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Summary 16 

Nitrous oxide (N2O) is frequently used for short anaesthesia/analgesia in children undergoing painful 17 

or repetitive procedures1. Children with acute lymphoblastic leukaemia (ALL) require repeated lumbar 18 

punctures with direct instillation of intrathecal chemotherapy, usually the anti-folate agent 19 

Methotrexate, during their treatment. These procedures are frequently performed under anaesthesia. 20 

Concerns have been intermittently raised about a drug-interaction between methotrexate and N2O 21 

that may potentiate the undesirable side effects of methotrexate, including neurotoxicity. However, the 22 

clinical evidence consists mainly of isolated case reports leading to a lack of consensus amongst 23 

paediatric anaesthetists about the relative risk-benefits of using N2O in children with ALL. In this 24 

article, we review the biochemical basis and scientific observations that suggest a significant 25 

interaction between N2O and methotrexate due to their dual inhibition of the key enzyme methionine 26 
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synthase. The possible role of this interaction in potentiating neurotoxicity in children with cancer is 27 

discussed, and arguments and counter-arguments about the clinical significance of this largely 28 

theoretical relationship are explored. Following comprehensive review of all the available data we 29 

make the case for the circumstantial evidence being sufficiently compelling to prompt a review of 30 

practice by paediatric anaesthetists and call for a precautionary approach by avoiding the use of N2O 31 

in children receiving concurrent methotrexate. 32 

Introduction 33 

N2O is still a widely used anaesthetic and is often used for short anaesthesia/analgesia in patients 34 

undergoing painful or uncomfortable procedures such as dressing changes, lumbar punctures and 35 

intrathecal chemotherapy. Concern has been intermittently raised about N2O toxicity. In Denmark 36 

during the 1950s several patients with tetanus were given N2O for a period of days to facilitate 37 

ventilation and suffered bone marrow toxicity 2.  Haematological toxicity of prolonged N2O therapy has 38 

since been well documented, but a number of questions remain regarding neurotoxic effects, 39 

amplified toxicity when co-administered with other drugs, and the impact of short, but repeated, bouts 40 

of exposure. 41 

It is increasingly appreciated that children receiving chemotherapy for acute lymphoblastic leukaemia 42 

(ALL) may experience adverse neurological and neurocognitive outcomes, both acutely and long-43 

term, with methotrexate implicated as the main causative agent3,4. Neurotoxicity takes many forms. 44 

Some patients experience devastating acute neurological side effects with highly varied clinical 45 

presentations, including stroke-like syndrome, seizures and paralysis. Others have evidence of 46 

subclinical white matter changes (leukoencephalopathy) on MRI scanning5 – a finding that has been 47 

linked to long-term adverse neurocognitive and neurobehavioral outcomes6. Finally, up to 40% of 48 

long-term survivors display some measurable defects in neurocognition, the commonest being 49 

impairments in processing speed, memory and executive function7. These deficits are persistent, 50 

even decades after treatment, and have been shown to have negative impacts on educational 51 

attainment and employment8. 52 

The risk factors for these adverse neurological outcomes are not clearly established and some clinical 53 

features of neurotoxicity suggest that environmental factors may be important determinants of risk9.  54 

Two recent case reports highlighted severe neurotoxicity in children undergoing intrathecal 55 
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methotrexate treatment for ALL with a drug interaction between N2O and methotrexate being 56 

postulated as a possible contributing factor9,10. Despite this, N2O is still a popular choice of 57 

anaesthetic agent for these children, with a recent paper even discussing the potential benefits of its 58 

use in children with leukaemia11. 59 

In this article, we review the biochemical basis and scientific observations that suggest a significant 60 

interaction between N2O and methotrexate and discuss the possible role of this interaction in 61 

potentiating acute and chronic neurotoxicity in vulnerable patient groups.  We make the case for the 62 

circumstantial evidence being sufficiently compelling to prompt a review of practice by paediatric 63 

anaesthetists and call for a precautionary approach by avoiding the use of N2O in children receiving 64 

concurrent methotrexate. 65 

N2O mechanism of action and use in anaesthesia   66 

N2O is one of the oldest anaesthetic drugs, it was first synthesised by Joseph Priestly in 1772 and 67 

widely experimented upon by Humphry Davy who recognised its analgesic properties in the early 19th 68 

century. Its popularity in anaesthesia is credited to Horace Wells, a dentist practicing in the United 69 

States of America who began using N2O clinically in 184412. Today N2O is supplied as a pressurised 70 

liquid in cylinders and used as a gas as it vaporises upon reduction of pressure during administration. 71 

It may be supplied as pure N2O or in a cylinder with 50/50 mixture of Oxygen and N2O (Entonox). 72 

Despite the advent of many newer anaesthetic agents, N2O remains extremely popular with 73 

anaesthetists today and is used in over 20% of anaesthetics13-15.   The potentially beneficial properties 74 

of N2O during anaesthesia include: 75 

i) The second gas effect: As N2O is rapidly absorbed from the alveolus, it has the effect of increasing 76 

the relative concentration of other gases and therefore their partial pressure and their own uptake is 77 

increased. This creates more rapid induction to the desired state of anaesthesia. Similarly, when N2O 78 

is ceased it will diffuse rapidly out of circulation, expanding the alveolus and create a favourable 79 

concentration gradient for the rapid exhalation of volatile agents and speeding up recovery from 80 

anaesthesia16.   81 

ii) Contribution to the depth of anaesthesia; N2O has a stable profile concerning the cardiovascular 82 

system in contrast to some volatile agents, so the incorporation of N2O in an anaesthetic allows 83 
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reduction in the dose of volatile agent and potentially a more stable patient. A large audit on 84 

unintentional awareness also pointed towards a role for N2O in the provision of adequate depth of 85 

anaesthesia during Caesarean Section17,18  86 

iii) At atmospheric pressure N2O cannot provide surgical anaesthesia and the ceiling effect on the 87 

CNS at a level of ‘sedation’ have proven a useful property for physicians and other health 88 

professionals not wishing to inadvertently administer deeper planes of anaesthesia with their 89 

attendant risks of cardiorespiratory depression leading to the requirement for pre-procedural 90 

starvation along with a higher degree of both medical supervision and monitoring.   91 

iv) Analgesia; N2O promotes release of endogenous opiates in the central nervous system, however 92 

its principal analgesic action seems to be effected via N-methyl-D-aspartate (NMDA) inhibition 19 93 

unfortunately its effects on prevention of chronic pain are confined to patients with a variant 94 

methylenetetrahydrofolate reductase (MTHFR) gene 20  95 

Historically, N2O has earned a deserved role in as an agent for brief procedural sedation in children 96 

due to the combined properties of physiological stability, rapid dose titration, administration by 97 

inhalation, analgesia and especially, low potential for acute over-dose. None of the alternative 98 

sedative agents be they opiates, benzodiazepines or intravenous anaesthetic agents such as 99 

ketamine or propofol can match this and although large comparative outcome studies are lacking21, 100 

expansion of other agents into the widespread role for sedation occupied by N2O has not occurred.  101 

Studies do exist confirming the acceptability and efficiency and extremely low acute complication rate 102 

of Nitrous administration in preference to other sedation agents for lumbar puncture11,22,23. These are 103 

important to recognise as counterbalancing this, it does have a number of undesirable properties, for 104 

example: 105 

i)  It is a greenhouse gas. 106 

ii) It may reduce fertility in healthcare workers24 107 

iii) It causes trapped gas in the gastrointestinal tract to expand and is implicated in postoperative 108 

nausea and vomiting. 109 

iv) It can cause megaloblastic anaemia with prolonged or repeated use 25,26. 110 
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iv) And most importantly for this article, it has been reported to cause severe neurological injury, in the 111 

form of subacute combined degeneration of the cord in patients with occult vitamin B12 deficiency27,28. 112 

The British National Formulary lists the side effects of N2O as depression of white blood cell 113 

formation, hypoxia and neurological toxic effects, linking this to ‘interference with the action of vitamin 114 

B12’ and noting that ‘neurological side effects can occur without preceding, overt haematological 115 

changes’ 29. The links between methotrexate, vitamin B12, N2O, and haematological and neurological 116 

toxicity are summarised in figure 1. 117 

Methotrexate use in leukaemia 118 

Methotrexate is a common component of paediatric and adult acute lymphoblastic leukaemia and 119 

lymphoma treatment regimens. It is administered intravenously, orally and intrathecally, the latter 120 

largely replacing cranial and spinal radiotherapy in the 1990’s as a method to eradicate leukaemic 121 

cells from the CNS, reducing the risk of relapse. However, both acute and chronic neurological side 122 

effects are reported following methotrexate use, including seizures, leukoencephalopathy and stroke-123 

like syndrome 5,30-32. Additionally, long-term neurotoxicity manifesting as neurocognitive impairment is 124 

an emerging concern affecting a substantial number of childhood leukaemia survivors 33-35. 125 

Briefly, methotrexate works by inhibiting the enzyme dihydrofolate reductase (DHFR), stopping the 126 

cell from processing folate into tetrahydrofolate (THF) required for DNA synthesis, eventually leading 127 

to cell death. As with many older chemotherapy agents, this effect is not cancer-cell specific and 128 

patients on methotrexate experience drug toxicity, particularly in rapidly-dividing cells such as those of 129 

the gut and bone marrow with mucositis and low blood counts being commonly reported side effects. 130 

This is a result of inhibition of purine and pyrimidine synthesis – the building blocks for DNA (fig 1). In 131 

paediatric leukaemia patients, folate rescue in the form of leucovorin is typically given 24-42 hours 132 

after intravenous high-dose methotrexate therapy in an attempt to limit toxicity in normal tissues, 133 

whilst still allowing time for the drug to function on leukaemia cells. 134 

 135 

Not all patients experience methotrexate neurotoxicity and the range of clinical manifestations is vast 136 

and complex, meaning it has been difficult to make progress on identifying risk-factors that predispose 137 

to these distressing and sometimes disabling side-effects. Although the intensity of methotrexate 138 

therapy36 and various pharmacokinetic parameters5 are implicated in some studies, there remains 139 
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considerable variation in occurrence of neurotoxicity between patients despite similar drug exposure. 140 

Paediatric leukaemia treatment regimens involve multi-agent chemotherapy plus additional drugs to 141 

manage treatment-related side effects. We hypothesized in a previous paper that interactions with 142 

other drugs and/or low nutrient levels might contribute towards explaining the variability in 143 

susceptibility to neurotoxicity.  Some drugs have a direct interaction resulting in increased 144 

methotrexate drug levels (e.g. fluoroquinolone antibiotics). A more insidious cause could be the 145 

interference with the same metabolic pathways as methotrexate and, in particular, additive effects on 146 

methionine synthase activity.  147 

The mechanisms of both acute and chronic methotrexate neurotoxicity are incompletely understood 148 

but experimental and clinical evidence points to two main pathways. Firstly, by activating microglia 149 

resulting in impaired oligodendrocyte maturation and myelination37, and secondly reduced synthesis 150 

of methionine from its precursor homocysteine – a reaction catalysed by the key enzyme methionine 151 

synthase. The latter results in excess homocysteine and a reduction in methionine both of which may 152 

be neurotoxic as shown in figure 1. Homocysteine excess has been shown in preclinical animal 153 

models to result in cognitive impairment via activation of the NMDA receptor38 and NMDA blockade is 154 

able to reverse these cognitive defects39. This is supported by human studies confirming a link 155 

between elevated homocysteine levels and seizures (acute neurotoxicity) (29) as well as elevated 156 

myelin basic protein in CSF (suggesting demyelination and chronic neurotoxicity)  40,41.  The 157 

accompanying reduction in methionine levels may also results in downstream effects on myelin 158 

sheath homeostasis and regulation of lipid production and thus potentially synergizes with the direct 159 

effect on oligodendrocyte myelination. Thus, reduced conversion of homocysteine to methionine 160 

appears to be a key factor underlying methotrexate-induced neurotoxicity. It is critical to note that the 161 

enzyme catalyzing this reaction– methionine synthase is directly inhibited by N2O, and N2O exposure 162 

has been shown to significantly increase plasma homocysteine concentrations after surgery42,43. 163 

Thus, methotrexate and N2O directly impinge on the same chemical reaction leading to the potential 164 

for enhanced toxicity even with low doses or short exposures. The principle of enhanced neurotoxicity 165 

by a double hit on this pathway is illustrated by a case report in the New England Journal of Medicine 166 

(NEJM) describing the neurological deterioration and death of a child anaesthetised twice with N2O 167 

prior to a diagnosis of methyltetrahydrofolate reductase deficiency44. 168 
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Neurotoxicity may be further compounded by a second interaction with low vitamin B12 levels45. 169 

Methionine synthase requires vitamin B12 as an essential co-factor. N2O prevents formation of active 170 

(oxidized) B12 and this results in irreversible inactivation of methionine synthase (Figure 1). 171 

Restoration of activity requires new synthesis of the enzyme.  In the presence of B12 deficiency, any 172 

impact of methotrexate and N2O on methionine synthase activity is likely to be significantly amplified. 173 

One small paediatric study showed significant correlation between plasma homocysteine rises in 174 

response to N2O and pre-operative vitamin B12 levels46. Low B12 levels could be dietary or due to 175 

other drugs such as proton pump inhibitors, which prevent absorption of vitamin B12 via blocking the 176 

production of intrinsic factor 9. Paediatric leukaemia patients may have poor nutritional status 177 

secondary to drug side effects such as enteropathy, mucositis and anorexia. Although B12 levels are 178 

not routinely measured in most centres, one small study, conducted in India, documented low B12 179 

levels in 25/80 (31%) of children completing ALL therapy 47.  180 

Much of the heterogeneity in occurrence of neurotoxicity in children given the same intrathecal 181 

methotrexate regime could theoretically stem from these additional factors such as interacting drugs, 182 

low B12 levels and other nutritional deficiencies. Moreover, these factors could significantly influence 183 

the sensitivity to N2O, which would have additive effects by inactivation of vitamin B12. A dose of N2O 184 

that was harmless to a B12 replete individual on a low dose of oral methotrexate may have 185 

significantly different effects in the presence of directly injected intrathecal methotrexate in a patient 186 

with already borderline or low B12 levels. 187 

Evidence of a methotrexate/ N2O interaction in patients 188 

Of course, the evidence presented above is largely theoretical and/or circumstantial. The best direct 189 

evidence for N2O potentiating methotrexate toxicity comes from studies in breast cancer. Two studies 190 

involving large numbers of breast cancer patients (368 and 2466, respectively), most of whom 191 

received N2O anaesthesia concluded that unpredictable toxic effects of methotrexate such as low 192 

blood counts and mucositis were likely due to the combined effect of methotrexate and N2O on folate 193 

metabolism, which was at least partially rescued by the administration of leucovorin 48,49. 194 

Unfortunately, these studies did not evaluate acute or chronic neurological outcomes. However, two 195 

case studies have also been published suggesting a link between neurotoxicity and concomitant N2O 196 

and methotrexate use9,10.  197 
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Briefly, the first case report involved a 7-year old patient who experienced severe neurotoxicity 198 

following her third intrathecal methotrexate dose10. Her first LP had been performed under general 199 

anaesthesia but the second and third had used N2O/oxygen gas mix (50:50). She presented with 200 

dysarthria followed by a decreasing level of consciousness (Glasgow coma scale 4). No infective 201 

cause was found and MRI showed leukoencephalopathy with signs of vasogenic oedema. The most 202 

likely cause was methotrexate neurotoxicity possibly potentiated by the concomitant use of N2O. The 203 

patient made a slow recovery over several months and was not exposed to further intrathecal 204 

methotrexate. 205 

The second case report involved a 12-year old patient who experienced seizures, limb weakness and 206 

agitation after her fifth dose of intrathecal methotrexate administered under N2O anaesthesia9. Her 207 

serum vitamin B12 levels were measured three weeks after her last intrathecal MTX and found to be 208 

below the normal range at 154ng/L (normal range 200-1100ng/L) She made a clinical recovery over 2 209 

weeks but was left with some residual left upper limb weakness 9.  210 

Also of interest, is the perceived lower incidence of neurotoxic effects in adult patients with ALL 211 

receiving intrathecal methotrexate treatment. Much of this is anecdotal with little direct supporting 212 

evidence in the literature.  The best comparison comes from the NOPHO ALL2008 trial, which treated 213 

patients up to age 45. Seizures were reported in 6.1% of 10-17 year olds but only 2.4% of 18-45 year 214 

olds this did not reach statistical significance 50. Notably, adult patients usually undergo lumbar 215 

puncture without sedation or general anaesthetic so are unlikely to be exposed to the combination of 216 

N2O plus intrathecal methotrexate. This evidence is highly circumstantial but is a possible avenue for  217 

further investigation. 218 

Although these case reports and clinical observations are clearly not conclusive, we believe they may 219 

be indicative of a larger problem, which requires further study and immediately warrants more caution 220 

in the field. 221 

Supporting pre-clinical evidence 222 

Although the clinical data above are limited, there are also a number of supporting observations using 223 

in vitro and in vivo models. Interestingly, N2O has been historically touted as a possible treatment for 224 

cancers and a potentiation agent for methotrexate. N2O was first reported as a possible treatment for 225 

CML in 1959 51. Tests exposing leukaemia cell lines to N2O showed a reduction in growth via impaired 226 
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5-methyl-THF metabolism. Additionally, N2O exposure of the leukaemic U937 cell line and primary 227 

leukaemia samples revealed a disruption of nucleotide synthesis, which was accentuated by 228 

concomitant exposure to methotrexate 52.  229 

A number of animal studies have explored the link between N2O and methotrexate. One such study 230 

exposed rats to N2O for 12-48 hours before dosing with a single intraperitoneal injection of 10-231 

80mg/kg body weight methotrexate (equivalent to routinely used doses in paediatric leukaemia 232 

treatment)53. The 50% lethal dose for methotrexate was reduced six-fold from 60mg/kg to 10mg/kg in 233 

rats pre-exposed to a mixture of 5-50% N2O for 48 hours and some increase in lethality was observed 234 

with 12-hour exposures. Combining methotrexate and N2O also showed increase anti-leukaemic 235 

effect in rat myeloid leukaemia models 54. Separate studies using 12-hour exposures showed that 236 

methionine synthase activity is completely suppressed and the conversion of methyl-THF to other 237 

folate variants needed for purine and thymidylate synthesis is also impacted 55,56. A 4-hour exposure 238 

of N2O was also shown to reduce 90% of hepatic methionine synthase activity, with a 50% reduction 239 

in tetrahydrofolate. In this model, it took 48 hours exposure to normal air for the methionine synthase 240 

levels to return to normal 57. 241 

It is difficult to ascertain how these long exposures in rats relate to the normally relatively short 242 

exposures experienced by children receiving methotrexate therapy for childhood leukaemia treatment. 243 

However, Entonox is 50% N2O, representing the highest volume used in this study, with other work 58, 244 

showing that exposure of a 2% mixture for 15 hours resulted in a 30% inhibition of methionine 245 

synthase in rat liver. Most strikingly however was that 15 minutes of exposure to 50% N2O caused a 246 

55% reduction in methionine synthase activity in the liver, with a 1-hour exposure reducing methionine 247 

synthase activity to just 30% of controls. These levels of exposure are clinically relevant, with most 248 

children undergoing short durations of anaesthesia in the range 10-30 minutes for lumbar puncture 249 

administration of methotrexate. Although methionine synthase activity has been measured in livers of 250 

these rats, it is reasonable to hypothesise that neural tissue may be similarly affected, especially 251 

since in patients the methotrexate is injected directly into the central nervous system. 252 

Current state of play 253 

As can be seen from the discussion above there is no single definitive piece of evidence that proves a 254 

causal link between N2O and enhanced methotrexate neurotoxicity. This lack of published evidence 255 
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has led to some counter arguments that short exposures to N2O in children are unlikely to be harmful. 256 

In addition, there are some perceived advantages in terms of flexibility and ease11 over alternative 257 

approaches. Together this has resulted in continued use of this agent and a lack of general 258 

acceptance in the anaesthetic community that an interaction with methotrexate is an important contra-259 

indication to its use. We would like to advance the following arguments in support of our case: 260 

1. The published clinical studies showing that prolonged exposure is needed to cause neurological 261 

adverse events in the context of low B12 did not include patients receiving methotrexate. Conversely, 262 

those investigating methotrexate interactions did not measure B12 levels. In addition, in the breast 263 

cancer study methotrexate was given IV rather than intrathecally, presumably resulting in significantly 264 

lower methotrexate exposure in neuronal cells. Patients with ALL are receiving direct instillation of 265 

intrathecal methotrexate and have many reasons to be B12 deficient– this “double or even triple 266 

whammy” effect may cause neurotoxicity even after brief exposures in paediatric leukaemic patients.  267 

2. The lack of large-scale reporting of neurological adverse drug interactions to regulatory authorities 268 

does not necessarily mean that no interaction exists for the following reasons: 269 

 i) Neurotoxicity can be subtle and manifest many months or years after initial exposure, making 270 

establishment of a causal link problematic. 271 

 ii) Anaesthesia is only one part of a multi-agent exposure and many haematologists will be unaware 272 

of the anaesthetic agent used – the lack of prescribing of anaesthetic agents on drug charts means 273 

they are frequently omitted from lists of concomitant therapy on serious adverse event reports, which 274 

are part of mandatory clinical trial reporting. Thus, the opportunity to establish a causal link is lost.   275 

iii) The combination of intravenous induction agents plus N2O maintenance may well reduce overt 276 

neurotoxicity events such as seizures due to the anticonvulsant properties of many induction agents – 277 

this may give anaesthetists a false sense of security that neurotoxicity is an extremely rare event, 278 

whilst subclinical leukoencephalopathy with resultant effects on long-term neurocognitive outcomes 279 

could still be occurring. 280 

Ways to test these arguments are discussed below. In the meantime, we contend that the weight of 281 

evidence presented above should lead to implementation of the precautionary principle i.e. ”when an 282 
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activity raises threats of harm to human health or the environment, precautionary measures should be 283 

taken even if some cause and effect relationships are not fully established scientifically" 59.  284 

Future research directions 285 

A recent single-institution study has highlighted potential neurocognitive adverse effects of repeated 286 

propofol and volatile anaesthetic exposure during childhood cancer therapy60. This institution did not 287 

use N2O for sedation/anaesthesia during this period (corresponding author personal communication), 288 

and therefore does not provide any evidence for or against our arguments above. However, it does 289 

raise the possibility that some treatment centres may consider switching to N2O in place of propofol or 290 

volatile based anaesthesia. This makes the need for more research into adverse effects of N2O more 291 

pressing. Definitive proof of a causal role for N2O in enhanced methotrexate neurotoxicity would 292 

require a randomised trial of neurological outcomes following use of N2O versus alternative 293 

anaesthetic agents. However, given the weight of evidence suggesting potential interactions, and no 294 

convincing advantage for N2O use, a prospective study such as this would be likely to be rejected by 295 

Ethical review boards. A more feasible alternative is to retrospectively collect more detailed clinical 296 

and drug exposure data on patients experiencing acute and chronic neurotoxicity. Data on acute 297 

neurotoxic adverse events  is currently being collected by the iBFM/Ponte di Legno neurotoxicity 298 

working party3. This data will enable identification of particular patient groups or countries with high or 299 

low rates of neurotoxicity and may enable subsequent cohort studies comparing rates of acute 300 

neurotoxicity in patients with and without N2O exposure. To address the risk of chronic neurotoxicity 301 

collection of anaesthetic data on patients that are already participating in long-term neurocognitive 302 

outcome studies could be performed. It is also important to establish the prevalence of vitamin B12 303 

deficiency in patients undergoing leukaemia therapy, although retrospectively linking this to N2O 304 

exposure and neurocognitive outcomes will be challenging. The next best approach would be animal 305 

studies to investigate any additive effects of N2O anaesthesia plus methotrexate on cognitive tests or 306 

brain histology. These should be conducted as a matter of priority. Finally, innovations in cerebral 307 

organoid technology provide an excellent opportunity to studying the effect of methotrexate on white 308 

matter volume and structure as well as the relative quantities of various myelin proteins. Such models 309 

could then test whether increased toxicity is seen in the context of B12 restriction or reduced 310 

methionine synthase activity. A recent publication details a very plausible mechanism for long-term, 311 

methotrexate-induced cognitive difficulties, concluding that is likely due to tri-glial dysregulation 312 
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caused by activated microglia 37. Although this paper did not specifically look at acute side-effects of 313 

methotrexate exposure as in cases of stroke-like-syndrome, the strength of these findings warrant the 314 

monitoring of microglial activation in any future studies, including investigations on whether N2O has 315 

any effect on these processes. 316 

 317 

Conclusion 318 

Overall, the basic science evidence for a significant interaction between N2O and methotrexate is 319 

compelling. Direct proof of a causal link to enhanced neurotoxicity in patients is lacking, but 320 

prospective clinical studies to examine this are likely to be deemed unethical. In our expert opinion, 321 

and employing use of the precautionary principle, we support the statement that “N2O should not be 322 

used in acute lymphoblastic leukaemia patients receiving methotrexate”. Further retrospective cohort 323 

studies and preclinical studies should ensure anaesthetic, haemato-oncological and pharmaceutical 324 

input, in order to enhance the evidence base. However, since suitable alternatives exist, it seems 325 

sensible and prudent to call for a review of practice and at the very minimum a high level of clinical 326 

awareness and pharmacovigilance in patients on oral methotrexate receiving N2O.  327 
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 498 

FIGURE LEGENDS 499 

Figure 1. A summary of the biochemical reactions involving folate and vitamin B12 inside an 500 

oligodendrocyte and proposed inhibition of myelin production by co-administration of 501 

methotrexate (MTX) and N2O.  502 

MTHF participates in the production of methionine from homocysteine by methionine synthase, 503 

catalyzed by MB12and zinc, creating THF and methionine. THF participates in the production of 504 

purines and pyrimidines for DNA synthesis. Methionine is a vital amino acid involved in myelin 505 

production via its conversion to S-adenosyl methionine (SAM). SAM is involved in the methylation of 506 

many proteins and intermediates ultimately involved in myelin production, such as 507 

phosphatidylcholine, which is important in the production of sphingomyelin, a major component of the 508 

myelin sheath. Homocysteine can be converted to homocysteic acid and homocysteine sulfinic acid 509 

which are excitotoxic glutamate analogues acting at the N-methyl- d -aspartate (NMDA) receptor, 510 

which may be a factor in acute methotrexate-induced neurotoxicity. Methotrexate inhibits the function 511 

of DHFR, preventing the conversion of DHF to MTHF. Active vitamin B12contains reduced cobalt 512 

(Co+), but N2O produces irreversible oxidation to Co++ and Co+++, rendering vitamin B12 inactive. 513 

Any simultaneous compromise of folate and vitamin B12 via co-administration of methotrexate and 514 

N2O could result in increased homocysteine and reduced methionine levels both of which may 515 

contribute to the neurotoxic effects of methotrexate treatment. Arrows indicate proposed increase or 516 

reduction in various relevant pathway metabolites and processes due to methotrexate (orange) and 517 

N2O (blue), respectively. Adapted from Forster et al, 2016 (8). 518 

Abbreviations: 5-MTHF (5-methyltetrahydrofolate, levomefolic acid), MB12 (methyl B12), THF 519 

(tetrahydrofolate, tetrahydrofolic acid), 5,10-MTHF (5,10-methylene THF), DHF (dihydrofolate, 520 

dihydrofolic acid), DHFR (dihydrofolate reductase), MTHFR (methylenetetrafolate reductase), met 521 

synthase (methionine synthase), SHMT (serine hydroxyl-methyltransferase).  522 
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