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SUMMARY

Trypanosoma brucei evades mammalian immunity

by using recombination to switch its surface-ex-

pressed variant surface glycoprotein (VSG), while

ensuring that only one of many subtelomeric multi-

gene VSG expression sites are transcribed at a

time. DNA repair activities have been implicated in

the catalysis of VSG switching by recombination,

not transcriptional control. How VSG switching is

signaled to guide the appropriate reaction or to inte-

grate switching into parasite growth is unknown.

Here, we show that the loss of ATR, a DNA dam-

age-signaling protein kinase, is lethal, causing

nuclear genome instability and increased VSG

switching through VSG-localized damage. Further-

more, ATR loss leads to the increased transcription

of silent VSG expression sites and expression of

mixed VSGs on the cell surface, effects that are asso-

ciated with the altered localization of RNA polymer-

ase I and VEX1. This work shows that ATR acts in

antigenic variation both through DNA damage

signaling and surface antigen expression control.

INTRODUCTION

Multiple reactions have evolved to tackle the wide range of

stresses faced by cells, including lesions afflicting the genome.

A key, early step in genome repair is recognition and signaling

of DNA lesions, in which phosphatidylinositol 3-kinase-related

kinases (PIKKs) play a central role. Three DNA damage-sensing

PIKKs have been described: the DNA-dependent protein kinase

catalytic subunit (DNA-PKcs), ataxia-telangiectasia mutated

(ATM), and ataxia telangiectasia and Rad3-related (ATR)

kinases. Each PIKK is recruited to damaged DNA by distinct

binding partners, providing recruitment to specific lesions and

activation of specific repair pathways (Lovejoy and Cortez,

2009). DNA-PKcs and ATM are both recruited to DNA double-

strand breaks (DSBs), but while the former is targeted to the

lesion by the Ku heterodimer and directs non-homologous

end-joining repair, the latter is recruited by the Mre11-Rad50-

Xrs2 complex and directs homologous recombination (HR).

ATR is recruited to single-stranded DNA coated by replication

protein A (RPA) through its interaction with ATRIP (ATR interact-

ing protein) (Wang et al., 2017) and, in mammals, ETAA1 (Zou,

2017). Activation of ATR-ATRIP requires further recruitment of

TopBP1 and the Rad9-Hus1-Rad1 complex. Single-stranded

DNA forms in many settings, meaning that ATR has been impli-

cated in the repair of DSBs and intra-strand crosslinks (Sirbu

and Cortez, 2013) and in telomere homeostasis (Maciejowski

and de Lange, 2017). However, damage signaling by ATR is

the most intimately linked with replication stress, in which it

stabilizes replication forks that encounter impediments to their

passage, such as damage, DNA secondary structures, the tran-

scription machinery, and RNA-DNA hybrids (Zeman and Cim-

prich, 2014; Saldivar et al., 2017). The role of ATR in the replica-

tion stress response is to limit replication fork collapse, allowing

the stalled replisome to resume DNA synthesis, and involves the

regulation of cell-cycle progression, coordinating the usage of

sites of DNA replication initiation (called origins), and the modu-

lation of replisome activity.

Trypanosoma brucei is one of several causative agents of

African trypanosomiasis, afflicting both humans and livestock

(Morrison et al., 2016). All salivarian trypanosomes are extracel-

lular parasites and avoid elimination by the mammalian adaptive

immune response via stochastic changes in their variant surface

glycoprotein (VSG) coat. Such surface antigen switching (anti-

genic variation) is widespread among pathogens, but it has

evolved remarkable mechanistic complexity in T. brucei. In any

given cell, only a single VSG is normally actively transcribed,

generating a homogeneous VSG coat (Manna et al., 2014).

VSG transcription occurs in telomeric bloodstream VSG expres-

sion sites (BESs), of which �15 are present (Berriman et al.,

2002; Hertz-Fowler et al., 2008). The single active BES is

transcribed by RNA polymerase I (Pol I) and localizes to an

extranucleolar body (the expression site body [ESB]) in the

T. brucei nucleus (López-Farfán et al., 2014; Navarro and Gull,

2001). Perturbation of a number of processes undermines BES

monoallelic expression, including telomere (Jehi et al., 2014a,

2016; Yang et al., 2009) and nuclear envelope integrity (DuBois
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et al., 2012; Maishman et al., 2016), chromatin status (Hughes

et al., 2007; Povelones et al., 2012; Denninger et al., 2010; Nar-

ayanan and Rudenko, 2013; Alsford and Horn, 2012; Aresta-

Branco et al., 2016), chromatid cohesion (Landeira et al.,

2009), and inositol phosphate signaling (Cestari and Stuart,

2015). In addition, potentially kinetoplastid-specific monoallelic

control factors are present, such as VEX1 (Glover et al., 2016),

which acts with more widely conserved chromatin-associated

factors (Faria et al., 2019). Trypanosomes can undergo an appar-

ently coordinated process (Chaves et al., 1999), in which the sin-

gle actively transcribed BES is changed, but how this reaction is

executed (Figueiredo et al., 2008), initiated (Batram et al., 2014),

and signaled (see below) has been less studied.

A further route for VSG switching is the recombination of a silent

VSG into the BES (McCulloch et al., 2015), using a genomic

archive numbering >2,000 VSGs and pseudogenes (Berriman

et al., 2005; Cross et al., 2014; M€uller et al., 2018). Extensive evi-

dence indicates that HR, catalyzed by RAD51 (McCulloch and

Barry, 1999) and mediated by further factors (Hartley and McCul-

loch, 2008; Trenaman et al., 2013; Dobson et al., 2011; Proudfoot

and McCulloch, 2005; Devlin et al., 2016; Kim and Cross, 2010,

2011), directs the switching of functionally intact VSGs. It is less

clear how VSGpseudogenes are recombined, but the combinato-

rial assortment of these sequences generates huge levels of ex-

pressed VSG diversity in chronic infections (Marcello and Barry,

2007; Hall et al., 2013; Mugnier et al., 2015; McCulloch and Field,

2015; Jayaraman et al., 2019). As for transcriptional switching, the

trigger for VSG recombination is still being sought, with BESDSBs

(Boothroyd et al., 2009;Glover et al., 2013a), BES replication (Dev-

lin et al., 2016, 2017; Benmerzouga et al., 2013), telomere short-

ening (Hovel-Miner et al., 2012), and RNA-DNA hybrids (Briggs

et al., 2018; Nanavaty et al., 2017) having been suggested.

Understanding how VSG switching is signaled will bring us

closer to revealing the nature of the reaction trigger(s), including

the DNA lesion(s) that may direct VSG recombination, and may

address whether switching is linked to genome replication and

how the reaction integrates into the cell cycle. To date, no

work has inquired into whether any PIKK contributes to antigenic

variation. Here, we show that the loss of T. brucei ATR (TbATR) in

mammal-infective cells results in rapid growth impairment,

heightened sensitivity to a range of DNA-damaging agents,

and accumulation of three nuclear markers of DNA damage,

which is consistent with an essential role in genome mainte-

nance. In addition, the loss of TbATR leads to the increased

expression of silent VSGs from across the archive and under-

mines BES expression control. These effects are concomitant

with the accumulation of gH2A in the active BES, silent BESs,

and subtelomeres, as well as with the altered localization of

VEX1 and Pol I. Thus, we reveal a mechanistic link between

DNA damage signaling, VSG switching, and monoallelic control

of VSG expression during T. brucei immune evasion.

RESULTS

TbATR Is Essential for T. brucei Proliferation and for

Survival following DNA Damage

A putative homolog of the ATR kinase, TbATR, has previously

been identified in T. brucei (Parsons et al., 2005), and preliminary

RNAi analysis revealed the impaired proliferation of bloodstream

form (BSF) T. brucei cells (Jones et al., 2014). However, several

proteins involved in the mediation of TbATR activity have yet to

be identified in T. brucei, including ATRIP and the downstream

target CHK1 (checkpoint kinase 1) (Goto et al., 2015). A homolog

of TopBP1 has been predicted (Genois et al., 2014) but not vali-

dated. The 9-1-1 complex plays important, novel roles in Leish-

mania genome maintenance (Damasceno et al., 2013, 2016,

2018; Nunes et al., 2011), but interaction with TbATR directly

or indirectly has not been assessed, and no work has examined

9-1-1 function in T. brucei. Thus, how (and if) TbATR acts in dam-

age signaling, including conservation of its associated machin-

ery, is unknown.

To examine the effect of TbATR loss, in vitro proliferation of

BSF cells after tetracycline (Tet)-induced RNAi was examined

in two clones, one expressing the kinase from its own locus

translationally fused to 12 copies of the myc epitope at the C ter-

minus (TbATR12myc). In both clones, growth ceased from 24 h

(Figure 1A). qRT-PCR of both clones (Figure S1A) and western

analysis of the TbATR12myc-expressing clone (Figure 1A) showed

that growth impairment was accompanied by reduced levels of

TbATR RNA and the loss of detectable myc-tagged protein

from 24 h after RNAi induction. The loss of TbATR compromised

cell-cycle progression as revealed by the evaluation of DNA con-

tent through DAPI staining (Figures 1B, S1B, and S1C) and flow

cytometry (Figure 1B, quantification in Figure S1D). Accumula-

tion of cells in S/G2 phase was observed from as early as 24 h

post-RNAi induction. In addition, cells harboring aberrant nu-

clear and kinetoplast DNA configurations were observed in the

population from 36 h (�30%–40% at 48 h post-induction), and

up to 10% of the population at 48 h lacked detectable nuclear

DNA (‘‘zoids’’). To ask whether TbATR plays a role in the DNA

damage response, we examined whether its loss sensitizes

BSF cells to genotoxic stress by evaluating parasite survival dur-

ing growth (Figure 1D) in the presence of methyl methanesulfo-

nate (MMS, an alkylator) or hydroxyurea (HU, a ribonucleotide

reductase inhibitor), or after exposure to ionizing radiation or

UV (a nucleic acid cross-linker). Relative to uninduced controls,

cell survival after the loss of TbATR was markedly reduced

following exposure to UV and growth in HU. In addition, survival

was impaired at late stages of growth in the presence of MMS,

which is consistent with a previous study (Stortz et al., 2017).

Survival after exposure to ionizing radiation improved after the

loss of TbATR. These data indicate that the loss of TbATR com-

promises BSF proliferation and sensitizes cells to a number of

genotoxic agents, suggesting that PIKK contributes to the

response of T. brucei to a variety of induced DNA lesions.

Loss of TbATR Leads to Increased Nuclear DNADamage

To ask whether the above phenotypes reflect nuclear roles for

TbATR, we tested whether RNAi causes discernible genome

damage. The phosphorylation of histone H2A on Thr130 has

been described in T. brucei (Glover and Horn, 2012; Devlin

et al., 2016) and in Leishmaniamajor (Damasceno et al., 2016) af-

ter exposure to different genotoxic stresses or repair gene muta-

tion, and thus represents a kinetoplastid variant of the gH2A(X)

damage-response nuclear chromatin modification (Biterge and

Schneider, 2014). In uninduced TbATR RNAi cells, anti-gH2A
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antiserum recognized some protein in western blots, and these

levels increased from 24 h after TbATR RNAi (Figure 1E). Immu-

nofluorescence (IF) with anti-gH2A antiserum showed that the

changes in protein level seen in western blots after TbATR loss

were reflected in both increased numbers of cells with gH2A nu-

clear signal and increased nuclear signal intensity (data not

shown). To probe the nuclear damage further, we examined

the localization of RPA and RAD51. RPA is a heterotrimer that

binds single-stranded DNA and is phosphorylated by ATR during

replication stress in other eukaryotes (Vassin et al., 2009). RPA

subunit 2 (RPA2) was endogenously myc tagged at its C termi-

nus (Glover et al., 2019) in the TbATR RNAi CL1 cell line and its

location determined by indirect IF. In the absence of damage,

RPA2-myc mainly localized diffusely throughout the nucleus

(Figure 1F, top panel; Figure S1E, top panel), although a small

proportion of cells (<10%) harbored a more intense focus or

foci (Glover et al., 2019). After growth in the presence of HU or

MMS, more cells could be detected with RPA2-myc foci

MMS UV

HU IR

CL1

CL1

24hr 36hr 48hr 24hr 36hr 48hr

CL1 CL2

Tet-

Tet+

Propidium Iodide (FL2-A)

C
el

l C
ou
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s

CL1

A B C

D

E

F

Figure 1. Loss of TbATR Halts T. brucei Growth and Increases Nuclear Genome Damage

(A) Growth of two clones (CL1, black; CL2, green) after TbATR RNAi induction (+, dashed lines) or when RNAi was not induced (�, solid lines). ± SEM is shown;

*p < 0.05, Mann-Whitney U test. Abundance of TbATR12myc in CL2 is shown (insert) after 24 or 48 h of growth with and without RNAi (+ and�, respectively); EF1a

acts as a loading control.

(B and C) Cell-cycle progression after RNAi monitored by DAPI staining (B) and flow cytometry (C). For DAPI, the number of cells ± SEM in each stage is displayed

as a percentage of the total population; >200 cells counted per experiment. For flow cytometry, graphs depict the mode number of cells.

(D) Survival of RNAi-induced (+) cells is shown as a proportion (± SEM) of uninduced cells over time in the absence (solid line) or presence (dashed line) of DNA

damage (DMG) caused by methylmethanosulfonate (MMS; 0.0003%), UV radiation (UV; 1,500 J/m2), hydroxyurea (HU; 0.06 mM), and ionizing radiation (IR; 150

Gy); data are shown for CL1 (black lines) and CL2 (green lines).

(E) Expression of gH2A (green) after 24, 36, or 48 h of growth with (+) and without (�) RNAi; EF1a (red) serves as a loading control, and levels are compared with

48 h of growth of uninduced cells in the presence (+) of 0.06 mMHU. The graph shows fold-change (± SEM) in the levels of gH2A in clones CL1 and CL2 after 24,

36, or 48 h of growth with RNAi relative to uninduced cells (set at 1) after normalization using the EF1a signal.

(F) Quantification of the percentage (± SEM) of cells in the population that harbor RPA2-myc foci after 24, 36, or 48 h of growth with (+) and without (�) RNAi; >200

cells counted per experiment. Representative images of Tet� and Tet+ cells harboring RPA2-myc foci (magenta) are shown alongside an intensity plot of signal

localization; DNA was DAPI stained (cyan).
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(Figure S1E). The same effect was seen after the loss of TbATR

(Figures 1F and S1F); from 24 h post-RNAi, there was a

pronounced increase in the number of cells with RPA2-myc

foci, reaching �40% of the population at 48 h. RAD51 has previ-

ously been shown to relocalize into discrete foci in the T. brucei

nucleus upon the induction of a DNA DSB or after treatment with

DNA-damaging agents (Proudfoot and McCulloch, 2005;

Dobson et al., 2011; Hartley and McCulloch, 2008; Trenaman

et al., 2013; Devlin et al., 2016; Glover et al., 2008). Consistent

with these studies, �1% of uninduced RNAi cells harbored

detectable nuclear foci, with the majority of anti-RAD51 signal

in IF seen diffusely across the nucleus and cytoplasm

(Figure S1G). However, 36 and 48 h post-RNAi, the number of

cells with detectable RAD51 subnuclear foci increased (to

�7% of the population; Figure S1G). The increased levels of

gH2A and the focal accumulation of RPA and RAD51 indicate

that nuclear DNA damage arises following the loss of TbATR.

The increased levels of gH2A and RPA foci appeared to precede

the accumulation of RAD51 foci, perhaps indicating that the

latter structures form following the generation of single-stranded

DNA and the deposition of variant histone on the damage caused

by TbATR loss.

Altered VSG Transcription Emerges Rapidly after TbATR

RNAi

To ask whether TbATR loss results in altered gene expression,

total RNAwas prepared, in triplicate, after 24 h of RNAi induction

and subjected to RNA sequencing (RNA-seq), comparing

changes in gene-specific read abundance relative to uninduced

cells (Figure 2; Figure S2 shows quality control of the RNA-seq).

To map sequence reads not only to the core genome but also to

VSG-containing subtelomeres of the Lister 427 genome

(including the BES) (M€uller et al., 2018), MapQ filtering was

applied (Hutchinson et al., 2016). A total of 289 transcripts

(including TbATR) were significantly differentially expressed

(p < 0.005) in the RNAi-induced cells relative to the uninduced

(Figure 2A; Table S1). Slightly more genes (56%) were found to

increase in transcript abundance than to decrease (Figure S2D).

However, �50% of the genes that increased in RNA abundance

were subtelomeric, compared with only 6 subtelomeric (4%)

genes among the cohort of 126 downregulated genes (Fig-

ure 2B). Moreover, the extent of RNA level increases was uni-

formly greater than the extent of decreases (Figure 2C shows

the top 10 genes in each cohort). These data suggest that the

loss of TbATR has the most rapid and pronounced effect on

reducing transcriptional silencing of T. brucei subtelomeric

genes, which we explored further by examining the genes

affected. Gene Ontology (GO) term enrichment analysis (Fig-

ure 2D; Table S1) revealed that the most pronounced changes

(in terms of number of genes affected and level of enrichment)

were in the upregulated cohort, most notably in functions asso-

ciated with evasion or tolerance of host immune response (bio-

logical process), membrane (cellular location), and lipid binding

(molecular process). Consistent with this, 35% of the total num-

ber of significantly increased reads corresponded to genes from

the silent BESs (Figure 2B); moreover, these genes showed the

greatest increases (Table S1; 0.87–5.1 log2fold). Also promi-

nently represented (�13%; 0.25–4.1 log2fold increases) were

VSGs and pseudogenes from outside the BES that mapped to

the subtelomeres. Notably, only 6 BES-localized genes dis-

played reduced expression, 5 of which were located in the active

VSG expression site (BES1; Table S1, �0.10 to �0.44 log2fold).

In the downregulated cohort, a wider range of predicted gene

functions was seen (Figure 2D).

RNA-seq at this timepoint after TbATR RNAi does not clearly

reveal the potential pathways of core gene expression changes

that may reveal the functions regulated by TbATR to enact its pu-

tative signaling functions. Instead, these data indicate that the

earliest and most pronounced effect of TbATR loss is altered

transcription of genes within the BESs, as well as further, non-

BES VSGs.

TbATR RNAi Leads to Loss of Monoallelic VSG

Expression and Increased Expression of Select VSGs

from Throughout the Silent Archive

Given that the above RNA-seq analysis suggested that TbATR

RNAi has a pronounced impact on the expression of BES and

subtelomeric VSGs, we sought to investigate this further. We

performed RNA-seq after 36 h of RNAi (as before, in triplicate

using the two RNAi clones; Figures S2A–S2C for RNA-seq

quality control). To explore these data, we evaluated the

genomic locations of VSG transcripts found to have significant

increases or decreases in abundance (Figure 2E; Table S2). A

total of 26 VSG transcripts were upregulated 24 h after RNAi,

whereas at 36 h, 170 VSG RNAs increased significantly. The

relative distribution of these VSGs changed from 24 to 36 h.

At 24 hr post-induction, 42% of upregulated VSGs were either

located in a BES or a metacyclic VSG expression site (MES),

whereas 37% were located in the subtelomeric arrays

(including both intact and pseudogenes). In contrast, 65% of

upregulated VSGs were subtelomeric array genes or pseudo-

genes after 36 h of RNAi, with BES and MES VSGs now repre-

senting 10% of the total. A small number of upregulated VSGs

at each time point have to date only been mapped to unitigs, so

their location in the genome is uncertain. At 24 h, the only

downregulated VSG transcript was found in the active BES

(BES1; VSG2), although at 36 h, one other, subtelomeric VSG

showed a reduced level of transcript. These data suggest

that the earliest effects of TbATR loss are not limited to the

transcription of BES VSGs, but that increased expression of

VSGs is also seen from the MESs that are normally transcrip-

tionally silent in BSF cells (Graham et al., 1999). In addition,

the activation of VSGs that are not resident in either a BES or

an MES increases with time after RNAi, and such activation is

not limited to intact genes. In both the upregulated and down-

regulated gene cohorts, examples of predicted VSGs were also

found that are located within the core of the genome

(Figure 2F). These genes almost certainly encode poorly under-

stood VSG-related proteins (Marcello and Barry, 2007), which

are not subject to monoallelic transcription and are not exclu-

sively transcribed in BSF cells. Since it is unknown which Pol

transcribes the VSG-related genes, and because TbATR RNAi

caused both modest increased and decreased RNA levels, it

is unclear how these effects may relate to the larger number

of differentially expressed VSGs known to be involved in anti-

genic variation.

Cell Reports 30, 836–851, January 21, 2020 839



To check the RNA-seq, we performed RT-qPCR of four silent

BES VSGs and confirmed significantly increased levels of each

in RNAi-induced cells relative to controls after 36 h of growth

(Figure 3A). We also performed RT-qPCR to examine the levels

of VSG2 transcript (Figure S3A), but we could find only limited

evidence for a decrease. However, RT-qPCR of this gene may

be confounded by the very high abundance of this transcript (Ta-

bles S1 and S2), and reduced VSG2 RNA levels are consistent

with BES-specific mapping and accumulation of cells lacking a

VSG2 protein coat (see below). Comparing the log2fold change

in RNA-seq read depth of all predicted VSGs in BESs and

MESs (Figure 3B) showed that VSG transcript levels from all of

the silent loci increased from 24 to 36 h after RNAi. Given this

finding and the RNA-seq description of significantly reduced

levels of four expression site-associated gene (ESAG) transcripts

from BES1, allied to significant increases in ESAG transcripts

from several silent BESs at 24 h (Table S1), we mapped the

data from both 24 and 36 h using MapQ filtering to all BESs (Fig-

ures 3C, 3D, and S3B) and MESs (Figure S3C). The mapping

revealed a number of things.

First, read mapping indicated that reduced levels of transcript

in active BES1 after TbATR RNAi were not limited to VSG2, since

ATR

A B C

D

E

Figure 2. ATR RNAi Leads to Derepression of Surface Antigen Gene Expression in Bloodstream Form T. brucei

(A) A volcano plot showing differentially expressed transcripts 24 h after RNAi relative to uninduced controls. Log10-adjusted p values for each gene are plotted

against the log2 transformed fold-change; data are averages from three biological replicates and transcripts are annotated as follows: significant change in

abundance (orange), non-significant (green), and ATR (red).

(B) Pie charts summarizing differentially expressed transcripts (left, increased; right, decreased) 24 h after RNAi; the number of genes in each category is ex-

pressed as a percentage of the total gene number, and genes were categorized based on their genomic location (core genome, BES, subtelomere, and un-

mapped unitigs).

(C) Top 10 differentially increased (orange) or decreased (gray) transcripts following RNAi.

(D) Summary of GO terms significantly enriched in the differentially expressed gene cohort relative to the expected number of genes in the genome. Enriched GO

terms in the up- or downregulated cohorts are depicted as �log10 (p value) and categorized as biological process (yellow), cell location (black), and molecular

process (green; see Table S1).

(E) Graphs show the percentage of the total number (indicated) of significantly up-or downregulated VSGs found in BES, MES, subtelomere, unitig, or core

locations 24 and 36 h post-RNAi.

840 Cell Reports 30, 836–851, January 21, 2020



reduced read depth was also seen across the telomere-proximal

ESAGs (Figure 3C). This effect did not, however, extend across

the BES; no such loss was apparent for the two genes encoding

the T. brucei transferrin receptors ESAG6 and ESAG7 (Steverd-

ing et al., 1994), which are immediately downstream of the pro-

moter and were the only significantly upregulated transcripts

from BES1 (Table S1). Second, when examining the silent BES,

it was apparent that levels of increased gene-specific reads

were not uniform across transcription units but, instead, were

most pronounced proximal to the promoter and telomere (Fig-

ures 3D and S3B). Telomere-proximal increases after TbATR

RNAi appeared to only represent the VSGs, and increased

ESAG expression was mainly accounted for by the increased

abundance of ESAG6 and ESAG7 transcripts, as well as

increased levels of transcripts for folate transporters (Figure S3B)

encoded by ESAG10 and found downstream of a duplicated

BES promoter at some telomeres (Hutchinson et al., 2016; Got-

tesdiener, 1994). Third, examining theMES revealed that the loss

of TbATR caused highly specific increased read mapping to the

VSGs, with no associated increase or decrease in upstream

genes (Figure S3C). Since the MESs do not contain ESAGs

and the upstream genes are Pol II transcribed, these data indi-

cate that TbATR RNAi at 24 h most strongly affects Pol I-tran-

scribed genes.

Finally, the RNA-seq data were mapped to the subtelomeres

and VSG-containing unitigs (Figure S3D), confirming that some

of the VSGs in these loci are activated by the loss of TbATR,

and showing that in some cases, increased reads after TbATR

loss map to only part of the predicted gene.

TbATR RNAi Leads to Changes in VSGCoat Composition

To ask whether changes in VSG RNA after TbATR loss extend

to VSG protein expression on the cell surface, we next per-

formed IF on unpermeabilized cells, before and after TbATR

A

C

B

D

Figure 3. Loss of TbATR Impairs Control of VSG Expression Site Transcription

(A) qRT-PCR of VSGs within 4 silent BES are shown (24 and 36 h post-RNAi, +) as fold-change in level relative to uninduced cells (�; set at 1); data are shown for

clones CL1 and CL2, and error bars denote ± SEM.

(B) Heatmaps of differentially expressed BES and MES VSG transcripts, plotted as log2fold change in +RNAi relative to �RNAi.

(C and D) RNA-seq read depth across the active BES (BES1; C) and one silent BES (BES3; D) after 24 and 36 h of growth with (T+) or without (T�) RNAi; data from

three replicates are overlaid (pink, blue, and orange). ESAG6 and ESAG7 genes are shown in green, other ESAGs in white, and VSG in orange. The boxed graphic

shows a simplified layout of a BES (telo, telomere; arrow, promoter).

Cell Reports 30, 836–851, January 21, 2020 841



RNAi, with two antisera, recognizing either VSG2 (active BES1)

or VSG6 (silent BES3) and scoring for the expression of the two

VSGs on individual cells (Figures 4A–4C and S4A). In conjunc-

tion, flow cytometry was used to analyze larger numbers of

cells, also distinguishing cells that expressed one, both, or

neither of the VSGs (Figures 4B and S4A). Both approaches

produced comparable results, as did comparison of the two

RNAi clones. In the absence of TbATR RNAi induction, >98%

of cells expressed only VSG2, reflecting monoallelic control of

BES transcription and being consistent with the parental

RNAi cells grown on tetracycline (Figure 4A). RNAi led to a pro-

gressive decrease in cells that stained with only anti-VSG2 anti-

serum (�80% and �70% of cells after 48 h in clones 1 and 2,

respectively; Figures 4A–4C and S4A). Concomitantly, there

was a progressive increase in cells that either did not stain

with antiserum against either VSG (�5%–15% after 48 h; Fig-

ures 4A, 4B, and S4A) or stained with both anti-VSG2 and

anti-VSG6 antiserum (�10%–15% after 48 hr; Figures 4A–4C

and S4A). Cells expressing VSG6 but not VSG2 after TbATR

RNAi were present, but rare (Figures 4A–4C and S4A). The

detection of two VSGs on the cell surface indicates the loss

of monoallelic BES expression or delayed coat switching. Cells

without VSG2 in the coat indicate that TbATR depletion can

also lead to discontinued expression of the active VSG and,

presumably, expression of an undetected VSG or VSGs. Both

findings are consistent with the RNA-seq data.

CL1 CL2 CL1.6 2T1

VSG6

VS
G

2

CL1

CL1

VSG6

VS
G

2

VS
G

6
VS

G
2

VS
G

2/
6

VSG6 VSG2

A

B
C

D

Figure 4. Loss of ATR Results in Changes in VSG Coat Expression

(A) VSG2 and VSG6 expression by immunofluorescence 24, 36, and 48 h after RNAi induction (+) in CL1 and CL2, or without induction (�). Individual cells were

scored for the presence of just one VSG (VSG2+, cyan; VSG6+, red), both VSGs (dual coat, yellow), or neither VSG (gray); numbers are expressed as a percentage

of the total population ± SEM (200 cells counted per time point per experiment). Control cell lines (CL1.6, expressing mainly VSG6, and the 2T1 parental RNAi cell

line, expressing mainly VSG2) are shown in the black-outlined box.

(B) Analysis of VSG2 and VSG6 expression by flow cytometry after 24, 36, and 48 h of growth with (T+) or without (T-) RNAi; >10,000 events were analyzed per

sample and time point. For comparison, 2T1 and CL1.6 cells are shown.

(C) Representative images of CL1 cells and + RNAi and �RNAi (Tet), stained with anti-VSG2 and anti-VSG6 antiserum; scale bars, 5 mm.

(D) Expression of EP-procyclin and VSG2 24, 36, and 48 h +RNAi (+), or �RNAi (�). Individual cells were scored for the presence of VSG2 or EP-procyclin and

quantified as in (B).
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The RNA-seq data (Table S1) provided evidence that TbATR

RNAi caused changes in the expression of some Pol I-tran-

scribed genes in addition to the VSGs, including transcripts

associated with the coat (known as procyclin) exclusively ex-

pressed in the insect stage of the parasite (on procyclic form

[PCF] cells). Therefore, we performed an IF analysis on unper-

meabilized cells, before and after TbATR RNAi, with antisera

recognizing VSG2 (active BES1) or EP-procyclin, and scoring

for the expression of cells harboring both VSG2 and EP-procy-

clin on individual cells (Figures 4D, S4B, and S4C). In the

absence of TbATR RNAi induction, as seen previously, >98%

of cells appeared to exclusively express VSG2. However, at

both 36 and 48 h post-induction of TbATRRNAi, a small percent-

age of cells (<4%) were seen to express a dual VSG2-EP-procy-

clin coat (Figures 4D, S4B, and S4C). The detection of a dual

BSF-PCF surface coat reveals wider transcription alterations in

these parasites, and perhaps suggests that TbATR plays a

broader role in monitoring or controlling Pol I transcription.

Loss of TbATR Leads to Altered Localization of VEX1

The BES and VSG expression changes described above after

TbATR RNAi display a striking overlap with those seen after

RNAi against VEX1 (Glover et al., 2016; Hutchinson et al.,

2016), a factor that localizes specifically to the active BES and

may be a component of the extranucleolar T. brucei ESB. To

ask whether the effects of TbATR loss may be mediated through

VEX1, we expressed a 12myc-tagged variant of the factor from

its own locus (Figure S5A) (Glover et al., 2016) in the TbATR

RNAi cells and examined expression and localization, with

and without RNAi, using anti-myc antiserum (Figures 5A, 5B,

S5B, and S5C). Cells lacking 12myc-tagged VEX1 were used

as negative controls, and no staining could be seen (Figure S5B).

RNAi-mediated loss of TbATR had no discernible effect on the

abundance of VEX112myc protein (Figure 5A), but it did affect sub-

nuclear localization. In the absence of RNAi induction, �60% of

cells with a discernible subnuclear anti-myc signal harbored a

single focus of VEX1myc, with a smaller number (�35%) display-

ing 2 foci, and a very small number (<5%) showingR3 VEX1myc

foci (Figure 5B). These numbers are largely consistent with pre-

vious work (Glover et al., 2016), and DAPI staining confirmed that

in virtually all of the cases in which cells had two VEX1myc foci,

they were in late stages of S phase or in G2 (Figure 5B). After 24 h

of RNAi induction, at the stage at which VSG expression

changes were detected, the number of cells with one or two

VEX1myc foci appeared to show a modest, although non-signif-

icant decrease. A significant increase in cells harboringR3 VEX1

foci was seen at the same time (increasing to �20% of the pop-

ulation). Examples of such cells are shown in Figures 5B and

S5C, where it is notable that aberrant numbers of VEX1myc

foci were not limited to S or G2 phase cells. These data reveal

that the loss of TbATR in BSF T. brucei perturbs the localization

of VEX1, resulting in the accumulation (or persistence) of >2

VEX1 foci in a single cell.

Loss of TbATR Alters Localization of Pol I

Since VSG transcription is catalyzed by Pol I sequestered to the

actively transcribed BES, we next asked whether the altered

VEX1 localization after TbATR RNAi was reflected in changed

Pol I localization. To do so, IF with anti-Pol I antiserum (Glover

et al., 2016) was compared in cells grown for 24 h with or

without TbATR RNAi, the time point at which growth was first

impaired and when VSG expression and VEX1 localization

changed (Figures 5C, 5D, S5D, and S5E). Cells were first cate-

gorized as those displaying only a single subnuclear signal,

meaning that we could not see a separate nucleolus and

ESB, or as having two distinct foci, indicating nucleolar and ex-

tranucleolar signals, the latter of which was most likely the ESB.

Consistent with previous reports (Navarro and Gull, 2001; Kerry

et al., 2017), �55% of uninduced cells showed 2 anti-Pol I sig-

nals (Figures 5C and S5D). TbATR RNAi resulted in a modest

decrease (from �55% to �45%) in the numbers of cells lacking

two clearly separate Pol I signals (Figures 5C and S5E), despite

the increase in number of cells with R3VEX1myc foci. A more

striking effect of TbATR RNAi was a pronounced increase in the

number of cells with >2 anti-Pol I subnuclear foci (Figures 5D

and S5E). One explanation for the increased numbers of Pol I

foci is that they correspond with the increased numbers of

VEX1-12myc foci after the loss of TbATR, suggesting that

they represent new ESBs. Alternatively, the change in Pol I

foci numbers may represent nucleolar breakdown or mis-

segregation. Nonetheless, it seems plausible that the VEX1

and Pol I perturbations are connected.

TbATR Depleted Cells Accumulate VSG-Localized DNA

Damage

TbATR depletion results in increased gH2A levels. However, the

location of this damage in the nuclear genome is unknown. To

address this, we performed chromatin immunoprecipitation fol-

lowed by next-generation sequencing (ChIP-seq) using anti-

gH2A antiserum. Samples were collected from 1 clone after

24 and 36 h of growth, with and without RNAi induction, and

the reads mapped to the Lister 427 genome (M€uller et al.,

2018) using MapQ filtering. Here, we focus this ChIP-seq anal-

ysis on VSGs (Figures 6 and S6). Enrichment of gH2A was

observed in the active BES after TbATR RNAi (Figure 6A, upper

plot), but the accumulation of the modified histone was uneven

across the transcription unit; signal increased from 24 to 36 h

within the 70-bp repeats upstream of the VSG (Figure 6B) and

in sequences downstream of the VSG (Figure 6D), but such

enrichment was less marked across the ESAGs (Figure 6A).

gH2A levels also increased in the silent BES (Figure 6A; lower

plot), with similar accumulation from 24 to 36 h on the 70-bp re-

peats (Figure 6B) and telomere-proximal regions (Figure 6D).

Furthermore, gH2A levels also increased around the MES

VSGs (Figure 6C), although the extent of gH2A enrichment

downstream of the VSGs did not appear as marked as was

seen in the BES. Finally, gH2A enrichment was seen around

non-BES and non-MES VSGs (Figures 6B and 6C). Pronounced

signal enrichment was seen upstream and downstream of VSGs

located in the subtelomeres (�2,000) and in the genome core

(27). For all of the VSGs, it was notable that gH2A signal enrich-

ment wasmainly found flanking, not within, the predicted VSG or

pseudogene coding sequence. These data indicate that the

increased levels of gH2A after TbATR RNAi are at least partly

due to DNA damage accumulation across the VSG archive.
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DISCUSSION

Cessation of growth after RNAi suggests that TbATR is essential

in T. brucei, which is consistent with previous analyses (Jones

et al., 2014; Stortz et al., 2017; Fernandez-Cortes et al., 2017).

Such critical ATR importance is also found in yeast (Cha and

Kleckner, 2002) and mammals (Brown and Baltimore, 2000),

but it is not universal, since ATR null mutants are viable in plants

(Culligan et al., 2004). What TbATR functions are essential for

T. brucei is unclear. One possibility is TbATR acting in a critical

DNA repair pathway, since loss of the PK results in increased

sensitivity to damage, most notably that caused by nucleotide

depletion (HU) and DNA cross-links (UV). Such roles are also

consistent with elevated levels of gH2A and focal accumulation

of RPA2 and RAD51 after RNAi, demonstrating that the loss of

TbATR results in increased levels of endogenous nuclear

genome damage. gH2A expression in T. brucei and L. major

has been shown to increase after induction of a DSB or exposure

toMMS, phleomycin, or HU (Glover and Horn, 2012; Damasceno

et al., 2016), indicating that phosphorylation arises due to a

range of lesions (Revet et al., 2011; Turinetto and Giachino,

2015). RAD51 and RPA focal accumulation in T. brucei has

been described after the induction of a DSB (Glover et al.,

2008, 2019; Devlin et al., 2016), as well as after treatments that

can lead to DSBs (Proudfoot and McCulloch, 2005; Trenaman

et al., 2013; Hartley and McCulloch, 2008; Marin et al., 2018).
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Figure 5. Altered Localization of VEX1 after ATR RNAi

(A) Immunoblot of VEX1�12myc (red) expression after 24 or 36 h of growth with (+) andwithout (�) RNAi; EF1a (green) serves as a loading control. The graph depicts

levels of VEX1�12myc protein after normalization using EF1a (set to 1.0).

(B) Analysis of VEX1�12myc foci number at 24 h of growth with (Tet+, cyan bars) or without (Tet�, gray bars) RNAi. DNA was stained with DAPI and used to

determine the number of individual cells harboring 1, 2, orR3 (3+) VEX1�12myc foci. Numbers are expressed as a percentage of the total number of cells counted

(± SEM). Images show VEX1�12myc localization (red) after 24 h of growth with (T+) and without (T�) RNAi; DAPI-stained DNA is gray (scale bar, 2 mm).

(C) Pol I and ESB after 24 h of growth with (Tet+) and without (Tet�) RNAi. Cells were categorized as having a single subnuclear focus, indicating either nucleolar

(N) or extranucleolar staining (EN) staining (N and/or EN), or harboring two clearly distinct foci (N+EN), suggesting both a nucleolus and an ESB; values represent

the percentage (± SEM, n = 3) of total cells counted (>100 per experiment).

(D) Analysis of the number of cells harboring >2 extranucleolar foci (multiple EN) per single cell 24 h after RNAi (data plotted as in C). Image on the right is a

representative example of Pol I (red) in an uninduced cell, while the images below show representative images of Pol I distribution following RNAi (see also

Figure S5; DAPI-stained DNA is gray; scale bar, 2 mm).
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Here, we cannot say what type of nuclear lesion(s) arise after

TbATR loss, but the earlier increase in gH2A signal relative to

RPA and RAD51 may indicate a link in the formation of single-

stranded DNA, perhaps consistent with the same temporal order

observed in T. brucei PCF cells after ionizing radiation treatment

(Marin et al., 2018). Nonetheless, the lack of increased sensitivity

of BSF TbATR RNAi cells to ionizing radiation may argue for a

distinct role, or for life-cycle differences in the signaling of repair

activity (Vieira-da-Rocha et al., 2019). Whether the essentiality of

TbATR relates to genome-wide or localized activities will require

further work, but gH2A ChIP-seq reveals increased levels of

lesions around a wide range of VSGs after TbATR loss, linking

the PIKK to antigenic variation. Although such a link may be pre-

dicted to relate to conserved roles for ATR in DNA repair, anti-

genic variation in T. brucei relies on two seemingly unconnected

reactions: activation of any silent VSG by recombination into the

BES and transcription-related reactions that ensure that only one

BES is actively transcribed and that a silent BES can be activated

as the active site is silenced. Our data implicate TbATR in both

reactions (Figure 7).

The events that cause the initiation of VSG switching, by

recombination or transcription, are the subject of debate (da

Silva et al., 2018; G€unzl et al., 2015), as is the cell-cycle timing

of switching, although recent data have implicated genome repli-

cation as a potentially key event (Devlin et al., 2016; Faria et al.,

2019). A number of observations indicate that the loss of TbATR

affects all of these processes. First, DAPI and flow cytometry

reveal that the loss of TbATR leads to impaired cell-cycle
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Figure 6. TbATR Loss Results in the Accumulation of VSG-Associated Damage

(A) gH2A ChIP-seq enrichment across the active BES (BES1, VSG2) and a silent BES (BES3, VSG6) after 24 (orange) and 36 h (blue) of growth with RNA induction

(+). gH2A ChIP-seq signal enrichment (y axis) is shown as a ratio of reads in RNAi-induced samples relative to uninduced samples (each normalized to cognate

input sample). VSG is shown as a red box, ESAG6 and ESAG7 as green boxes, and other ESAGs as white boxes.

(B) Enrichment of gH2A in RNAi-induced cells relative to uninduced across the 70-bp repeats (purple box) in the active BES1 and in three silent BESs (3, 5, and 7).

(C) Metaplots showing gH2A signal enrichment after RNAi across all silent BESs, silent MESs, subtelomeric VSGs, and core VSGs (in each, VSGs are scaled to

500 bp and regions up- and downstream are plotted).

(D) gH2A signal enrichment after RNAi in the active BES1 and two silent BES (5 and 7) across the region extending from the end of the VSG (red) to the telomere

(arrow, telo); the inset shows a metaplot of gH2A signal for all of the silent BESs across the same region.
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progression, with the accumulation of cells with aberrant DNA

content indicating incorrect segregation of the nuclear genome

after DNA replication. These effects may relate to roles for ATR

in other eukaryotes in recognizing and responding to replication

stress (Yazinski and Zou, 2016), including regulating the timing of

replication origin firing and activation of dormant origins

(Shechter et al., 2004; Chen et al., 2015), stabilization and pro-

tection of stalled replication forks (Dungrawala et al., 2015; Hu

et al., 2012), and replication at fragile sites (Barlow et al., 2013;

Casper et al., 2002). Second, TbATR loss results in the expres-

sion of two VSGs on the cell surface, an effect that is allied to

altered subnuclear localization of both VEX1 and Pol I, as well

as increased RNA of VSGs and ESAGs from silent BESs. These

findings may be explained by stalling in the process of transcrip-

tional switching or the loss of monoallelic transcription control.

The observation that silent MESs become transcribed after

TbATR loss argues for the latter explanation, since the activation

of such normally PCF-specific transcription units is also seen af-

ter RNAi of nuclear lamina components (DuBois et al., 2012;

Maishman et al., 2016), in which deregulation also extends to

the procyclin surface coat, as we describe here. Third, RNA-

seq reveals that TbATR loss leads to increased RNA levels of

subtelomeric array VSGs and pseudogenes and accumulation

of gH2A across the VSG archive. Since only a fraction of silent

subtelomeric VSGs are activated, and increased reads can arise

from only parts of genes, it is unlikely that these effects represent

widespread transcriptional VSG deregulation, but instead indi-

cate that the loss of TbATR leads to VSG switching by recombi-

nation. These VSG archive-wide effects of TbATR loss are com-

parable to the mutation of two RNase H enzymes (Briggs et al.,

2018, 2019), although whether this indicates a shared activity

on RNA-DNA hybrids is unknown. Equally, why the loss of

TbATR results in gH2A accumulation in subtelomeric VSG do-

nors is unclear; perhaps this effect derives from homology

searching during VSG recombination (Hicks et al., 2011) or

perhaps it reflects off-target effects (Khair et al., 2015) of the un-

known machinery that generates lesions in the BES to initiate

VSG switching.

How can these disparate effects of TbATR loss on VSG

expression be explained? Two scenarios, which may not be

mutually exclusive, can be considered (Figure 7). One explana-

tion is that TbATR plays an active role in exerting monoallelic

transcriptional control on the BES (Figure 7A). Such a function

could occur via TbATR interaction with telomeres, which are pro-

tected by the shelterin complex (Feuerhahn et al., 2015), since in

other eukaryotes POT1 interacts with ATR to prevent its activa-

tion (Denchi and de Lange, 2007), and ATR (and ATM) recruit

telomerase (Tong et al., 2015; Moser et al., 2011) and shelterin

(Moser et al., 2009) to telomeres. Shelterin binding can cause

silencing of subtelomeric genes (Ottaviani et al., 2008), and, in

T. brucei, RNAi of RAP1 (Yang et al., 2009), TRF (Jehi et al.,

2014a), and TIF2 (Jehi et al., 2014b) results in impaired BES

silencing or VSG switching, suggesting parallels with the effects

of TbATR loss. However, measurements suggest that telomere-

directed silencing in T. brucei stretches for only a few kilobases

(Glover and Horn, 2006) and does not encompass the whole

BES. In addition, it seems unlikely that telomere integrity is the

basis for such an activity since, in contrast to the rapid BES tran-

scription changes seen after TbATR RNAi, telomere repeat attri-

tion after the mutation of telomerase is slow to accumulate

(Dreesen et al., 2005), and excision of the telomere tract in a

BES does not elicit a change in BES transcription or switching

(Glover et al., 2007, 2013a). Given these limitations, might TbATR

act at the telomere through VEX1 and/or its wider interacting

partners (Glover et al., 2016; Faria et al., 2019)? There are striking

parallels in the effects seen after RNAi depletion of TbATR and

VEX1; the loss of either factor results in the increased abundance

of silent BESs and MES VSG RNAs, decreased expression of

VSG2 from the active BES, and co-expression of at least two

VSGs on the cell surface. Moreover, RNA-seq mapping to the si-

lent BESs shows the same pattern of increased transcripts after

TbATR and VEX1 RNAi (Hutchinson et al., 2016): increases in
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VSG 70 bp ESAGs 

Silent  BES 

Active VSG A B Figure 7. Two Models for ATR Function in

T. brucei VSG Expression

(A) Transcription (green arrow) from the Pol I pro-

moter (arrow) of a silent BES is suppressed (black

arrow) by ATR (green circle) and does not traverse

the ESAGs (white boxes), 70-bp repeats (hatched

box), VSG (pink box), or telomere repeats (arrayed

arrowheads). In contrast, TbATR does not impede

the transcription (orange arrow) of the single active

BES (active VSG, red box). After TbATR RNAi,

silencing is compromised, and transcription can

extend across the silent BES.

(B) TbATR recognizes and signals the repair of

lesions (orange lightning bolt) within the actively

transcribed VSG BES. The loss of TbATR means

that lesions are not effectively repaired and the

integrity of the active BES is compromised (e.g.,

loss of VSG), which is lethal and selects for cells

expressing a silent VSG BES.
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promoter- and telomere-proximal gene-specific reads, but little

evidence for changed levels of ESAGs centrally located in the

BES. In only one way do the available data for TbATR and

VEX1 diverge: an increased abundance of procyclin was seen

in our data, but was observed only after VEX1 overexpression,

not RNAi (Glover et al., 2016). This difference may reflect wider

roles for TbATR than VEX1 in genome maintenance. We have

no evidence that TbATR interacts with or modifies VEX1, but

recent work has revealed that VEX1 interacts with the telo-

mere-proximal features of the active and silent BESs (Faria

et al., 2019), and it is striking that we see accumulation of

gH2A after TbATR loss in the same region of the transcription

units. Nonetheless, the effects of TbATR loss may be indirect.

For instance, TbATR RNAi may impair nucleolar integrity (Ki-

diyoor et al., 2016) or it may respond to DNA damage that

impedes Pol I transcription (Larsen and Stucki, 2016). Either

functionmay explain increased Pol I foci after TbATRRNAi, lead-

ing to increased VEX1 foci. Although such a connection appears

consistent with observations that the inhibition of Pol I transcrip-

tion leads to apparently concurrent breakdown of the nucleolus

and loss of extranucleolar Pol I and VEX1 signal (Kerry et al.,

2017), it is at odds with evidence for the ESB being a discrete

subnuclear structure (Navarro andGull, 2001). Thus, given the al-

terations we see in VEX1 localization after TbATR RNAi, it will be

valuable to determine whether TbATR and VEX1 act together to

influence the deposition or activity of related factors at the BES

and MES.

A different explanation for the effects we describe is that

TbATR acts to signal the repair of DNA lesions in the active

BES (Figure 7B), which is consistent with the increased levels

of BES-localized gH2A after RNAi. Pathways that could initiate

VSG switching have been variously suggested as the direct gen-

eration of a DSB in the BES (Boothroyd et al., 2009; Glover et al.,

2013a), telomere fragility resulting in subtelomeric DNA breaks

(Hovel-Miner et al., 2012; Jehi et al., 2014b), damage arising

from early DNA replication of the active BES (Devlin et al.,

2016, 2017), and RNA-DNA hybrids (Briggs et al., 2018). TbATR

could conceivably recognize and signal any such lesion, and

therefore RNAi would lead to the observed reduction in telo-

mere-proximal transcripts in the active BES, since unrepaired

lesions could lead to the loss of such sequences because of a

failure to halt cell-cycle progression to allow repair. Moreover,

the apparent increasing loss of gene-specific RNAs with greater

proximity to the telomere may indicate that there is no single site

of lesion generation, but instead increasing damage from pro-

moter to telomere, consistent with the greater abundance of

gH2A around both the 70-bp repeats and the telomere-proximal

region of the BES. In this regard, the established role of ATR in

tackling transcription-replication clashes is intriguing (Hamperl

et al., 2017), since putative lesion density would follow the direc-

tion of BES transcription. In fact, further observations may be

consistent with TbATR loss undermining ES integrity due to

impaired signaling of replication-associated lesions. First, the

actively transcribed BES is replicated earlier in S phase than

the silent BES (Devlin et al., 2016). Thus, if damage in the active

BES was not signaled by TbATR, leading to switching or loss of

monoallelic expression (or both), the timing of BES replication

may break down, with greater than a single BES replicated early

in S phase, causing each to be bound by VEX1. Chromosome

mis-segregation due to the loss of TbATR may have a similar

effect, resulting in more than a single VEX1 focus in divided cells.

Second, a recent study has shown that the loss of the minichro-

mosome maintenance complex-binding protein (MCM-BP)

affects T. brucei DNA replication and causes loss of monoallelic

VSG expression in a very similar manner to that described here:

increased silent BES transcripts from telomere-proximal VSGs

and promoter-proximal ESAGs (Kim, 2019). However, the local-

ization of VEX1 was not assessed after MCM-BP RNAi, so it may

be premature to compare the two studies.

Monoallelic BES expression leading to a single VSG coat on the

surface of a BSF T. brucei cell is central to the success of immune

evasion by antigenic variation, with parallel processes used in

many pathogens (Obado et al., 2016; Glover et al., 2013b; Guizetti

and Scherf, 2013). Precisely how a single BES is selectively tran-

scribed while the remaining�15 are largely transcriptionally silent

is still being unraveled (G€unzl et al., 2015). Todate, DNA repair fac-

tors have not been strongly implicated in monoallelic expression,

but instead in VSG switching by recombination. However, it

should be noted that mutation of the HR factors RAD51 (McCul-

loch and Barry, 1999), BRCA2 (Hartley and McCulloch, 2008),

and RAD51-3 (Proudfoot and McCulloch, 2005) suppresses the

levels of antigenic variation, not only by impairing VSG recombina-

tion but also by lowering the levels of transcriptional switching

between BESs. In addition, exposure of BSF T. brucei to DNA-

damaging agents can increase silent BES transcription (Sheader

et al., 2004). Thiswork onTbATR lends further evidence to a closer

than anticipated link between BES transcriptional control and the

DNA damage response, which may explain previously described

events in which transcriptional VSG switching and deletion of the

active BES occur in concert (Cross et al., 1998; Rudenko et al.,

1998). Characterizing the nature of the lesions TbATR acts

upon, the signaling targets of TbATR, and the roles of all ESB-

associated factors will test these possibilities.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-RAD51 McCulloch Lab (University of Glasgow) Diagnostics Scotland (U.K)

Anti-yH2A McCulloch Lab (University of Glasgow) N/A

Anti-VSG2 McCulloch Lab (University of Glasgow) N/A
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pnas.1600344113

Anti-Myc Tag Antibody, clone 4A6 Sigma-Aldrich Cat#05-724
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Anti-Polymerase I Horn Lab (University of Dundee Referred to here: https://doi.org/10.1073/

pnas.1600344113

Anti-KMX1 Hammarton Lab (University of Glasgow) N/A

Anti-myc Alexa Fluor� 488 conjugate Sigma-Aldrich Cat#16-224

Alexa Fluor� 594 anti-mouse ThermoFisher Cat#A-11005

Alexa Fluor� 594 anti-rabbit ThermoFisher Cat#A-11012

Alexa Fluor� 594 anti-rat ThermoFisher Cat#A-11007

Alexa Fluor� 488 anti-rabbit ThermoFisher Cat#A27034

Alexa Fluor� 488 anti-mouse ThermoFisher Cat#A28175

IRDye 680RD anti-mouse Li-Cor Cat#926-68070

IRDye 800CW anti-rabbit Li-Cor Cat#926-32211

Anti-mouse HRP conjugate ThermoFisher Cat#62-6520

Anti-rabbit HRP conjugate ThermoFisher Cat#65-6120

Bacterial and Virus Strains

MAX Efficiency TM DH5-alpha

Competent Cells

ThermoFisher Cat#18258012

DH5-alpha Competent Cells In house prep from above N/A

Chemicals, Peptides, and Recombinant Proteins

Methyl Methanesulfonate Sigma-Aldrich Cat#129925

Hydroxyurea Sigma-Aldrich Cat#H8627

DAPI Fluoromount-G� Southern-Biotech Cat#0100-20

Propidium Iodide Sigma-Aldrich Cat#P4170

Chameleon� Duo Pre-stained Protein

ladder

Li-Cor Cat#928-60000

HiMark Pre-stained Protein Standard ThermoFisher Cat#LC5699

Agencourt AMPure XP beads Beckman Coulter Cat#A63882

SYBR� Green PCR Master Mix Applied Biosystems Cat#4309155

Critical Commercial Assays

TruSeq ChIP Library Preparation Kit Illumina Cat#IP-202-1012

ChIP-IT� Express Enzymatic Shearing Kit Active Motif Cat#53035

RNeasy Mini Kit (250) QIAGEN Cat#74106

DNeasy Blood & Tissue Kit (250) QIAGEN Cat#69506

TruSeq Stranded Total RNA Kit Illumina Cat#20020596

Deposited Data

Sequence data is deposited in the

European Nucleotide Archive

This Paper Accession Number: PRJEB23973
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and reagent/ resource requests should be directed to andwill be fulfilled by the LeadContact, RichardMcCulloch

(richard.mcculloch@glasgow.ac.uk). This study did not generate unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

2T1 cells (Alsford et al., 2005) were used as a background for RNAi based studies. T. brucei brucei Lister 427 cells (M€uller et al., 2018)

were used for all other BSF based studies. T. brucei brucei 927 PCF cells were a kind gift from G.D.Campagnaro (deKoning Lab;

University of Glasgow).RNAi inducible cells were grown in HMI-9 medium (GIBCO) supplemented with 20% (v/v) fetal calf serum

(low-tet; GIBCO) (Stortz et al., 2017) and RNAi cells were maintained in the 5 mg.mL-1 Hygromycin and 5 mg.mL-1 Phleomycin. For

maintaining myc tagged expressing cell lines, 10 mg.mL-1 Blasticidin was added to the media. PCF cells were maintained in

SMD79 (Brun and Schönenberger, 1979) supplemented with 10% (v/v) fetal calf serum.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

Trypanosoma brucei: Lister 427

Bloodstream form

Laboratory of Prof Richard McCulloch N/A

Trypanosoma brucei: TREU 927

Procyclic form

Laboratory of Prof Harry D Koning N/A

Oligonucleotides

See Table S2 for primer details N/A N/A

TbRPA2 Primers FW and RV Glover et al., 2019 https://doi.org/10.1128/mBio.01252-19

TbVEX1 Primers FW and RV Glover et al., 2016 https://doi.org/10.1073/pnas.1600344113

Recombinant DNA

pNAT12xmyc Alsford and Horn, 2008 https://doi.org/10.1016/j.molbiopara.2008.

05.006

pGL2084 (RNAi parental plasmid:

Gateway Adapted)

Jones et al., 2014 https://doi.org/10.1371/journal.ppat.

1003886

Software and Algorithms

GraphPad Prism v8. GraphPad https://www.graphpad.com

Galaxy Server Afgan et al., 2018 usegalaxy.org

DeepTools Ramı́rez et al., 2014 https://doi.org/10.1093/nar/gkw257

FlowJo v.10 FlowJo https://www.flowjo.com

Fiji (ImageJ) Schindelin et al., 2012 https://doi.org/10.1038/nmeth.2019

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

HiSat 2 Kim et al., 2015, Pertea et al., 2016 https://ccb.jhu.edu/software/hisat2/

index.shtml

RStudio https://www.rstudio.com/

SamTools Li et al., 2009 http://samtools.sourceforge.net

IMARIS v8.2 Oxford Instruments https://imaris.oxinst.com

DEseq2 Love et al., 2014 https://doi.org/10.1186/

s13059-014-0550-8

TopGO Alexa et al., 2006 https://bioconductor.org/packages/

release/bioc/html/topGO.html

Other

Sequence data was aligned to the T. brucei

Lister 427 HGAP v.10 genome

Version 10 kindly provided by R. Cosentino Original genome reference (v.9.) http://

www.nature.com/articles/

s41586-018-0619-8

Cell Reports 30, 836–851.e1–e5, January 21, 2020 e2



METHOD DETAILS

Antibody Information

All information regarding antiserum used in this study are detailed in Table S2.

Oligonucleotide sequences

Oligonucleotide sequences and raw RT-qPCR data in this study are described in Table S2. Oligonucleotides and plasmids were de-

signed using CLCGenomicsWorkbench 7 (QIAGEN) or, in the case of RT-qPCR primers, Primer Express� v3.0 (Applied Biosystems)

was used. Oligonucleotides were synthesized by Eurofins Genomics (https://www.eurofins.com/). All sequence information was

retrieved from TriTrypDB (https://tritrypdb.org/tritrypdb/) and specificity in silico confirmed by BLAST (NCBI).

Plasmid Design and Cloning

For TbATR RNAi, a construct containing an RNAi target sequence derived from the coding sequence of TbATR was generated using

the Gateway cloning strategy as described by Jones et al. (2014). The construct (termed pTL50; kind gift N. Jones) was transformed

into the 2T1 parental cell line (kind gift, D. Horn) and two clones were recovered for further analysis (referred to as CL1 and CL2). One

allele of TbATRwas endogenously tagged at the C terminus with 12 copies of themyc epitope (12myc) using the vector pNATx12myc

(kind gift, D. Horn). Cloning was conducted as described in Devlin et al. (2016). Both VEX1 and RPA2 were endogenously tagged

using the strategy described above. Both constructs were kindly provided by L. Glover. All genomic DNA was extracted using the

Blood and Tissue Extraction Kit (QIAGEN) as per manufacturer’s instructions and stored at 4 o C until required.

RNAi Analysis

Growth curves were performed as described in Stortz et al. (2017). RNAi was induced using 1 mg/ml-1 tetracycline. Briefly, cells were

seeded at 1 x104 cells.ml-1 in 1.2 mLs in a 24 well plate. Cells were counted manually every 24 hr using a Neubauer improved hae-

mocytometer (Marienfeld-Superior, Germany). For those performed in the presence of genotoxic stress, the following concentration

or exposure of genotoxic agents were used (unless stated otherwise): MMS (0.0003%), hydroxyurea (0.06 mM), UV (1500 J/m2) and

IR (150 Gy). For UV and IR, RNAi was induced for 24 hours prior to exposure. For UV exposure, cells were set up in 6mLs, induced for

24 hr. After 24 hr, cells were transferred to a 6well dish, placed in a Stratalinker�UVCrosslinker 1800 (Stratagene) without the dish lid

and exposed as required. After, the cells were transferred back to a 24 well dish in a volume of 1.2 mLs. For IR exposure, cells were

grown in 25 cm3 vented flasks in a volume of 5mLs, induced for 24 hr as described then exposed to a single dose of X-rays. Exposure

concentration was determined by length of bombardment time.

Cell cycle analysis by DAPI

Cells were seeded at a concentration of 6.25 x102 cells.mL-1. Cells were left to grow overnight, the culture divided equally then RNAi

induced as stated above. Cultures were then harvested every 24 hr by centrifugation (405 xg for 10mins). Approximately 23 106 cells

were collected. The resulting pellet was washed in 1 x PBS, then the cells resuspended in 1x PBS and settled on a Poly-L-lysine

(Sigma) treated slide for 5 mins. The supernatant was removed and the cells fixed in 4% formaldehyde for 4 mins. The fixed cells

were washed a further 3x in 1 x PBS and DAPI added (DAPI Fluoromount G; Southern Biotech) for 5 mins.

Immunofluorescence

For internal antigens including yH2A, RAD51 and myc tagged RPA1, immunofluorescence was performed exactly as described in

Stortz et al. (2017). Anti-RAD51 (Diagnostics Scotland, UK) was used at a concentration of 1:1000. To detect RAD51, goat anti-rabbit

AlexaFluor 594 was used at a concentration of 1:2000. Cells were permeabilised for 10 mins using 1x PBS/Triton X-100 (Thermo Sci-

entific) for IF of internal myc tagged proteins. Immunofluorescence of surface VSGs was performed as described in Glover et al.

(2016) with the following modifications: anti-VSG2 and anti-VSG6 were both used at a concentration of 1:8000; goat anti-rabbit Alex-

aFluor 488 or goat anti-rat AlexaFluor 594 (Invitrogen) secondary antisera were used at 1:2000. No permeabilization was performed.

Staining for EP-Procyclin was performed in the same manner as for VSG staining. EP-Procyclin conjugated to FITC (Cedarlane) was

used at a concentration of 1:750. Antibodies were all incubated at room temperature for 1 hr. Immunofluorescence of VEX1-12myc and

RNA Pol I was performed as described in Glover et al. (2016) using an antigen retrieval protocol based on urea treatment. Briefly,

Antigen Retrievel Buffer (100 mM Tris, 5% (w/v) urea, pH 9.5) was heated to 95 oC in a waterbath. Slides containing parasites (after

fixation) were placed in this buffer for 1 minute then immersed in 1x PBS and washed 3x in 1x PBS. Afterward the cells were perme-

abilsed as described. DAPI staining was performed as above. For KMX-1 staining, anti-KMX-1 amtiserum (kind gift, T. Hammarton)

was diluted in 1% BSA only.

Immunoblotting

Immunoblotting to assess levels of gH2A, or to detect myc-tagged proteins, was performed and analyzed exactly described in Stortz

et al. (2017). Briefly, approximately 2.5 x106 cells were harvested by centrifugation and washed 1x in 1x PBS. The resultant pellet was

re-suspended in 1x protein loading buffer (250 ml 4x NuPAGE LDS sample buffer [Invitrogen], 750 ml 1x PBS and 25 ml b-mercaptoe-

thanol). Samples were then boiled immediately for 10 mins at 100�C and stored at – 20�C until required. For C-terminally tagged
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TbATR, 20 m 2 x Roche Complete Mini protease inhibitor cocktail (Roche) was added to the extract. SDS-PAGEwas used to separate

cell lysates on NuPAGE Novex Pre-Cast Gels (ThermoFisher): 4%–12%Bis-Tris, 10%Bis-Tris, 12%Bis-Tris or 3%–8% Tris-acetate

gels were used. Gels were run as per the manufacturer’s instructions using either Tris-Acetate running buffer (ThermoFisher) or

MOPS (ThermoFisher). Proteins were transferred onto PVDF membrane (Amersham Bio) using a Mini Trans-Blot Cell (Bio-Rad) by

electrophoresis (100 V for 2 hr). For TbATR12myc transfer was performed overnight at 400 mA at 4�C. Protein transfer was confirmed

by staining with Ponceau-S solution (Sigma). Next, membranes were washed once in 1x PBST (PBS, 0.01% Tween-20 [Sigma]) for

10mins then incubated for 1 hr (or overnight at 4�C) in blocking solution (1x PBST, 5%Milk powder [Marvel]). Themembranewas then

washed 1x PBST (10 mins), and incubated in blocking buffer containing the required primary antisera for 1 hr (see Table S2 for anti-

body concentrations used in this study). Next, themembrane was washed in 1x PBST for 20mins and incubated with the appropriate

secondary antisera for 1 hr .Finally, the membrane was washed in 1x PBST (30 mins) and SuperSignal West Pico Chemiluminescent

Substrate (Thermo-Fisher) or ECL Prime Western Blotting Detection Reagent (Amersham) added (incubated for 5 mins). The mem-

brane was stored with either an X-ray film (Kodak) or an ECL Hyperfilm (Amersham) for �1 s to overnight and developed using a

Kodak M-25-M X-omat processor.

Quantification of relative protein levels

Quantification of protein levels was performed as described in Stortz et al. (2017) with the following modifications. Briefly, blots were

blocked in 5% milk powder in 1 x PBS overnight at 4�C. Chameleon Duo Pre-Stained Protein Ladder (2 ml; Li-Cor) was loaded to

confirm protein sizes. The following secondary antibodies were used: IRDye 680 goat anti-mouse and IRDye 800 goat anti-rabbit

(both 1:10,000, Li-Cor). The membrane was washed once in 1x PBST, then again with 1x PBS. Images were captured using an

Odyssey CLx Imager (Li-Cor). The band intensity was quantified using the in-built software (ImageStudio). Fold change was calcu-

lated in Excel by normalizing each sample to the loading control and calculating the relative fold change to the control sample.

RNA preparation and RT-qPCR

To assess gene knockdown using RT-qPCR, RNA was extracted from 1 3 107 BSF T. brucei cells using the RNeasy kit (QIAGEN

manufacturer’s instructions); three independent extracts were performed for CL1 and two independent extractions were performed

for CL2. The samples were stored frozen for less than 1 week at �80 o C prior to RNA extraction. RNA was treated for 30 minutes at

room temperature off columnwith DNase I (QIAGEN) tominimize DNA contamination. 1 mg of total RNA, quantified using aNanodrop,

was converted to cDNA as per manufacturer’s instructions using Superscript III� Reverse Transcriptase (RT; ‘‘First Strand cDNA

Synthesis’’ protocol; Thermo Fischer) using random hexamers. RT minus samples were prepared to control for genomic DNA

contamination. All cDNA was stored at �20 o C until required. The following master mix was set up: 2.5 ml of the appropriate

cDNA, 2.5 ml of the appropriate primers (300 nM stock) and 12.5 ml SYBR� Green PCR Master Mix (Applied Biosystems) in a total

volume of 25 ml. Samples were set up in a MicroAmp� Optical 96-well Reaction Plates (Thermo Fischer) as triplicates and run in

a 7500 Real Time PCR system (Applied Biosystems). The following PCR conditions were used: 50�C for 2 min (x 1), 95�C for

10 min (x 1), 95�C for 15 s followed by 60�C for 1 min (x 40) followed by a dissociation step (95�C for 15 s, 60�C for 1 min, 95 oCfor

15 s and finally 60�C for 15 s). Amplicon length for each oligonucleotide pair equates to 150 bp. All reactions were set up manually as

technical triplicates for each biological replicate and the average CT value for each PCR product calculated. Data was analyzed using

theDDCtmethod (Schmittgen and Livak, 2008) and analysis performed in Excel from the data generated from the PCR run. Actin was

used as a reference gene as described previously (Tiengwe et al., 2012).

Analysis of VSG expression and cell cycle using flow cytometry

Flow cytometry was performed as described in Glover et al. (2016) to identify VSG6 or VSG2 positive cells: signal from excitation with

the BB515 laser (BB515, log) was plotted against the signal from the excitation with the PE-CF594 laser (PE-CF594, log), using as

controls 2T1 cells that predominantly express VSG2, and clone 1.6 cells (Glover et al., 2007) that predominantly express VSG6.

Approximately 2 3 107 cells were collected for analysis resulting in over 10,000 events collected per sample. Samples were run

on a BD Celesta (BD Biosciences) and the data analyzed using FlowJo v.10 (TreeStar). For cell cycle progression, samples were

collected as described in Stortz et al. (2017) and were run on a BD FACSCalibur (BD Biosciences) and over 50,000 events captured

and analyzed as above. All samples were stored for no longer than one week (prior to antibody staining and analysis) at 4 o C. RNA

was digested with 100 mg.mL-1 RNaseA (QIAGEN) for 30 mins at 37 o C and propidium iodide added to a final concentration of

10 mg.mL-1.

Imaging and image processing

Images captured on an Axioskop2 (Zeiss) fluorescent microscope used a 63 x DCmagnification lens and images were acquired with

ZEN software (Zeiss). For images captured on an Olympus IX71 DeltaVision Core System (Applied Precision, GE), a 1.40/100 x lens

was used, and images were acquired using SoftWoRx suit 2.0 (Applied Precision, GE). Z stacks were acquired (no more than 10 mm

thick) and images de-convolved (conservative ratio; 1024x1024 resolution) using the SoftWoRx software. Super-resolution structural

illuminated images were captured on an Elyra PS.1 super resolution microscope (Zeiss), and using images were acquired using ZEN

software as Z stacks. Fiji (Schindelin et al., 2012) was used to subtract the background of images and for counting cells. The bright-

ness and contrast for counting were set relative to unstained controls. False colors were assigned to fluorescent channels and the
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signal enhanced for clear visualization. 3D images were generated using IMARIS software (V8.2; Oxford Instruments) using super-

resolution Z stacked images. Scale bars are as stated on images or in legends.

RNaseq analysis

Cells were sampled at 24 and 36 hr post RNAi induction, or at equivalent times without induction, from two biological replicates of

TbATRCL1 cells and from a single replicate of TbATRCL2, providing triplicate induced and uninduced samples at both time points. In

all cases cells were harvested and RNA prepared as previously described (Briggs et al., 2018). Briefly, the RNeasy Mini Kit (QIAGEN)

was used to extract total RNA as per the manufacturer’s instructions. Samples were treated with DNase I (QIAGEN) off column for

30mins. PCR analysis was performed on the isolated RNA to test for the presence of genomic DNA contamination; no contamination

could be detected (data not shown). RNA concentration was measured using a Qubit (Thermo Fischer) as per the manufacturer’s

instructions prior to library preparation. Extracted RNA was stored at�80 o C until required. Library preparation was performed after

Poly(A) selection using the TruSeq Stranded Total RNA kit (Illumina). Libraries were paired-end sequenced using an Illumina NextSeq

500 and a Mid-Output Flow Cell generating read lengths of 75 bp.

Sequence reads were trimmed (using TrimGalore) and aligned to the T.brucei Lister 427 HGAP v.10 genome (kindly provided by

R. Cosentino) (M€uller et al., 2018) using HISAT2 (Kim et al., 2015) and the –no-spliced-alignment flag. MAPQ < 1 (SAMTools)(Li et al.,

2009); filtering was applied before counting readsmapping uniquely to the coding strand of each gene using htseq-count. Differential

expression was performed to compare induced and uninduced samples accounting for differences between the two clones using

DEseq2; a FDR% 0.05 was considered significant. The total read count for each sample, the overall variance and the data spread

were assessed and found to be comparable. Differentially expressed transcripts were expressed as a log2 fold change and plotted

against the adjusted p value on the volcano plot. GO term analysis was performed using TopGO using the weight01 algorithm for

pruning, with enrichment analysis being performed using Fisher’s exact test.

Chromatin immunoprecipitation

Chromatin immunoprecipitation was performed using 3 mg of yH2A monoclonal antiserum (in house produced). Chromatin was pre-

pared exactly as described previously (Briggs et al., 2018) using an adapted protocol of the ChIP-IT� Enzymatic Express Chromatin

Immunoprecipitation Kit (Active Motif). Chromatin was sheared using MNase. Library preparation was conducted using the TruSeq

ChIP Library Preparation Kit (Illumina). 300 bp fragments were size selected using Agencourt AMPure XP beads (Beckman Coulter).

ChIPseq libraries were sequenced on an Illumina NextSeq 500 platform. Trimmed reads (generated using TrimGalore; default set-

tings) were aligned to the Lister 427 HGAP.v10 genome using Bowtie2 (Langmead and Salzberg, 2012). The fold change between

IP and input sample read depth was calculated for each sample using DeepTools bamCompare. Library size was normalized by

SES(Diaz et al., 2012) and the fold change was expressed as a ratio. The induced sample was normalized to the uninduced sample

using bigwigCompare (DeepTools) and expressed as a ratio. Tracks were visualized using IGV andmetaplots, and further analysis on

normalized ratio files was performed using DeepTools (Ramı́rez et al., 2014). The majority of the analysis was carried out using the

Galaxy Server (Afgan et al., 2018). Gviz package was used to plot ChIPseq signal across genomic regions. Samples were binned into

1000 bp sliding average windows to visualize the data. Circle plots were generated using Circlize from bedgraph data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data presentation and statistical analysis

Graphical representation of data was performed in Prism 8 (GraphPad) or in RStudio using the following suits: ggplot2, circlize,

ggpubr and userfriendlyscience. Statistical analysis was performed in Prism 8 and the appropriate tests conducted are as detailed

in the corresponding figure legends. To plot RNaseq mapping across the BES and other regions of interest, reads per base were

counted on the forward and reverse strands in the regions of interest. Normalization for read depth coverage was carried out by

dividing the per base read counts by a scaling factor comprised of the total read count in that sample divided by 1000000. Plots

were generated using MatPlotLib.

Graphical Abstract

The graphical abstract was created with BioRender.com

DATA AND CODE AVAILABILITY

Sequences used in this study have been deposited in the European Nucleotide Archive. Data can be accessed using the accession

number: PRJEB23973.
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