders of magnitude of the LFD compared to URANS is
still favorable when calculating a high number of perturbation frequencies.
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31Langer, S., Schwöppe, A., and Kroll, N., “Investigation and Comparison of Implicit Smoothers Applied in Agglomeration
Multigrid,” AIAA Journal , Vol. 53, No. 8, 2015, pp. 2080–2096. doi: 10.2514/1.J053367.

32Thomas, P. D. and Lombard, C. K., “Geometric Conservation Law and its Applications to Flow Computations on Moving
Grids,” AIAA Journal , Vol. 17, No. 10, 1979, pp. 1030–1037. doi: 10.2514/3.61273.

33Rumsey, C. L., Gatski, T. B., Sellers III, W. L., Vatsa, V. N., and Viken, S. A., “Summary of the 2004 CFD Validation
Workshop on Synthetic Jets and Turbulent Separation Control,” AIAA Journal , Vol. 44, No. 2, 2004, pp. 194–207. doi:
10.2514/1.12957.

34Knopp, T., “The actuation boundary condition for flow control in the DLR-TAU code,” Tech. Rep. DLR-IB 224-2010 A
44, DLR-AS, 2010.

35Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational
Physics, Vol. 43, 1981, pp. 357–372. doi: 10.1016/0021-9991(81)90128-5.

36Turkel, E., “Improving the Accuracy of Central Difference Schemes,” Tech. Rep. 88-53, ICASE, 1988.
37Langer, S., “Investigation and application of point implicit Runge-Kutta methods to inviscid flow problemspplication

of Point Implicit Runge-Kutta Methods to Inviscid Flow Problems,” International Journal for Numerical Methods in Fluids,
Vol. 69, No. 2, 2011, pp. 332–352. doi: 10.1002/fld.2561.

38Hussein, H. J., Capp, S. P., and George, W. K., “Velocity measurements in a high-Reynolds-number, momentum-
conserving, axisymmetric, turbulent jet,” J. Fluid Mech., Vol. 258, 1994, pp. 31 – 75. doi: 10.1017/S002211209400323X.

39Dwight, R. and Brezillon, J., “Effect of Approximations of the Discrete Adjoint on Gradient-Based Optimization.” AIAA
Journal , Vol. 44, No. 12, Dec 2006, pp. 3022–3031. doi: 10.2514/1.21744.

40Cooley, J. W. and Tukey, J. W., “An Algorithm for the Machine Calculation of Complex Fourier Series,” Mathematics
of Computation, Vol. 19, No. 90, 1965, pp. 297–301. doi: 10.2307/2003354.

41Saad, Y. and Schultz, M. H., “GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear
Systems,” SIAM Journal of Scientific and Statistical Computing, Vol. 7, No. 3, 1986, pp. 856–859. doi: 10.1137/0907058.

42Saad, Y., Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, 2nd ed., 2003.
43McCracken, A. J., Ronch, A. D., Timme, S., and Badcock, K. J., “Solution of linear systems in Fourier-based methods

for aircraft applications,” International Journal of Computational Fluid Dynamics, Vol. 27, No. 2, Jan. 2013, pp. 79–87. doi:
10.1080/10618562.2012.750719.

22 of 23

American Institute of Aeronautics and Astronautics



44Thormann, R. and Widhalm, M., “Forced Motion Simulations using a Linear Frequency Domain Solver for a Generic
Transport Aircraft,” 16th International Forum of Aeroelasticity and Structural Dynamics, IFASD 2013-017A, Bristol, UK,
2013.

45Xu, S., Timme, S., and Badcock, K. J., “Enabling off-design linearised aerodynamics analysis using Krylov subspace
recycling technique,” Computers & Fluids, Vol. 140, 2016, pp. 385–396. doi: 10.1016/j.compfluid.2016.10.018.
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