
This is a repository copy of Power management optimisation for hybrid electric systems 
using reinforcement learning and adaptive dynamic programming.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/152272/

Version: Accepted Version

Proceedings Paper:
Sanusi, I. orcid.org/0000-0002-3198-9048, Mills, A., Konstantopoulos, G. 
orcid.org/0000-0003-3339-6921 et al. (1 more author) (2019) Power management 
optimisation for hybrid electric systems using reinforcement learning and adaptive dynamic
programming. In: 2019 American Control Conference (ACC). 2019 American Control 
Conference (ACC), 10-12 Jul 2019, Philadelphia, PA, USA. IEEE , pp. 2608-2613. ISBN 
9781538679012 

© 2019 AACC. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Power management optimisation for hybrid electric systems using

reinforcement learning and adaptive dynamic programming

Ibrahim Sanusi1, Andrew Mills2, George Konstantopoulos3, Tony Dodd4

Abstract— This paper presents an online learning scheme
based on reinforcement learning and adaptive dynamic pro-
gramming for the power management of hybrid electric sys-
tems. Current methods for power management are conservative
and unable to fully account for variations in the system due to
changes in the health and operational conditions. These con-
servative schemes result in less efficient use of available power
sources, increasing the overall system costs and heightening the
risk of failure due to the variations. The proposed scheme is
able to compensate for modelling uncertainties and the gradual
system variations by adapting its performance function using
the observed system measurements as reinforcement signals.
The reinforcement signals are nonlinear and consequently
neural networks are employed in the implementation of the
scheme. Simulation results for the power management of an
autonomous hybrid system show improved system performance
using the proposed scheme as compared with a conventional
offline dynamic programming approach.

I. INTRODUCTION

Hybrid electric systems such as those deployed on

unmanned aerial vehicles (UAV) often have architectures

which support two or more power sources [1]. The power

sources typically consist of joint propulsion and electrical

generation systems such as the gas turbine engines (GTE),

and one or more energy storage devices e.g fuel cells,

supercapacitors and batteries [2]. With limited energy

resources on-board the hybrid systems, power management

strategies have been identified as key enabling technologies

to support enhanced capabilities of the systems such as

longer operational times and increased endurance [1], [3].

The enhanced capabilities are envisaged to be associated

with increased power requirements, mission risks and

overall system costs. It is therefore the aim of the power

management strategies to reduce the risks and overall

system costs whilst providing an effective way to support

the system power requirements.

The operation of an autonomous vehicle can be divided

into phases, for example a car or aircraft may have pre-

planned routes or missions (e.g hill climbing or aircraft

radar sweeps) associated with varying power demands

[1]. There is an energy interdependency between the

operation phases as the power drawn from a source for

a duration of a phase may become unavailable for the
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remaining phases. This is the case for the energy storage

devices where the available power for a phase is dependent

on previous charge/discharge energy cycles at the other

phases. Current industry-standard approaches for the power

management are therefore based on pre-defined rule based

power schedules between the multiple power sources [4].

These approaches follow a series of if-then rules designed

for the worst-case peak power requirements. As such, they

are usually conservative and unable to adapt to dynamic

changes in the systems. Over the years, research trends have

favoured optimisation based power management approaches

to optimise the desired power requirements and constraints

of the hybrid systems [5], [6].

In [7], the hybrid system power management was

formulated as a mixed-integer nonlinear multi-objective

optimisation problem and solved using a differential

evolutionary fuzzy scheme. The proposed solution is

however non-deterministic and does not provide any

solution guarantees to be suited for real-time implementation.

Consequently, an intelligent power management system

(PMS) that guarantees a feasible solution was proposed in

[3] using a three level optimisation strategy. Both approaches

are, however, unable to account for unmodelled variations

in the system resulting from degradation or changes in

the system operating conditions. Furthermore, the energy

interdependency between the sources is considered in a

heuristic rule based manner that is suboptimal in both

schemes.

Other approaches have considered the dynamic

programming (DP) technique which is well suited to handle

the energy interdependency by solving the optimisation

problem as a sequence of operations [8]. The DP technique

is based on Bellman’s optimality principle and limits the

optimisation search to the potentially optimal trajectories.

In [9], DP was used to develop a hydroelectric scheduling

technique between thermal and hydro power sources to

minimise the system generation cost while satisfying

the system load requirements. Likewise, [10] proposed

an optimal dispatch of direct load control using DP to

minimise the system production cost. Related works on

power management optimisation using DP include [11],

[12] for optimal charge/discharge of energy storage devices;

[2], [5] and [13] for optimal energy management for hybrid

electric vehicles. All of these works depend on accurate

system models and are therefore limited in their ability

to account for system variations and modelling uncertainties.



Extension of the DP techniques to provide adaptation

and self-learning capabilities are enabled using frameworks

based on reinforcement learning (RL) and adaptive dynamic

programming (ADP) [8], [14], [15], [16]. Using ADP, an

adaptive power management scheme was developed for

residential load management in both [17] and [18]. Both of

these approaches applied a heuristic approach in the online

management scheme by limiting the control inputs to one of

three choices as charge, discharge and idle, greatly reducing

the optimality of the solutions. In [19], a dual Q-learning

scheme was proposed as an extension to the residential

load management optimisation. This scheme is however

restricted to problems involving repeated known cycles for

the load and system costs.

In contrast to the above approaches, this paper proposes a

new online learning scheme based on reinforcement learning

and adaptive dynamic programming (RL-ADP) that is able

to compensate for both modelling uncertainties and gradual

variability due to changes in the system health or operating

conditions. The system learns by using reinforcement signals

in the form of the system measurements to adapt the system

performance function, which is then used to determine the

best power control strategy online. The rest of the paper is

organised as follows. Section II provides the mathematical

formulation for the power management problem while Sec-

tion III provides a dynamic programming solution. Section

IV extends the RL-ADP theory to the formulated problem

and introduces the proposed algorithm. Simulation results are

presented in Section V and conclusion in Section VI.

II. PROBLEM DEFINITION

An autonomous hybrid electric system consisting of a

GTE propulsion system and an energy storage device in

form of a battery is considered. The propulsion system

provides the necessary thrust needed by the system whilst

also providing electrical power to the on-board system loads.

Electrical power is generated from the propulsion system

through two sets of generators coupled to the rotating shafts

as shown in Fig. 1. This additional load on the propulsion

system results in higher fuel burn at peak load requirements.

A hybrid battery integration therefore promotes feasibility

of power scheduling for efficient system operation and

increased system capability.

The governing power equation for the system is given by:

Peng = PFN + Pprop + Pcore (1)

where Peng is the total useful power from the GTE, PFN

is the propulsive power needed for thrust while Pprop and

Pcore are respectively the electrical power from the propeller

and core shafts. For the load demand side, the power balance

equation is given by:

Pprop + Pcore = Pload − Pbat (2)

Fig. 1. Block diagram of a hybrid electric system consisting of a GTE with
battery integration. The GTE produces thrust (FN) for a given amount of fuel
flow (wfe) whilst also providing electric power via two sets of generators
coupled to both the propeller and core shafts.

where Pload is the required load power and Pbat is the

battery power output. Pbat > 0 indicates that the battery

is discharging, and charging when Pbat < 0. It is assumed

that the thrust requirement is always satisfied by the thrust

control loop, thus combining (1) and (2) gives:

′Peng = Pload − Pbat (3)

where ′Peng = Peng − PFN . Fig. 2 shows a sample power

demand profile for a hybrid electric system and the discrete

time steps k considered for optimisation. The change in

energy between the time steps k is defined as:

∆Ek+1 := ′P eng,k∆t = (Pload,k − Pbat,k)∆t (4)

The dynamics for the battery state of charge (SOC)

consistent with [18] and [19] is given as:

SOCk+1 = SOCk − sign(Pbat,k) · η(Pbat,k)∆t (5)

where sign(Pbat) indicates discharging (+) or charging (-)

of the battery while η(Pbat) gives the battery efficiency. The

power management optimisation problem therefore aims to

find the control strategy for Pbat that will optimise a desired

performance cost for a given load profile Pload. The state

equations are thus defined as follows:

xk+1 = F (xk, uk) =

[

(Pload,k − uk)∆t

x2,k − sign(uk) · η(uk)∆t

]

subject to: x ∈ X, u ∈ U (6)

where xk =
[

∆Ek SOCk

]⊤
, uk = Pbat,k and X,U are

Fig. 2. Sample operational phases and power requirements for the
autonomous hybrid electric system in time steps k, k + 1, · · · , k +N .



sets of constraints on the state and input respectively. The

desired cost to be optimised at the discrete time steps k is:

Q(xk, uk) =

N
∑

n=k

λn−kR(xn, un) (7)

where N is the length of the load profile, λ ∈ [0, 1] is

a forgetting factor and R(x, u) is a scalar reward signal

assumed to be directly measurable from the system. The

solution to the formulated optimisation problem will require

knowledge of the system models and result in the nonlinear

Hamilton-Jacobi Bellman (HJB) equations which are known

to be difficult and often impossible to solve analytically

[20]. An approach that provides a recursive solution to the

optimisation problem will now be presented.

III. DYNAMIC PROGRAMMING SOLUTION

DP considers the recursive form for the cost function of

(7) as:

Q(xk, uk) = R(xk, uk) + λQ(xk+1, uk+1) (8)

Equation (8) is called the Bellman equation and serves

as a fixed-point equation for the Bellman’s principle of

optimality [21]. DP assumes that the system model is known,

and discretises the system states into levels with associated

cost Q. DP therefore uses the Bellman equation to limit

the optimisation search to only the optimal trajectories by

solving the following recursion:

Solve backwards from terminal state Q(xN , uN ) for n =
N : −1 : k

Q(xk, uk)← min
uk

{

R(xk, uk) + λQ(xk+1, uk+1)
}

subject to: xk+1 = F (xk, uk) =

[

(Pload,k − uk)∆t

x2,k − sign(uk) · η(uk)∆t

]

x ∈ X, u ∈ U (9)

Remarks

• The problem space for DP is known to increase with

increased number of states and actions. This is known

as the DP curse of dimensionality. Although, known to

limit its practicality, DP has been shown to scale well

with problems involving hundreds of states and actions

[8].

• A major drawback of DP is its dependence on accurate

system models (i.e. F (x, u) and R(x, u)). For this

problem, the state equations, i.e. F (x, u), are given

by the system energy requirements and are known.

However, analytical models to accurately describe the

changes in the system health or operational conditions

are typically unknown. These changes are assumed

to reflect in the measured reward signals, i.e. gradual

changes in the measured GTE and battery efficiencies.

Consequently, the standard DP framework assumes a

fixed R(x, u) and is unable to cope with varying system

conditions. An online framework based on RL-ADP is

therefore proposed to compensate for both modelling

uncertainties and gradual variations in the system by

recursively solving the sequence of operations using

dynamic programming and function approximations.

IV. RL-ADP SOLUTION

Motivated by the Bellman optimality equations, RL-ADP

algorithms make use of iterative fixed-point equations that

are known to successively lead to improved policies [22].

The iterative fixed-point equations involve both value and

policy update steps respectively given as:

Qk+1(xk, uk) = R(xk, uk) + λQk(xk+1, uk+1) (10)

uk+1 = argmin
uk

(

R(xk, uk) + λQk+1(xk+1, uk+1)
)

(11)

These are implemented forward-in-time without requiring

models of the system. Convergence of the iterative updates

has been proven by showing that interleaving (10) and (11)

leads to a contraction map under certain conditions [20].

Learning is achieved by making use of function approxima-

tions and temporal difference (TD) error as follows:

Q(x, u) ≈ β⊤Φ(x, u) (12)

∴ ek = R(xk, uk) + λβ⊤

k Φ(xk+1, uk+1)− β⊤

k Φ(xk, uk)
(13)

where Φ(x, u) is a set of basis function and β are the

function weights. Equation (13) is solved for ek = 0 at each

time step to yield the least squares approximation to the

TD error equation. This way, only the measured data (i.e

R(xk, uk), xk+1 and uk) are used to compute the optimal

control inputs without knowledge of the system models.

Given a load profile Pload,k|k = 0, 1, · · · , N , we wish to

solve online the best control strategy (i.e. control sequence

UN = [u0, u1, · · · , uN ]) that minimises the desired cost.

Mathematically,

UN = minQ∗(xk, uk)

= min
uk

{

R(xk, uk) + λmin
uk+1

{

R(xk+1, uk+1) + · · ·

+λ min
uk+j−1

{

R(xk+j−1, uk+j−1) + λmin
uk+j

Q∗(xk+j , uk+j)
}

}

}

(14)

for j = 1, 2, · · · , N

Conventional RL-ADP algorithms require that the optimal

Q-function strictly follows the one-step Bellman optimality

equation:

Q∗(xN−1, uN−1) = R(xN−1, uN−1)

+λmin
uN

Q∗(xN , uN ) (15)

Clearly, the power management optimisation problem (14)

involves varying Q-functions due to the dependence of x on

the varying load requirements, Pload and does not conform

with (15). A novel approach is therefore to consider the

optimisation problem as being composed of:

• A planning/scheduling phase to determine the control

sequence UN using algorithms such as DP.



• Iterative adaptation of the Q-function from the system

measurements to compensate for modelling uncertain-

ties and system variation in the reward measurements.

Remarks

• Obtaining a Q-function approximation that spans the en-

tire state space in (14) may be infeasible with increased

number of discrete stages for optimisation. This negates

the use of traditional Q-learning algorithms but favours

the iterative adaptation of the varying Q-functions at

each stage:

∴ Q(xk, uk) ≈ β⊤

k Φ(xk, uk) =

k
∑

n=k

λn−kR(xn, un)

= R(xk, uk) (16)

• Consequently, the adapted function gives the instanta-

neous reward signals while convergence to the optimal

Q-function (Q∗(x, u)) is obtained using an online DP

algorithm.

Adaptation of the Q-function is achieved by defining a cost

Ek based on the TD error (13) as follows:

Ek =
1

2
e2k (17)

βk+1 = βk − γ
∂Ek

∂βk

= βk − γ

[

∂Ek

∂Q(xk, uk)

∂Q(xk, uk)

∂βk

]

(18)

where γ > 0 is the learning rate. The adapted Q-function

is then used to generate reward signals and used in an

online planning/scheduling scheme to determine the control

sequence UN . Following the computed control sequence,

only the first control input is applied to the system online,

and the process is repeated. Algorithm 1 gives the template

for the proposed procedure.

Algorithm 1 Online RL-ADP framework for power manage-

ment optimisation

1: Initialise Q(x, u) ≈ β⊤
0 Φ(x, u) and obtain the con-

trol sequence UN = [u0, u1, · · · , uN ] from offline

dynamic programming of (9) with R(xn, un) =
β⊤
0 Φ(xn, un) |n=N :−1:k

Online computation: for k = 0 : N
2: Apply the first control input uk.

Q-function update step

3: Obtain real-time measurements for the reward signal

R(xk, uk), the states xk+1 and the control input uk.

4: Compute the TD error from (13), and adapt the Q-

function using (17) and (18).

Online planning/scheduling step

5: Perform online dynamic programming using

the updated Q-function with R(xn, un) =
β⊤

k+1Φ(xn, un) |n=N :−1:k+1 and determine the

control sequence Uk→N = [uk+1, uk+2, · · · , uN ].
6: Repeat steps 2 to 5 till k = N .

V. SIMULATION STUDIES

The proposed RL-ADP framework for power management

optimisation is demonstrated on a representative autonomous

hybrid electric system model to compensate for both

modelling uncertainties and variations in the system

efficiency. The electrical power from the GTE and battery

are constrained between 30KW ≤ ′P eng ≤ 150KW and

−60KW ≤ Pbat ≤ 60KW respectively i.e. the sets X,U,

while the battery SOC is expressed as a percentage between

0− 100%. The reward signal is assumed given by the GTE

efficiency, ηGTE which is the measured pounds of fuel flow

per hour per unit thrust. The intervals between the discrete

time steps k, i.e ∆t for the optimisation are considered to

be fixed and determined by changes in the load demand as

shown in Fig. 2.

Given a load profile Pload,k, the aim of the power manage-

ment optimisation framework is then to determine the best

power control strategy that optimises the cost function of (7)

subject to variations in the systems.

Algorithm implementation

Preliminary test was first carried out to determine suitable

basis function that can model the search space complexities

of the power management optimisation problem involving

the different load demands and the system energy constraints.

The test data consists of randomly sampled ′Peng , Pbat and

SOC levels with the reward signals as the measured ηGTE

from the system, penalised with large values for violations

of the system energy constraints. Approximation of the

Q-function using the test data with some choice of basis

function is then carried out and the results shown below:

TABLE I

CROSS-VALIDATED MEAN-SQUARED ERROR (MSE)

Model Polynomial 2-layer neural network

Complexity 2nd order 5 hidden 20 hidden 50 hidden

MSE 206.46 0.44 0.26 0.18

Results from Table I indicate that the approximation

is more complex than a second order and use of higher

order polynomials may lead to over-fitting. Neural networks

however offer better approximation to cope with the nonlin-

earities with considerations for the trade-off between model

complexity and the cross-validated MSE. Consequently, a 2-

layer neural network for the Q-function is trained as follows:

Q(x, u) ≈ β(2)⊤Φ(x, u) (19)

where

Φ(x, u) = Φ(x) =

[

1 eβ
(1)⊤

x

−e−β(1)⊤
x

eβ
(1)⊤

x+e−β(1)⊤
x

]

=
[

1 ez−e−z

ez+e−z

]

=
[

1 a
]

(20)



x =
[

1 x1 x2 u
]⊤
∈ R

1×4, z = β(1)⊤
x ∈

R
nh×1, a = tanh(z) = ez−e−z

ez+e−z
∈ R

nh×1, nh is the number

of hidden nodes, and β(1) ∈ R
4×nh , β(2) ∈ R

nh+1×1 are

respectively the inner and outer layer weights. The update

sequence for the function weights follows from (17) and (18):

Outer layer

β
(2)
k+1 = β

(2)
k − γ

[

∂Ek

∂Q(xk, uk)

∂Q(xk, uk)

∂β
(2)
k

]

(21)

where ∂Ek

∂Q(xk,uk)
= λek and

∂Q(xk,uk)

∂β
(2)
k

= Φ(xk, uk)

Inner layer

β
(1)
k+1 = β

(1)
k − γ

[

∂Ek

∂Q(xk, uk)

∂Q(xk, uk)

∂a

∂a

∂z

∂z

∂β
(1)
k

]

(22)

where
∂Q(xk,uk)

∂a
=

∑nh+1
i=2 β

(2)
(i) , ∂a

∂z
= 1 − tanh(z)2

and ∂z

∂β
(1)
k

= x. The parameters for the neural network

implementation are selected as follows: λ = 1, nh = 20
and γ = 0.3e−4. There are no stability guarantees for this

choice of weight update, but strategies to limit divergence

such as the use of target networks discussed in [23] proved

successful in the provided simulations. Two scenarios are

considered to demonstrate the effectiveness of the proposed

approach:

A. Performance of offline power schedule vs Algorithm 1

Algorithms such as DP can be used to construct offline

power schedules for the power management optimisation

problem. Typically, these are designed for fixed nominal

system models for the worst-case peak power requirements

and are usually suboptimal by being unable to adapt to

the actual system conditions. A DP algorithm as described

in Section III was used to compute feasible offline power

schedules for the hybrid system and serves as the baseline.

Given the system mismatch and other uncertainties at

design time between the nominal and actual (but unknown)

GTE efficiency, the computed offline power schedules will be

suboptimal and result in reduced system performance. Fig. 3

and Fig. 4 show the given load profile and the results from

using Algorithm 1 compared with the baseline. Whilst both

power management strategies were able to satisfy the system

load requirements, Algorithm 1 was able to compensate for

the system mismatch using the actual system measurements

as reward signals to deliver improved performance as shown

by the reduced average fuel consumed during the simulation.

B. Variation in system objectives and load requirements

The use of the offline (pre-defined) power schedules

heightens the risk of failure due to system variations. Varia-

tions can occur from changes in system operation objectives

which may result in a change in the load demand profile

[3]. Consider a load demand change at time steps 19 to 20
in Fig. 5. The offline power schedule is infeasible as it is

unable to adapt to the event change and satisfy the system

load requirements at all times. Algorithm 1 was however

able to satisfy the load requirements by fully delivering the

required load power, given the information about the load

change online. The RL-ADP scheme is therefore able to

determine the best power strategy by computing the best

charging/discharging cycles for the battery SOC in order to

cope the load change as shown in Fig. 4 and Fig. 6.

Fig. 3. TOP: Offline DP power scheduling (red) and Algorithm 1 (blue)
vs the load demand profile (green). The load demand profile is overlaid as
both algorithms satisfied the requirements. BOTTOM: Fuel consumption
using offline DP power scheduling with average fuel: 498.04 lb/hr (red) vs
Algorithm 1 with average fuel: 488.54 lb/hr (blue).

Fig. 4. TOP: Control law from applying offline DP power scheduling (red)
vs Algorithm 1 (blue). BOTTOM: GTE power output and battery SOC

from implementation of both power management strategies.

VI. CONCLUSIONS

This paper has proposed and demonstrated an online

power management optimisation scheme based on reinforce-



Fig. 5. TOP: Offline DP power scheduling (red) and Algorithm 1 (blue)
vs the load demand profile (green). The load demand profile is overlaid by
the output of Algorithm 1 indicating that the requirements are fully satisfied
but not with the Offline DP. BOTTOM: Fuel consumption using offline DP
power scheduling with average fuel: 498.04 lb/hr (red) vs Algorithm 1 with
average fuel: 493.47 lb/hr (blue).

Fig. 6. TOP: Control law from applying offline DP power scheduling (red)
vs Algorithm 1 (blue). BOTTOM: GTE power output and battery SOC

from implementation of both power management strategies.

ment learning and adaptive dynamic programming. Current

power management strategies are heuristic and thus subop-

timal, and are unable to compensate for modelling uncer-

tainties and variation in system conditions. The proposed

scheme computes online the optimal control strategies by

using system measurements as reinforcement signals to adapt

the system performance function. Future work will extend the

proposed strategy to multiple power sources with increased

number of states.
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