
Research Article Vol. 27, No. 23 / 11 November 2019 / Optics Express 33768

Tunable broadband terahertz polarizer using
graphene-metal hybrid metasurface

K. MENG,1 S. J. PARK,1 L. H. LI,1 D. R. BACON,1 L. CHEN,1 K.
CHAE,3 J. Y. PARK,3 A. D. BURNETT,2 E. H. LINFIELD,1 A. G.
DAVIES,1 AND J. E. CUNNINGHAM1,*

1School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT,
United Kingdom
2School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
3Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South
Korea
*j.e.cunningham@leeds.ac.uk

Abstract: We demonstrate an electrically tunable polarizer for terahertz (THz) frequency
electromagnetic waves formed from a hybrid graphene-metal metasurface. Broadband (>3 THz)
polarization-dependent modulation of THz transmission is demonstrated as a function of the
graphene conductivity for various wire grid geometries, each tuned by gating using an overlaid
ion gel. We show a strong enhancement of modulation (up to ∼17 times) compared to graphene
wire grids in the frequency range of 0.2–2.5 THz upon introduction of the metallic elements.
Theoretical calculations, considering both plasmonic coupling and Drude absorption, are in good
agreement with our experimental findings.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Components to enhance and extend the capability of THz spectroscopies have been intensively
developed in the past few decades, including efficient antennas [1], switches [2], absorbers [3], and
biosensors [4–6]. THz polarizers are essential for removing unwanted polarization components
and / or of controlling the polarization state of THz waves and hence are important components
in many THz systems and applications [7,8]. Several polarizers for THz radiation have previously
been reported, including those formed from liquid crystals [9], semiconductors [10], metal wire
grids [11], carbon nanotubes [12], and graphene [13]. Particular emphasis has been placed on
graphene, owing to its electrically tunable optical (including THz) conductivity [14], which
allows for tunable (Drude) absorption [15]. Graphene is also ideal for such applications since
its plasmon resonance, which can be fine-tuned by changing its geometry [16–18], lies in the
mid-infrared to THz frequency range [19].
Several different schemes for THz polarizers incorporating graphene have been presented

previously [20]. Metasurfaces are comprised of two-dimensional arrays of elements capable of
anisotropic manipulation of EMwaves [21]. They offer a promising approach to achieving tunable
THz polarizers, either in the form of pure graphene metasurfaces [13,22,23], or through the
incorporation of sheets of graphene into metal metasurfaces [8,24]. These structures have shown
their capability to control the polarization direction [8,23,24] and to manipulate polarization by
converting between linear and circular polarization states, for example [13,22,23]. Compared
with reports on the manipulation of the polarization state, THz amplitude modulation, and
especially broadband modulation, is less common, despite the importance of being able to tune
the amplitude of a desired polarization for the development of spatial light modulators [25] for
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THz communications [26] for example. More importantly, studying tunable THz polarizers is
essential for developing THz switching and attenuator devices for THz communications [27].

THz polarizers formed from wire grids (either free-standing [28] or on a substrate [29]) have
a low insertion loss (1 dB) and high polarization extinction ratio (PER) (up to ∼40 dB in the
range 0.3–1 THz) [11]. Such metallic wire-grid polarizers typically show a low transmission
for transverse electric (TE) polarized waves and a high transmission for transverse magnetic
(TM) polarized waves [28]. The same is true for wire grids formed from graphene, both in the
near-infrared [30,31], and in the microwave regions of the electromagnetic spectrum [32], while
at THz frequencies, they typically show a low transmission for TM-polarized THz waves owing
to THz wave-plasmon coupling [17,33]; this thus represents a limitation of pure graphene wire
grid based polarizers. A further limitation is the low modulation (∼10%) of the TE transmission,
which is caused by Drude absorption [17].

In this paper, we report on the design, fabrication and characterization of broadband tunable
THz polarizers utilizing graphene-metal hybrid wire grids. Compared with previous hybrid
graphene-metal metasurface polarizers that employ sheets of graphene covering the whole
metal metasurface area [8,24], our design is that of a hybrid graphene-wire grid and metal
metasurface which allows both the graphene and the metal elements of the design to contribute
to the anisotropic properties of the polarizer, providing a significant PER enhancement. Our
design also overcomes two drawbacks of graphene wire grid THz polarizers, namely their weak
modulation and the THz wave-plasmon coupling, which restrict the TM transmission [17]. Our
polarizer shows a broadband (up to several THz) polarization-dependent modulation, with an
up to ∼17 times enhancement of modulation ability in the range 0.5–2.5 THz compared with a
graphene-wire grid polarizer containing no metal.

2. Design and methods

2.1. Design and principle

Our graphene-metal hybrid wire grid structure, comprising a graphene wire grid overlaid on
to a metal metasurface such that the graphene and metal elements are interleaved, is shown in
Fig. 1(a). The metal metasurface is formed from a metal patch array. The introduction of metal
makes the sheet conductivity of the graphene-metal hybrid wires larger than wires formed from
graphene alone. The conductivity of the hybrid wires is given by

σs = (Lgraphene/(σgraphene × ΛG/M) + Lmetal/(σmetal × ΛG/M))
−1 (1)

where, σgraphene and σmetal are the sheet conductivity of graphene and metal, respectively, and
Lgraphene, Lmetal, and ΛG/M are the dimension of graphene, metal patch and period of graphene-
metal structure along the wires, respectively, as shown in Fig. 1(a). Since the sheet conductivity of
the metal is much larger than that of graphene, we can write ∆σs ≈ ∆σgraphene ×ΛG/M/Lgraphene
to a reasonable approximation. Thus, smaller graphene filling factors (GFF) along the wire,
Lgraphene/ΛG/M , lead to a larger conductivity modulation, which in turn results in a larger THz
transmission modulation. The strong TM-polarized plasmon mode present in graphene wires is
suppressed by the introduction of the metal metasurface, which effectively acts to transform the
graphene wires into separated graphene patches connected by metal. The EM wave-to-plasmon
coupling efficiency of the graphene patches is determined by their dimensions, and for a certain
width, the TM-polarized coupling is highly suppressed by decreasing Lgraphene [34]. As well
as this suppression, the metal metasurface introduces a TE-polarized plasmon into graphene,
whose interaction with THz wave is then tunable by modulating the conductivity of graphene;
this TE-polarized plasmon also contributes to the THz transmission modulation [35]. The
generated TE-polarized plasmon is induced by the THz wave coupling to the resonance of an
inductive-capacitive (LC) circuit formed by the metal-graphene structure, in which the metal acts
as a capacitive reservoir for charge accumulation and the graphene serves as an inductive channel.
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Fig. 1. (a) Schematic diagram of the graphene-metal hybrid wire grid structure. Upper
figure: cross-section of the array, lower figure: top view of the array. (b) Schematic diagram
of the THz transmission experiment: the lower electrode was used for applying gate voltage
and the upper two electrodes were connected to a source meter for measuring the conductivity
(indicated by G) (c) DC conductivities of graphene in each device as a function of gate
voltage. (d) SEM image of the graphene-metal hybrid wire grids with ΛM/G = 30 µm. (e)
Raman spectrum of the graphene in a typical device.

The transmission of the graphene-metal hybrid wire grid can be calculated by t = td × tp,
where td and tp are the transmission after Drude absorption and TE-polarized plasmon absorption,
respectively. td can be calculated by td(ω) = 2n1/(n1 + n2 + Z0σs) [36], where σs is the sheet
optical conductivity of the wires, and n1 and n2 are the refractive indices on the two sides of the
wire grids, while tp can be calculated by tp(ω) = 2

√
Y1Y2/|Y1 + Y2 + Y(ω)| [35], where Y1 and

Y2 are the inverse of the characteristic impedance of materials on both sides of the wire grids,
and Y(ω) is the complex admittance of the graphene-metal LC circuit. All theoretical results in
this work were calculated based on the equations above.

2.2. Fabrication and measurement methods

Five devices of different geometries, as described in Table 1, were fabricated to investigate their
effect on the polarizer performance. Devices A, B, and C were fabricated to show the effect of
changing ΛG/M , while devices A, D, and E demonstrated the effects of changing GFF.

Figure 1(b) shows a schematic diagram of the THz transmission experiment used to investigate
the polarizer response. θ is the angle between the incoming THz wave electric field polarization
and the wire orientation. θ = 0◦ represents TE polarization, while θ = 90◦ represents TM
polarization. The upper two metal contacts connecting to either end of the wires were used to
measure the DC conductance of the wire grid, which was then used to calculate the conductivity,
based on the wire geometry. The lower metal contact was used to apply a gate voltage,
enabling conductivity modulation. The polarizers were fabricated on a 0.35 mm thick ST-cut
SSP quartz substrate. The metal patterns were fabricated first using direct-write DLP laser
lithography (MLA150, Heidelberg Instruments) followed by electron-beam evaporation with
Ti/Au (7nm/70nm) layers. CVD graphene samples on copper were then transferred onto the
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Table 1. Geometric parameters of the graphene-metal hybrid polarizers fabricated in this work.Table
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metal arrays following a wet transfer procedure [37,38]; Poly- (methyl methacrylate) (PMMA)
was spin coated as a support, and the copper foil was then removed using 2% ammonium
persulfate solution. The graphene initially covered the whole metal metasurface area, which was
1.5mm× 1.5mm. The graphene was then etched into the wire-grid structures using oxygen plasma
at a power of 50 W for 2 minutes, with the graphene wires protected by S1813 photoresist, which
was removed in acetone after etching. Devices were electrically tuned using an ion gel (a mixture
of 2 parts of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI])
and 1 part of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) by weight) applied
as the gate dielectric material; this gel has previously shown good transparency for THz waves
[24] along with the ability to induce a large carrier density at low gate voltage [39]. The ion gel
was prepared by dissolving PVDF-HFP in acetone with the aid of a magnetic stirrer for an hour,
before adding the [EMIM][TFSI] into the solution and stirring for 24 hrs. The prepared ion gel
was then drop-cast on to the gratings, and dried in ambient conditions for one hour [40].

The gate voltage-dependent DC conductivity of the graphene in each device was measured
directly using a source-measurement unit, yielding the data shown in Fig. 1(c). The devices
were imaged using SEM and characterized using Raman microscopy after THz transmission
measurements. Examples of the SEM image of the wire grids, and the Raman spectrum of
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graphene in the polarizer, are shown in Figs. 1(d) and 1(e), respectively. The dark regions between
the metal patches in the SEM image are graphene, as confirmed by the Raman spectra, in which
the 2D peak was much larger than G peak, verifying the presence of single-layer graphene [41].

A THz time-domain spectroscopy (THz-TDS) system was used for transmission measurements.
In this system both the THz emitter and detector were bow-tie pattern LT-GaAs photoconductive
(PC) antennas, comprising a 2-µm-thick layer of LT-GaAs transferred on to a 5-mm-thick quartz
substrate, fabricated using an epitaxial lift-off method [42]. The transmission characteristic of
each polarizer device was obtained by dividing the Fourier transform of the transmitted THz
pulse to a reference obtained from a quartz substrate with an identical layer of ion gel.

3. Results and discussion

Figure 2(a) show the normalized transmission of device A at 0.5 THz; a polarization-dependent
THz transmission was found, with minimum transmission for the TE polarization and maximum
transmission for the TM polarization. DC transport measurements showed that the graphene
Fermi level in device A reached the Dirac point at a gate bias of 0.4 V (Fig. 1(c)). The THz
transmission was obtained for different gate voltages, as shown in Fig. 2(b), with examples of
the time-domain THz pulses passing through the polarizer shown as insets. As anticipated, the
largest transmission changes were observed for θ = 0◦; the transmission gradually reduced with
increasing θ up to θ = 90◦, at which the point transmission curves at different gate voltages
essentially overlapped. The modulation depth (MD), shown in Fig. 2(c), was obtained by
MD = (TD − T)/TD, where TD is the transmission when Vg = VDirac and T is the transmission of
the polarizer, here obtained when Vg = −2.1V . As expected, the largest transmission modulation
was seen for the TE polarization, with the modulation gradually reducing as θ was increased to
90°. The inset of Fig. 2(c) presents the polarization-dependent MD at 0.5 THz. The MD of the
TE transmission reached a value of ∼44% for device A for frequencies between 0.5-1.5 THz,
while the MD of the TM transmission was found to be negligible.

Figure 2(d) shows the suppression of the MD of the TM transmission when Lgraphene is reduced.
For a graphene wire grid, device E, the MD of TM transmission was around 14% to 21% (red solid
line), while when Lgraphene was reduced, the MD of TM transmission was also reduced (green
and blue solid line). For the 25-µm-wide wires, the MD of TM transmission was found to be
negligible when Lgraphene was smaller than 5 µm. Since, as expected, the MD of TM transmission
was negligible, the following discussions will focus on the MD of the TE transmission. We note
that the modulation speed of an ion-gel gating device such as ours is limited by the electrical
characteristics of the ion gel. The operation speed of the ion gel we used in this work was found to
be ∼ 300 Hz, reported by K. Chae et al [40]. This modulation speed is relatively slow compared
to the conventional field-effect transistor based modulator [43], which can show several kHz
operation, but the modulation speed of our device could be significantly increased (up to ∼ 10
kHz) by replacing the polymer in the ion gel from the PVDF-HFR used with PS-PEO-PS triblock
copolymer [44].

The working bandwidth of the polarizer was limited by the period of the graphene-metal grid,
ΛG/M , since the metal patch array acts as a low-pass filter with a cut-off frequency determined by
its period [45,46]. To investigate this, three devices (devices A, B, and C) with different ΛG/M
were tested as shown in Fig. 3. The MD was obtained by tuning the gate voltage Vg = VDirac
to Vg = −2.1V in each case. The cut-off frequencies of the experimental data in Fig. 3 were
found to be similar to the theoretical cut-off frequencies of the metal patch arrays as shown
in Table 2, indicating that the period of the metal array was predominantly determined by the
bandwidth of the polarizers. Here, the cut-off frequencies were calculated using their relationship
with the period of the metal array (f cut−off=c/neff ·ΛG/M , where c is the speed of light, and neff
is an effective refractive index). As such, to obtain broader bandwidth, a shorter ΛG/M would
be required. Among the fabricated devices, the largest bandwidth was obtained by device C,
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Fig. 2. (a) Normalized transmission (TTM − Tpol)/TTM of the THz polarizer (device A),
where TTM and Tpol are the TM transmission and the polarizer transmission, respectively. In
this polar coordinate, the angle is that of the polarization with respect to the TE polarization,
and the magnitude represents the normalized transmission for 0.5 THz. (b) Frequency-
domain transmission obtained at different gate voltages and for polarization θ = 0◦ and
θ = 90◦ Inset: transmitted time-domain THz pulses. (c) Modulation depth of device A
as a function of frequency with polarization θ between 0° and 90° with respect to the TE
polarization. Inset: modulation depth at 0.5 THz as a function of angle theta. (d) Comparison
of the modulation depth observed in devices A, B and E as a function of frequency for TE
polarized and TM polarized THz waves.

with ΛG/M = 15µm. The bandwidth of this device extended across the whole bandwidth of our
TDS system, ∼5 THz. The fractional bandwidths were also estimated in Table 2 to evaluate
our devices. We obtained a fractional bandwidth of ∼ 1.6 with the device C, which may be
categorized as ultra-wideband [47].

Table 2. Experimental cut-off frequency and fractional bandwidth of devices A, B and C, and the
theoretical cut-off frequency of the metal patch arrays with the corresponding geometries.

Geometry Experiments of polarizer Fractional bandwidth Calculation of metal array

Device A 4.3 THz 1.6 4.75 THz

Device B 1.53 THz 1.0 1.58 THz

Device C > 5 THz >1.6 9.5 THz
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Fig. 3. Modulation depths of device A (blue), device B (red), and device C (green) obtained
in the experiment.

To investigate the modulation enhancement by introducing the metal metasurface into the
graphene wire grid, device A and device D with different GFF to compare with device E (graphene
wire only device). The MD of these devices as the gate voltage was changed from VDirac to
−2.1 V were measured and theoretically calculated as shown in Figs. 4(a) and 4(b), respectively.
Compared with device E, in which no metal metasurface was introduced, device A showed an
approximately four times greater MD at 0.5–1.5 THz, and device D showed an approximately ∼six
times greater MD at 0.5–2.5 THz. This demonstrates that a smaller GFF induces a considerably
greater modulation, as expected. The PER of device D was modulated from 3.7 dB to 10.3 dB
obtained from PER = 20log(TTM/TTE), where TTM and TTE were the TM transmission and TE
transmission amplitudes, respectively. The maximum PER was obtained when Vg = −2.1V , and
minimum when Vg = VDirac, which was 0.9 V for device D. The PER value obtained here (∼10
dB) is below compared to that of metal wire grid (20 - 40 dB), though still slightly better than
tunable device using graphene/insulator stacks (9.5 dB) [48]. We note that our design thus shows
a significantly enhanced PER when compared to devices that integrate sheet graphene with metal
patch arrays, in which only ∼0.7 dB of PER has been obtained [49].

Fig. 4. Modulation depth of device A (blue), device D (green) and device E (red) with
respect to frequency, obtained (a) experimentally, and (b) by calculation.

Comparing the experimental and theoretical transmission results (Fig. 4), we note several
differences, notwithstanding their overall similarity. First, the measured MD is up to ∼3% larger
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than that calculated for low frequencies. This is likely to be a result of the contact resistance
between graphene and metal, causing the dc conductivity used in the calculation to be smaller
than the sheet conductivity. Second, the measured MD decays somewhat more slowly with
frequency than the calculated results. This could be caused by impurities and vacancies in
the graphene, which may affect the optical conductivity and plasmon excitations [50] by the
introduction of additional carrier scattering. Additionally, we observe a slight oscillatory behavior
in the experimental data, likely to be caused by interference of the THz pulse caused by the
reflection the surfaces (substrate and ion gel). In addition, a more rapid MD decrease with respect
to frequency was observed for frequencies above 3 THz in experiments owing to the limited
system bandwidth, which rolled off beyond 3 THz.

The transmission modulation was found to be proportional to the graphene conductivity (Fig. 5),
and we used the gradient of the curves of MD versus conductivity (∆MD/∆σgraphene) to quantify
the modulation ability of the polarizers. We note that the key factor here is the slope since we
quantify the modulation ability using it. The maximum modulation ability enhancement came
from device D, which had the smallest GFF, while the modulation ability enhancement compared
to the device without any metal metasurface (device E) was found to be 17.8 × according to the
experiment, and 18.0 × according to calculation.

Fig. 5. Modulation depth at 0.5 THz as a function of graphene conductivity for polarizers
with different periods and graphene filling factors obtained in experiments (filled symbols),
and in calculations (open symbols).

The MD and the working bandwidth of the polarizer could be improved by further reducing
the GFF and the ΛG/M , which we investigated theoretically. We considered graphene dimensions
from 10 nm to 10 µm, noting that the former could potentially be realized experimentally using
e-beam lithography [51]. The GFF were set from 0.001 to 0.5 while the graphene conductivity
was varied between 0.1 mS and 20 mS [36]. The calculated MDs at 0.5 THz are shown in Fig. 6.
Based on these parameters, the maximum MD found to be possible was 99.997%, employing 10
nm graphene with a 10 µm period.
Aside from the MD, other performance parameters such as the bandwidth and transmission

of the polarizer also change when the geometries are changed. To investigate this theoretically,
several different geometries were investigated, realized to obtain a range MDs as shown in Fig. 6;
the results are summarized in Table 3. It can be seen that either a shorter Lgraphene or larger GFF
results in a broader bandwidth (reaching as high as >90 THz for geometry 1 in Table 3), while
smaller GFF results in smaller TE transmission, indicating a higher PER (eg. up to ∼70 dB for
geometry 5). Here, the modulation bandwidth here is determined by the structural factors such
as GFF rather than gating method. The possible PER of our design is up to 30 dB higher than
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Fig. 6. Colour-scale plot showing the modulation depth MD at 0.5 THz as a function of
the length of graphene (ranging from 10 nm to 10 µm) and graphene filling factors (ranging
from 0.001 to 0.5); the MD value is indicated in the color bar.

commercial metal wire grid THz polarizers (20–40 dB). By a suitable choice of geometry, the
proposed polarizers can thus target either maximal bandwidth, maximal PER, or a compromise
between these factors according to the needs of particular applications. We note that fabrication
of the smaller devices could not be achieved using our current patterning method (direct-write
DLP laser lithography) owing to its resolution limit of ∼ 1 µm. We anticipate that these devices
could be fabricated using alternative methods such as high-resolution deep UV lithography in the
future work, or by electron beam lithography, though we note the latter would be time-consuming
for our device with patterned area of 1.5mm × 1.5mm.

Table 3. Performance of THz polarizers producing a 99.9% modulation depth for different
geometric parameters.

Geometry
Lgraphene
(µm) GFF ΛG/M (µm)

Max / min
transmission

Cut-off frequency
(THz)

Min / max
PER (dB)

1 0.1 0.064 1.56 0.557 / 5.85E-4 91.3 4.5 / 62

2 0.5 0.062 8.06 0.55 / 5.50E-4 17.7 4.7 / 63

3 2.3 0.059 38.98 0.499 / 5.00E-4 3.66 5.5 / 64

4 4.0 0.052 76.92 0.389 / 3.91E-4 1.85 7.7 / 66

5 6.0 0.037 162.16 0.202 / 2.01E-4 0.88 13 / 72

4. Conclusions

A new tunable broadband THz polarizer with a geometry comprising a graphene-metal hybrid
metasurface was designed, fabricated, and characterized. We experimentally verified its
broadband, polarization-dependent, and electrically tunable THz transmission modulation. We
demonstrated a significant enhancement of THz transmission modulation in this device, which
gave a ∼17 times modulation ability enhancement in the frequency ranging from 0.5 THz to
2.5 THz compared to graphene wire arrays. Theory indicates that the performance of the
polarizer could be further improved by reducing the dimensions, allowing the structures to satisfy
applications where either ultra-broadband modulation or ultra-high PER are required. Our device
could be applied as a polarization sensitive THz switch or attenuator in THz communication
circuits, for example, and could also be extended to a wider range of operating frequency by
controlling the geometrical parameters in the ways suggested, while noting that no current
efficient THz source or detector combination is yet available which would extend across the
entire potential working frequency range of this form of polarizer (from 0.1 to >90 THz).
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