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Abstract

C4 photosynthesis is a complex trait that sustains fast growth and high productivity in tropical and 

subtropical conditions and evolved repeatedly in flowering plants. One of the major C4 lineages is 

Andropogoneae, a group of ~ 1,200 grass species that includes some of the world's most important 

crops and species dominating tropical and some temperate grasslands. Previous efforts to 

understand C4 evolution in the group have compared a few model C4 plants to distantly related C3 

species, so that changes directly responsible for the transition to C4 could not be distinguished from 

those that preceded or followed it. In this study, we analyse the genomes of 66 grass species, 

capturing the earliest diversification within Andropogoneae as well as their C3 relatives. 

Phylogenomics combined with molecular dating and analyses of protein evolution show that many 

changes linked to the evolution of C4 photosynthesis in Andropogoneae happened in the Early 

Miocene, between 21 and 18 Ma, after the split from its C3 sister lineage, and before the 

diversification of the group. This initial burst of changes was followed by an extended period of 

modifications to leaf anatomy and biochemistry during the diversification of Andropogoneae, so 

that a single C4 origin gave birth to a diversity of C4 phenotypes during 18 million years of 

speciation events and migration across geographic and ecological spaces. Our comprehensive 

approach and broad sampling of the diversity in the group reveals that one key transition can lead to 

a plethora of phenotypes following sustained adaptation of the ancestral state.

Keywords: Adaptive Evolution, Complex Traits, Herbarium Genomics, Jansenelleae, Leaf 

Anatomy, Poaceae, Phylogenomics.
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One of the major goals of evolutionary biology is to understand the origins of key 

innovations underlying the ecological success of particular groups. This requires the study of 

adaptive traits in a phylogenetic context, using comparisons of species differing in character states 

(e.g. Bond et al. 2014; Rainford et al. 2014; McGee et al. 2015; Sánchez-García and Matheny 

2017). Because species differ in numerous ways, such comparisons must capture the diversity that 

emerged after the transition in addition to the diversity that preceded it, to precisely identify the 

properties directly involved in the origin of the trait of interest (e.g. Sprent 2007; Yukawa 2009; 

Endress 2011; Puttick 2014; Marek and Moore 2015; Clark et al. 2018). Among flowering plants, 

C4 photosynthesis represents an adaptive novelty with significant ecological consequences (Sage 

2004; Edwards et al. 2010; Christin and Osborne 2014). 

The C4 physiology results from multiple anatomical and biochemical modifications of the 

ancestral C3 photosynthetic metabolism, which include (1) the confinement of the primary enzyme 

of the photosynthetic carbon reduction pathway, ribulose-1,5-bisphosphate carboxylase/oxygenase 

(Rubisco), to a compartment isolated from the atmosphere, and (2) increased and cell-specific 

activity of several enzymes that concentrate CO2 at the site of Rubisco (Hatch 1987; von 

Caemmerer and Furbank 2003; Sage 2004). The concentration of CO2 around Rubisco boosts 

photosynthetic efficiency, and therefore growth, particularly in high-light, warm and dry conditions 

(Long 1999; Atkinson et al. 2016).

Although the C4 trait requires the modification of multiple components, it has evolved at 

least 62 times independently during the diversification of flowering plants (Sage et al. 2011). The 

grass family (Poaceae) encompasses almost half of the C4 origins, including some with particular 

ecological and economic relevance, such as the Andropogoneae (Sage 2017). The roughly 1,200 

species of this tribe are all C4, making it the second-most speciose (Sage et al. 2011) and the most 

dominant C4 lineage (Lehmann et al. 2019). Andropogoneae include some of the world's most 

important cereal and fuel crop plants, such as maize, sorghum, sugarcane and Miscanthus spp. (e.g. 

silver grass), as well as numerous species that dominate tropical savannas and some temperate 

http://mc.manuscriptcentral.com/systbiol
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grasslands, including the tallgrass prairies of the Great Plains (Hartley 1958; Bond et al. 2008; 

Edwards et al. 2010; Kellogg 2015). Besides generating some of the most productive plants in the 

world, their C4 trait also increased the diversification of Andropogoneae, which in turn has shaped 

ecosystems around the world (Osborne 2008; Edwards et al. 2010; Forrestelet al. 2014; Spriggs et 

al. 2014; Sage and Stata 2015). Because (1) they are separated from other C4 grass lineages in the 

phylogeny by several C3 branches (GPWG II 2012), and (2) the different C4 lineages differ in the 

underlying genetic changes, Andropogoneae are accepted as a C4 origin independent from those in 

other groups of grasses (Sinha and Kellogg 1996; Christin et al. 2008, 2010; Vicentini et al. 2008; 

Edwards and Smith 2010; Sage et al. 2011; GPWG II 2012; Emms et al. 2016; Gallaher et al. 2019; 

Niklaus and Kelly 2019).

Due to their economic and ecological importance, Andropogoneae have been included in 

most studies addressing the evolutionary origins of C4 photosynthesis in grasses. In particular, 

efforts to determine the genomic changes involved in the transition to C4 photosynthesis have 

focused on comparisons between the two C4 model Andropogoneae species – maize and sorghum – 

and distantly related C3 model grasses (e.g. rice and Dichanthelium; Paterson et al. 2009; Wang et 

al. 2009; Emms et al. 2016; Studer et al. 2016; Huang et al. 2017). Such a narrow taxon sampling 

neither covers the diversity of anatomical and biochemical components observed among C3 grasses 

(e.g. Hattersley 1984; Christin et al. 2013; Lundgren et al. 2014) nor among C4 grasses within the 

Andropogoneae themselves (Renvoize 1982a; Ueno 1995; Sinha and Kellogg 1996). Yet, sampling 

this diversity is crucial for distinguishing those modifications involved in the early origin of the C4 

pathway in the group as opposed to its subsequent diversification (Christin et al. 2010; Christin and 

Osborne 2014; Dunning et al. 2017a; Heyduk et al. 2019). Differentiating these scenarios is 

necessary to determine whether changes for C4 evolution were concentrated during the initial 

history of large C4 groups, or whether they were sustained throughout the diversification of large C4 

clades, as suggested for young C4 lineages (Dunning et al. 2017a) and hypothesized based on 

previously available evidence (Christin and Osborne 2014; Heyduk et al. 2019).

http://mc.manuscriptcentral.com/systbiol
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The first divergence within Andropogoneae sensu Kellogg (2015) separates the subtribe 

Arundinellinae from Andropogoneae s.s. (tribes Arundinelleae and Andropogoneae, respectively, in 

Soreng et al. 2017), the latter of which includes the model species maize and sorghum. Until 

recently, the closest known C3 relative of Andropogoneae belonged to a different tribe that also 

included several C4 groups, and the branch separating them was consequently long (Christin et al. 

2008; Vicentini et al. 2008; GPWG II 2012; Kellogg 2015; Soreng et al. 2017). However, the C3 

genera Jansenella and Chandrasekharania have been recently suggested as the sister group of 

Andropogoneae based on individual chloroplast or nuclear markers (Besnard et al. 2018; Hackel et 

al. 2018). High-quality genomes are not available for species from these genera or from 

Arundinellinae, but low-coverage genome data have recently provided insights into the evolution of 

the nuclear genome in other non-model grasses (Besnard et al. 2014, 2018; Olofsson et al. 2016; 

Bianconi et al. 2018; Dunning et al. 2019). Capitalizing on the availability of such genomic datasets 

as a side-product of plastome sequencing (e.g. Washburn et al. 2015; Burke et al. 2016; Arthan et 

al. 2017; Piot et al. 2018), we are now able to phylogenetically track the modifications underlying 

one of the major innovations of flowering plants.

In this study, we analyse genome-skimming data for 66 grass species covering the diversity 

of C3 relatives of Andropogoneae, as well as the earliest diversification within the group, to test the 

hypothesis that C4 evolution was sustained throughout the history of old, large C4 lineages. First, we 

generate plastome and genome-wide nuclear phylogenetic trees of grasses to confirm the 

relationships between Andropogoneae and their C3 relatives, and estimate the age of C4 

photosynthesis in the group from a time-calibrated plastome phylogeny. Anatomical traits are then 

mapped onto the time-calibrated phylogeny to infer the timing of leaf structural transitions in the 

group. Finally, we look for signatures of adaptive evolution in key C4 enzymes, testing whether 

shifts in selective pressures on protein sequences occurred (i) in a C3 context and therefore predated 

the origin of Andropogoneae, (ii) at the base of the clade, during a short period of time representing 

the initial transition from C3 to C4 photosynthesis, or (iii) were sustained throughout the history of 

http://mc.manuscriptcentral.com/systbiol
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the group, representing a prolonged period of gradual innovation within the monophyletic C4 

Andropogoneae. Overall, our study presents a comprehensive approach to dissecting a complex 

adaptive trait and inferring the tempo of key phenotypic transitions in a large group of ecological 

importance.

MATERIAL AND METHODS

Species Sampling and Sequencing

A dataset of whole-genome sequences of varied sequencing depth was assembled that 

covers: the main lineages of Andropogoneae including the subtribe Arundinellinae and the 

Andropogoneae s.s. (sensu Kellogg 2015), which represents the earliest known split within this C4 

group (GPWG II 2012); their putative closest C3 relatives; a variety of other C3 and C4 Panicoideae; 

and representatives of the other grass subfamilies (Table S1). In total, genomic data for 59 grass 

species were retrieved from previous studies (Besnard et al. 2013, 2018; Lundgren et al. 2015; 

Burke et al. 2016; Arthan et al. 2017; Dunning et al. 2017b, 2019; Olofsson et al. 2016; Piot et al. 

2017; Silva et al. 2017), and similar data for seven species were generated here (Table S1). For the 

latter, low-coverage sequencing was performed using Illumina technology. Genomic DNA (gDNA) 

was isolated from ca. 5–10 mg of leaf material using the BioSprint 15 DNA Plant Kit (Qiagen). 

Four herbarium samples were sequenced at the Genopole platform (Toulouse, France) while the 

three remaining samples were extracted from silica-preserved material and sequenced at the 

Genoscope platform (Evry, France). For all samples analysed at the Genopole, between 100 and 

500 ng of double stranded DNA were used to construct sequencing libraries with the Illumina 

TruSeq Nano DNA LT Sample Prep kit (Illumina, San Diego, CA, USA), following the 

manufacturer’s instructions (for more details, see Besnard et al. 2018). Each sample was 

multiplexed with samples from the same or different projects and paired-end sequenced on 1/24th of 

an Illumina HiSeq3000 lane (Table S1). At the Genoscope, libraries were constructed using 250 ng 

of sonicated gDNA. Fragments were end-repaired and 3’-adenylated. NextFlex DNA barcodes 

http://mc.manuscriptcentral.com/systbiol
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7

(Bioo Scientific Corporation, Austin, TX, USA) were then added using the NEBNext DNA 

Modules Products (New England Biolabs, MA, USA) followed by clean up with 1x 

AgencourtAMPure XP (Beckman Coulter, Brea, CA, USA). The ligated product was amplified with 

12 PCR cycles using Kapa HiFi HotStart NGS library Amplification kit (Kapa Biosystems, 

Wilmington, MA) followed by a 0.6x Agencourt AMPure XP purification. Each sample was 

multiplexed with samples from a different project and paired-end sequenced on 1/48th of an 

Illumina HiSeq2000 lane (Illumina, USA; Table S1).

Plastome Analyses

A total of 51 plastome sequences were retrieved from NCBI and another 15 were 

assembled in this study using the genomic datasets (Table S1). For those assembled here, published 

plastomes of closely related species (same genus) were retrieved from NCBI and used as references 

for read mapping using Geneious v.9.1.8 (Kearse et al. 2012; Biomatters Ltd., Auckland, NZ) with 

the Geneious Read Mapper and default sensitivity. A consensus sequence was then called using the 

highest-quality base criterion, with indels being manually extended/reduced by the assembly of 

iteratively mapped reads. In cases where no plastome models were available for congeners, a de 

novo strategy was applied using the software Org.Asm v.1.0 (https://git.metabarcoding.org/org-

asm/org-asm) with default parameters. Potential errors in the de novo assembly were corrected by 

mapping the genomic reads to the assembled sequence using Geneious following the strategy 

described above.

The 66 plastome sequences were aligned with MAFFT v.7.13 (Katoh and Standley 2013), 

after excluding the second inverted repeat region to avoid representing the same sequence twice. 

Plastome phylogenetic trees were inferred independently for coding and non-coding regions of the 

alignment using MrBayes v.3.2.6 (Ronquist et al. 2012) with the GTR+G model. Two analyses 

were run in parallel and were stopped after reaching a standard deviation of splits < 0.01. A 

consensus tree was obtained after a burn-in period of 25% and trees were rooted on the BOP clade 

http://mc.manuscriptcentral.com/systbiol
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8

(Bambusoideae, Oryzoideae and Pooideae), which is sister to the large PACMAD clade that 

contains the Andropogoneae (GPWG II 2012). All plastome alignments are available on the Dryad 

data repository (doi: 10.5061/dryad.q114rt1). Plastome sequences assembled here were deposited in 

NCBI (see Table S1 for accession numbers). 

Genome-Wide Nuclear Analyses

Because many of the genomic datasets used here have sequencing depths below the 

minimum required by existing software (Table S1 and S2; Bertels et al. 2014; Allen et al. 2018), we 

have adapted pipelines previously used to obtain nuclear phylogenetic trees from genome skimming 

data (Olofsson et al. 2016, 2019; Dunning et al. 2017b, 2019). The general approach consists of 

extracting nucleotide sequences from each genomic dataset by mapping reads onto a reference, 

which is analogous to existing approaches (Allen et al. 2018). However, all positions receiving 

mapped reads were considered here regardless of the coverage, to allow genome skimming samples 

to be incorporated. Sets of coding sequences (CDSs) were used as references, as they represent the 

portion of the genome that is sufficiently conserved to allow mapping among distant relatives 

(Olofsson et al. 2016, 2019), and are present at low copy numbers.

A genome-wide reference dataset of putative orthologous sequences of grasses was prepared 

using the complete CDS datasets of three model grasses representing different degrees of divergence 

from the Andropogoneae: Sorghum bicolor (part of the focus group), Setaria italica (different tribe in 

the same subfamily as the focus group) and Brachypodium distachyon (different subfamily). These 

CDSs were retrieved from Phytozome v.12 (Goodstein et al. 2012). Putative one-to-one orthologs 

were identified using the BLAST reciprocal best hits (RBH) tool as implemented in Galaxy (Cock et 

al. 2015). Only CDSs that corresponded to the intersection of the RBH among the three species and 

which were > 500 bp were retained. Genes potentially transferred from organelles to the nuclear 

genome were identified via BLAST searches (e-value = 10-6) using S. bicolor organellar genomes as 

reference, and subsequently removed from this dataset. The nuclear genome-wide reference dataset 

http://mc.manuscriptcentral.com/systbiol
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9

consisted of 9,161 putative orthologs. Each of these genes is expected to descend from a single gene 

in the common ancestor of the two main groups of grasses, the BOP and PACMAD clades, but might 

have been lost or duplicated in some derived groups. Collapsing such duplicates allows the extraction 

of phylogenetically useful markers. Downstream analyses were conducted using the S. italica 

sequence for each group of orthologs, which is closely related, yet outside of the focus group and 

therefore maximizes the evenness of the coverage in the group (Fig. S1).

To minimize the amount of missing data, the nuclear analyses focused on the species of 

Andropogoneae, Jansenelleae, Paspaleae for which the estimated sequencing depth was above 1x. 

Arundinella nepalensis was added despite an estimated depth of 0.8x since it is one of only three 

Arundinellinae for which sequence data were available. Four species outside of Panicoideae for 

which high-coverage data were available were added to root the tree. Gene models corresponding to 

each of the 9,161 putative orthologs were assembled independently for each of the 37 grass species 

included in this reduced dataset. First, raw genomic datasets were filtered using the NGSQC Toolkit 

v.2.3.3 (Patel and Jain 2012) to retain only high-quality reads (i.e. > 80% of the bases with Phred 

quality score > 20), and to remove adaptor contamination and reads with ambiguous bases. The 

retained reads were subsequently trimmed from the 3’ end to remove bases with Phred score < 20. 

The cleaned genomic datasets were then mapped as unpaired reads to the genome-wide CDS 

reference using Bowtie2 v.2.3.2 (Langmead 2012) with default parameters, which map reads 

identical on 90% or more bases, independently of the read length. Consensus sequences were called 

based on variant call format (VCF) files from read alignments with mapping quality score > 20 

using the mpileup function of Samtools v.1.5 (Li et al. 2009) implemented in a bash-scripted 

pipeline, modified from Olofsson et al. (2016, 2019; available on the Dryad data repository). Sites 

with nucleotide variation among mapped reads were coded as ambiguous bases following IUPAC 

codes. Consensus sequences shorter than 200 bp were removed from the dataset. Sites within each 

alignment with more than 50% missing data were then trimmed using trimAl v1.4 (Capella-

226 Gutiérrez et al. 2009). Only gene alignments ≥ 300 bp (with ≥ 200 bp per individual sequence) and 

http://mc.manuscriptcentral.com/systbiol
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227 containing ≥ 50% of the total number of species after trimming were retained for subsequent 

228 analyses. Maximum-likelihood (ML) trees were then inferred for each gene alignment using 

229 RAxML v.8.2.4 (Stamatakis 2014), with a GTR+CAT substitution model and 100 bootstrap 

230 pseudoreplicates. To remove poorly informative markers, gene trees with < 50% of branches with 

231 bootstrap support ≥ 50% were discarded. A multigene coalescent tree using Astral v.5.6.2 (Mirarab 

232 et al. 2015) was then inferred using the filtered set of gene trees after collapsing branches with 

233 bootstrap support values < 50. Because phylogenomic analyses can be biased by the reference and 

234 the amount of missing data (Bertels et al. 2015; Xi et al. 2016; Olofsson et al. 2019), we repeated 

235 the mapping and filtering with different filtering stringencies and an alternative reference species (S. 

bicolor; Fig. S1).

In addition to the genome-wide dataset, eight individual nuclear markers previously used to 

infer grass phylogenies (GPWG 2001; Bomblies and Doebley 2005; Doust et al. 2007; Christin et 

al. 2012a; Estep et al. 2012, 2014) were investigated, namely aberrant panicle organization 1 

(apo1), the gene encoding arogenate dehydrogenase (arodeh), the DELLA protein-encoding gene 

dwarf 8 (dwarf8), floricaula/leafy-like (floricaula), knotted 1 (kn1), the gene encoding phytochrome 

B (phyB), retarded palea 1 (rep1) and the gene encoding granule-bound starch synthase 1 (GBSSI 

or waxy). Sequences of these genes were manually assembled for Garnotia stricta var. longiseta 

(Arundinellinae) and the putative C3 sister group of Andropogoneae (i.e. Jansenella and 

Chandrasekharania) using the reference-guided approach from Besnard et al. (2018). In brief, 

CDSs from S. bicolor were used as seeds to map reads, which were assembled into contigs by 

recursively incorporating pairs of reads that overlapped on at least 30 bp. All sequences of nuclear 

markers assembled here were deposited in NCBI (see Table S3 for accession numbers). Preliminary 

visualization of read alignments for Jansenella neglecta suggested two divergent copies for all 

genes, but the low sequencing depth for this accession prevented phasing the reads into distinct 

copies. We therefore did not include J. neglecta in the phylogenetic analyses of nuclear markers. It 

is worth mentioning, however, that the short segments that were recovered indicated that one of the 
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copies was very similar to the sequence of J. griffithiana, suggesting a hybrid (e.g. allopolyploid) 

origin of J. neglecta. The assembled genomic sequences were aligned with additional data retrieved 

from NCBI nucleotide databases using MAFFT. Phylogenetic trees were inferred for each of the 

eight markers using MrBayes, running two parallel chains for 40,000,000 generations. Run 

convergence and appropriateness of the burn-in period were verified using Tracer v.1.6 (Rambaut 

and Drummond 2007). The burn-in period was then set to 10,000,000, and a majority-rule 

consensus was inferred from the posterior trees.

Molecular Dating

Divergence times were estimated for the plastome dataset using a relaxed molecular clock 

as implemented in BEAST v.1.8.4 (Drummond and Rambaut 2007). The plastome alignment was 

reduced to coding sequences (57,239 bp), to remove intergenic spacers that undergo a large number 

of insertions and deletions, and are more difficult to align. The phylogenetic tree was time-

calibrated by fixing the age of the split between the PACMAD and BOP clades to 51.2 Ma (based 

on Christin et al. 2014), using a normal distribution with standard deviation of 0.0001. This age 

represents the scenario based on macrofossils only, but we also report the equivalent ages from a 

dating scenario including phytoliths (82.4 Ma for the same node; Christin et al. 2014). These 

microfossils are abundant in the fossil record, but assigning them to modern lineages of grasses is 

complicated by their restricted number of characters (Prasad et al. 2005, 2011; Christin et al. 2014; 

Stromberg et al. 2018; for a discussion on the fossil record of grasses, see Kellogg 2015). The 

GTR+G substitution model was used, with the Yule model as speciation prior and a lognormal 

uncorrelated relaxed clock (Drummond et al. 2006). Three MCMC chains were run in parallel for at 

least 250 million generations , sampling every 10,000 generations. The runs were monitored using 

Tracer v.1.6 (Rambaut et al. 2013), checking for convergence and effective sample sizes > 100 for 

all parameters. The burn-in period was set to the point of convergence of the runs (25%) and all 

trees sampled after that were combined. Median ages were summarized on the maximum clade 
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credibility tree.

Carbon Isotopes and Leaf Anatomy

Photosynthetic types for most species were retrieved from the literature (Osborne et al. 

2014; Table S4). The photosynthetic type of J. griffithiana was verified through analysis of carbon 

isotopes. Leaf fragments from the sequenced herbarium specimen were analysed using an ANCA 

GSL preparation module coupled to a Sercon 20-20 stable isotope ratio mass spectrometer (PDZ 

Europa, Cheshire, UK). The carbon isotopic ratio (δ13C, in ‰) was reported relative to the standard 

Pee Dee Belemnite (PDB). Values of δ13C ranging from -33 to -24‰ are typical of C3 plants, and 

values higher than -17‰ indicate that the plants grew using a C4 pathway (O’Leary 1988).

Leaf anatomical phenotypes were recorded for members of Andropogoneae and their C3 

relatives, using data from the literature (Table S4; Renvoize 1982a, 1982b, 1982c, 1985; Watson et 

al. 1992; Ueno 1995; Zuloaga et al. 2000; Christin et al. 2013). In addition, new leaf cross sections 

were prepared for the herbarium samples of J. griffithiana and G. stricta used for genome 

sequencing. A leaf fragment (ca. 2 cm) was rehydrated by warming the sample in dH2O up to 60°C 

followed by immersion in 1% KOH overnight. The rehydrated fragment was then dehydrated 

through an ethanol series from 10% to 100% EtOH, with steps of 30 min, and resin-infiltrated with 

Technovit 7100 (Heraeus Kulzer GmbH, Wehrheim, Germany). Cross sections of 9 μm were 

obtained using a microtome (Leica RM 2245, Leica Biosystems Nussloch GmbH, Nussloch, 

Germany) and stained with Toluidine Blue O (Sigma-Aldrich, St. Louis, MO). Micrographs were 

obtained using an Olympus BX51 microscope coupled to an Olympus DP71 camera (Olympus 

Corporation, Tokyo, Japan). A number of qualitative and quantitative leaf characters related to the 

C4 function were measured on the cross sections following Christin et al. (2013): number of bundle 

sheath layers, distance between the centres of consecutive veins (interveinal distance), minimal 

distance between the bundle sheaths of consecutive veins (bundle sheath distance), fraction of the 

mesophyll plus bundle sheath area represented by the inner bundle sheath (% inner sheath area), 
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presence/absence of distinctive cells (sensu Tateoka 1958; Renvoize 1982b), and localization of 

starch production.

Analyses of Protein Sequence Evolution

To test for episodes of adaptive evolution of C4 enzymes during different periods of the 

history of Andropogoneae, branch model tests using the ratio of nonsynonymous to synonymous 

substitutions rates (dN/dS; Yang 1998; Yang and Nielsen 1998) were conducted on alignments of 

five genes encoding proteins known to play important roles in the C4 pathway (Hatch 1987; Huang 

et al. 2017): NADP-malate dehydrogenase (NADP-MDH; gene nadpmdh-1P1), NADP-malic 

enzyme (NADP-ME; gene nadpme-1P4), phosphoenolpyruvate carboxykinase (PCK; gene pck-

1P1), phosphoenolpyruvate carboxylase (PEPC; gene ppc-1P3) and pyruvate, phosphate dikinase 

(PPDK; gene ppdk-1P2). To test whether shifts in selective pressures could be related to processes 

other than C4 evolution, an alternative set of 12 genes not known to be involved in C4 

photosynthesis were used as negative controls. These included some paralogs of the same core C4 

genes for which sequences were available in NCBI database and the individual nuclear markers 

used for phylogenetic analyses (see above; except apo1, rep1 and floricaula, for which no C3 

PACMAD species besides Jansenella and Chandrasekharania was available). For each of these 17 

genes, complete or partial coding sequences for the putative C3 sister group of Andropogoneae and 

G. stricta were manually assembled using the approach described above. Additional sequences were 

extracted using BLAST (e-value = 10-9) from (1) the CDS dataset of seven published genomes (S. 

bicolor, Zea mays, S. italica, Panicum hallii, Panicum virgatum, B. distachyon and Oryza sativa) 

retrieved from Phytozome v.12, (2) the NCBI nucleotide database, and (3) the transcriptomes of 34 

PACMAD species retrieved from Washburn et al. (2017). All sequences from each gene were 

aligned using MAFFT and the alignment was visually inspected. Low-confidence alignment regions 

containing indels were removed to avoid erroneously inflating estimates of nonsynonymous 

substitutions. Sequences from multiple accessions of the same species, paralogs and sequences 
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containing stop codons or frameshift mutations were also removed before the analysis. The 3rd 

positions of codons were used for phylogenetic inference to decrease biases due to adaptive 

evolution (Christin et al. 2012b). Phylogenetic trees were obtained using Bayesian inference with 

MrBayes as described above for the individual nuclear markers. Branch model tests were conducted 

using the consensus gene trees without collapsing unsupported nodes. These tests were repeated on 

the species tree obtained from the multigene coalescent analysis (see above), after pruning species 

for which sequences of the gene were not available. The duplication events inferred from the gene 

tree were incorporated into this phylogeny by duplicating the corresponding branches. C4 species 

outside Andropogoneae were pruned from all trees before analyses to avoid either (a) inflating the 

dN/dS estimate for the background branches as a result of independent selection signals in other C4 

groups, or (b) underestimating dN/dS in the foreground branches by misidentifying the paralog used 

for C4 photosynthesis in these other taxa.

A number of branch models were optimized using codeml as part of PAML v. 4.9 (Yang 

2008). The null model, which assumes a single dN/dS ratio for all branches, was compared to 

several branch models that hypothesized a different dN/dS ratio (i.e. shift in the selective pressure) 

in a set of foreground branches defined a priori: (1) the branch leading to Andropogoneae and its C3 

sister group (shifts in selective pressures before the transition to C4); (2) the branch leading to 

Andropogoneae (shifts in selective pressures during the transition to C4); and (3) the branches 

leading to each of the two main Andropogoneae groups Arundinellinae and Andropogoneae s.s. 

(two independent shifts in selective pressures just after the transition to C4). Each model was 

repeated with a sustained shift in selective pressures from the selected branches to all descendants. 

The best model was selected using the Akaike Information Criterion (AIC), after verifying that it 

was significantly better than the null model (at a significance level of 5%) as assessed via a 

likelihood ratio test, with a p-value adjusted for multiple testing using the Bonferroni correction.

The number of amino acid substitutions through time was assessed by estimating via ML 

the branch lengths on the amino acid alignment while constraining the topology to that obtained on 
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3rd positions of codons. This was performed for all genes analysed here, using IQ-tree v.1.6.1 

(Nguyen et al. 2015) with an automated selection of the model of protein sequence evolution.

RESULTS

Plastome and Nuclear Datasets

The plastome alignment of 66 species was 140,427 bp long, of which 56,991 bp 

corresponded to CDS. The mean estimated sequencing depth for the plastomes ranged from 90 to 

4,602 reads per site across species.The nuclear dataset consisted of 37 species and 365 genes. The 

alignments were on average 701 bp long (95% range = 370-1532 bp, total = 255,870 bp) and 70% 

complete (95% range = 63-80%), with an average of 64 parsimony informative sites (95% range = 

27-163, total = 23,367; Fig. S1). As expected, less stringent filtering parameters allowed more 

genes to be retained, and more parsimony informative sites per gene, but resulted in higher amounts 

of missing data (Fig. S1). The number of genes producing resolved phylogenetic trees was 

drastically reduced when using the full set of 66 species (Fig. S1f-j). The number of genes retained 

after filtering when using an alternative reference species (Sorghum bicolor) was on average 62% 

higher, but similar patterns of missing data across datasets were observed.

Plastome and Nuclear Phylogenetic Trees

The phylogenetic trees inferred from plastomes and nuclear genomes were largely 

congruent with previous studies, with discrepancies between the two types of markers as previously 

reported (GPWG II 2012; Washburn et al. 2017; Moreno-Villena et al. 2018; Dunning et al. 2019). 

The multigene coalescent tree was generally congruent with the plastid phylogeny. This nuclear 

analysis revealed gene discordance for many nodes, which indicates incomplete lineage sorting and 

possibly hybridization in some parts of the family (Dunning et al. 2019). The relationship between 

Andropogoneae and its C3 relatives was however consistent among the plastome and nuclear 

datasets, with the C3 genera Jansenella and Chandrasekharania forming a strongly supported group 
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sister to Andropogoneae (Figs 1, S2, S3 and S4). This relationship was also highly supported by all 

nuclear datasets obtained with different filtering thresholds (Table S5; Fig. S3), as well as in all 

trees inferred from individual nuclear markers (Fig. S4), except for two genes, in which Jansenella 

and Chandrasekharania formed a paraphyletic group (apo1; Fig. S4a) or were nested within 

Andropogoneae (floricaula; Fig. S4d). Our data and analyses therefore provide strong evidence that 

the clade formed by Jansenella and Chandrasekharania (hereafter Jansenelleae) is the extant C3 

lineage most closely related to the Andropogoneae grasses.

Within Andropogoneae, the genera Garnotia and Arundinella (subtribe Arundinellinae) 

either formed a group that was sister to Andropogoneae s.s. (Figs S2, S3, S4f,h and S5b,c), or were 

paraphyletic (Figs 1 and S4c,d,g and S5a). Short internal branches, incongruence in the multigene 

coalescent trees (Figs 1 and S3), and low posterior probability support values (Fig. S4) within 

Andropogoneae s.s. are associated with high incongruence between nuclear and plastome trees, 

suggesting a complex history for the group, which might be related to a rapid radiation and frequent 

hybridization (Estep et al. 2014). In particular, nuclear and plastome trees identify different taxa as 

sister to the rest of Andropogoneae s.s. (Zea mays in the multigene coalescent trees, Lasiurus 

scindicus in the plastome trees; Figs 1, S2 and S3). 

Divergence Time Estimates

The confirmation of the sister relationship between Jansenelleae and Andropogoneae 

allows for refined divergence time estimates, as the most recent divergence from a C3 relative (stem 

group node) represents the upper bound for the origin of a trait that could have evolved at any point 

along the branch leading to the most recent common ancestor of all species with the trait of interest 

(crown group node). Divergence times were estimated using the plastome dataset (coding 

sequences). Based on a secondary calibration considering only macrofossils, the divergence 

between Andropogoneae and its C3 sister lineage was estimated at 21.1 (95% HPD = 14.6 – 27.6) 

Ma (Table 1; Fig. S5). These dates would be pushed back to 34 (95% HPD = 23.5 – 44.4) Ma if a 
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microfossil dating scenario was followed. The first split within Andropogoneae was estimated at 

17.9 (95% HPD = 12.2 – 23.7) Ma (28.8 Ma under a microfossil dating scenario). 

Anatomical Changes During the Early Diversification of Andropogoneae

Anatomical and biochemical characters linked to C4 photosynthesis were recorded based on 

the literature and on new measurements for G. stricta and J. griffithiana (Table 2; Table S4). Our 

carbon isotope analysis confirmed that J. griffithiana is a C3 plant (δ13C = -27.28‰). Its leaf 

anatomy is typical of C3 grasses, with two layers of bundle sheath cells (Fig. 2a), which contradicts 

previous reports of a single sheath (Metcalfe 1960; Türpe 1970). As with other C3 species, it has a 

large distance between consecutive bundle sheaths, and no minor veins or distinctive cells (Fig. 2b). 

In addition, the proportion of the leaf occupied by the inner bundle sheath falls within the range 

observed for other C3 grasses (Christin et al. 2013). The leaf anatomy of G. stricta was similar to 

that previously reported for other Arundinellinae (Renvoize 1982c, 1986; Watson et al. 1992). Its 

veins are surrounded by a single bundle sheath and are separated by a large number of mesophyll 

cells (Fig. 2b). Multiple distinctive cells separate the veins, and staining suggests starch production 

in both bundle sheaths and distinctive cells (Fig. 2b). Similar anatomical structures are observed in 

other Arundinellinae (Table S4; Renvoize 1982c, 1986; Watson et al. 1992), but also in the genus 

Arthraxon (Ueno 1995), which is an Andropogoneae s.s. representative that diverged early from the 

rest of the group (e.g. GPWG II 2012; Estep et al. 2014). By contrast, most Andropogoneae s.s. lack 

distinctive cells and decrease the distance between consecutive veins via the proliferation of minor 

veins (Fig. 2b; Table 2; Table S4).

Positive Selection in C4 Enzymes

Phylogenetic trees for genes encoding C4 enzymes inferred from 3rd positions of codons 

were compatible with plastome and nuclear genome trees, with most of the variation being observed 

within Andropogoneae s.s. and Paniceae (Fig. S6). In all cases, Jansenelleae was sister to 
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Andropogoneae, except in pck-1P1, where Jansenelleae formed a group with Arundinellinae that 

was sister to Andropogoneae s.s. (Fig. S6c). Arundinellinae and Andropogoneae s.s. represented the 

first split within Andropogoneae in nadpmdh-1P1, nadpme-1P4 and ppc-1P3, but not in ppdk-1P2, 

in which Arundinellinae is paraphyletic (Fig. S6e) and pck-1P1, as mentioned above. Lineage-

specific duplications are observed within Andropogoneae s.s. and Arundinellinae species for 

nadpme-1P4, and only in Andropogoneae s.s. for nadpmdh-1P1 (Fig. S6a,b), as previously reported 

(Rondeau et al. 2005; Christin et al. 2009a; Wang et al. 2009).

The inferred trees were used to track shifts in selective pressures in Andropogoneae, 

independently for each gene. In three core C4 genes analysed (nadpmdh-1P1, nadpme-1P4 and ppc-

1P3), the best model inferred an increase of the dN/dS ratio after the split between Andropogoneae 

and Jansenelleae, which was sustained in the descendant branches (Table 3). As compared to the 

background branches, the estimated dN/dS ratio was 2 to 3.7 times higher in Andropogoneae for 

these genes. In pck-1P1 and ppdk-1P2, the best model indicates two independent three- and four-

fold increases of the dN/dS ratio at the base of each of Arundinellinae and Andropogoneae s.s., 

which was sustained in the descendant branches in pck-1P1, but not in ppdk-1P2. 

A shift of the dN/dS ratio was identified in three of the 12 other genes used as negative 

controls (Table 3). In the case of nadpme-1P3, a gene encoding a NADP-ME isoform not involved 

in the C4 cycle of any of the previously screened species (Moreno-Villena et al. 2018), the best 

model indicates an increase in dN/dS in the branch leading to the most recent common ancestor of 

Andropogoneae and Jansenelleae (Table 3). In dwarf8, an increase of dN/dS occurred on branches 

leading to each of the Arundinellinae and Andropogoneae s.s. and was sustained in the descendant 

branches. Finally, the best model for ppc-1P7, a gene encoding a PEPC isoform also not co-opted 

for the C4 cycle in any species previously analysed (Moreno-Villena et al. 2018), assumed a 

decrease of dN/dS in the two branches leading to each of the Arundinellinae and Andropogoneae 

s.s. and their descendants. Therefore, out of the 12 negative controls, only dwarf8 presents an 

increase of dN/dS that coincides with C4 evolution in the group. This gene, which affects flowering 
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time (Thornsberry et al. 2001), has been linked to the adaptation of some Andropogoneae to varying 

climates (Camus-Kulandaivelu et al. 2006).

All positive selection tests were repeated using the multigene coalescent species tree 

topology (Fig. 1) instead of the trees inferred from 3rd positions of codons (Table S6). The results 

mostly confirmed those reported above, except that no shift of selective pressure was observed in 

the core C4 genes nadpmdh-1P1 and pck-1P1, nor in nadpme-1P3 and dwarf8. Because sequences 

of the genes were available for species not included in the species tree, the sampling was reduced in 

these analyses compared to those based on the gene trees. The reduced evidence for positive shifts 

might therefore reflect a smaller statistical power of the tests based on the species tree.

To visualize the amount of amino acid substitutions during different periods of the 

Andropogoneae history, we estimated branch lengths from amino acid sequences after excluding C4 

species outside of Andropogoneae. Overall, numerous substitutions occurred in nadpmdh-1P1 and 

ppc-1P3 at the base of Andropogoneae, and increased rates compared to non-C4 species on these 

genes were sustained throughout Andropogoneae (Figs 3 and 4). By contrast, bursts of amino acid 

substitutions in nadpme-1P4 and ppdk-1P2 occurred at the base of both Arundinellinae and 

Andropogoneae s.s. lineages, with the first coinciding with events of gene duplication. An increased 

number of substitutions is also observed in pck-1P1, but it was restricted to a few branches within 

these groups (Figs 3 and 4). The same patterns were observed when C4 species outside 

Andropogoneae were included in the analyses (Fig. S7), as increased rates of amino acid 

substitution in all five genes characterize most C4 grasses, which highlights the highly convergent 

nature of C4 evolution in grasses. Similar bursts of amino acid substitutions were observed in the 

negative controls nadpme-1P3 (on the branch leading to Jansenelleae and Andropogoneae) and 

dwarf8 (in a few derived groups within Andropogoneae s.s.; Fig. S7). 

DISCUSSION

A Single Origin of the New C4 Physiology Followed by Continued Anatomical Changes

http://mc.manuscriptcentral.com/systbiol
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In previous grass phylogenetic trees, Andropogoneae formed a large clade entirely 

composed of C4 species, and its closest known C3 relatives belonged to a different group containing 

multiple independent C4 lineages (GPWG II 2012; Gallaher et al. 2019). The branch leading to 

Andropogoneae was therefore long, preventing the precise inference of changes leading to C4 

evolution in this group. We confirm here that Jansenella and Chandrasekharania form the sister 

group of Andropogoneae, both based on plastomes and on markers spread across the nuclear 

genomes (Figs 1, S2-S5). This, combined with a distinctive morphology, supports their recognition 

as a separate tribe, Jansenelleae (Appendix 1). We further confirm that the group is C3, as 

previously suggested (Türpe 1970; Renvoize 1985, 1986), providing a shorter branch connecting 

the last known C3 ancestor of Andropogoneae (most recent ancestor shared with Jansenelleae) and 

the first split within the group. The anatomy of Jansenella is typical of C3 grasses, with a large 

distance between consecutive veins, a double bundle sheath and no minor veins or distinctive cells 

(Fig. 2). In addition, the genes encoding C4-related enzymes from Jansenella and 

Chandrasekharania are similar to those of other C3 grasses, with no trace of positive selection or 

increased rates of amino acid replacement (Figs 3, 4, S7; Table 3). We therefore conclude that the 

last common ancestor of Jansenelleae and Andropogoneae was a typical C3 plant, with the 

anatomical and genetic characteristics common to all PACMAD grasses (Christin et al. 2013; 

Emms et al. 2016; Moreno-Villena et al. 2018). The changes responsible for the emergence of a C4 

pathway therefore happened after the divergence between Andropogoneae and Jansenelleae. 

Previous studies comparing C3 and C4 anatomical traits or genomes typically sampled only a few 

Andropogoneae species, preventing them from assigning changes to different phases of C4 

evolution (Christin et al. 2013; Emms et al. 2016; Huang et al. 2017), as enabled here thanks to our 

denser species sampling.

The comparison of anatomical types suggests multiple modifications during the early 

diversification of Andropogoneae. All species in this group have a single bundle sheath (Renvoize 

1982), which is ontogenetically equivalent to the inner sheath of C3 grasses (i.e. the mestome 
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sheath; Dengler et al. 1985). The large distance between consecutive veins, as observed in 

Jansenella (Table 2), is reduced in Arundinellinae by the insertion of one or multiple distinctive 

cells, where Rubisco can be segregated (Fig. 2; Dengler and Dengler 1990; Sinha and Kellogg 

1996). While these distinctive cells are shared by some Andropogoneae s.s. (Ueno 1995), most use 

a different strategy to reduce the distance between consecutive veins, which consists of the 

proliferation of minor veins (Table 2; Lundgren et al. 2014, 2019). Distinctive cells and minor veins 

have similar developmental patterns (Dengler et al. 1996), and the former could be precursors of the 

latter, in which case minor veins could represent the specialization of ancestral distinctive cells after 

the split of Andropogoneae s.s. from Arundinellinae. Alternatively, the ancestral state of the group 

could be minor veins that later degenerated in Arundinellinae and some Andropogoneae s.s., or else 

these specializations evolved multiple times during the early diversification of the group. In all 

cases, the phylogenetic distribution of distinctive cells and minor veins shows that changes 

following the initial transition to C4 led to diverse anatomical solutions for the effective segregation 

of biochemical reactions.

Modifications of C4 Enzymes Occurred Throughout the Diversification of Andropogoneae

The emergence of a C4 pathway generally requires the co-option of multiple enzymes 

already existing in the C3 ancestor via their massive upregulation (Hibberd and Covshoff 2010; 

Moreno-Villena et al. 2018). This is followed by adaptation of their kinetics for the new catalytic 

context through numerous amino acid replacements (Blasing et al. 2002; Tausta et al. 2002; Christin 

et al. 2007; Huang et al. 2017). Tests of shifts in selective pressures conducted here for multiple C4-

encoding genes from Andropogoneae and other grasses confirm that the evolution of C4 genes in 

this group involved an increased fixation of nonsynonymous mutations (Table 3; Christin et al. 

2007, 2009; Wang et al. 2009; Huang et al. 2017). Genes for the key enzyme of the C4 pathway, 

PEPC, underwent convergent changes in numerous groups of grasses, and most were shared 

between Arundinella and Andropogoneae s.s. (Christin et al. 2007). However, only a fraction of the 
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changes are also observed in Garnotia stricta (data not shown), indicating that the enzyme 

underwent adaptive changes both before and after the diversification of major Andropogoneae 

lineages. Consistent with this, the branch models did not favour increased amino acid replacements 

solely at the base of the whole clade, but a sustained increase throughout the diversification of the 

group (Table 3). A sustained shift in selective pressure on the branch leading to Andropogoneae 

after the split from Jansenelleae is also supported for genes encoding NADP-MDH and NADP-ME, 

while independent shifts are observed at the base of Arundinellinae and Andropogoneae s.s. for 

PCK (Table 3). A comparison of branch lengths indeed shows increased rates of amino acid 

replacements at the respective branches for all five core C4 genes (Fig. 3). Our analyses therefore 

confirm that massive changes happened at the base of Andropogoneae, and models assuming that 

increased fixation of nonsynonymous mutations persisted after early shifts in selective pressures are 

strongly favoured for four out of the five core C4 genes analysed (Table 3). In addition, increased 

rates of sustained amino acid replacements are observed on many branches within the group (Figs 3 

and 4). Increased rates of amino acid replacements were also detected in genes not known to be 

directly involved in C4 biochemistry, such as the NADP-ME paralog nadpme-1P3, and dwarf8. 

While the selective drivers for changes in nadpme-1P3 are not known, the branches with elevated 

rates of nonsynonymous mutations do not strictly coincide with the C4 phenotype (Fig. S7; Table 

3). The gene dwarf8 is linked to flowering time in maize, and selective sweeps in the genomic 

region including dwarf8 have been associated with climatic adaptations in maize (Camus-

Kulandaivelu et al. 2006, 2008). We conclude that, while other genes undergo elevated rates of 

amino acid substitutions for different reasons, important alterations of enzymes for the initial build-

up of a C4 cycle at the base of Andropogoneae were followed by continued adaptation throughout 

the diversification of the group.

While some enzymes participate in all biochemical variants of the C4 cycle (Kanai and 

Edwards 1999), the identity of the enzyme(s) responsible for the decarboxylation of CO2 in the 

bundle sheath varies among C4 lineages (Prendergast et al. 1987; Sage et al. 2011). Our analyses 
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concordantly indicate that the decarboxylating enzyme PCK underwent rounds of amino acid 

replacements only in some derived groups within Andropogoneae (Figs 3 and 4), without evidence 

of positive selection at the base of the whole group (Table 3). This conclusion was reached 

previously (Christin et al. 2009b) and supports later additions of a PCK-catalyzed decarboxylation 

reaction in some of the Andropogoneae (Gutierrez et al. 1974; Walker et al. 1997; Wingler et al. 

1999). However, our data also indicate that NADP-ME, which is the main decarboxylating enzyme 

in all Andropogoneae, similarly acquired its C4 properties relatively late in the history of the group. 

Again, the best model assumed adaptive evolution throughout Andropogoneae (Table 3). The gene 

nadpme-1P4 for NADP-ME was duplicated independently in Andropogoneae s.s., Garnotia and 

Arundinella, and amino acid replacements are especially prevalent in one of the copies in each 

group (Figs. 3 and S7; Christin et al. 2009a). These observations point to independent adaptation of 

the enzyme kinetics, but the expression patterns also likely evolved independently in 

Andropogoneae s.s. and Arundinellinae. Indeed, modifications of the promoter regions allowing the 

C4-specific binding of a transcription factor are restricted to one of the Andropogoneae s.s. 

duplicates that fulfils the C4 function (Borba et al. 2018), which evolved after the split from 

Arundinellinae. We therefore hypothesize that the common ancestor of the Andropogoneae 

performed a C4 cycle based on several decarboxylating enzymes relatively abundant in many C3 

grasses (Moreno-Villena et al. 2018), with some amino acid changes in the other C4 enzymes. 

Further modifications, which canalized the use of the NADP-ME encoded by nadpme-1P4, added a 

PCK shuttle and/or improved the action of PEPC, PPDK and NADP-MDH happened later during 

the diversification of the group, so that its numerous C4 species represent a diversity of realizations 

of the C4 pathway. Similar conclusions were reached for small groups that evolved the C4 trait more 

recently (Dunning et al. 2017a), but we show here for the first time that the continuous adaptation 

of the C4 trait can be sustained over long evolutionary periods, leaving traces even within one of the 

largest C4 groups.
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C4 Physiology Evolved During the Early Miocene in Andropogoneae

Besides inferring the changes underlying C4 evolution in Andropogoneae, our plastome 

phylogeny encompassing a diversity of Andropogoneae and their closest C3 relatives shed new light 

on the age of C4 photosynthesis in the group. Our molecular dating estimated the split between 

Jansenelleae and Andropogoneae at roughly 22 Ma, with the first split within Andropogoneae at 18-

19 Ma. While older ages would be inferred if disputed microfossils dates are considered (see 

Results), these dates represent the interval in which C4 most likely evolved in this group, and are 

consistent with those obtained from previous studies (Christin et al. 2008, 2014; Vicentini et al. 

2008; Estep et al. 2014; Spriggs et al. 2014; Dunning et al. 2017b). 

Reconstructing the ancient biogeography of Andropogoneae is complicated by their 

diversity and presumably numerous long-distance dispersals, but India represents the centre of 

diversity of both Andropogoneae and Jansenelleae (Bor 1955; Hartley 1958; Nair et al. 1982; 

Yadav et al. 2010), suggesting an origin on the subcontinent. The three species of Jansenelleae 

occur in open habitats (Bor 1955; Nair et al. 1982; Yadav et al. 2010), including some that regularly 

burn (Shilla and Tiwari 2015), calling for more research to establish which ecological traits now 

typical for Andropogoneae had already emerged before the C3 to C4 transition and which only 

appeared afterwards.

The contrast between the sister groups Jansenelleae and Andropogoneae is striking. While 

the former has only three known species, two of them restricted to small regions of India, the latter 

encompasses roughly 1,200 species spread around the world, many of which are dominant in 

savanna ecosystems (Hulbert 1988; Solbrig 1996; Bond et al. 2003; Kellogg 2015). This difference 

is partially explained by the divergence of photosynthetic types, but the expansion of C4 grasslands 

happened 7-15 Ma after C4 originated in Andropogoneae (Edwards et al. 2010), and increased 

diversification occurred only in some of its subclades (Spriggs et al. 2014). While the initial C4 trait 

might have played the role of a key innovation broadening the niche of early Andropogoneae 

(Lundgren et al. 2015; Aagesen et al. 2016), the later diversification and dominance of some 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



25

subgroups, their rapid dispersal across large distances (Dunning et al. 2017b) and into different 

ecosystems (Watcharamongkol et al. 2018) were likely enabled by the acquisition of additional 

attributes. Traits only partially related or entirely unrelated to C4 photosynthesis, such as frequent 

allopolyploidy, herbivore resistance and fire tolerance have previously been used to explain the 

success of some Andropogoneae (Stebbins 1975; Bond et al. 2003; Edwards et al. 2010; Visser et 

al. 2012; Estep et al. 2014;Forrestel et al. 2014; Ripley et al. 2015; Linder et al. 2018). We suggest 

that the diversity of C4 phenotypes revealed here might also contribute to variation among 

Andropogoneae. For instance, the addition of a PCK shuttle, which happened recurrently in some 

derived Andropogoneae, is predicted to increase tolerance to fluctuating light conditions (Bellasio 

and Griffiths 2014; Wang et al. 2014). Other anatomical and biochemical variations observed here 

might alter the hydraulic efficiency and growth rates of the different Andropogoneae (Osborne and 

Sack 2012). Overall, we conclude that, because of continuous adaptive reinforcement following a 

key physiological transition, descendants of a lineage sharing the derived trait should not all be 

considered as functionally equivalent.

CONCLUSION

Using plastome and nuclear phylogenomics, we confirmed a rare Asian C3 lineage, Jansenelleae, as 

sister to the C4 Andropogoneae grasses. This opens new avenues for comparative analyses of C4 

evolution, which were explored here. The C4 pathway in Andropogoneae most likely evolved in the 

Early Miocene between roughly 22 and 18 Ma, and many adaptive changes in C4 enzymes 

happened during this 4-My period, while many more occurred during the next 18 million years of 

lineage diversification. The group including Andropogoneae apparently originated on the Indian 

subcontinent, and the evolutionary diversification of the C4 phenotype after its origin might have 

facilitated the spread of Andropogoneae into novel niches and to different regions of the globe, 

contributing to the success of this emblematic group of savanna grasses.
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data repository at http://datadryad.org, doi: 10.5061/dryad.q114rt1.

FUNDING

M.E.B. was supported by the Brazilian Research Council (CNPq) through a 'Science without 

Borders' scholarship (grant number 201873/2014-1) and the European Research Council (grant 

ERC-2014-STG-638333). J.H. and G.B. received support from the French excellence projects 

Labex CEBA (ANR-10-LABX-25-01) and Labex TULIP (ANR-10-LABX-0041). This work was 

performed within the framework of the PhyloAlps project, whose sequencing was funded by France 

Génomique (ANR-10-INBS-09-08). P.A.C. is funded by a Royal Society University Research 

Fellowship (URF120119). M.R.M. was supported by NSF grant DEB-11456884, M.R.D. by 

Dimensions NASA grant DEB-1342782, and DEB-1457748 to E.A.K. Any opinions, findings, and 

conclusions or recommendations expressed in this material are those of the authors and do not 

necessarily reflect the views of the National Science Foundation.

ACKNOWLEDGEMENTS

We thank Jacob Washburn, Jeffrey Bennetzen and Minkyu Park for providing datasets for this 

study; Luke Dunning, Jill Olofsson, Daniel Wood and Pierre Solbès for bioinformatic support; 

Heather Walker for support with mass spectrometry analysis; Sophie Manzi for lab support; Hans-

Joachim Esser (Munich Botanical Gardens) for providing herbarium samples; Andrew Fleming for 

access to the plant histology facility; and Simone de Padua Teixeira, Marjorie Lundgren and 

Lamiaa Munshi for suggestions on the leaf anatomy preparation.

Author contributions: M.E.B., J.H., P.A.C. and G.B. designed the study. M.E.B. generated the 

phenotypic data, and G.B. and A.A. the genetic data. W.A., S.V.B., M.R.D., E.A.K., S.L., M.R.M., 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



27

C.P.O., and P.T. contributed data. M.E.B., J.H., A.M. and G.B. analyzed the data. M.S.V. did the 

taxonomic treatment. M.E.B., J.H., P.A.C. and G.B. wrote the paper with the help of all co-authors.

REFERENCES

Aagesen L., Biganzoli F., Bena J., Godoy-Bürki A.C., Reinheimer R., Zuloaga F.O. 2016. Macro-

climatic distribution limits show both niche expansion and niche specialization among C4 

Panicoids. PLoS One 11:e0151075.

Allen J.M., LaFrance R., Folk R.A., Johnson K.P., Guralnick R.P. 2018. aTRAM 2.0: An improved, 

flexible locus assembler for NGS data. Evol. Bioinform. 14:1–4.

Arthan W., McKain M.R., Traiperm P., Welker C.A.D., Teisher J.K., Kellogg E.A. 2017. 

Phylogenomics of Andropogoneae (Panicoideae: Poaceae) of mainland Southeast Asia. Syst. 

Bot. 42:418–431.

Bellasio C., Griffiths H. 2014. The operation of two decarboxylases, transamination, and 

partitioning of C4 metabolic processes between mesophyll and bundle sheath cells allows light 

capture to be balanced for the maize C4 pathway. Plant Physiol. 164:466–480.

Bertels F., Silander O.K., Pachkov M., Rainey P.B., van Nimwegen E. 2014. Automated 

reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 

31:1077–1088.

Besnard G., Christin P.-A., Malé P.-J.G., Coissac E., Ralimanana H., Vorontsova M.S. 2013. 

Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from 

Madagascar. Ann. Bot. 112:1057–1066. 

Besnard G., Christin P.-A., Malé P.-J.G., Coissac E., Lhuillier E., Lauzeral C., Vorontsova M.S. 

2014. From museums to genomics: old herbarium specimens shed light on a C3 to 

C4transition. J. Exp. Bot. 65:6711–6721. 

Besnard G., Bianconi M.E., Hackel J., Manzi S., Vorontsova M.S., Christin P.-A. 2018. Herbarium 

genomics retraces the origins of C4-specific carbonic anhydrase in Andropogoneae (Poaceae). 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



28

Bot. Lett. 165:419–433.

Bianconi M.E., Dunning L.T., Moreno-Villena J.J., Osborne C.P., Christin P.-A. 2018. Gene 

duplication and dosage effects during the early emergence of C4 photosynthesis in the grass 

genus Alloteropsis. J. Exp. Bot. 69:1967–1980.

Bläsing O.E., Ernst K., Streubel M., Westhoff P., Svensson P. 2002. The non-photosynthetic 

phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia – implications for the 

evolution of C4 photosynthesis. Planta 215:448–456. 

Bomblies K., Doebley J.F. 2005. Molecular evolution of FLORICAULA/LEAFY orthologs in the 

Andropogoneae (Poaceae). Mol. Biol. Evol. 22:1082–1094.

Bond W.J., Midgley G.F., Woodward F.I. 2003. What controls South African vegetation - climate 

or fire? S. Afr. J. Bot. 69:79–91.

Bond J.E., Garrison N.L., Hamilton C.A., Godwin R.L., Hedin M., Agnarsson I. 2014. 

Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for 

orb web evolution. Curr. Biol. 24:1765–1771.

Bond W.J., Silander J.A., Ranaivonasy J., Ratsirarson J. 2008. The antiquity of Madagascar’s 

grasslands and the rise of C4 grassy biomes. J. Biogeogr. 35:1743–1758. 

Bor N.L. 1955. Notes on Asiatic grasses: XXIII. Jansenella Bor, a new genus of Indian grasses. 

Kew Bull. 10:93. 

Borba A.R., Serra T.S., Górska A., Gouveia P., Cordeiro A. M., Reyna-Llorens I.,Kneřová J., 

Barros P.M., Abreu I.A., Oliveira M.M., Hibberd J.M., Saibo N.J.M. 2018. Synergistic 

binding of bHLH transcription factors to the promoter of the maize NADP-ME gene used in 

C4 photosynthesis is based on an ancient code found in the ancestral C3 state. Mol. Biol. Evol. 

35:1690–1705.

Burke S.V., Wysocki W.P., Zuloaga F.O., Craine J.M., Pires J.C., Edger P.P., Mayfield-Jones D., 

Clark L.G., Kelchner S.A., Duvall M.R. 2016. Evolutionary relationships in panicoid grasses 

based on plastome phylogenomics (Panicoideae; Poaceae). BMC Plant Biol. 16:140.

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



29

Camus-Kulandaivelu L., Veyrieras J.B., Madur D., Combes V., Fourmann M., Barraud S., Dubreuil 

P., Gouesnard B., Manicacci D., Charcosset A. 2006. Maize adaptation to temperate climate: 

relationship between population structure and polymorphism in the dwarf8 gene. 

Genetics172:2449–2463.

Camus-Kulandaivelu L., Chevin L.-M., Tollon-Cordet C., Charcosset A., Manicacci D., Tenaillon 

M.I. 2008. Patterns of molecular evolution associated with two selective sweeps in the tb1-

dwarf8 region in maize. Genetics 180:1107–1121.

Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. 2009. trimAl: A tool for automated 

alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. 

Christin P.-A., Salamin N., Savolainen V., Duvall M.R., Besnard G. 2007. C4 photosynthesis 

evolved in grasses via parallel adaptive genetic changes. Curr. Biol. 17:1241–1247. 

Christin P.-A., Besnard G., Samaritani E, Duvall M.R., Hodkinson T.R., Savolainen V., Salamin N. 

2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18:37–43.

Christin P.-A., Samaritani E., Petitpierre B., Salamin N., Besnard G. 2009a. Evolutionary insights 

on C4photosynthetic subtypes in grasses from genomics and phylogenetics. Genome Biol. 

Evol. 1:221–230.

Christin P.-A., Petitpierre B., Salamin N., Büchi L., Besnard G. 2009b. Evolution of C4 

phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype. Mol. Biol. Evol. 

26:357–365. 

Christin P.-A., Freckleton R.P., Osborne C.P. 2010. Can phylogenetics identify C4 origins and 

reversals? Trends Ecol. Evol. 25:403–409. 

Christin P.-A., Edwards E.J., Besnard G., Boxall S.F., Gregory R., Kellogg E.A., Hartwell J., 

Osborne C.P. 2012a. Adaptive evolution of C4 photosynthesis through recurrent lateral gene 

transfer. Curr. Biol. 22:445–449.

Christin P.-A., Besnard G., Edwards E.J., Salamin N. 2012b. Effect of genetic convergence on 

phylogenetic inference. Mol. Phylogenet. Evol. 62:921–927.

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



30

Christin P.-A., Osborne C.P., Chatelet D.S., Columbus J.T., Besnard G., Hodkinson T.R., Garrison 

L.M., Vorontsova M.S., Edwards E.J. 2013. Anatomical enablers and the evolution of C4 

photosynthesis in grasses. Proc. Natl. Acad. Sci. USA 110:1381–1386. 

Christin P.-A., Osborne C.P. 2014. The evolutionary ecology of C4 plants. New Phytol. 204:765–

781. 

Christin P.-A., Spriggs E., Osborne C.P., Strömberg C.A.E., Salamin N., Edwards E.J. 2014. 

Molecular dating, evolutionary rates, and the age of the grasses. Syst. Biol. 63:153–165.

Clark C.J., McGuire J.A., Bonaccorso E., Berv J.S., Prum R.O. 2018. Complex coevolution of 

wing, tail, and vocal sounds of courting male bee hummingbirds. Evolution 72:630–646.

Cock P.J.A., Chilton J.M., Grüning B., Johnson J.E., Soranzo N. 2015. NCBI BLAST+ integrated 

into Galaxy. GigaScience 4:39.

Cotton J.L., Wysocki W.P., Clark L.G., Kelchner S.A., Pires J.C., Edger P.P., Mayfield-Jones D., 

Duvall M.R. 2015. Resolving deep relationships of PACMAD grasses: a phylogenomic 

approach. BMC Plant Biol. 15:178.

Dengler N.G., Dengler R.E., Hattersley P.W. 1985. Differing ontogenetic origins of PCR (“Kranz”) 

sheaths in leaf blades of C4 grasses (Poaceae). Am. J. Bot. 72:284–302. 

Dengler N.G., Donnelly P.M., Dengler R.E. 1996. Differentiation of bundle sheath, mesophyll, and 

distinctive cells in the C4 grass Arundinella hirta (Poaceae). Am. J. Bot. 83:1391–1405. 

Dengler R.E., Dengler N.G. 1990. Leaf vascular architecture in the atypical C4 NADP – malic 

enzyme grass Arundinella hirta. Can. J. Bot. 68:1208–1221. 

Doust A.N., Penly A.M., Jacobs S.W.L., Kellogg E.A. 2007. Congruence, conflict, and 

polyploidization shown by nuclear and chloroplast markers in the monophyletic “bristle 

clade” (Paniceae, Panicoideae, Poaceae). Syst. Bot. 32:531–544.

Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. 2006. Relaxed phylogenetics and dating 

with confidence. PLoS Biol. 4:699–710. 

Drummond A.J., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



31

BMC Evol. Biol. 7:214. 

Dunning L.T., Lundgren M.R., Moreno-Villena J.J., Namaganda M., Edwards E.J., Nosil P., 

Osborne C.P., Christin P.-A. 2017a. Introgression and repeated co-option facilitated the 

recurrent emergence of C4 photosynthesis among close relatives. Evolution 71:1541–1555. 

Dunning L.T., Liabot A.-L., Olofsson J.K., Smith E.K., Vorontsova M.S., Besnard G., Simpson 

K.J., Lundgren M.R., Addicott E., Gallagher R. V., Chu Y., Pennington R.T., Christin P.-A., 

Lehmann C.E.R. 2017b. The recent and rapid spread of Themeda triandra. Bot. Lett. 

164:327–337.

Dunning L.T., Olofsson J.K., Parisod C., Choudhury R.R., Moreno-Villena J.J., Yang Y., Dionora 

J., Quick W.P., Park M., Bennetzen J.L., Besnard G., Nosil P., Osborne C.P., Christin P.-A. 

2019. Lateral transfers of large DNA fragments spread functional genes among grasses. Proc. 

Natl. Acad. Sci. USA 116:4416–4425.

Edwards E.J., Smith S.A. 2010. Phylogenetic analyses reveal the shady history of C4 grasses. Proc. 

Natl. Acad. Sci. USA 107:2532–2537.

Edwards E.J., Osborne C.P., Stromberg C.A.E., Smith S.A., Bond W.J., Christin P.-A., Cousins 

A.B., Duvall M.R., Fox D.L., Freckleton R.P., Ghannoum O., Hartwell J., Huang Y., Janis 

C.M., Keeley J.E., Kellogg E.A., Knapp A.K., Leakey A.D.B., Nelson D.M., Saarela J.M., 

Sage R.F., Sala O.E., Salamin N., Still C.J., Tipple B. 2010. The origins of C4 grasslands: 

integrating evolutionary and ecosystem science. Science 328:587–591. 

Emms D.M., Covshoff S., Hibberd J.M., Kelly S. 2016. Independent and parallel evolution of new 

genes by gene duplication in two origins of C4 photosynthesis provides new insight into the 

mechanism of phloem loading in C4 species. Mol. Biol. Evol. 33:1796–1806. 

Endress P.K. 2011. Evolutionary diversification of the flowers in angiosperms. Am. J. Bot. 98:370–

396.

Estep M.C., Diaz D.M.V., Zhong J., Kellogg E.A. 2012. Eleven diverse nuclear-encoded 

phylogenetic markers for the subfamily Panicoideae (Poaceae). Am. J. Bot. 99:e443–e446.

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



32

Estep M.C., McKain M.R., Vela Diaz D., Zhong J., Hodge J.G., Hodkinson T.R., Layton D.J., 

Malcomber S.T., Pasquet R., Kellogg E.A. 2014. Allopolyploidy, diversification, and the 

Miocene grassland expansion. Proc. Natl. Acad. Sci. USA 111:15149–15154. 

Forrestel E.J., Donoghue M.J., Smith M.D. 2014. Convergent phylogenetic and functional 

responses to altered fire regimes in mesic savanna grasslands of North America and South 

Africa. New Phytol. 203:1000–1011.

Gallaher T.J., Adams D.C., Attigala L., Burke S. V., Craine J.M., Duvall M.R., Klahs P.C., Sherratt 

E., Wysocki W.P., Clark L.G. 2019. Leaf shape and size track habitat transitions across 

forest–grassland boundaries in the grass family (Poaceae). Evolution 73:927–946.

Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., 

Hellsten U., Putnam N., Rokhsar D.S. 2012. Phytozome: a comparative platform for green 

plant genomics. Nucleic Acids Res. 40:D1178-D1186.

Grass Phylogeny Working Group (GPWG). 2001. Phylogeny and subfamilial classification of the 

grasses (Poaceae). Ann. MO. Bot. Gard. 88:373–457.

Grass Phylogeny Working Group II (GPWG II). 2012. New grass phylogeny resolves deep 

evolutionary relationships and discovers C4 origins. New Phytol. 193:304–312.

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010. New 

algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the 

performance of PhyML 3.0. Syst. Biol. 59:307–321. 

Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies 

by maximum likelihood. Syst. Biol. 52:696–704.

Gutierrez M., Gracen V.E., Edwards G.E. 1974. Biochemical and cytological relationships in C4 

plants. Planta 119:279–300.

Hackel J., Vorontsova M.S., Nanjarisoa O.P., Hall R.C., Razanatsoa J., Malakasi P., Besnard G. 

2018. Grass diversification in Madagascar: In situ radiation of two large C3 shade clades and 

support for a Miocene to Pliocene origin of C4 grassy biomes. J. Biogeogr. 45:750–761. 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



33

Hatch M.D. 1987. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and 

ultrastructure. Biochim. Biophys. Acta 895:81–106. 

Hartley W. 1958. Studies on the origin, evolution and distribution of the Gramineae. I. The tribe 

Andropogoneae. Aust. J. Bot. 6:116–128.

Hattersley P.W. 1984. Characterization of C4 type leaf anatomy in grasses (Poaceae). Mesophyll: 

bundle sheath area ratios. Ann. Bot. 53:163–180.

Heyduk K., Moreno-Villena J.J., Gilman I., Christin P.-A., Edwards E.J. 2019. The genetics of 

convergent evolution: insights from plant photosynthesis. Nat. Rev. Genet. 

doi:10.1038/s41576-019-0107-5

Hibberd J.M., Covshoff S. 2010. The regulation of gene expression required for C4 photosynthesis. 

Annu. Rev. Plant Biol. 61:181–207. 

Huang P., Studer A.J., Schnable J.C., Kellogg E.A., Brutnell T.P. 2017. Cross species selection 

scans identify components of C4 photosynthesis in the grasses. J. Exp. Bot. 68:127–135. 

Hulbert L.C. 1988. Causes of fire effects in tallgrass prairie. Ecology 69:46–58.

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., Von Haeseler A., Jermiin L.S. 2017. ModelFinder: 

Fast model selection for accurate phylogenetic estimates. Nat. Methods 14:587–589. 

Kanai R., Edwards G.E. 1999. The biochemistry of C4 photosynthesis. In: Sage R.F., Monson R.K., 

editors. C4 Plant Biology. Academic Press. pp. 49–87. 

Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: 

Improvements in performance and usability. Mol. Biol. Evol. 30:772–780. 

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., 

Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P., Drummond A. 2012. Geneious 

Basic: An integrated and extendable desktop software platform for the organization and 

analysis of sequence data. Bioinformatics 28:1647–1649. 

Kellogg E.A. 2015. Flowering Plants. Monocots: Poaceae. Heidelberg: Springer. 416 p. 

Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357–

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



34

359.

Lehmann C.E.R, Griffith D.M., Simpson K.J., Anderson T.M., Archibald S., Beerling D.J., Bond 

W.J., Denton E., Edwards E.J., Forrestel E.J., Fox D.L., Georges D., Hoffmann W.A., 

Kluyver T., Mucina L., Pau S., Ratnam J., Salamin N., Santini B., Smith M.D., Spriggs E.L., 

Westley R., Still C.J., Strömberg C.A.E., Osborne C.P. March 21, 2019 [cited on June 25, 

2019]. Functional diversification enabled grassy biomes to fill global climate space. bioRxiv 

[Preprint] doi: 10.1101/583625.

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. 

2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. 

Linder H.P., Lehmann C.E.R., Archibald S., Osborne C.P., Richardson D.M. 2018. Global grass 

(Poaceae) success underpinned by traits facilitating colonization, persistence and habitat 

transformation. Biol. Rev. 93: 1125–1144.

Long S.P. 1999. Environmental responses. In: Sage R.F., Monson R.K., editors. C4 plant biology. 

Academic Press. pp. 215–249. 

Lundgren M.R., Osborne C.P., Christin P.-A. 2014. Deconstructing Kranz anatomy to understand 

C4 evolution. J. Exp. Bot. 65:3357–3369. 

Lundgren M.R., Besnard G., Ripley B.S., Lehmann C.E.R., Chatelet D.S., Kynast R.G., 

Namaganda M., Vorontsova M.S., Hall R.C., Elia J., Osborne C.P., Christin P.-A. 2015. 

Photosynthetic innovation broadens the niche within a single species. Ecol. Lett. 18:1021–

1029.

Lundgren M.R., Dunning L.T., Olofsson J.K., Moreno-Villena J.J., Bouvier J.W., Sage T.L., 

Khoshravesh R., Sultmanis S., Stata M., Ripley B.S., Vorontsova M.S., Besnard G., Adams 

C., Cuff N., Mapaura A., Bianconi M.E., Long C.M., Christin P.A., Osborne C.P. 2019. C4 

anatomy can evolve via a single developmental change. Ecol. Lett. 22:302–312.

Marek P.E., Moore W. 2015. Discovery of a glowing millipede in California and the gradual 

evolution of bioluminescence in Diplopoda. Proc. Natl. Acad. Sci. USA 112:6419–6424.

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



35

McGee M.D., Borstein S.R., Neches R.Y., Buescher H.H., Seehausen O., Wainwright P.C. 2015. A 

pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids. 

Science 350:1077–1079.

Mendes F.K., Hahn M.W. 2016. Gene tree discordance causes apparent substitution rate variation. 

Syst. Biol. 65:711–721.

Metcalfe C.R. 1960. Anatomy of the monocotyledons - I. Gramineae. Oxford, 267 p.

Meyer B.S., Matschiner M., Salzburger W. 2017. Disentangling incomplete lineage sorting and 

introgression to refine species-tree estimates for Lake Tanganyika cichlid fishes. Syst. Biol. 

66:531–550.

Mirarab S., Warnow T. 2015. ASTRAL-II: Coalescent-based species tree estimation with many 

hundreds of taxa and thousands of genes. Bioinformatics 31:i44–i52.

Moreno-Villena J.J., Dunning L.T., Osborne C.P., Christin P.-A. 2018. Highly expressed genes are 

preferentially co-opted for C4 photosynthesis. Mol. Biol. Evol. 35:94–106. 

Nair V.J., Ramachandran V.S., Sreekumar P. V. 1982. Chandrasekharania: a new genus of Poaceae 

from Kerala, India. Proc. Indian Acad. Sci. - Sect. B. Part 3, Plant Sci. 91:79–82. 

Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. 2015. IQ-TREE: A fast and effective 

stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 

32:268–274. 

Niklaus M., Kelly S. 2019. The molecular evolution of C4 photosynthesis: opportunities for 

understanding and improving the world’s most productive plants. J. Exp. Bot. 70:795–804.

O’Leary M.H. 1988. Carbon isotopes in photosynthesis. BioScience 38:328–336.

Ogilvie H.A., Heled J., Xie D., Drummond A.J. 2016. Computational performance and statistical 

accuracy of *BEAST and comparisons with other methods. Syst. Biol. 65:381–396.

Ogilvie H.A., Bouckaert R.R., Drummond A.J. 2017. StarBEAST2 brings faster species tree 

inference and accurate estimates of substitution rates. Mol. Biol. Evol. 34:2101–2114.

Olofsson J.K., Bianconi M., Besnard G., Dunning L.T., Lundgren M.R., Holota H., Vorontsova 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



36

M.S., Hidalgo O., Leitch I.J., Nosil P., Osborne C.P., Christin P.-A. 2016. Genome 

biogeography reveals the intraspecific spread of adaptive mutations for a complex trait. Mol. 

Ecol. 25:6107–6123.

Olofsson J.K., Cantera I., Van de Paer C., Hong-Wa C., Zedane L., Dunning L.T., Alberti A., 

Christin P.-A., Besnard G. 2019. Phylogenomics using low-depth whole genome sequencing: 

a case study with the olive tribe. Mol. Ecol. Resour. 19:877–892.

Osborne C.P. 2008. Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 

grasslands? J. Ecol. 96:35–45.

Osborne C.P., Freckleton R.P. 2009. Ecological selection pressures for C4 photosynthesis in the 

grasses. Proc. R. Soc. B Biol. Sci. 276:1753–1760. 

Osborne C.P., Sack L. 2012. Evolution of C4 plants: A new hypothesis for an interaction of CO2 

and water relations mediated by plant hydraulics. Philos. Trans. R. Soc. B Biol. Sci. 367:583–

600.

Osborne C.P., Salomaa A., Kluyver T.A., Visser V., Kellogg E.A., Morrone O., Vorontsova M.S., 

Clayton W.D., Simpson D.A. 2014. A global database of C4 photosynthesis in grasses. New 

Phytol. 204:441–446. 

Patel R.K., Jain M. 2012. NGS QC Toolkit: a toolkit for quality control of next generation 

sequencing data. PLoS One 7:e30619.

Paterson A.H., Bowers J.E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., Haberer G., 

Hellsten U., Mitros T., Poliakov A., Schmutz J., Spannagl M., Tang H., Wang X., Wicker T., 

Bharti A.K., Chapman J., Feltus F.A., Gowik U., Grigoriev I. V., Lyons E., Maher C.A., 

Martis M., Narechania A., Otillar R.P., Penning B.W., Salamov A.A., Wang Y., Zhang L., 

Carpita N.C., Freeling M., Gingle A.R., Hash C.T., Keller B., Klein P., Kresovich S., 

McCann M.C., Ming R., Peterson D.G., Mehboob-Ur-Rahman, Ware D., Westhoff P., Mayer 

K.F.X., Messing J., Rokhsar D.S. 2009. The Sorghum bicolor genome and the diversification 

of grasses. Nature 457:551–556. 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



37

Piot A., Hackel J., Christin P.-A., Besnard G. 2018. One third of the plastid genes evolved under 

positive selection in PACMAD grasses. Planta 247:255–266.

Prasad V., Strömberg, C.A.E., Leaché, A.D., Samant B., Patnaik R., Tang L., Mohabey D.M., Ge 

S., Sahni A. 2011. Late Cretaceous origin of the rice tribe provides evidence for early 

diversification in Poaceae. Nat. Commun. 2:480.

Prendergast H.D. V, Hattersley P.W., Stone N.E. 1987. New structural/biochemical associations in 

leaf blades of C4 grasses (Poaceae). Funct. Plant Biol. 14:403–420.

Puttick M.N., Thomas G.H., Benton M.J. 2014. High rates of evolution preceded the origin of birds. 

Evolution 68:1497–1510.

R Core Team. 2017. R: A language and environment for statistical computing. Vienna, Austria: R 

Foundation for Statistical Computing.

Rainford J.L., Hofreiter M., Nicholson D.B., Mayhew P.J. 2014. Phylogenetic distribution of extant 

richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS 

One 9:e109085.

Rambaut A., Suchard M.A., Xie W., Drummond A.J. 2013. Tracer v1.6. Available from 

http://tree.bio.ed.ac.uk/software/tracer/

Renvoize S.A. 1982a. A survey of leaf-blade anatomy in grasses I. Andropogoneae. Kew Bull. 

37:315–321. 

Renvoize S.A. 1982b. A survey of leaf-blade anatomy in grasses II. Arundinelleae. Kew Bull. 

37:489–495

Renvoize S.A. 1982c. A survey of leaf-blade anatomy in grasses III. Garnotieae. Kew Bull. 37:497. 

Renvoize S.A. 1985. A note on Jansenella (Gramineae). Kew Bull. 40:470. 

Ripley B., Visser V., Christin P.-A., Archibald S., Martin T., Osborne C. 2015. Fire ecology of C3 

and C4 grasses depends on evolutionary history and frequency of burning but not 

photosynthetic type. Ecology 96:2679–2691.

Rondeau P., Rouch C., Besnard G. 2005. NADP-malate dehydrogenase gene evolution in 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9

http://tree.bio.ed.ac.uk/software/tracer/


38

Andropogoneae (Poaceae): gene duplication followed by sub-functionalization. Ann. Bot. 

96:1307–1314.

Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., 

Suchard M.A., Huelsenbeck J.P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic 

inference and model choice across a large model space. Syst. Biol. 61:539–542. 

Saarela J.M., Burke S. V., Wysocki W.P., Barrett M.D., Clark L.G., Craine J.M., Peterson P.M., 

Soreng R.J., Vorontsova M.S., Duvall M.R. 2018. A 250 plastome phylogeny of the grass 

family (Poaceae): topological support under different data partitions. PeerJ6:e4299. 

Sage R.F. 2004. The evolution of C4 photosynthesis. New Phytol. 161:341–370. 

Sage R.F., Christin P.-A., Edwards E.J. 2011. The C4 plant lineages of planet Earth. J. Exp. Bot. 

62:3155–3169. 

Sage R.F., Stata M. 2015. Photosynthetic diversity meets biodiversity: the C4 plant example. J. Plant 

Physiol. 172:104–119.

Sage R.F. 2017. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: 

species number, evolutionary lineages, and Hall of Fame. J. Exp. Bot. 68:e11–e28.

Sánchez-García M., Matheny P.B. 2017. Is the switch to an ectomycorrhizal state an evolutionary 

key innovation in mushroom‐forming fungi? A case study in the Tricholomatineae 

(Agaricales). Evolution 71:51–65.

Silva C., Besnard G., Piot A., Razanatsoa J., Oliveira R.P., Vorontsova M.S. 2017. Museomics 

resolve the systematics of an endangered grass lineage endemic to north-western Madagascar. 

Ann. Bot. 119:339–351.

Sinha N.R., Kellogg E.A. 1996. Parallelism and diversity in multiple origins of C4 photosynthesis in 

the grass family. Am. J. Bot. 83:1458–1470. 

Shilla U., Tiwari B.K. 2015. Impact of fire and grazing on plant diversity of a grassland ecosystem 

of Cherrapunjee. Keanean J. Sci. 4:67–78.

Solbrig O.T. 1996. The diversity of the savanna ecosystem. In: O.T. Solbrig, E. Medina, and J.F. 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



39

Silva, editors. Biodiversity and Savanna Ecosystem Processes. Ecological Studies Vol. 121, 

pp. 1–27. Springer-Verlag, Berlin Heidelberg.

Soreng R.J., Peterson P.M., Romaschenko K., Davidse G., Teisher J.K., Clark L.G., Barberá P., 

Gillespie L.J., Zuloaga F.O. 2017. A worldwide phylogenetic classification of the Poaceae 

(Gramineae) II: An update and a comparison of two 2015 classifications. J. Syst. 

Evol.55:259–290.

Sprent J.I. 2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the 

occurrence of nodulation. New Phytol. 174:11–25.

Spriggs E.L., Christin P.-A., Edwards E.J.. 2014. C4 photosynthesis promoted species 

diversification during the Miocene grassland expansion. PLoS One 9:e97722. 

Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large 

phylogenies. Bioinformatics 30:1312–1313.

Stebbins G.L. 1975. The role of polyploid complexes in the evolution of North American 

grasslands. Taxon 24:91–106.

Strömberg C.A.E., Dunn R.E., Crifò C., Harris E.B. 2018. Phytoliths in paleoecology: Analytical 

considerations, current use, and future directions. In: Croft D. A. et al. (eds), Methods in 

Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological 

Communities, Vertebrate Paleobiology and Paleoanthropology, Chap. 12, pp. 235-287. 

Springer, Cham.

Studer A.J., Schnable J.C., Weissmann S., Kolbe A.R., McKain M.R., Shao Y., Cousins A.B., 

Kellogg E.A., Brutnell T.P. 2016. The draft genome of the C3 panicoid grass species 

Dichanthelium oligosanthes. Genome Biol. 17:223.

Tateoka T. 1958. Notes on some grasses. VIII. On leaf structure of Arundinella and Garnotia. Bot. 

Gaz. 120:101–109.

Tausta S.L., Miller Coyle H., Rothermel B., Stiefel V., Nelson T. 2002. Maize C4 and non-C4 

NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



40

localized ancestor. Plant Mol. Biol. 50:635–652.

Thornsberry J.M., Goodman M.M.,Doebley J., Kresovich S., Nielsen D., Buckler E.S. IV. 2001. 

Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28:288–289.

Türpe A.M. 1970. Sobre la anatomía foliar de Jansenella griffithiana (C. Mueller) Bor 

(Poaceae:Arundinelleae). Senckenberg. Biol. 51:277–285. 

Ueno O. 1995. Occurrence of distinctive cells in leaves of C4 species in Arthraxon and 

Microstegium (Andropogoneae-Poaceae) and the structural and immunocytochemical 

characterization of these cells. Int. J. Plant Sci. 156:270–289.

Vicentini A., Barber J.C., Aliscioni S.S., Giussani L.M., Kellogg E.A. 2008. The age of the grasses 

and clusters of origins of C4 photosynthesis. Glob. Change Biol. 14: 2963–2977.

Visser V., Woodward F.I., Freckleton R.P., Osborne C.P. 2012. Environmental factors determining 

the phylogenetic structure of C4 grass communities. J. Biogeogr. 39:232–246.

von Caemmerer S., Quick W.P., Furbank R.T. 2012. The development of C4 rice: current progress 

and future challenges. Science 336:1671–1672.

Walker R.P., Acheson R.M., Técsi L.I., Leegood R.C. 1997. Phosphoenolpyruvate carboxykinase in 

C4 plants: its role and regulation. Aust. J. Plant Physiol. 24:459–468.

Wang X., Gowik U., Tang H., Bowers J.E., Westhoff P., Paterson A.H. 2009. Comparative 

genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol. 10:R68. 

Wang Y., Bräutigam A., Weber A.P.M., Zhu X.-G. 2014. Three distinct biochemical subtypes of C4 

photosynthesis? A modelling analysis. J. Exp. Bot. 65:3567–3578.

Washburn J.D., Schnable J.C., Conant G.C., Brutnell T.P., Shao Y., Zhang Y., Ludwig M., Davidse 

G., Pires J.C. 2017. Genome-guided phylo-transcriptomic methods and the nuclear 

phylogenetic tree of the Paniceae grasses. Sci. Rep. 7:13528. 

Washburn J.D., Schnable J.C., Davidse G., Pires J.C. 2015. Phylogeny and photosynthesis of the 

grass tribe Paniceae. Am. J. Bot. 102:1493–1505. 

Watcharamongkol T., Christin P.-A., Osborne C.P. 2018. C4 photosynthesis evolved in warm 

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



41

climates but promoted migration to cooler ones. Ecol. Lett. 21:376–383. 

Watson L., Macfarlane T.D., Dallwitz M.J. 1992 onwards. The grass genera of the world: 

descriptions, illustrations, identification, and information retrieval; including synonyms, 

morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world 

and local distribution, and references. Version: 11th December 2017. 

Wingler A., Walker R.P., Chen Z.-H., Leegood R.C. 1999. Phosphoenolpyruvate carboxykinase is 

involved in the decarboxylation of aspartate in the bundle sheath of maize. Plant Physiol. 

120:539–546.

Xi Z., Liu L., Davis C.C. 2016. The impact of missing data on species tree estimation. Mol. Biol. 

Evol. 33:838–860.

Yadav S.R., Chivalkar S.A., Gosavi K.V.C. 2010. On the identity of Jansenella griffithiana 

(Poaceae) with a new species from Western Ghats, India. Rheedea 20:38–43. 

Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586–

1591. 

Yang Z. 1998. Likelihood ratio tests for detecting positive selection and application to primate 

lysozyme evolution. Mol. Biol. Evol. 15:568–573.

Yang Z., Nielsen R. 1998. Synonymous and nonsynonymous rate variation in nuclear genes of 

mammals. J. Mol. Evol. 46:409–418.

Yukawa T., Ogura-Tsujita Y., Shefferson R.P., Yokoyama J. 2009. Mycorrhizal diversity in 

Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am. J. Bot. 

96:1997–2009.

Zuloaga, F.O., Morrone, O. and Giussani, L.M. 2000. A cladistic analysis of the Paniceae: a 

preliminary approach. In: Jacobs S.W.L., Everett J., editors. Grasses: systematics and 

evolution. CSIRO. pp. 123–135.

FIGURES

http://mc.manuscriptcentral.com/systbiol

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



42

Figure 1. Phylogenetic trees of grasses based on (a) plastomes and (b) genome-wide nuclear data. 

(a) Bayesian phylogram inferred from coding sequences of plastomes (see Fig. S2 for phylogram 

based on non-coding sequences). Branch lengths are in expected substitutions per site. Closed 

circles on nodes indicate Bayesian posterior probability ≥ 0.95. Branches in red lead to C4 species. 

(b) Multigene coalescent species tree estimated from 365 nuclear genes . Pie charts on nodes 

indicate the proportion of quartet trees that support the main topology (in blue), the first alternative 

(in red), and the second alternative (in orange). Local posterior probabilities are indicated near 

nodes. Branch lengths are in coalescent units. The major groups of Panicoideae are delimited with 

shades.

Figure 2. Leaf transverse sections of representatives of Jansenelleae and Andropogoneae. (a) 

Jansenella griffithiana. OS = outer bundle sheath; IS = inner bundle sheath. Scale bar = 50 μm. (b) 

Jansenella griffithiana, Garnotia stricta, Arundinella nepalensis, Heteropogon contortus and 

Ischaemum afrum. The latter three images are from Christin et al. (2013). Arrows with a circle, a 

dash and a square indicate major veins, distinctive cells and minor veins, respectively. Scale bar = 

200 μm.

Figure 3. Phylograms with branch lengths based on amino acid sequences. The tree topologies were 

fixed to those obtained using 3rd positions of codons for genes encoding five core C4 enzymes: (a) 

NADP-malate dehydrogenase (NADP-MDH, gene nadpmdh-1P1), (b) NADP-malic enzyme 

(NADP-ME, gene nadpme-1P4), (c) phosphoenolpyruvate carboxykinase (PCK, gene pck-1P1), (d) 

phosphoenolpyruvate carboxylase (PEPC, gene ppc-1P3), and (e) pyruvate phosphate dikinase 

(PPDK, gene ppdk-1P2). The major taxonomic groups are indicated with shades, and branches from 

C4Andropogoneae are in red. Yellow circles indicate gene duplications. Scale bars = 0.01 expected 

amino acid substitutions per site (panels a – e are depicted at different scales). C4 species outside 

Andropogoneae were pruned from the tree. See Fig. S7 for details, and Fig. S6 for branch lengths 

based on nucleotides.

Figure 4. C4-related changes in protein sequences and leaf anatomy in the Andropogoneae grasses. 
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A time-calibrated phylogenetic tree of Panicoideae is presented, with selected C3 species outside 

Andropogoneae (see Fig. S5 for full phylogenetic tree). Branch thickness is proportional to the rate 

of protein change and colours represent different C4 enzymes. A simplified transverse section of the 

leaf is presented on the right, with colours representing the different tissues.

TABLES

Table 1. Divergence time estimates for selected lineages of grasses based on plastome sequences.

Table 2. Leaf anatomical traits in Jansenella griffithiana and representatives of Andropogoneae.

Table 3. Summary of branch model comparisons.

SUPPLEMENTARY MATERIAL 

Figure S1. Effect of different filtering stringencies and reference species on the set of nuclear genes 

retained for phylogenetic analyses. (a,f) Number of genes retained; (b,g) taxon occupancy (i.e. 

proportion of species represented); (c,h) proportion of the alignment that is complete 

(completeness); (d,i) number of parsimony informative sites; (e,j) proportion of the branches with 

bootstrap support values ≥ 50%. Analyses were performed on the reduced subset of 37 species (a-e) 

and the complete set of 66 species (f-j), and using either Setaria italica or Sorghum bicolor as the 

reference. Each analysis was repeated with a different level of trimming (no trim = no trimming; 

50% trim = sites covered by less than 50% of sequences were trimmed; 70% trim = sites covered by 

less than 70% of sequences were trimmed). Finally, analyses considered either all gene trees ('all') 

or only gene trees with ≥ 50% of branches with bootstrap support ≥ 50%. Dashed rectangles 

highlight the datasets used to generate the multigene coalescent species tree in Fig. 1 (in black), and 

Fig. S3 (in grey).

Figure S2. Bayesian phylogram inferred from non-coding sequences of plastomes. Black circles on 

nodes indicate Bayesian posterior probability ≥ 0.95.
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Figure S3. Multigene coalescent species trees inferred from 3,127 nuclear genes using Sorghum 

bicolor as a reference. Pie charts on nodes indicate the proportion of quartet trees that support the 

main topology (in blue), the first alternative (in red), and the second alternative (in orange). Local 

posterior probabilities are indicated near nodes. Branch lengths are given in coalescent units. The 

major groups of Panicoideae are indicated with shades, as in Fig. 1.

Figure S4. Bayesian phylograms inferred from individual nuclear markers. (a) apo1, (b) arodeh, (c) 

dwarf8, (d) floricaula, (e) kn1, (f) phyB, (g) rep1 and (h) waxy. Bayesian posterior probability 

values ≥ 70 are indicated near nodes. The main groups of Panicoideae are delimited with shades. 

Figure S5. Time-calibrated phylogenetic tree based on coding sequences of plastomes. Bars on 

nodes indicate the 95% HPD intervals for the ages. The main groups of Panicoideae are delimited 

with shades. 

Figure S6. Bayesian phylograms inferred for C4-related genes. These phylograms were inferred 

based on 3rd positions of codons of several core C4 genes: (a) nadpmdh-1P1, (b) nadpme-1P4, (c) 

pck-1P1, (d) ppc-1P3, (e) ppdk-1P2; paralogs of core C4 genes: (f) nadpme-1P1, (g) nadpme-1P2, 

(h) nadpme-1P3, (i) ppc-1P4, (j) ppc-1P5, (k) ppc-1P7, (l) ppdk-1P1; and other nuclear 

phylogenetic markers: (m) arodeh, (n) dwarf8, (o) kn1, (p) phyB and (q) waxy. Branches in red lead 

to C4 species. Bayesian posterior probability values ≥ 70 are indicated near nodes. The main groups 

of Panicoideae are delimited with shades.

Figure S7. Phylograms with branch lengths based on amino acid sequences. The tree topologies 

were fixed to those obtained using 3rd positions of codons used for branch model tests. Results are 

shown for core C4 genes: (a) nadpmdh-1P1, (b) nadpme-1P4, (c) pck-1P1, (d) ppc-1P3, (e) ppdk-

1P2; paralogs of core C4 genes: (f) nadpme-1P1, (g) nadpme-1P2, (h) nadpme-1P3, (i) ppc-1P4, (j) 

ppc-1P5, (k) ppc-1P7, (l) ppdk-1P1; and other nuclear genes: (m) arodeh, (n) dwarf8, (o) kn1, (p) 

phyB and (q) waxy. Branches in red lead to C4 species. Scale bars = 0.01 expected amino acid 

substitutions per site.
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Table S1. Genomic data information.

Table S2. Read mapping success and nuclear genome coverage in datasets assembled using Setaria 

italica or Sorghum bicolor sequences as references.

Table S3. NCBI accession numbers of sequences of nuclear markers assembled in this study.

Table S4. Photosynthetic types and leaf anatomy data of the 66 grass species used in this study.

Table S5. Summary of multigene coalescent species trees inferred from nuclear data under different 

filtering stringencies.

Table S6. Summary of branch model comparisons performed using the species tree topology.

APPENDIX 1 

Jansenelleae Voronts. tribus nov.

Type: Jansenella Bor, Kew Bull. 1955: 96. 1955.

Included genera: Chandrasekharania V.J. Nair, V.S. Ramach. & Sreek., Jansenella Bor

Description:

Annuals with erect culms. Ligule shortly membranous. Leaf blades lanceolate. Inflorescence shortly 

branched, appearing capitate. Spikelets laterally compressed, 2-flowered. Glumes 2, apically 

acuminate to shortly awned. Lower floret sterile, staminate, or bisexual. Lower lemma shortly 

awned, either entire (Jansenella) or awn arising between two erose apical lobes 

(Chandrasekharania). Lower palea present. Upper floret bisexual. Upper lemma awned from a 

bidentate apex, but variable in its shape and indumentum: either with two hair tufts, twisted 

dehiscent awn arising between long-acuminate lobes (Jansenella) or without hair tufts, short 

straight awn arising between two erose apical lobes (Chandrasekharania). Stamens 3. Grain 

ellipsoid; hilum punctiform.
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Leaf anatomy:

Outer and inner bundle sheaths present. More than four cells between consecutive veins. No 

distinctive cells. Starch storage in the chlorenchyma.

Distribution: 

India (including Assam and Sri Lanka), Myanmar and Thailand.
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Table 1. Divergence time estimates for selected lineages of grasses based on plastome sequencesa. 

Clade Macrofossilsb Microfossilsc

BOP crown
34.7

(24.8 – 45.6)
55.8

(39.9 – 73.4)

PACMAD crown
43.4

(34.6 – 51.1)
69.8

(55.7 – 82.2)

Panicoideae crown
36.4

(26.3 – 46.6)
58.6

(42.3 – 75.0)

Jansenelleae / Andropogoneae split
21.1

(14.6 – 27.6)
34.0

(23.5 – 44.4)

Andropogoneae crown
17.9

(12.2 – 23.7)
28.8

(19.6 – 38.1)

Andropogoneae s.s. crown
11.9

(8.0 – 16.0)
19.2

(12.9 – 25.8)

a Median ages are given in million years ago (Ma), with 95% HPD intervals in parentheses; b Secondary calibration 
using Christin et al. (2014) estimates based only on macrofossils; c Secondary calibration using Christin et al. (2014) 
estimates based on macrofossils plus microfossils.
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Table 2. Leaf anatomical traits in Jansenella griffithiana and representatives of Andropogoneae. 

Lineage/Species
Bundle 
sheath 
layers

Interveinal 
distance 
(μm)

% Inner 
Sheath 
Area

Bundle 
sheath 

distance 
(μm)

Distinctive 
cellsa

Starch in 
BSCa

Jansenelleae (C3)

Jansenella griffithiana 2 471 0.01 403 A A

Arundinellinae (C4)

Arundinella nepalensisb 1 215 0.27 101 P P

Garnotia stricta 1 191 0.11 187 P P

Andropogoneae s.s. (C4)

Arthraxon sp.c,d 1 - - - P P

Chrysopogon pallidusb 1 112 0.23 29 A P

Heteropogon contortusb 1 80 0.21 32 A P

Ischaemum afrumb 1 109 0.24 52 A P

Sorghum halepenseb 1 119 0.20 53 A P

a A = absent, P = present; b Christin et al. (2013); c Watson et al. (1992); d Ueno (1995). 

Page 52 of 55

http://mc.manuscriptcentral.com/systbiol

Systematic Biology
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
6
6
/5

5
8
2
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

3
 O

c
to

b
e
r 2

0
1
9



Table 3. Summary of branch model comparisons.

Branch modelsa

Scenarios of 
adaptive 
evolution

Single episode 
Preceding C4 evolution

Single episode 
During C4 evolution,

 at the base of 
Andropogoneae

Two episodes
During C4 evolution, 

at the base of Arundinellinae 
and Andropogoneae s.s.

Geneb Nc Null 
model

Internal 
branch

Sustained
Internal 
branch

Sustained
Internal 
branch

Sustained

dN/dSd

Core C4 genes

nadpmdh-1P1

(NADP-MDH)
28 13.53 14.82 5.90 14.74 0.00* 14.55 1.46* 0.07 – 0.14

nadpme-1P4

(NADP-ME)
63 205.29 202.70 42.20* 205.26 0.00* 202.73 2.89* 0.08 – 0.30

pck-1P1

(PCK)
41 36.77 38.11 5.40* - - 38.77 0.00* 0.02 – 0.06

ppc-1P3

(PEPC)
51 105.82 107.82 7.83* 82.81* 0.00* 85.87* 21.78* 0.03 – 0.09

ppdk-1P2

(PPDK)
30 100.33 97.23 51.07* 83.78* 37.69* 0.00* 53.91* 0.10 – 0.44

Paralogs of core C4 genes

nadpme-1P1 30 1.52 1.56 0.00 1.28 1.16 3.33 1.73 0.09

nadpme-1P2 21 0.00 0.72 1.59 2.00 0.97 0.55 0.93 0.09

nadpme-1P3 24 10.58 0.00* 4.73 4.77 7.75 9.97 10.05 0.05 – 0.17

ppc-1P4 30 3.92 4.08 5.90 5.23 5.30 0.00 3.84 0.07

ppc-1P5 30 0.00 2.00 1.84 1.83 1.49 1.84 1.80 0.06

ppc-1P7 19 11.33 13.29 5.59 - - 12.65 0.00* 0.09 – 0.04

ppdk-1P1 12 6.19 8.17 6.31 7.39 0.37 0.00 0.63 0.18

Other nuclear genes

arodeh 30 0.00 1.99 1.70 - - 1.85 1.77 0.11

dwarf8 39 46.51 45.75 23.99* 47.23 2.35* 48.34 0.00* 0.06 – 0.16

knotted1 13 4.15 0.00 5.45 - - 3.60 5.94 0.07

phyB 55 7.95 4.67 8.35 0.00 9.86 9.71 9.85 0.09

waxy 55 0.00 1.74 1.70 - - 1.90 1.91 0.05

a dAIC values relative to the best-fit model for each gene are shown. The best-fit model is highlighted in bold. Asterisks 
indicate significant likelihood ratio tests (LRT) against the null model after Bonferroni correction. Two hypotheses of 
potential enzyme adaptation were tested for each scenario, the first assuming a shift in selective pressure only in the 
internal branch of the group specified, the second assuming a sustained shift from the internal branch including all 
descendant branches. Missing values correspond to trees in which Andropogoneae was not monophyletic; b C4 gene 
annotation following Moreno-Villena et al. (2018); c Number of sequences in the alignment; d dN/dS ratios of 
background and foreground branches, respectively, estimated for the best-fit model, except in cases where the null was 
the best-fit model, for which there was a single dN/dS estimate for all branches.
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