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Abstract

In multilevel modelling of clustered survival data, to account for the differences among dif-

ferent clusters, a commonly used approach is to introduce cluster effects, either random or

fixed, into the model. Modelling with random effects may lead to difficulties in the imple-

mentation of the estimation procedure for the unknown parameters of interest because the

numerical computation of multiple integrals may become unavoidable when the cluster ef-

fects are not scalars. On the other hand, if fixed effects are used, there is a danger of having

estimators with large variances because there are too many nuisance parameters involved

in the model. In this paper, using the idea of the homogeneity pursuit, we propose a new

multilevel modelling approach for clustered survival data. The proposed modelling approach

does not have the potential computational problem as modelling with random effects, and

it also involves far fewer unknown parameters than modelling with fixed effects. We also

establish asymptotic properties to show the advantages of the proposed model and conduct

intensive simulation studies to demonstrate the performance of the proposed method. Fi-

nally, the proposed method is applied to analyse a dataset on the second-birth interval in
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Bangladesh. The most interesting finding is the impact of some important factors on the

length of the second-birth interval variation over clusters and its homogeneous structure.

Keywords: binary segmentation; clustered survival data; Cox model; homogeneity

pursuit; multilevel modelling; partial likelihood.

1. Introduction

This paper analyses a real dataset from Bangladesh on the second-birth interval, which

is the time interval between the first birth and the second birth. The data come from

the Bangladesh Demographic and Health Survey of 1996-1997 (Mitra et al. (1997)), a cross-

sectional, nationally representative survey. The analysis is based on a sample of 7464 women

nested within 125 primary sampling units or clusters, with sample sizes ranging from 17

to 242 women. Some women had not had their second child when the survey took place;

therefore, their second-birth intervals are censored. The dataset is a typical clustered survival

dataset. What we are interested in is how the covariates, which are commonly associated

with the second-birth interval affect the length of the second-birth interval. It is well known

that a failure to take into account clustering in an analysis of clustered survival data typically

leads to the underestimation of the standard errors since clustering reduces the effective

sample size. In the case of survival data, clustering, if ignored, can also lead to substantial

bias. Hence, multilevel modelling (see Harvey (2003)), has to be employed when analysing

clustered survival data.

To facilitate statistical modelling for the dataset mentioned above, let yij, i = 1, · · · , nj,

j = 1, · · · , J , be the length of the second-birth interval of the ith respondent in the jth

primary sampling unit in the survey. Xij, a p dimensional vector, is the vector of individual-

level covariates of interest corresponding to yij. In addition, the vector of the covariates,

defined at the cluster level, are denoted by a q-dimensional vector Wj = (wj1, · · · , wjq)
T.

The censoring times, the lengths of the time intervals between the first birth and the time

when the survey took place are denoted by cijs. The observed data are

(

tij, (X
T
ij , W

T
j ), δij

)

, i = 1, · · · , nj, j = 1, · · · , J,
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where

tij = min(yij, cij), δij = I(yij > cij).

For this dataset, the cluster-level variables wjk, k = 1, · · · , q, are all categorical. Suppose

variable wjk has ck + 1 categories. To model the effects of wjk, we create ck (0, 1) dummy

variables, (wjk,1, · · · , wjk,ck). We denote the coefficients of these dummy variables by

(λk,1, · · · , λk,ck).

1.1. The commonly used multilevel modelling strategy

In multilevel modelling for clustered survival data, to account for the difference in the

impacts of the covariates of interest among different clusters, a commonly used approach

is to introduce cluster effects, either random or fixed, in the modelling, (see Harvey (2003)

and Zhang and Steele (2004) and the references therein). If random effects are used for our

case, when Cox models (see David (1972)) are employed, we have the following conditional

proportional hazard function:

h(t|Xij,Wj, ej) = h0(t) exp

{

XT
ij(β + ej) +

q
∑

k=1

ck
∑

l=1

λk,lwjk,l

}

= h0(t) exp

(

q
∑

k=1

ck
∑

l=1

λk,lwjk,l

)

exp
(

XT
ijβ +XT

ijej
)

,

for the jth cluster, where the ejs are random effects. Denoting the resulting conditional

partial likelihood function, given the Xijs, Wjs and ejs, by L(β|e1, · · · , eJ), this typical

multilevel modelling problem would lead the estimator of β to be the maximiser of

E {L(β|e1, · · · , eJ)} (1.1)

where the expectation is taken with respect to e1, · · · , eJ . When the dimension of ej is

not 1, which is often the case, numerical computation of multiple integrals may become

unavoidable in the computation of the expectation in (1.1); hence, in the computation of

the estimator of β, it is well known that numerical computation for multiple integrals can

cause serious problems even for a moderate number of dimensions. Therefore, this approach

is not practical when the dimension of ej is not 1.
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On the other hand, if we use fixed cluster effects, and still employ Cox models, the

estimator of β would be the maximiser of L(β|e1, · · · , eJ), and the maximisation is with

respect to (β, e1, · · · , eJ) under the condition
J
∑

j=1

ej = 0. Apparently, this approach

involves too many nuisance parameters, 744 nuisance parameters in our case; therefore, the

resulting estimators may have large variances.

It is clear that when the cluster effects are not scalars, the commonly used multilevel

modelling strategy has some problems. In this paper, we propose a new multilevel modelling

strategy that does not involve any numerical computation for multiple integrals, and the

number of unknown parameters involved is also reasonable. Furthermore, every parameter

has meaning, and none of them is a nuisance parameter.

1.2. The proposed multilevel modelling strategy

The proposed multilevel modelling strategy is based on the idea of the homogeneity

pursuit rather than cluster effects. There is a rich literature about the homogeneity pursuit:

see Ke et al. (2015), Ke et al. (2016), Su et al. (2016), Su and Ju (2018), Wang et al. (2018),

Wang and Su (2019), Su and Jin (2019), Ando and Bai (2017), Bonhomme and Manresa

(2015), and the references therein. To make the description of the proposed methodology

more generic, from now on, yij does not have to be the length of the second-birth interval;

it is a survival time in the generic sense. Similarly, cij, Xij, Wj, nj and J are the censoring

time, individual-level covariates, cluster-level covariates, the cluster size and the number of

clusters, respectively.

We do not employ cluster effects in the proposed multilevel modelling strategy. For each

j, j = 1, · · · , J , we apply Cox models to fit the data from the jth cluster, which is the

conditional hazard function h(t|Xij,Wj) for the jth cluster and is assumed to be

h(t|Xij,Wj) = h0(t) exp

(

XT
ijβj +

q
∑

k=1

ck
∑

l=1

λk,lwjk,l

}

= h0(t) exp

(

q
∑

k=1

ck
∑

l=1

λk,lwjk,l

)

exp
(

XT
ijβj

)

, (1.2)

where h0(·) is the common baseline hazard function. We embed an unknown homogeneity
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structure into βjs in the modelling to account for the information provided by different

clusters about the same unknowns and reduce the number of unknown parameters; that is,

we assume βj = (β1,j, · · · , βp,j)T have the following homogeneity structure

βℓ,j =



















β(1) when (ℓ, j) ∈ B1,
...

...

β(H) when (ℓ, j) ∈ BH ,

(1.3)

{Bk : k = 1, · · · , H} is a partition of set {(ℓ, j) : ℓ = 1, · · · , p; j = 1, · · · , J}. The model

(1.2) together with the homogeneity structure (1.3) is the proposed multilevel modelling

strategy for clustered survival data, in which h0(·), H, β(i), i = 1, · · · , H, the partition

{Bk : k = 1, · · · , H}, and λk,l, l = 1, · · · , ck, k = 1, · · · , q, are unknown and must

be estimated. We also assume the partition {Bk : k = 1, · · · , H} is independent of the

covariates.

The advantages of the proposed multilevel modelling over the commonly used ones are

(1) there is no numerical computation for any multiple integrals needed in the estimation of

the unknown parameters, which makes the implementation of the estimation much easier;

(2) there are no nuisance parameters involved, and the number of unknown parameters is

reasonable, which avoids the danger of having final estimators with large variances; and (3)

cluster level attributes of the impacts of the covariates are better accounted for and are well

estimated.

The reason for us to impose a homogeneity structure on the components of βjs rather

than on βjs is to reduce the number of unknown parameters by as much as possible. Two

different vectors may have some components in common, which represents a kind of homo-

geneity, and such homogeneity cannot be detected by the vector-based homogeneity pursuit.

Therefore, the vector-based homogeneity pursuit would result in more unknown parameters

than the component-based homogeneity pursuit, such as in (1.3).

Although the proposed multilevel modelling strategy is for Cox models, the idea of

modelling applies to other kinds of survival models.

The rest of the paper is organised as follows. We begin in Section 2 with a description
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of an estimation procedure for the unknown parameters in the proposed model. In Section

3, we present the asymptotic properties of the proposed estimators. The performance of the

proposed estimation procedure is assessed by a simulation study in Section 4. In Section 5,

we explore how the covariates, which are commonly found to be associated with the second-

birth interval, affect the length of the second-birth interval, based on the proposed modelling

strategy and estimation procedure. All the technical conditions and the theoretical proofs

of all the theoretical results are left to the Appendix.

2. Estimation procedure

In this section, we present an estimation procedure for the unknown parameters in the

proposed model (1.2) and its homogeneity structure (1.3).

We first introduce some notation: for the jth cluster, we denote the distinct event times

by t(1),j < · · · < t(Tj),j and the number of events at time t(ℓ),j by dℓ,j. The set of indices

for the individuals at risk up to time t(ℓ),j is denoted by Rℓ,j, and the set of indices for the

events at t(ℓ),j by Dℓ,j.

2.1. Estimation of the impacts (βjs) of individual-level variables

The procedure for estimating βj consists of three stages. In the first stage, an ini-

tial estimator for βj is obtained for each cluster by the partial likelihood method (David

(1972)), where Peto’s (Breslow (1972)) approximation for ties is used. We then conduct

the homogeneity pursuit to identify which βi,js are the same and which are different. Fi-

nally, we re-parametrise the models by replacing the βi,js, which are identified to have the

same value, by a single parameter and apply the partial likelihood method to estimate the

unknown parameters in the models.

Explicitly,

Stage 1 (Initial Estimation). For each j (j = 1, · · · , J) based on the observations from the

jth cluster, the partial log-likelihood function for (1.2) is

Lj(βj) =

Tj
∑

ℓ=1







∑

i∈Dℓ,j



XT
ijβj − log







∑

k∈Rℓ,j

exp
(

XT
kjβj

)

















. (2.4)
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Let β̃j = (β̃1,j · · · , β̃p,j) maximise (2.4). β̃j is an initial estimator of βj.

Stage 2 (Homogeneity Pursuit). Let β̃i,j be the ith component of β̃j. We sort β̃i,j,i = 1, · · · , p,
j = 1, · · · , J , in ascending order, and denote them by

b(1) ≤ · · · ≤ b(Jp)

We use rij to denote the rank of β̃i,j. Identifying the homogeneity among β̃i,j, i =

1, · · · , p, j = 1, · · · , J , is equivalent to detecting the change points among b(l),

l = 1, · · · , Jp. To this end, we apply the binary segmentation algorithm [Bai (1997);

Vostrikova (1981); Venkatraman (1993)] as follows.

For any 1 ≤ i < j ≤ Jp, let

∆ij(κ) =

√

(j − κ)(κ− i+ 1)

j − i+ 1

(

∑j
l=κ+1 b(l)

j − κ
−
∑κ

l=i b(l)
κ− i+ 1

)

Given a threshold δ, in practice, the binary segmentation algorithm to detect the

change points is as follows.

(1) Find k̂1 such that

∆1,Jp(k̂1) = max
1≤κ<Jp

∆1,Jp(κ).

If ∆1,Jp(k̂1) ≤ δ, there is no change point among b(l), l = 1, · · · , Jp, and the

process of detection ends. Otherwise, add k̂1 to the set of change points and

divide the region {κ : 1 ≤ κ ≤ Jp} into two subregions: {κ : 1 ≤ κ ≤ k̂1} and

{κ : k̂1 + 1 ≤ κ ≤ Jp}.
(2) Detect the change points in the two subregions obtained in (1). Let us address

the region {κ : 1 ≤ κ ≤ k̂1} first. Find k̂2 such that

∆1,k̂1
(k̂2) = max

1≤κ<k̂1

∆1,k̂1
(κ).

If ∆1,k̂1
(k̂2) ≤ δ, there is no change point in the region {κ : 1 ≤ κ ≤ k̂1}.

Otherwise, add k̂2 to the set of change points and divide the region {κ : 1 ≤ κ ≤
k̂1} into two subregions: {κ : 1 ≤ κ ≤ k̂2} and {κ : k̂2 + 1 ≤ κ ≤ k̂1}. For the

region {κ : k̂1 + 1 ≤ κ ≤ Jp}, we find k̂3 such that

∆k̂1+1,Jp(k̂3) = max
k̂1+1≤κ<Jp

∆k̂1+1,Jp(κ).
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If ∆k̂1+1,Jp(k̂3) ≤ δ, there is no change point in the region {κ : k̂1+1 ≤ κ ≤ Jp}.
Otherwise, add k̂3 to the set of change points and divide the region {κ : k̂1+1 ≤
κ ≤ Jp} into two subregions: {κ : k̂1+1 ≤ κ ≤ k̂3} and {κ : k̂3+1 ≤ κ ≤ Jp}.

(3) For each subregion obtained in (2), we do exactly the same as that for subregion

{κ : 1 ≤ κ ≤ k̂1} or {κ : k̂1 + 1 ≤ κ ≤ Jp} in (2), and continue doing so until

no subregion contains a change point.

We sort the estimated change points in ascending order and denote them by

k̂(1) < k̂(2) < · · · < k̂(Ĥ−1)
,

where Ĥ−1 is the number of change points detected. In addition, we denote k̂(0) = 0,

Ĥ = Ĥ−1 + 1, and k̂(Ĥ) = Jp. We use Ĥ to estimate H. Let

B̂ℓ = {(i, j) : k̂(ℓ−1) < rij ≤ k̂(ℓ)}, 1 ≤ ℓ ≤ Ĥ,

we use
{

B̂ℓ : 1 ≤ ℓ ≤ Ĥ
}

to estimate the partition {Bℓ : 1 ≤ ℓ ≤ H}. We consider

all the βi,js with the subscript (i, j) in the same estimated partition having the same

value.

Stage 3 (Final Estimation). Let L(ξ1, · · · , ξĤ) be
J
∑

j=1

Lj(βj)

with βi,j (i = 1, · · · , p, j = 1, · · · , J) being replaced by ξk if (i, j) ∈ B̂k. Let

(ξ̂1, · · · , ξ̂Ĥ) maximise L(ξ1, · · · , ξĤ). The final estimator β̂i,j of βi,j is ξ̂k if (i, j) ∈ B̂k.

Remark. The threshold δ used in Stage 2 can be selected by BIC, see Volinsky and Raftery

(2000) because the selection of δ is equivalent to the selection of the number of elements

in the partition, namely, the H in (1.3), which is the number of unknown parameters.

Therefore, BIC becomes a natural choice, which is why we use BIC to select δ.

2.2. Estimation of the common cumulative baseline hazard function and the impacts (λk,ls)

of the cluster-level variables

After obtaining the estimator for βj in (1.2), we estimate λk,l, l = 1, · · · , ck; k =

1, · · · , q, the impact of the categorical cluster-level variables and the common cumulative
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baseline hazard function.

Define the baseline hazard function for the jth cluster as

h1,j(t) = h0(t) exp

(

q
∑

k=1

ck
∑

l=1

λk,lwjk,l

)

. (2.5)

and the cumulative baseline hazard function as

Λ1,j(t) =

∫ t

0

h1,j(u)du

Breslow’s estimator for Λ1,j(t(ℓ),j) is

Λ̂1,j(t(ℓ),j) =
ℓ
∑

m=1







∑

k∈Rm,j

exp
(

XT
kjβ̂j

)







−1

. (2.6)

Let

L1,j(t) = log (Λ1,j(t)) , Λ0(t) =

∫ t

0

h0(u)du, L0(t) = log
(

Λ0(t)
)

;

we have

L1,j(t) = L0(t) +

q
∑

k=1

ck
∑

ℓ=1

λk,ℓwjk,ℓ.

This equation leads to the following synthetic regression model:

L̂1,j(t(ℓ),j) = L0(t(ℓ),j) +

q
∑

k=1

ck
∑

l=1

λk,lwjk,l + ǫℓ,j, ℓ = 1, · · · , Tj, j = 1, · · · , J, (2.7)

where L̂1,j(t(ℓ),j) = log
(

Λ̂1,j(t(ℓ),j)
)

.

Next, we consider the estimation of (2.7). Let t(1) < t(2) < · · · < t(N) be the distinct

values of t(ℓ),j, where ℓ = 1, · · · , Tj and j = 1, · · · , J . For each t(m), m = 1, · · · , N ,

applying local linear modelling, we obtain the following the local least squares procedure

J
∑

j=1

Tj
∑

ℓ=1

{

L̂1,j(t(ℓ),j)− a− b(t(ℓ),j − t(m))−
q
∑

k=1

ck
∑

l=1

λk,lwjk,l

}2

Kh(t(ℓ),j − t(m)), (2.8)

where Kh(·) = K(·/h)/h, K(·) is a kernel function, usually taken to be the Epanechnikov

kernel, K(u) = 0.75(1− u2)+. h is a bandwidth.

Let

(

ã(t(m)), b̃(t(m)), λ̃1,1(t(m)), · · · , λ̃1,c1(t(m)), · · · , λ̃q,1(t(m)), · · · , λ̃q,cq(t(m))
)
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be the minimizer of (2.8). The estimators for λk,l are taken to be

λ̂k,l =
1

N

N
∑

m=1

λ̃k,l(t(m)), l = 1, · · · , ck, k = 1, · · · , q. (2.9)

The estimator for L0(t(m)), m = 1, · · · , N , is taken to be ã(t(m)), which leads to the following

initial estimator for the common cumulative baseline hazard function at t(m)

Λ̃0(t(m)) = exp
{

ã(t(m))
}

, m = 1, · · · , N.

Viewing
(

t(m), Λ̃0(t(m))
)

, m = 1, · · · , N , as a sample from the non-parametric regression

model

η = Λ0(t) + ε,

and using local linear modelling, we obtain the estimator Λ̂0(·) of Λ0(·).

3. Asymptotic properties

In this section, we present the asymptotic properties of the proposed estimators. First, we

introduce some notation. We assumeH is fixed and letN =
J
∑

j=1

nj. For the ith subject in the

jth cluster, let Nij(t) = I(tij ≤ t, δij = 1) and Yij(t) = I(tij ≥ t) be the counting process and

the at-risk process, respectively. We use τ to denote the study ending time as in Bradic et al.

(2011). Let the σ-filtration Ft = σ{Nij(s), Yij(s), s ≤ t, i = 1, ..., nj, j = 1, ..., J}. Denote

β∗
j as the true value of βj and Λij(t) =

∫ t

0
Yij(u) exp (X

T
ijβ

∗)h1,j(u)du. With respect to the

filtration {Ft, t ≥ 0}, Mij(t) = Nij(t) −
∫ t

0
Yij(u) exp (X

T
ijβ

∗)h1,j(u)du, i = 1, ..., nj, j =

1, ..., J, t ≥ 0 are (local) martingales with predictable variation/covariation processes

< Mij,Mij > (t) = Λij(t) and < Mij,Mi′j′ > (t) = 0, when i 6= i
′

or j 6= j
′

.

Let ⊗ denote the outer product. Define

S
(ℓ)
j (t, β) = n−1

j

nj
∑

i=1

X⊗ℓ
ij Yij(t) exp (β

TXij), ℓ = 0, 1, 2,

Ej(t, β) =
S
(1)
j (t, β)

S
(0)
j (t, β)

,
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and

Vj(t, β) =
S
(2)
j (t, β)

S
(0)
j (t, β)

− Ej(t, β)
⊗2.

By differentiation and the rearrangement of terms, it can be shown as in Andersen and Gill

(1982) that the gradient of Lj(β) is

L̇j(β) ≡
∂Lj(β)

∂β
=

nj
∑

i=1

∫ t

0

[Xij − Ej(u,β)]dNij(u),

and the Hessian matrix of Lj(β) is

L̈j(β) ≡
∂2L(β)
∂β∂βT

= −
nj
∑

i=1

∫ t

0

Vj(u,β)dNij(u).

Let n = min
1≤j≤J

nj and ∆ = min
2≤k≤H

|β(k) − β(k−1)|. Assume that n → ∞. Suppose K is a

sufficiently large positive constant. Next, we list the following regularity conditions.

CONDITION 1. (i) For any 1 ≤ j ≤ J , the unknown parameter βj belongs to a compact

subset of Rp, the true parameter value β∗
j lies in its interior, and ‖λ‖ ≤ K.

(ii) The covariates satisfy

max
1≤j≤J

max
i<i

′≤nj

max
1≤k≤p

|Xijk −Xi′jk| ≤ K,

and max
j

‖Wj‖ ≤ K.

(iii). There exists a positive constant c0, and with probability tending to 1,

inf
1≤j≤J

inf
‖b‖=1,b∈Rp

∫ t(Tj),j

0

bTVj(u,β
∗
j)S

(0)
j (u,β∗

j)bh0(u)du ≥ c0.

(iv). We assume
log J

n
= o(∆2).

Remark 1. Conditions 1(i)-(iii) are standard for asymptotic analyses and 1(iv) allows the

number of clusters to diverge at a rate slower than the polynomial rate of the minimum

cluster size.

CONDITION 2. (i) Assume that Jp log(Jp) = o(
√
n).

(ii) There exists a positive constant c0 such that min
1≤i,j≤H

si
sj

≥ c0.
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(iii) ∆ = min
2≤ℓ≤H

(β(ℓ) − β(ℓ−1)) >
1
K
.

(iv) δ ≥ 1
K

and δ = o(
√
Jp).

Remark 2. Condition 2(i) allows both the number of covariates p and the number of clus-

ters J to diverge, at a rate more stringent than Condition 1(iv) but still reasonable in most

applications. Condition 2(ii) assumes that the sizes of the clusters have about the same

magnitude to ensure that the limiting distribution will not be dominated by the informa-

tion from a subset of the clusters with dominating sizes, for the ease of the exposition of

asymptotic results. Condition 2(iii) is similar to the separability condition in k-means or

hierarchical clustering, requiring that the true H distinct values of the regression coefficients

are separable by 1/K. Condition 2(iv) specifies the range for the rate of δ.

CONDITION 3. Assume that In(u) = N−1
J
∑

j=1

nj
∑

i=1

YijΨ
T
j Vj(u,Ψjξ

∗)Ψj exp (X
T
ijΨ

T
j ξ

∗ + λTWj) →

I(u), in probability, for almost all u in [0, τ ] and that I =
∫ τ

0
I(u)h0(u)du is positive defi-

nite.

CONDITION 4. There exist functions s
(0)
j (t, βj) and ej(t, βj), 1 ≤ j ≤ J , such that

max
1≤j≤J

sup
0≤t≤τ

|S(0)
j (t,Ψjξ

∗)− s
(0)
j (t,Ψjξ

∗)| → 0

in probability as n→ ∞, and

max
1≤j≤J

sup
0≤t≤τ

|Ej(t,Ψjξ
∗)− ej(t,Ψjξ

∗)| → 0

in probability as n→ ∞.

Denote the condition survival function of Cij given the cluster effect by Ḡij(t) = P (Cij >

t|Wj) and the conditional density function of tij by fij(t) = dP (tij ≤ t|Wj)/dt.

CONDITION 5. (i) Let K(·) be a symmetric and bounded kernel density function with a

bounded support.

(ii) h→ 0 and Nh2 → ∞.

(iii) fij and Ḡij have continuous derivatives in [0, τ ].

(iv) As n→ ∞,

sup
0≤t≤τ

| 1N
J
∑

j=1

nj
∑

i=1

fij(t)Ḡij(t)W̃jW̃
T
j − Ω(t)| → 0

12



in probability, where for any t, Ω(t) is a (c + 1) × (c + 1) symmetric and positive definite

matrix.

(v) Assume that for any 0 ≤ t1, t2 ≤ τ ,

N−1

J
∑

j=1

njW̃jW̃
T
j s

(0)
j (t1,Ψjξ

∗)

∫ t1

0

[s
(0)
j (u,Ψjξ

∗)]−1h1,j(u)dus
(0)
j (t2,Ψjξ

∗)

∫ t2

0

[s
(0)
j (v,Ψjξ

∗)]−1h1,j(v)dv

→ ζ(t1, t2),

and

N−1(
J
∑

j=1

njW̃js
(0)
j (t1,Ψjξ

∗)

∫ t1

0

eTj (u,Ψjξ
∗)h1,j(u)duΨ

T
j ) → Υ(t1),

where ζ(t1, t2) and Υ(t1) are (c+ 1)× (c+ 1) and (c+ 1)×H matrices, respectively.

Remark 3. Conditions 3, 4 and 5 (iii)-(v) are standard regularity conditions for Cox

modelling and conditions 5 (i)-(ii) are standard for kernel smoothing.

We assume that H is fixed. Let N =
J
∑

j=1

nj.

Theorem 1. Under the conditions 1-3, for any given j, we have

N 1/2
(

β̂j − βj

)

D−→ N(0p,ΨjI−1ΨT
j ).

Theorem 1 shows that the proposed estimator β̂j is asymptotically normal and has a

convergence rate of order N−1/2, which is a higher order of n
−1/2
j . In fact, it is the highest

order an estimator can achieve even for the case where there is no clustering, which implies

the homogeneity pursuit in the estimation procedure significantly improves the accuracy of

the estimators of the βjs.

Theorem 2. Under conditions 1-5, when Nh4 → 0, we have

N 1/2
(

λ̂k,l − λk,l

)

D−→ N(0, eTk,ℓΩ̄
−2
11 ν̄22ek,ℓ).

13



Theorem 2 shows that the proposed estimator λ̂k,l is also asymptotically normal and has

a convergence rate of order N−1/2.

Theorem 3. Under conditions 1-5, when Nh4 → 0, for any given t, we have

N 1/2
(

Λ̂0(t)− Λ0(t)
)

D−→ N(0, Λ2
0(t)ν11(t, t)).

Theorem 3 shows that the proposed estimator Λ̂0(t) for the common cumulative baseline

hazard function is asymptotically normal and has a convergence rate of order N−1/2, which

is the highest order an estimator of a monotonic function can achieve.

4. Simulation studies

In this section, we use a simulated example to assess the performance of the proposed esti-

mation procedure. As the homogeneity pursuit in the estimation procedure is of importance

in its own right, we are also going to examine the accuracy of the proposed homogeneity

pursuit in identifying the true homogeneity structure.

We set h0(t) = 1, p = 2, q = 1, cq = 2, and βj = (1, 2)T. When j is odd, βj = (−1, −2)T;

when j is even, λ1,1 = 1, and λ1,2 = −2 in model (1.2), H = 4 in the homogeneity structure

(1.3), then data are generated from model (1.2). We first generate the Xijs and Wjs,

then yij, given Xij and Wj, for each (XT
ij, Wj), hence, the generated (yij, X

T
ij, Wj)s. Once

(yij, X
T
ij, Wj)s are generated, we generate the censoring times tijs, and obtain the generated

observations (tij, X
T
ij, Wj, δij). The details about how the data are generated are as follows:

We generate the independent and identically distributed observations Xij, i = 1, · · · , nj,

j = 1, · · · , J , of the individual-level variable from the bivariate normal distribution with

mean zero and covariance matrix





1.0 0.2

0.2 1.0



. The observations wj1, j = 1, · · · , J ,

of the cluster-level variable are independently and identically generated from a multino-

mial distribution with 3 categories with the probability for each category of 1/3, namely

Multi(1, 1/3, 1/3, 1/3). Based on the generated wj1s, we can obtain the generated obser-

14



vations wj1,1 and wj1,2, j = 1, · · · , J , of the two dummy variables created from the swj1s

by setting the first category as the reference level.

Once the Xijs and Wjs are generated, for each (XT
ij, Wj), yij, given (XT

ij, Wj), is gener-

ated as follows:

from

h(t|Xij,Wj) = h0(t) exp
(

XT
ijβj + wj1,1λ1,1 + wj1,2λ1,2

)

we have
∫ t

0

h(u|Xij,Wj)du = Λ0(t) exp
(

XT
ijβj + wj1,1λ1,1 + wj1,2λ1,2

)

.

Since
∫ t

0

h(u|Xij,Wj)du = −log(1− Fy(t|Xij,Wj)),

where Fy(t|Xij,Wj) is the conditional distribution of yij given (Xij,Wj), we have

Λ0(yij) exp
(

XT
ijβj + wj1,1λ1,1 + wj1,2λ1,2

)

= −log(1− Fy(yij|Xij,Wj)).

It is easy to see that −log(1− Fy(yij|Xij,Wj)), given Xij and Wj, follows a standard expo-

nential distribution, and Λ0(yij) = yij as h0(t) = 1. Therefore, we generate an ǫij from a

standard exponential distribution, and yij, given (XT
ij, Wj), can be generated through

yij = exp
(

−XT
ijβj − wj1,1λ1,1 − wj1,2λ1,2

)

ǫij,

we therefore have the generated (yij, X
T
ij, Wj)s.

The censoring times (cijs) are independently and identically generated from the uniform

distribution U(0, 10), and the observed survival times tijs and censoring indicators δijs are

generated through

tij = min(yij, cij), δij = I(yij > cij).

We therefore have the generated observations (tij, X
T
ij, Wj, δij).

We use 95% confidence intervals for each component of βj and λ1,l and

MSEβ =
1

J

J
∑

j=1

E
(

‖β̂j − βj‖2
)

, MSEλ =
1

2

2
∑

l=1

E(λ̂1,l − λ1,l)
2

15



to evaluate the estimators (β̂js) and λ̂1,ls. Furthermore, we use

MISE(Λ0) = E

{∫

(

Λ̂0(t)− Λ0(t)
)2

dt

}

to evaluate Λ̂0(·), and the normalized mutual information (NMI), see Ke et al.(2015), to

measure how close the estimated homogeneity structure is to the true homogeneity structure.

The NMI is defined as follows:

Let A = {A1, A2, · · ·} and B = {B1, B2, · · ·} be two partitions of a set of cardinality

k. For any set S, we use |S| to denote the cardinality of S. The NMI between A and B is

defined as

NMI(A, B) =
2I(A, B)

H(A) +H(B)
,

where

I(A, B) =
∑

i,j

|Ai ∩ Bj|
k

log
(k|Ai ∩ Bj|

|Ai||Bj|
)

, H(A) =
∑

i

|Ai|
k

log
( k

|Ai|
)

.

The NMI ranges between 0 and 1 with a large value indicating a high degree of similarity

between the two partitions, A and B.

In all numerical studies in this paper, we use BIC to select the threshold δ needed in the

homogeneity pursuit step in the proposed estimation procedure. The Epanechnikov kernel

is used, and a rule-of-thumb bandwidth is adopted when estimating λ1,1, λ1,2 and Λ0(·).
Our simulation studies are conducted under either a balanced design or an unbalanced

design. For the cases with balanced designs, we set the number of clusters to be either 40,

80, or 120, and the cluster size to be either 40, 80, or 120. For the cases with unbalanced

designs, we still set the number of clusters to be either 40, 80, or 120, but the cluster sizes,

the njs, to be the absolute values of the integer parts of the random variables generated

from the uniform distribution U(n̄− 10, n̄+ 10), where n̄ is set to be either 40, 80, or 120.

In each case, we perform 100 simulations.

The average censoring rate across the 100 simulations for each case is presented in Table

1, which shows that all cases concerned share similar censoring rates.

We first examine the accuracy of the proposed homogeneity pursuit in identifying the

true homogeneity structure. We compare our proposed method with the K-means estimation
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Table 1: The Average Censoring Rate for Each Case Investigated

Balanced Design Unbalanced Design

nj = 40 nj = 80 nj = 120 n̄ = 40 n̄ = 80 n̄ = 120

J = 40 0.300 0.306 0.302 0.304 0.307 0.305

J = 80 0.301 0.300 0.303 0.307 0.303 0.304

J = 120 0.303 0.302 0.302 0.304 0.304 0.302

method using the number of clusters k = 4. The K-means method is executed by the

kmeans function in R using the algorithm proposed by Hartigan and Wong (1979). For each

case, we compute the NMI between the identified homogeneity structure, by the proposed

pursuit, and the true homogeneity structure for each of the 100 simulations for that case,

and present the median of the obtained 100 NMIs in Table 2. Table 2 shows that there is

no large differences between the balanced cases and the unbalanced cases on the accuracy of

the proposed homogeneity pursuit, and the proposed homogeneity pursuit works well in any

case and performs better than the K-means method. Interestingly, the number of clusters

does not have much impact on the accuracy of the proposed homogeneity pursuit.

Table 2: The Median of the NMIs for Each Case Investigated

The Proposed Method

Balanced Design Unbalanced Design

nj = 40 nj = 80 nj = 120 n̄ = 40 n̄ = 80 n̄ = 120

J = 40 0.835 0.964 1.000 0.846 0.964 1.000

J = 80 0.825 0.964 1.000 0.817 0.961 1.000

J = 120 0.817 0.954 0.985 0.809 0.956 1.000

The K-Means Method

Balanced Design Unbalanced Design

nj = 40 nj = 80 nj = 120 n̄ = 40 n̄ = 80 n̄ = 120

J = 40 0.744 0.802 0.813 0.758 0.804 0.810

J = 80 0.738 0.800 0.813 0.744 0.803 0.806

J = 120 0.737 0.797 0.808 0.726 0.800 0.801

We now turn to examining the accuracy of the proposed estimation procedure. We

are not only interested in the accuracy of the proposed estimation procedure but also the
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improvement of the proposed method over the K-means method, the over-fitting method, and

the under-fitting method. The over-fitting method is the method without the homogeneity

pursuit when estimating the βjs, which is basically the initial estimation of the proposed

method for estimating the βjs. The under-fitting method is the method that assumes that

all clusters share the same βj when estimating the βjs. The K-Means method, over-fitting

method and under-fitting method estimate λ1,1, λ1,2 and Λ0(·) in the same way as the

proposed method once the estimators of βjs are obtained.

For each case, in each of the 100 simulations for that case, we apply either the proposed

estimation procedure, the K-means method, the over-fitting method, or the under-fitting

method to estimate the βjs, λ1,1, λ1,2 and Λ0(·). We report the 95% confidence intervals for

each component of the βjs and the λ1,ls and compute the MSEβ, MSEλ and MISE(Λ0) of

the estimators obtained by each of the four methods. The results are presented in Tables

3-7 for balanced design cases and in Tables 8-12 for unbalanced design cases. From these

tables, we can see the balanced design cases tell the same story as the unbalanced design

cases, and the proposed estimation procedure works well for any of the cases.

Compared with the K-means method, the over-fitting method and the under-fitting

method, the proposed method yields significant improvement in the accuracy of the es-

timators of the βjs, the impact of individual-level variables. However, when it comes to

estimate the impact of the cluster-level variables, λ1,1, λ1,2, or the common cumulative base-

line hazard function Λ0(·), the K-means method and the over-fitting method perform as

well as the proposed method because the only problem with the K-means method or the

over-fitting method is that the variances of the estimators of βjs would be large, and the

estimation of λ1,1, λ1,2, and Λ0(·), after the estimators of βjs are obtained, is essentially a

smoothing operation. The effect of the variances of the estimators of the βjs can be reduced

with smoothing, so that the variances of the estimators of the βjs do not have much effect on

the estimation of λ1,1, λ1,2, and Λ0(·), which is why the K-means method and the over-fitting

method perform as well as the proposed method when estimating λ1,1, λ1,2, and Λ0(·). The
under-fitting method performs poorly irrespective of the parameter being estimated because

under-fitting comes with a large bias, and the bias cannot be reduced by smoothing.
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Table 3: The 95% Confidence Intervals for Each Component of βjs for Each Case Under Bal-

anced Designs

The Proposed Method The K-Means Method

J βi,j nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 1 (0.932, 1.165) (0.958, 1.072) (0.966, 1.047) (1.002, 1.218) (1.025, 1.157) (1.003, 1.113)

2 (1.825, 2.068) (1.936, 2.051) (1.967, 2.016) (1.535, 1.916) (1.559, 1.907) (1.686, 1.974)

-1 (-1.170, -0.960) (-1.084, -0.969) (-1.058, -0.986) (-1.198, -0.981) (-1.155, -1.023) (-1.141, -1.033)

-2 (-2.087, -1.764) (-2.043, -1.851) (-2.037, -1.856) (-2.032, -1.637) (-1.909, -1.560) (-1.896, -1.567)

80 1 (0.995, 1.139) (0.974, 1.049) (0.983, 1.022) (1.038, 1.188) (1.036, 1.130) (1.029, 1.102)

2 (1.865, 2.064) (1.958, 2.031) (1.977, 2.015) (1.666, 1.943) (1.650, 1.887) (1.685, 1.903)

-1 (-1.139, -0.998) (-1.043, -0.977) (-1.021, -0.984) (-1.193, -1.040) (-1.130, -1.039) (-1.125, -1.048)

-2 (-2.062, -1.851) (-2.029, -1.942) (-2.016, -1.968) (-1.913, -1.641) (-1.866, -1.625) (-1.831, -1.595)

120 1 (1.000, 1.122) (0.985, 1.046) (0.987, 1.011) (1.038, 1.158) (1.057, 1.132) (1.037, 1.096)

2 (1.881, 2.048) (1.961, 2.024) (1.984, 2.015) (1.716, 1.932) (1.631, 1.831) (1.687, 1.869)

-1 (-1.110, -0.995) (-1.035, -0.981) (-1.017, -0.988) (-1.157, -1.037) (-1.116, -1.042) (-1.105, -1.043)

-2 (-2.036, -1.863) (-2.024, -1.957) (-2.012, -1.979) (-1.899, -1.678) (-1.86, -1.664) (-1.853, -1.668)

Over-fitting Method Under-fitting Method

J βi,j nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 1 (0.915, 1.184) (0.947, 1.116) (0.950, 1.089) (-1.250, -0.945) (-1.119, -0.967) (-1.086, -0.970)

2 (1.914, 2.295) (1.935, 2.188) (1.937, 2.124) (-2.336, -1.968) (-2.210, -1.953) (-2.123, -1.938)

-1 (-1.192, -0.916) (-1.116, -0.943) (-1.091, -0.957) (-1.250, -0.945) (-1.119, -0.967) (-1.086, -0.970)

-2 (-2.320, -1.927) (-2.176, -1.932) (-2.129, -1.939) (-2.336, -1.968) (-2.210, -1.953) (-2.123, -1.938)

80 1 (0.973, 1.167) (0.969, 1.089) (0.971, 1.063) (-1.164, -0.981) (-1.077, -0.962) (-1.058, -0.959)

2 (1.993, 2.281) (1.976, 2.149) (1.968, 2.098) (-2.215, -1.985) (-2.144, -1.971) (-2.062, -1.945)

-1 (-1.162, -0.972) (-1.087, -0.966) (-1.063, -0.970) (-1.164, -0.981) (-1.077, -0.962) (-1.058, -0.959)

-2 (-2.261, -1.988) (-2.137, -1.964) (-2.095, -1.965) (-2.215, -1.985) (-2.144, -1.971) (-2.062, -1.945)

120 1 (0.986, 1.147) (0.982, 1.081) (0.977, 1.053) (-1.154, -0.975) (-1.060, -0.961) (-1.050, -0.973)

2 (2.016, 2.246) (1.989, 2.130) (1.983, 2.092) (-2.173, -1.964) (-2.143, -2.001) (-2.070, -1.963)

-1 (-1.136, -0.975) (-1.074, -0.976) (-1.055, -0.979) (-1.154, -0.975) (-1.060, -0.961) (-1.050, -0.973)

-2 (-2.242, -2.009) (-2.127, -1.987) (-2.088, -1.980) (-2.173, -1.964) (-2.143, -2.001) (-2.070, -1.963)

5. Analysis of the second-birth interval in Bangladesh

In this section, we apply the proposed multilevel modelling together with the proposed

estimation procedure to analyse the dataset that motivates this paper. The data are ex-

tracted from the Bangladesh Demographic and Health Survey conducted by the government

of the People’s Republic of Bangladesh. The sample is nationally representative and is based

on 7464 women nested within 125 primary sampling clusters, with sample sizes ranging from
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Table 4: The 95% Confidence Intervals for Each Component of λ1,ls for Each Case Under

Balanced Designs

The Proposed Method The K-Means Method

J λ1,l nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 1 (0.697, 1.083) (0.804, 1.029) (0.812, 1.019) (0.637, 1.070) (0.720, 1.013) (0.772, 0.980)

-2 (-2.162, -1.663) (-2.092, -1.752) (-2.072, -1.793) (-2.142, -1.540) (-2.040, -1.602) (-2.049, -1.653)

80 1 (0.784, 1.033) (0.852, 1.004) (0.877, 0.995) (0.716, 1.026) (0.758, 0.994) (0.785, 0.984)

-2 (-2.108, -1.744) (-2.040, -1.809) (-2.015, -1.861) (-2.049, -1.661) (-2.012, -1.646) (-2.019, -1.650)

120 1 (0.811, 1.003) (0.865, 0.988) (0.890, 0.985) (0.759, 0.993) (0.769, 0.974) (0.796, 0.978)

-2 (-2.104, -1.769) (-2.017, -1.853) (-2.006, -1.875) (-2.074, -1.680) (-1.992, -1.679) (-2.027, -1.663)

Over-fitting Method Under-fitting Method

J λ1,l nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 1 (0.580, 1.227) (0.707, 1.138) (0.777, 1.104) (-0.867, 0.707) (-0.701, 0.937) (-0.944, 0.942)

-2 (-2.440, -1.585) (-2.255, -1.740) (-2.192, -1.763) (-0.939, 0.847) (-0.969, 1.088) (-0.936, 0.909)

80 1 (0.752, 1.143) (0.775, 1.097) (0.830, 1.050) (-0.620, 0.532) (-0.528, 0.544) (-0.596, 0.644)

-2 (-2.312, -1.760) (-2.194, -1.763) (-2.106, -1.809) (-0.610, 0.563) (-0.696, 0.610) (-0.665, 0.657)

120 1 (0.756, 1.101) (0.821, 1.049) (0.860, 1.046) (-0.503, 0.522) (-0.482, 0.415) (-0.469, 0.465)

-2 (-2.352, -1.771) (-2.125, -1.853) (-2.103, -1.835) (-0.418, 0.458) (-0.549, 0.555) (-0.541, 0.413)

Table 5: The MSEβs for Each Case Under Balanced Designs

The Proposed Method The K-Means Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.088 0.027 0.009 0.180 0.113 0.095

80 0.083 0.016 0.004 0.158 0.117 0.090

120 0.091 0.014 0.003 0.154 0.111 0.092

Over-fitting Method Under-fitting Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.174 0.058 0.035 5.695 5.243 5.138

80 0.157 0.060 0.036 5.410 5.214 5.196

120 0.158 0.059 0.035 5.677 5.176 5.060

from 17 to 242 women.

The second-birth interval is an important indicator for family planning. The effects of

the covariates that are commonly found to be associated with the second-birth interval on

the length of the second-birth interval is of great importance. In this section, we explore

these effects based on the data extracted.
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Table 6: The MSEλs for Each Case Under Balanced Designs

The Proposed Method The K-Means Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.023 0.014 0.009 0.039 0.031 0.025

80 0.015 0.008 0.005 0.032 0.029 0.022

120 0.011 0.006 0.005 0.025 0.025 0.022

Over-fitting Method Under-fitting Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.048 0.019 0.014 2.572 2.641 2.653

80 0.018 0.010 0.009 2.544 2.592 2.537

120 0.014 0.007 0.006 2.600 2.554 2.452

Table 7: The MISE(Λ0)s for Each Case Under Balanced Designs

The Proposed Method The K-Means Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.635 0.186 0.119 0.873 0.459 0.430

80 0.362 0.127 0.058 0.620 0.304 0.288

120 0.309 0.129 0.065 0.587 0.433 0.313

Over-fitting Method Under-fitting Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.719 0.178 0.110 7.579 7.695 7.606

80 0.311 0.106 0.059 7.645 7.695 7.705

120 0.266 0.108 0.066 7.889 7.820 7.856

Let yij be the duration in months between the first birth and the second birth for the ith

woman in the jth cluster. As 19.35% of the women in the sample had not given second birth

by the time of the survey, 19.35% of the yijs are censored. The important covariates have

been identified as potential explanatory variables based on previous research (see Zhang

and Steele (2004)). They are year of marriage (continuous), women’s level of education

(categorized as none, primary, and secondary or higher; “none” is taken to be the reference

in the modelling), religion (Muslim or other; “Muslim” is taken to be the reference in the

modelling) and sex or survival status of the first child (girl, boy, or deceased; and “girl” is

taken to be the reference in the modelling). In addition, we also consider two cluster level

covariates: region of residence (rural and urban; “rural” is taken to be the reference in the
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Table 8: The 95% Confidence Intervals for Each Component of βjs for Each Case Under Un-

balanced Designs

The Proposed Method The K-Means Method

J βi,j nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 1 (0.949, 1.156) (0.950, 1.078) (0.977, 1.034) (1.003, 1.205) (1.014, 1.157) (1.032, 1.139)

2 (1.843, 2.080) (1.924, 2.043) (1.980, 2.028) (1.614, 1.993) (1.587, 1.932) (1.568, 1.900)

-1 (-1.179, -0.969) (-1.081, -0.970) (-1.049, -0.983) (-1.208, -0.993) (-1.154, -1.016) (-1.122, -1.014)

-2 (-2.093, -1.753) (-2.047, -1.850) (-2.050, -1.873) (-2.015, -1.605) (-1.933, -1.599) (-1.951, -1.630)

80 1 (0.998, 1.156) (0.977, 1.042) (0.987, 1.023) (1.034, 1.202) (1.032, 1.116) (1.046, 1.119)

2 (1.840, 2.061) (1.953, 2.027) (1.986, 2.017) (1.671, 1.958) (1.668, 1.894) (1.627, 1.862)

-1 (-1.135, -0.996) (-1.036, -0.972) (-1.019, -0.986) (-1.191, -1.047) (-1.114, -1.023) (-1.123, -1.045)

-2 (-2.065, -1.843) (-2.029, -1.946) (-2.014, -1.979) (-1.880, -1.604) (-1.902, -1.672) (-1.846, -1.616)

120 1 (1.003, 1.127) (0.984, 1.043) (0.990, 1.018) (1.060, 1.188) (1.056, 1.131) (1.053, 1.114)

2 (1.871, 2.046) (1.960, 2.024) (1.991, 2.015) (1.635, 1.863) (1.634, 1.830) (1.647, 1.837)

-1 (-1.119, -1.007) (-1.033, -0.983) (-1.015, -0.988) (-1.170, -1.052) (-1.109, -1.037) (-1.095, -1.035)

-2 (-2.050, -1.880) (-2.019, -1.945) (-2.016, -1.980) (-1.903, -1.677) (-1.873, -1.683) (-1.875, -1.695)

Over-fitting Method Under-fitting Method

J βi,j nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 1 (0.927, 1.187) (0.938, 1.109) (0.956, 1.086) (-1.096, -0.874) (-1.121, -0.961) (-1.093, -0.933)

2 (1.932, 2.314) (1.931, 2.177) (1.948, 2.132) (-2.246, -1.880) (-2.184, -1.966) (-2.190, -1.952)

-1 (-1.203, -0.919) (-1.112, -0.941) (-1.083, -0.951) (-1.096, -0.874) (-1.121, -0.961) (-1.093, -0.933)

-2 (-2.336, -1.932) (-2.164, -1.928) (-2.134, -1.946) (-2.246, -1.880) (-2.184, -1.966) (-2.190, -1.952)

80 1 (0.972, 1.177) (0.968, 1.084) (0.973, 1.065) (-1.217, -0.988) (-1.094, -0.976) (-1.078, -0.989)

2 (1.987, 2.285) (1.969, 2.135) (1.972, 2.104) (-2.401, -2.075) (-2.157, -1.980) (-2.086, -1.956)

-1 (-1.163, -0.961) (-1.080, -0.962) (-1.065, -0.972) (-1.217, -0.988) (-1.094, -0.976) (-1.078, -0.989)

-2 (-2.286, -1.993) (-2.141, -1.968) (-2.100, -1.968) (-2.401, -2.075) (-2.157, -1.980) (-2.086, -1.956)

120 1 (0.986, 1.154) (0.980, 1.078) (0.981, 1.057) (-1.140, -0.985) (-1.060, -0.962) (-1.030, -0.955)

2 (2.004, 2.244) (1.989, 2.127) (1.987, 2.095) (-2.336, -2.048) (-2.100, -1.955) (-2.055, -1.936)

-1 (-1.146, -0.987) (-1.074, -0.977) (-1.054, -0.978) (-1.140, -0.985) (-1.060, -0.962) (-1.030, -0.955)

-2 (-2.251, -2.017) (-2.120, -1.979) (-2.092, -1.981) (-2.336, -2.048) (-2.100, -1.955) (-2.055, -1.936)

modelling) and administrative division (Barisal, Chittagong, Dhaka, Kulna, Rajshahi, and

Sylhet; “Barisal” is taken to be the reference in the modelling).

We apply the proposed model (1.2) together with the homogeneity structure (1.3) to

fit the data. The proposed estimation procedure is used to construct the estimates of the

unknown parameters; the threshold δ used in the homogeneity pursuit is set to 4, the

bandwidth for producing the estimates of the coefficients of the cluster level variables is

set to 25% of the range of the second-birth interval across all the clusters, and the kernel
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Table 9: The 95% Confidence Intervals for Each Component of λ1,ls for Each Case Under

Unbalanced Designs

The Proposed Method The K-Means Method

J λ1,l nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 1 (0.734, 1.060) (0.806, 1.030) (0.829, 1.026) (0.708, 1.032) (0.729, 1.010) (0.751, 1.005)

-2 (-2.153, -1.638) (-2.102, -1.744) (-2.061, -1.789) (-2.157, -1.522) (-2.084, -1.627) (-2.035, -1.631)

80 1 (0.804, 1.014) (0.839, 1.003) (0.873, 0.987) (0.743, 0.999) (0.754, 0.999) (0.771, 0.972)

-2 (-2.114, -1.721) (-2.046, -1.816) (-2.033, -1.854) (-2.063, -1.620) (-2.045, -1.658) (-2.009, -1.671)

120 1 (0.818, 1.014) (0.866, 0.993) (0.896, 0.978) (0.732, 1.001) (0.784, 0.972) (0.789, 0.978)

-2 (-2.084, -1.770) (-2.013, -1.838) (-2.018, -1.881) (-2.037, -1.682) (-1.998, -1.680) (-2.018, -1.684)

Over-fitting Method Under-fitting Method

J λ1,l nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 1 (0.619, 1.285) (0.732, 1.163) (0.777, 1.112) (-0.797, 0.918) (-0.844, 0.998) (-0.947, 0.874)

-2 (-2.440, -1.566) (-2.266, -1.657) (-2.189, -1.764) (-0.89, 0.863) (-0.862, 0.906) (-0.940, 0.811)

80 1 (0.723, 1.167) (0.779, 1.062) (0.825, 1.063) (-0.554, 0.604) (-0.504, 0.496) (-0.630, 0.628)

-2 (-2.360, -1.709) (-2.193, -1.787) (-2.108, -1.827) (-0.625, 0.627) (-0.617, 0.534) (-0.640, 0.598)

120 1 (0.790, 1.119) (0.823, 1.056) (0.834, 1.055) (-0.395, 0.503) (-0.547, 0.438) (-0.542, 0.507)

-2 (-2.299, -1.748) (-2.152, -1.801) (-2.132, -1.832) (-0.471, 0.426) (-0.559, 0.489) (-0.504, 0.470)

Table 10: The MSEβs for Each Case Under Unbalanced Designs

The Proposed Method The K-Means Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.088 0.024 0.006 0.164 0.112 0.099

80 0.097 0.015 0.004 0.163 0.095 0.105

120 0.093 0.014 0.004 0.172 0.106 0.110

Over-fitting Method Under-fitting Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.167 0.058 0.036 5.432 5.176 5.031

80 0.180 0.060 0.036 5.258 5.203 5.107

120 0.170 0.061 0.036 5.394 5.210 5.122

function involved is the Epanechnikov kernel. Figure 1 shows the graph of the sorted initial

estimates for each individual-level variable. It is very interesting that the range of initial

estimates for year of marriage is much smaller than the estimates for other variables. The

obtained final results are presented in Table 13.

To explain Table 13, we use the category “Primary” of the covariate “Education” as
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Table 11: The MSEλs for Each Case Under Unbalanced Designs

The Proposed Method The K-Means Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.021 0.013 0.007 0.034 0.031 0.026

80 0.013 0.007 0.005 0.032 0.023 0.025

120 0.010 0.006 0.005 0.025 0.023 0.025

Over-fitting Method Under-fitting Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.034 0.019 0.014 2.578 2.561 2.646

80 0.019 0.009 0.007 2.577 2.513 2.548

120 0.017 0.008 0.005 2.551 2.547 2.499

Table 12: The MISE(Λ0)s for Each Case Under Unbalanced Designs

The Proposed Method The K-Means Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.620 0.176 0.097 0.666 0.415 0.344

80 0.335 0.112 0.062 0.596 0.360 0.344

120 0.360 0.115 0.058 0.658 0.397 0.362

Over-fitting Method Under-fitting Method

J nj = 40 nj = 80 nj = 120 nj = 40 nj = 80 nj = 120

40 0.520 0.177 0.110 7.348 7.727 7.695

80 0.328 0.104 0.070 7.813 7.881 7.839

120 0.296 0.114 0.060 7.755 7.933 7.864

an example. The 28.08% in the brackets following “Primary” means 28.08% of the women

in the data have primary school education. In the column “Estimate”, there are 2 values

corresponding to “Primary”, which means, as far as the coefficient of the dummy variable,

which takes value 1 when the woman of interest has a primary school education, 0 other-

wise, is concerned, the clusters in the data are grouped into 2 groups by the homogeneity

pursuit in the proposed estimation procedure, and the clusters in the same group share the

same coefficient. Specifically, the coefficient is −0.280 for group 1 and 0.251 for group 2.

The entries in the column “Standard Error” are the standard errors of the corresponding

estimates. The corresponding entry in the column “% of sample”, say, for example, 57.06,

means group 1 accounts for 57.06% of the total number of clusters in the data.
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From Table 13, we can see that, compared with women with no education, women who

were educated at a primary school level or beyond have a longer second-birth interval for

more than half of the clusters. This finding can be interpreted as educated women tend to

be more devoted to their careers and are, therefore, more likely to delay giving birth to their

second child. However, we can also see from Table 13 that there is a small number of clusters

in which women who were educated at a primary school level have shorter second-birth

intervals. For most of the clusters, Muslims have shorter second-birth intervals. However,

there are some clusters where Muslims have longer second-birth intervals. This finding

indicates that there may be some cultural difference between these clusters and others.

Compared with the first child being a girl, if the first child is a boy, the second-birth interval

becomes significantly longer for some clusters, and it does not have a significant difference

for the remaining clusters. This finding reflects the culture of favouring boys in some parts

of Bangladesh. When the first child is deceased, the second-birth interval becomes even

shorter for all of the clusters. It is also noticeable that women in urban areas tend to have

longer second-birth intervals than those in rural areas, which is logical because the use of

contraceptives in rural areas is lower than in urban areas. The second-birth intervals are

shorter in Chittagong than in the other divisions. This regional effect is as expected because

Chittagong is in the most religiously conservative part of Bangladesh, where the use of

contraceptives is rare.
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Figure 1: Plot of the sorted initial estimates for each individual-level variable.
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Table 13: Results of the Analysis of the Second-Birth Interval in Bangladesh

Covariate of Interest Estimate Standard Error % of sample

Individual Level

Year of marriage -0.013 0.002 100.00

Education

None (54.11 %) 0.000 - 100.00

Primary (28.08 %) -0.280 0.042 57.06

0.251 0.047 42.94

Secondary or higher (17.81 %) -0.936 0.189 5.03

-0.286 0.048 68.23

0.475 0.089 23.46

1.874 0.367 3.28

Religion

Muslim (88.21 %) 0.000 - 100.00

Other (11.79 %) -1.068 0.179 7.00

-0.200 0.054 65.68

0.725 0.092 27.32

Sex or survival status of the 1st child

Girl (42.43 %) 0.000 - 100.00

Boy (43.18 %) -0.429 0.051 31.74

0.059 0.034 68.26

Deceased (14.39 %) 0.784 0.051 52.66

0.974 0.058 44.37

1.994 0.310 2.97

Cluster Level

Type of region of residence

Rural (83.99 %) 0.000 - 100.00

Urban (16.01 %) -0.063 0.042 100.00

Administrative division

Barisal (10.61 %) 0.000 - 100.00

Chittagong (15.11 %) 0.126 0.070 100.00

Dhaka (27.80 %) -0.078 0.099 100.00

Kulna (11.78 %) -0.111 0.080 100.00

Rajshahi (24.96 %) -0.152 0.061 100.00

Sylhet (9.74 %) 0.046 0.143 100.00
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6. Concluding remarks

In this paper, we propose a new multilevel modelling strategy for clustered survival

data. The methodological advantage of the proposed modelling strategy is that it success-

fully avoids the computation of multiple integrals and the abundance of nuisance parameters,

which makes the implementation of the proposed modelling much easier than that of tra-

ditional methods. In applications, the proposed modelling strategy enables investigators to

explore individual/subgroup attributes of covariates, which traditional methods cannot do

because they assume that the impact of covariates is constant over clusters and they only

use cluster effects to account for differences among clusters. Our application to second-birth

intervals shows that the impact of some factors on the birth interval is homogeneous within

each cluster and varies across clusters, thereby revealing cultural differences among some

clusters. Such findings cannot be obtained by the traditional multilevel modelling strategy.

In conclusion, the proposed multilevel modelling strategy facilitates implementation and

offers the advantage of distinguishing cluster coefficients in applications.
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Appendix

We first prove three lemmas and then prove Theorems 1-3.

Lemma 1. Assume that Condition 1 holds. Then, max
1≤j≤J

‖n1/2
j (β̃j − β∗

j)‖ = Op((log J)
1/2).

Proof. We prove the statement in the following three steps:

(i) We first show that max
1≤j≤J

n
−1/2
j L̇j(β

∗
j) = OP ((log J)

1/2). By definition, L̇j(β
∗
j) =

nj
∑

i=1

∫ τ

0
[Xij−

Ej(u,β
∗
j)]dNij(u) =

nj
∑

i=1

∫ τ

0
[Xij − Ej(u,β

∗
j)]dMij(u). Let aijk(u) = Xijk − Ejk(u,β

∗
j), k =

1, ..., p. For the jth cluster, let t(0),j = 0 and denote the distinct event times by t(1),j < · · · <
t(Tj),j. Then, t(ℓ),j are stopping times. For ℓ = 0, ..., Tj, define

Zℓ,jk =

nj
∑

i=1

∫ t(ℓ),j

0

aijk(u)dNij(u) =

nj
∑

i=1

∫ t(ℓ),j

0

aijk(u)dMij(u).

Note that L̇jk(β
∗
j) = ZTj ,jk. Since the Mij(u)s are martingales and the aijk(u)s are pre-

dictable, {Zℓ,jk, ℓ = 0, 1, ...} is a martingale with a difference |Zℓ,jk−Zℓ−1,jk| ≤ max
i,j,k,u

|aijk(u)| ≤
K. By the martingale version of the Hoeffding (1963) inequality [Azuma (1967)], for any

x > 0,

P (|ZTj ,jk| > njx) ≤ 2 exp (−n2
jx

2/(2K2Tj)) ≤ 2e−njx
2/(2K2).

For any 1 ≤ k ≤ p and for any C > 0,

P ( max
1≤j≤J

n
−1/2
j |L̇jk(β

∗
j)| ≥ CK(log J)1/2) ≤ 2Je−C2(log J)/2 = 2J1−C2/2.

For sufficiently large C, 2J1−C2/2 tends to 0. Hence, max
1≤j≤J

n
−1/2
j L̇j(β

∗
j) = OP ((log J)

1/2).

(ii) We prove that with probability tending to 1,

inf
1≤j≤J

inf
‖b‖=1,b∈Rp

bT (−n−1
j L̈j(β

∗
j))b ≥ c0e

−K2

/2.

Let ajkm(u) = (Vj(u, β
∗
j ))(km) =

nj
∑

i=1

wij(u, β
∗
j ){Xijk −Ejk(u, β

∗
j )}{Xijm −Ejm(u, β

∗
j )}, where

wij(u,β) = Yij(u) exp (X
T
ijβ)/[njS

(0)
j (u,β)]. Note that

−n−1
j L̈j(β

∗
j) = n−1

j

nj
∑

i=1

∫ t

0

Vj(u,β
∗
j)dNij(u),
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and
nj
∑

i=1

∫ t

0

Vj(u,β
∗
j)(dNij(u)− Yij(u) exp (X

T
ijβ

∗
j)h1,j(u)du)

is a martingale. By the Azuma-Hoeffding inequality, for any x > 0,

P ( max
1≤j≤J

n−1
j |

nj
∑

i=1

∫ t(Tj),j

0

ajkm(u,β
∗
j)(dNij(u)−Yij(u) exp (XT

ijβ
∗
j)h1,j(u)du)| > K2x) ≤ 2Je−nx2

.

It follows that with probability less than 2Je−n(c0e−K2
/(2K2))2 ,

sup
‖b‖=1,b∈Rp

|bT [−n−1
j L̈j − n−1

j

nj
∑

i=1

∫ t

0

Vj(u,β
∗
j)Yij(u) exp (X

T
ijβ

∗
j)h1,j(u)du]b| ≤ c0e

−K2

/2.

By Condition 1 (i)-(iv), we have, with probability tending to 1,

inf
1≤j≤J

inf
‖b‖=1,b∈Rp

bT (−n−1
j L̈j(β

∗
j))b ≥ c0e

−K2

/2.

(iii) We prove that for any ǫ > 0, there exists a constant C > 0 such that for all sufficiently

large n,

P (∩J
j=1{ sup

‖βj−β
∗

j‖=C( log J
nj

)1/2

(βj − β∗
j)

T L̇j(βj) < 0}) > 1− ǫ. (A.1)

By the concavity of Lj(·) and Theorem 6.3.4 of Ortega and Rheinboldt (1970), Condition

(A.1) is sufficient to show that max
1≤j≤J

‖n1/2
j (β̃j −β∗

j)‖ = Op((log J)
1/2). For any βj satisfying

‖βj−β∗
j‖ = C( log J

nj
)1/2, let bj = βj−β∗

j , aij = aij(u) = bTj {Xij−Ej(u,β
∗
j), }, wij = wij(u) =

Yij(u) exp (X
T
ijβ

∗
j), cj = cj(u) = (maxi aij(u) + mini aij(u))/2, and ηj = KC( log J

nj
)1/2. Note

that maxi |aij(u)− cj(u)| ≤ ηj
2
and

bTj {Ej(u,β
∗
j + bj)− Ej(u,β

∗
j)}

= (

nj
∑

i=1

aijwije
aij)/(

nj
∑

i=1

wije
aij)− (

nj
∑

i=1

aijwij)/(

nj
∑

i=1

wij)

= (

nj
∑

i,k=1

(aij − akj)(e
aij−cj − eakj−cj)wijwkj)/(

nj
∑

i,k=1

2wijwkje
aij−cj)

≥ exp (−2max
i

|aij − cj|)(
nj
∑

i,k=1

(aij − akj)
2wijwkj)/(

nj
∑

i,k=1

2wijwkj)
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≥ exp (−ηj)(
nj
∑

i

wija
2
ij)/(

nj
∑

i

wij),

where the first inequality comes from (ey−ex)/(y−x) ≥ e−(|y|∨|x|) and the second inequality

comes from
nj
∑

i

wijaij = 0 and
nj
∑

i,k=1

wijwkj(aij − akj)
2 = (2

nj
∑

i,k=1

wija
2
ij)(

nj
∑

i,k=1

wij). It follows

that

bTj [L̇j(βj)− L̇j(β
∗
j)] ≤ −e−ηj

nj
∑

i

∫ τ

0

(

nj
∑

i

wija
2
ij)(

nj
∑

i

wij)
−1dNij(u) = e−ηjbTj L̈(β∗

j)bj.

Hence, by (i) and (ii), uniformly for all j, we have

(βj − β∗
j)

T L̇j(βj) = (βj − β∗
j)

T L̇j(β
∗
j) + (βj − β∗

j)
T [L̇j(βj)− L̇j(β

∗
j)]

≤ nj[OP ((
log J

nj

)1/2)KC(
log J

nj

)1/2 −K2C2 log J

nj

e−ηjc0e
−K2

/2].

Since log J/n→ 0 is n→ ∞, it is easy to see that (A.1) holds, and this completes the proof.

Without loss of generality, assume β(1) < ... < β(H). Write s0 = 0. Let sk = |Bk| be the size

of Bk and rk =
k
∑

ℓ=1

sℓ, k = 0, ..., H. Define B̃k := {(i, j),
k−1
∑

ℓ

sℓ+1 ≤ rij ≤
k
∑

ℓ=1

sℓ}, k = 1, ..., H.

The following lemma shows that with probability tending to 1, the homogeneity structure

in the estimated coefficients is identical to that in (2.2).

Lemma 2. If Condition 1 holds, then

lim
n→∞

P (∩H
k=1{B̃k = Bk}) = 1.

Proof. Let ∆ = min
2≤k≤H

|β(k) − β(k−1)|. Let ǫ = ∆/2. By Lemma 1 and Condition 1

(iv), as n goes to ∞, with probability tending to 1, max
1≤j≤J

‖β̃j − βj‖ < ∆/3, and hence,

max
1≤j≤J,1≤i≤p

‖β̃ij − βij‖ < ∆/2. It is sufficient to show that for any (i1, j1) 6= (i2, j2) satisfying

βi1j1 6= βi2j2 , (β̃i1j1 − β̃i2j2)(βi1j1 − βi2j2) > 0. This property easily follows since

(βi1j1 − βi2j2)(β̃i1j1 − β̃i2j2) ≥ (|βi1j1 − βi2j2 |)(|βi1j1 − βi2j2 | − 2∆/3) = ∆2/3 > 0.

Next, we prove the consistency of the binary segmentation procedure in identifying the

homogeneity structure.

Lemma 3. If Conditions 1 and 2 hold, then

lim
n→∞

P (∩Ĥ−1

ℓ=1 {k̂(ℓ) = rℓ} ∩ {Ĥ = H}) = 1.

32



Proof. Let b0(ℓ) be the true coefficient associated with b(ℓ), ℓ = 1, ..., Jp. By Lemma 2,

with probability tending to 1, b0(ℓ) = β(d) for
d−1
∑

k=1

sk + 1 ≤ ℓ ≤
d
∑

k=1

sk, d = 1, ..., H. Write

b(ℓ) = b0(ℓ) + e(ℓ). By definition,

∆1,Jp(k̂1) = max
1≤κ<Jp

∆1,Jp(κ),

where

∆ij(κ) =

√

(j − κ)(κ− i+ 1)

j − i+ 1

(

∑j
l=κ+1 b(l)

j − κ
−
∑κ

l=i b(l)
κ− i+ 1

)

.

First, we prove by contradiction that with probability tending to 1, k̂1 = rk for some

1 ≤ k ≤ H−1. Otherwise, there exist a k andm such that k̂1 = rk+m, where 0 ≤ k ≤ H−1

and 1 ≤ m < sk+1. There are three cases, and we will consider them one by one.

Case 1: k = 0 and k̂1 = m < s1 = r1.

Let β̄1 =
∑m

l=1 b
0
(l)

m
and β̄2 =

∑Jp
l=r1+1 b

0
(l)

Jp−r1
. We have β̄1 < β̄2,

∆1,Jp(k̂1) =

√

m

Jp(Jp−m)
(Jp− r1)(β̄2 − β̄1) +

√

(Jp−m)m

Jp

(

∑Jp
l=m+1 e(l)

Jp−m
−
∑m

l=1 e(l)
m

)

,

and

∆1,Jp(r1) =

√

r1(Jp− r1)

Jp
(β̄2 − β̄1) +

√

(Jp− r1)r1
Jp

(

∑Jp
l=r1+1 e(l)

Jp− r1
−
∑r1

l=1 e(l)
r1

)

.

By Lemma 2,

∆1,Jp(r1)−∆1,Jp(k̂1) = [

√

r1(Jp− r1)

Jp
−
√

m

Jp(Jp−m)
(Jp−r1)](β̄2− β̄1)+Op(

√

Jp
log Jp√

n
).

By Condition (i),

∆1,Jp(r1)−∆1,Jp(k̂1) = [

√

r1(Jp− r1)

Jp
−
√

m

Jp(Jp−m)
(Jp− r1)](β̄2 − β̄1) + op(

1√
Jp

).

By calculation, uniformly for 1 ≤ m < r1,

√

r1(Jp− r1)−
√

m

(Jp−m)
(Jp− r1) = (Jp− r1)[

√

r1
(Jp− r1)

−
√

m

(Jp−m)
]
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≥ (Jp− r1)[

√

r1
(Jp− r1)

−
√

r1 − 1

(Jp− r1 + 1)
]

≥ (Jp−r1)
r1

(Jp−r1)
− r1−1

(Jp−r1+1)

2
√

r1
(Jp−r1)

=
Jp

2(Jp− r1 + 1)

√

Jp− r1
r1

=
Jp(Jp− r1)

2(Jp− r1 + 1)

1

Jp− r1

√

Jp− r1
r1

≥ 1

4

Jp
√

(Jp− r1)r1
≥ 1

2
.

Thus, with probability tending to 1,

∆1,Jp(r1)−∆1,Jp(k̂1) > 0

which yields the contradiction.

Case 2: k = H − 1 and k̂1 = rH−1 +m, where 1 ≤ m < sH .

Let β̄1 =
∑rH−1

l=1 b0
(l)

rH−1
and β̄2 =

∑Jp
l=rH−1+1 b

0
(l)

Jp−rH−1
. We have β̄1 < β̄2,

∆1,Jp(k̂1) =

√

(sH −m)(Jp− sH +m)

Jp

(
∑Jp

l=rH−1+m+1 b
0
(l)

sH −m
−
∑rH−1+m

l=1 b0(l)
Jp− sH +m

)

+

√

(sH −m)(Jp− sH +m)

Jp

(
∑Jp

l=rH−1+m+1 e
0
(l)

sH −m
−
∑rH−1+m

l=1 e0(l)
Jp− sH +m

)

=

√

sH −m

Jp(Jp− sH +m)
(β̄2 − β̄1)rH−1 + op(

1√
Jp

),

and

∆1,Jp(rH−1) =

√

rH−1(Jp− rH−1)

Jp
(β̄2 − β̄1) + op(

1√
Jp

).

Hence,

∆1,Jp(rH−1)−∆1,Jp(k̂1) =
1√
Jp

{rH−1[

√

sH
Jp− sH

−
√

sH −m

Jp− sH +m
](β̄2 − β̄1) + op(1)}

Since

rH−1[

√

sH
Jp− sH

−
√

sH −m

Jp− sH +m
] ≥ (Jp− sH)[

√

sH
Jp− sH

−
√

sH − 1

Jp− sH + 1
]

≥ (Jp− sH)

sH
Jp−sH

− sH−1
Jp−sH+1

2
√

sH
Jp−sH

=
Jp

Jp− SH + 1

1

2
√

sH
Jp−sH

≥ 1/2,
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uniformly for 1 ≤ m < sH , it follows that with probability tending to 1, ∆1,Jp(rH−1) >

∆1,Jp(k̂1), which yields the contradiction.

Case 3: 1 ≤ k ≤ H − 2. Let

β̄1 =

k
∑

i=1

sib
0
(i)

rk
, β̄2 =

H
∑

i=k+2

sib
0
(i)

Jp− rk+1

, β̄ = b0(rk+1).

We have β̄2 > β̄ > β̄1,

∆1,Jp(k̂1) =

√

(Jp− rk −m)(rk +m)

Jp

(
∑Jp

l=rk+m+1 b
0
(l)

Jp− rk −m
−
∑rk+m

l=1 b0(l)
rk +m

)

+

√

(Jp− rk −m)(rk +m)

Jp

(
∑Jp

l=rk+m+1 e
0
(l)

Jp− rk −m
−
∑rk+m

l=1 e0(l)
rk +m

)

=

√

(Jp− rk −m)(rk +m)

Jp

(

(sk+1 −m)β̄ + (Jp− rk+1)β̄2
Jp− rk −m

− rkβ̄1 +mβ̄

rk +m

)

+ op(
1√
Jp

),

∆1,Jp(rk) =

√

(Jp− rk)(rk)

Jp

(

sk+1β̄ + (Jp− rk+1)β̄2
Jp− rk

− β̄1

)

+ op(
1√
Jp

),

and

∆1,Jp(rk+1) =

√

(Jp− rk+1)(rk+1)

Jp

(

β̄2 −
rkβ̄1 + sk+1β̄

rk+1

)

+ op(
1√
Jp

).

Define the function

f(u) = (Jp− rk+1)(β̄2 − β̄)
√
u+ rk(β̄ − β̄1)

1√
u
,

for any u > 0. Let um = rk+m
Jp−rk−m

, u1 = rk
Jp−rk

, u2 = rk+1

Jp−rk+1
, u3 = rk+1

Jp−rk−1
, and u4 =

rk+1−1

Jp−rk+1+1
. By Condition (ii), c0

H
≤ kc0

(H−k)
≤ u1 < u3 ≤ um ≤ u4 < u2 ≤ (k+1)

(H−k−1)c0
≤ H

c0
. By

Lemma 2 and Condition (i), ∆1,Jp(k̂1) =
1√
Jp
(f(um)+op(1)), ∆1,Jp(rk) =

1√
Jp
(f(u1)+op(1)),

∆1,Jp(rk+1) =
1√
Jp
(f(u2)+ op(1)), ∆1,Jp(rk +1) = 1√

Jp
(f(u3)+ op(1)), and ∆1,Jp(rk+1 − 1) =

1√
Jp
(f(u4) + op(1)).

(i). If
√
u1u2 ≥

rk(β̄ − β̄1)

(Jp− rk+1)(β̄2 − β̄)
,
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then

u2 −
rk(β̄ − β̄1)

(Jp− rk+1)(β̄2 − β̄)
>

rk(β̄ − β̄1)

(Jp− rk+1)(β̄2 − β̄)
− u1.

Since u2 − u1 =
rk+1

Jp−rk+1
− rk

Jp−rk
= Jp(rk+1−rk)

(Jp−rk+1)(Jp−rk)
≥ sk

Jp
≥ c0

H
,

√
u2u4 −

rk(β̄ − β̄1)

(Jp− rk+1)(β̄2 − β̄)
>

√
u2u4 − u2 +

c0
2H

.

By calculation,

f(u2)− f(um) = ((Jp− rk+1)(β̄2 − β̄)− rk(β̄ − β̄1)√
u2um

)(
√
u2 −

√
um)

≥ (
rk(β̄ − β̄1)√

u2u1
− rk(β̄ − β̄1)√

u2um
)(
√
u2 −

√
um)

≥ rk(β̄ − β̄1)√
u2u1um

(
√
um −√

u1)(
√
u2 −

√
um)

≥ rk(β̄ − β̄1)

u2um
√
u1

(um − u1)(u2 − um)

≥ rk(β̄ − β̄1)

2u2um
√
u1

(u2 − u1)min(u3 − u1, u2 − u4).

By Condition 2 (ii),

rk(u3 − u1) = rk(
rk + 1

Jp− rk − 1
− rk
Jp− rk

) ≥ rk(Jp)

(Jp)2
≥ c0
H
,

and

rk(u2 − u4) = rk(
rk+1

Jp− rk+1

− rk+1 − 1

Jp− rk+1 + 1
) ≥ rk(Jp)

(Jp)2
≥ c0
H
.

Thus,

f(u2)− f(um) ≥
c20(β̄ − β̄1)

2H2

H5/2

c
5/2
0

=
(β̄ − β̄1)H

1/2

2c
1/2
0

.

It follows that with probability tending to 1, ∆1,Jp(k̂1) < ∆1,Jp(rk+1) which yields the

contradiction.

(ii). If
√
u1u2 <

rk(β̄ − β̄1)

(Jp− rk+1)(β̄2 − β̄)
,

f(u1)− f(um) = (
rk(β̄ − β̄1)√

u1um
− (Jp− rk+1)(β̄2 − β̄))(

√
um −√

u1)
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≥ (
rk(β̄ − β̄1)√

umu1
− rk(β̄ − β̄1)√

u1u2
)(
√
um −√

u1)

≥ rk(β̄ − β̄1)√
u2u1um

(
√
um −√

u1)(
√
u2 −

√
um)

≥ rk(β̄ − β̄1)

u2um
√
u1

(um − u1)(u2 − um)

≥ rk(β̄ − β̄1)

2u2um
√
u1

(u2 − u1)min(u3 − u1, u2 − u4) ≥
(β̄ − β̄1)H

1/2

2c
1/2
0

.

It follows that with probability tending to 1, ∆1,Jp(k̂1) < ∆1,Jp(rk), which yields the contra-

diction.

Hence, with probability tending to 1, k̂1 = rk for some k. Inductively, for ℓ = 2, ..., H − 1,

with probability tending to 1, there exists a k such that k̂ℓ = rk. Next, we show that with

probability tending to 1, Ĥ = H. For any 0 ≤ k1 < k2 ≤ H, if k1 + 1 < k2, then with

probability tending to 1, there exists k1 < k̃ < k2 and

∆rk1+1,rk2
(rk̃) = max

rk1+1≤κ≤rk2

∆rk1+1,rk2
(κ) ≥

√
Jp

H2K2
[
1

K
+ oP (

1√
Jp

)].

By Condition 2 (iv), the change point rk̃ will be detected by the algorithm. If k2 = k1 + 1,

then

max
rk1+1≤κ≤rk2

∆rk1+1,rk2
(κ) =

√
Jp

H2K2
oP (

1√
Jp

) = oP (1).

Again, by Condition 2 (iv), with probability tending to 1, the algorithm will stop, which

completes the proof.

Proof of Theorem 1. Let Ψj = (ψik,j) be a p×H matrix, where ψik,j = I(βi,j ∈ Bk), 1 ≤
i ≤ p, 1 ≤ k ≤ H, 1 ≤ j ≤ J . By Lemma 3, with probability tending to 1, ξ̂ = (ξ̂1, ..., ξ̂H)

T

maximizes

L(ξ) =
J
∑

j=1

Lj(Ψjξ),

and β̂j = Ψj ξ̂. Let ξ
∗ denote the true parameter values of ξ and βj = Ψjξ

∗. For any s in a

compact set of RH , define

G(s) = L(ξ∗ + s/
√
N )− L(ξ∗)
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=
J
∑

j=1

nj
∑

i=1

∫ τ

0

{N−1/2XT
ijs− log S

(0)
j (u,Ψjξ

∗ +N−1/2Ψjs) + log S
(0)
j (u,Ψjξ

∗)}dNij(u).

Write

log S
(0)
j (u,Ψjξ

∗ +N−1/2Ψjs)− log S
(0)
j (u,Ψjξ

∗) =

N−1/2sTΨT
j Ej(u,Ψjξ

∗) +
1

2N sTΨT
j Vj(u,Ψjξ

∗)Ψjs+ vj(s, u).

Some analysis reveals that |vj(s, u)| ≤ 4
3
N−3/2 max

1≤i≤nj

|sTΨT
j (Xij−Ej(u,Ψjξ

∗))|3 = O(N−3/2).

It follows that

Gn(s) = UT
n s−

1

2
sTI∗

ns− rn(s),

where

Un = N−1/2

J
∑

j=1

nj
∑

i=1

∫ τ

0

ΨT
j {Xij − Ej(u,Ψjξ

∗)}dNij(u),

I∗
n = N−1

J
∑

j=1

nj
∑

i=1

∫ τ

0

ΨT
j Vj(u,Ψjξ

∗)ΨjdNij(u),

and

rn(s) =
J
∑

j=1

nj
∑

i=1

∫ τ

0

vj(s, u)dNij(u).

Note that

Un = N−1/2

J
∑

j=1

nj
∑

i=1

∫ τ

0

ΨT
j {Xij − Ej(u,Ψjξ

∗)}dMij(u)

and

I∗
n = N−1

J
∑

j=1

nj
∑

i=1

∫ τ

0

YijΨ
T
j Vj(u,Ψjξ

∗)Ψj exp (X
T
ijΨ

T
j ξ

∗ + λTWj)h0(u)du

+N−1

J
∑

j=1

nj
∑

i=1

∫ τ

0

ΨT
j Vj(u,Ψjξ

∗)ΨjdMij(u).

By the boundedness of the integrand, the first term of I∗
n goes to I in probability. Since

then,

E{
J
∑

j=1

nj
∑

i=1

∫ τ

0

ΨT
j Vj(u,Ψjξ

∗)ΨjdMij(u)}2 = E

J
∑

j=1

nj
∑

i=1

{ΨT
j Vj(u,Ψjξ

∗)Ψj}⊗2d < Mi,j,Mi,j > (u),
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by the boundedness of the covariates, the second term of I∗
n is Op(N−1/2). For any ǫ > 0,

let

U ǫ
n(t) = N−1/2

J
∑

j=1

nj
∑

i=1

∫ t

0

ΨT
j {Xij−Ej(u,Ψjξ

∗)}I{N−1/2|ΨT
j (Xij−Ej(u,Ψjξ

∗)| ≥ ǫ}dMij(u).

The predictable variation/covariation processes of Un(·) and U ǫ
n(·) are

< Un, Un > (t) = N−1

J
∑

j=1

nj
∑

i=1

∫ t

0

ΨT
j {Xij − Ej(u,Ψjξ

∗))}⊗2Ψjd < Mij,Mij > (u)

=

∫ s

0

In(u)h0(u)du
p→
∫ s

0

I(u)h0(u)du,

and

< U ǫ
n, U

ǫ
n > (t) = N−1

J
∑

j=1

nj
∑

i=1

∫ t

0

YijΨ
T
j {Xij − Ej(u,Ψjξ

∗)}⊗2Ψj

I{N−1/2|ΨT
j (Xij − Ej(u,Ψjξ

∗)| ≥ ǫ} exp (XT
ijΨ

T
j ξ

∗ + λTWj)h0(u)du
p→ 0,

by the martingale central limit theorem (Fleming and Harrington (2011)), Un → U ∼
NH(0H , I). To summarize, for any s in a compact set S of RH , we have

Gn(s)
p→ G(s) = UT s− 1

2
sTIs.

By the concavity of Gn(s) and G(s) and the concavity lemma (Page 1116, Andersen and

Gill, 1982), it follows that

sup
s∈S

|Gn(s)−G(s)| p→ 0.

We now prove that N 1/2(ξ̂ − ξ∗) → N(0H , I−1). Let γn = N 1/2(ξ̂ − ξ∗) and αn = I−1U ,

which maximize Gn(s) and G(s), respectively. It is sufficient to show that for any δ > 0,

P (|γn − αn| > δ) → 0.

For any |s − αn| = δ, G(αn) − G(s) ≥ 1
2
δ2λmin(I). If |γn − αn| = l > δ, then let ηn =

αn + (γn − αn)
δ
l
. By the concavity of Gn,

Gn(ηn) ≥ (1− δ

l
)Gn(αn) +

δ

l
Gn(γn).
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Hence,

0 ≤ [Gn(γn)−Gn(αn) ≤
l

δ
[2 sup

|s−αn|=δ

|Gn(s)−G(s)| − 1

2
δ2λmin(I)].

It follows that

P (|γn − αn| > δ) ≤ P ( sup
|s−αn|=δ

|Gn(s)−G(s)| ≥ 1

4
δ2λmin(I)) → 0.

Note that βj = Ψjξ
∗ and consequently, for any 1 ≤ j ≤ J , we have N−1/2(β̂j − β∗

j) →
N(0p,ΨjI−1ΨT

j ). This completes the proof of Theorem 1.

Proof of Theorem 2.

Let yℓj = L̂1,j(t(ℓ),j), αℓj = L0(t(ℓ),j). Hence, (3.4) can be written as

yℓj = αℓj +W T
j λ+ ǫℓj,

where Wj = (Wj11,...,jqcq)
T and λ = (λ11, ..., λqcq)

T . Let Γj = 1Tj
⊗ W T

j , where 1d is a

d-dimensional vector with each component for which each component is 1. Write yj =

(y1j, ..., yTjj)
T and ǫj = (ǫ1j, ..., ǫTjj)

T . We have

yj = αj + Γjλ+ ǫj.

Write y = (yT1 , ..., y
T
J )

T , α = (αT
1 , ..., α

T
J )

T , Γ = (ΓT
1 , ...,Γ

T
J )

T , and ǫ = (ǫT1 , ..., ǫ
T
J )

T . Hence,

y = α + Γλ+ ǫ.

Let c = c1+...+cq, W(t) = diag(Kh(t(1),1−t), ..., Kh(t(TJ ),J−t)), u(t) = (t(1),1−t), ..., t(TJ ),J−
t)T , and X(t) = (1N,Γ,u(t)). We estimate L0(t), L

′

0(t) =
h0(t)
Λ0(t)

and λ by ã(t), b̃(t), and λ̃(t),

which minimize

Mt(a, λ, b) = (y − a1N − Γλ− bu(t))TW(t)(y − a1N − Γλ− bu(t)).

It follows that

λ̃(t) = (0c×1, Ic, 0c×1)(X(t)TW(t)X(t))−1X(t)TW(t)y,

ã(t) = (1, 0Tc+1)(X(t)TW(t)X(t))−1X(t)TW(t)y,
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and

b̃(t) = (0Tc+1, 1)(X(t)TW(t)X(t))−1X(t)TW(t)y.

Let α = (L0(t(1),1), ..., L0(t(TJ ),J)
T . Thus,

λ̃(t)− λ = (0c×1, Ic, 0c×1)(X(t)TW(t)X(t))−1X(t)TW(t)ǫ

+ (0c×1, Ic, 0c×1)(X(t)TW(t)X(t))−1X(t)TW(t)[α− L0(t)1N − L
′

0(t)u(t)].

To derive the limiting distribution of λ̃(t) − λ, we first show that the first term is asymp-

totically normal with a mean of zero and then evaluate the magnitude of the second term

to yield the bias. Let W0 = 1, W̃j = (W0,W
T
j )

T . For m = 0, 1, 2 and ℓ = 0, 1, ..., c, let

µm =
∫

umK(u)du. Write

Ω =





Ω11 ΩT
21

Ω21 Ω22



 ,

where Ω11,Ω21, and Ω22 are 1× 1, c× 1, and c× c matrices, respectively. Let Ω1ℓ denote the

ℓth element in the first row of Ω. Define

Sn
ℓ,m(t) =

1

N
J
∑

j=1

nj
∑

i=1

δij(h
−1(tij − t))mKh(tij − t)W̃j,ℓ.

Then,

ESn
ℓ,m(t) =

µm

N
J
∑

j=1

nj
∑

i=1

fij(t)Ḡij(t)W̃j,ℓ(1 + op(1)) = µmΩ1ℓ(t)(1 + op(1)).

As K(·) is a bounded function with a bounded support, for any 0 ≤ m ≤ 4, |umK(u)| is
bounded. By Jensen’s inequality,

var(Sn
ℓ,m(t)) ≤ N−2

J
∑

j=1

nj

nj
∑

i=1

[δij(h
−1(tij − t))mKh(tij − t)W̃j,ℓ]

2 = O((Nh2)−1).

It follows that

Sn
ℓ,m(t) = ESn

ℓ,m(t) +Op(
√

var(Sn
ℓ,m(t))) = µmΩ1ℓ(t)(1 + op(1)).

Hence,

1

N X(t)TW(t)X(t) = H







µ0Ω(t) 0

0 µ2Ω11(t)







H(1 + op(1)),
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where H =







Ic+1 0

0 h







. Now, we derive the limiting distribution of

J
∑

j=1

nj
∑

i=1

∫ τ

0

WjKh(u− t)[L̂1,j(u)− L1,j(u)]dNij(u),

J
∑

j=1

nj
∑

i=1

∫ τ

0

(u− t)Kh(u− t)[L̂1,j(u)− L1,j(u)]dNij(u),

and
J
∑

j=1

nj
∑

i=1

∫ τ

0

Kh(u− t)[L̂1,j(u)− L1,j(u)]dNij(u).

Let

Λ̂1,j(t) =

∫ t

0

nj
∑

i=1

1

njS
(0)
j (u,ΨT

j ξ̂)
dNij(u),

Λ̃1,j(t) =

∫ t

0

{
nj
∑

i=1

Yij(u)e
XT

ijΨ
T
j ξ∗}−1d[

nj
∑

i=1

Nij(u)],

and

Λ∗
1,j(t) =

∫ t

0

I(

nj
∑

i=1

Yij(u) > 0)h1,j(u)du.

We have

n
1/2
j (Λ̂1,j(t)−Λ1,j(t)) = n

1/2
j (Λ̂1,j(t)− Λ̃1,j(t))+n

1/2
j (Λ̃1,j(t)−Λ∗

1,j(t))+n
1/2
j (Λ∗

1,j(t)−Λ1,j(t)).

It is easy to see that n
1/2
j (Λ∗

1,j(t)−Λ1,j(t)) is asymptotically negligible, n
1/2
j (Λ̃1,j(t)−Λ∗

1,j(t))

converges to a mean of zero and an incremental Gaussian process with variance function

∫ t

0

[s
(0)
j (u,Ψjξ

∗)]−1h1,j(u)du,

and

n
1/2
j (Λ̂1,j(t)− Λ̃1,j(t)) = [−

∫ t

0

n−1
j

S
(1)
j (u,Ψjξ

∗)

{S(0)
j (u,Ψjξ

∗)}2
d

nj
∑

i=1

Nij(u) + op(1)][n
1/2
j ΨT

j (ξ̂ − ξ∗)]

= [−
∫ t

0

ej(u,Ψjξ
∗)h1,j(u)du+ op(1)][n

1/2
j ΨT

j (ξ̂ − ξ∗)].
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Note that

N 1/2(ξ̂ − ξ∗) = I−1N−1/2

J
∑

j=1

nj
∑

i=1

∫ τ

0

ΨT
j {Xij − Ej(u,Ψjξ

∗)}dMij(u) + op(1),

and for any 1 ≤ j ≤ J ,

n
1/2
j (Λ̃1,j(t)− Λ∗

1,j(t)) = n
−1/2
j

nj
∑

i=1

∫ t

0

{S(0)
j (u,Ψjξ

∗)}−1dMij(u) + op(1).

Because

<

J
∑

j=1

nj
∑

i=1

∫ τ

0

ΨT
j {Xij − Ej(u,Ψjξ

∗)}dMij(u),

nj
∑

i=1

∫ t

0

{S(0)
j (u,Ψjξ

∗)}−1dMij(u) > (t)

=

nj
∑

i=1

∫ t

0

ΨT
j {Xij − Ej(u,Ψjξ

∗)}{S(0)
j (u,Ψjξ

∗)}−1Yij(u) exp (X
T
ijΨjξ

∗)h1,j(u)du

= 0,

it follows that n
1/2
j (Λ̃1,j(t)−Λ∗

1,j(t)), j = 1, ..., J and (ξ̂−ξ∗) are asymptotically independent.

Furthermore,
J
∑

j=1

nj
∑

i=1

∫ τ

0

Kh(u− t)[L̂1,j(u)− L1,j(u)]dNij(u)

=
J
∑

j=1

nj
∑

i=1

∫ τ

0

Yij(u) exp (X
T
ijΨjξ

∗)Kh(u− t)[L̂1,j(u)− L1,j(u)]h1,j(u)du

+
J
∑

j=1

nj
∑

i=1

∫ τ

0

Kh(u− t)[L̂1,j(u)− L1,j(u)]dMij(u)

= {
J
∑

j=1

∫ τ

0

nj[L̂1,j(u)− L1,j(u)]Kh(u− t)h1,j(u)s
(0)
j (u,Ψjξ

∗)du}(1 + op(1))

= {
J
∑

j=1

∫ τ

0

nj[Λ̂1,j(u)− Λ1,j(u)]Kh(u− t)s
(0)
j (u,Ψjξ

∗)du}(1 + op(1)).

By calculation,

Var(
J
∑

j=1

∫ τ

0

nj[Λ̂1,j(u)− Λ1,j(u)]Kh(u− t)s
(0)
j (u,Ψjξ

∗)du)
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= {
J
∑

j=1

nj[s
(0)
j (t,Ψjξ

∗)]2
∫ t

0

[s
(0)
j (u,Ψjξ

∗)]−1h1,j(u)du+

N−1(
J
∑

j=1

njs
(0)
j (t,Ψjξ

∗)

∫ t

0

eTj (u,Ψjξ
∗)h1,j(u)duΨ

T
j )I−1(

J
∑

j=1

njs
(0)
j (t,Ψjξ

∗)×

Ψj

∫ t

0

ej(u,Ψjξ
∗)h1,j(u)du)}(1 + op(1)).

By the Lindeberg-Feller Central Limit Theorem, Slutsky’s theorem and similar calculations

as above, we have that

N−1/2(Ic+1, 0c+1)H
−1XTW(t)ǫ

is asymptotically normal with the covariance function

ζ(t, t) + Υ(t)I−1Υ(t)T ,

and hence,

N 1/2(Ic+1, 0c+1)(X(t)TW(t)X(t))−1X(t)TW(t)ǫ

is asymptotically normal with a mean of zero with the covariance function

Ω(t)−1[ζ(t, t) + Υ(t)I−1Υ(t)T ]Ω(t)−1.

Define

ν(t1, t2) = Ω(t1)
−1[ζ(t1, t2) + Υ(t1)I−1Υ(t2)

T ]Ω(t2)
−1,

and write

ν(t1, t2) =





ν11(t1, t2) ν12(t1, t2)

νT12(t1, t2) ν22(t1, t2)



 ,

where ν11(t1, t2), ν12(t1, t2), and ν22(t1, t2) are 1× 1, 1× c, and c× c matrices, respectively.

Next, we evaluate the bias term

N 1/2(Ic+1, 0c+1)(X(t)TW(t)X(t))−1X(t)TW(t)[α− L0(t)1N − L
′

0(t)u(t)]

= 2−1L
′′

0(t)N 1/2(Ic+1, 0(c+1)×1)(X(t)TW(t)X(t))−1X(t)TW(t)u2(t)[1 + op(1)]

= N 1/22−1L
′′

0(t)µ2h
2Ω−1(t)





Ω11(t)

Ω21(t)



 [1 + op(1)].
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When Nh4 is bounded, we have

√
N{(ã(t), λ̃T )T − (L0(t), λ

T )T − h2µ2L
′′

0(t)

2
(1, 0Tc )

T} → N(0(c+1)×1, ν(t, t)).

Now, we proceed to obtain the limiting distribution of λ̂. By definition,

λ̂ =
1

N

N
∑

m=1

λ̃(t(m)) =
1

N

J
∑

j=1

Tj
∑

i=1

(0c×1, Ic, 0c×1)(X
T (t(i),j)W(t(i),j)X(t(i),j))

−1XT (t(i),j)W(t(i),j)y.

By straightforward but tedious calculation and the law of large numbers, we have

Var(Nλ̂)

= E

J
∑

j=1

Tj
∑

i=1

J
∑

r=1

Tr
∑

ℓ=1

(0c×1, Ic, 0c×1)(X
T (t(i),j)W(t(i),j)X(t(i),j))

−1XT (t(i),j)W(t(i),j)ǫ

×ǫTW(t(ℓ),r)X(t(ℓ),r)(X
T (t(ℓ),r)W(t(ℓ),r)X(t(ℓ),r))

−1(0c×1, Ic, 0c×1)
T

= (1 + o(1))EN−1

J
∑

j=1

Tj
∑

i=1

J
∑

r=1

Tr
∑

ℓ=1

ν22(t(i),j, t(ℓ),r)

= (1 + o(1))EN−1

J
∑

j=1

nj
∑

i=1

J
∑

r=1

nr
∑

ℓ=1

δijδℓrν22(tij, tℓr),

and

Bias(λ̂) = Eλ̂− λ

= (1 + op(1))E
1

N

J
∑

j=1

nj
∑

i=1

h2µ2δijL
′′

0(tij)

2
.

Define

Ω̄11 =

∫ τ

0

Ω11(u)du,

ν̄22 =

∫ τ

0

∫ τ

0

ν22(u, v)Ω11(u)Ω11(v)dudv,

and

Φ =

∫ τ

0

L
′′

0(u)Ω11(u)du.

By the law of large numbers,

N−1

J
∑

j=1

nj
∑

i=1

δij → Ω̄11,
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N−2

J
∑

j=1

nj
∑

i=1

J
∑

r=1

nr
∑

ℓ=1

δijδℓrν22(tij, tℓr) → ν̄22,

and

N−1

J
∑

j=1

nj
∑

i=1

δijL
′′

0(tij) → Φ.

It follows that when Nh4 is bounded,

√
N [λ̂− λ− Φh2µ2

2Ω̄11

(1, 0Tc )
T ] → N(0c, Ω̄

−2
11 ν̄22).

Hence, when Nh4 → 0,
√
N (λ̂− λ) → N(0c, Ω̄

−2
11 ν̄22).

Let ek,ℓ denote the unit vector of length c with 1 at the position corresponding to λk,ℓ. Thus,

for any k = 1, ...cq; ℓ = 1, ..., q,

√
N (λ̂k,ℓ − λk,ℓ) → N(0, eTk,ℓΩ̄

−2
11 ν̄22ek,ℓ).

Proof of Theorem 3.

We establish the limiting distribution for Λ̂0(t). Write

Ξ1(t) =
1

N

J
∑

j=1

nj
∑

i=1

δijh
−1(tij−t)Kh(tij−t) exp{(11×1, 0(c+1)×1)(X

T (tij)W(tij)X(tij))
−1XT (tij)W(tij)y},

Ξ0(t) =
1

N

J
∑

j=1

nj
∑

i=1

δijKh(tij−t) exp{(11×1, 0(c+1)×1)(X
T (tij)W(tij)X(tij))

−1XT (tij)W(tij)y},

and for ℓ = 0, 1, 2,

Θℓ(t) =
1

N

J
∑

j=1

nj
∑

i=1

δijh
−ℓ(tij − t)ℓKh(tij − t).

By the law of large numbers and Condition 5 (iv),

Θℓ(t) = µℓ(1 + op(1)).

Thus,

Λ̂0(t) = (1, 0)





Θ0(t) Θ1(t)

Θ1(t) Θ2(t)





−1



Ξ0(t)

Ξ1(t)



 = Ξ0(t)(1 + op(1)).
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By similar arguments as in the Proof of Theorem 2, it can be shown that

Var(N 1/2Ξ0(t))

= (1 + o(1))EN−2

J
∑

j=1

nj
∑

i=1

J
∑

r=1

nr
∑

ℓ=1

δijδrℓKh(tij − t)Kh(trℓ − t)ν11(tij, trℓ)Λ0(tij)Λ0(trℓ)

= (1 + o(1))Λ2
0(t)ν11(t, t).

Write

Bias(Ξ0(t)) = E[Ξ0(t)]− Λ0(t) = Bias1 + Bias2,

where

Bias1 = E[Ξ0(t)]− E

J
∑

j=1

nj
∑

i=1

N−1δijKh(tij − t)Λ0(tij),

and

Bias2 = E

J
∑

j=1

nj
∑

i=1

N−1δijKh(tij − t)Λ0(tij)− Λ0(t).

By Theorem 2,

Bias1 =
µ2h

2

2
Λ0(t)L

′′

0(t),

and it is easy to see that

Bias2 =
µ2h

2

2
h

′

0(t).

Hence,

Bias(Ξ0(t)) =
µ2h

2

2
[Λ0(t)L

′′

0(t) + h
′

0(t)](1 + o(1)).

It follows that when Nh4 → 0,

N 1/2(Λ̂0(t)− Λ0(t)) → N(0,Λ2
0(t)ν11(t, t)).
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