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FINITE SATURATION FOR UNIRATIONAL VARIETIES
EFTHYMIOS SOFOS AND YUCHAO WANG

ABSTRACT. We import ideas from geometry to settle Sarnak’s saturation problem for a
large class of algebraic varieties.
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1. INTRODUCTION

A topic of central importance in number theory regards prime solutions of Diophantine
equations. A principal result in this area is Vinogradov’s three primes theorem [36], proved
via the Hardy—Littlewood method. This approach has been extended by Hua to representa-
tions of integers by powers of primes, see, for example, the work of Kawada and Wooley [21]
for further developments and references. A recent prominent work is due to Cook and Mag-
yar [7]. They obtained asymptotic estimates for the number of prime solutions of general
systems of Diophantine equations under the assumption that the system has a large number
of variables compared to the degrees of the polynomials. This method has also been utilised
in the subsequent work of Xiao—Yamagishi [38] and Yamagishi [39)].

An approach based on the circle method demands that the number of variables is rather
large compared to the degree. Thus when there are fewer variables, investigations have
focused on solutions with few prime factors, a prototype result being that of Chen [6] on the
binary Goldbach problem, a result using the weighted sieve. One can utilise again the circle
method to cover cases where the number of variables is moderately large, see the recent
work of Magyar—Titichetrakun [28], Schindler-Sofos [31] and Yamagishi [40]. The natural
barrier for cancellation in exponential sums prevents the circle method from working in a
small number of variables; for example, in the case of hypersurfaces of degree exceeding 2
it has never been used when the number of variables is less than twice the degree. In this
realm one must necessarily combine sieve techniques with analytic methods other than the
circle method. There is only a small number of results available in this range of variables.
Examples include the work of Marasingha [27] on homogeneous ternary quadratic equations,
Wang’s work on the Fermat and the Cayley cubic surfaces via universal torsors [37] and the
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result of Liu and Sarnak [22] covering non-homogeneous ternary quadratic equations via the
use of group actions and the weighted sieve. An important earlier work is due to Nevo and
Sarnak [29], which covers prime entries of matrices of fixed determinant.

Our aim in the present work is to provide almost prime results for varieties in very few
variables and with no underlying group structure. We shall do so by combining sieve tools
with geometric arguments. We first introduce the necessary notation. Recall that the func-
tion €2 : Z — N u o counting the number of prime divisors with multiplicity is defined

via
Q(m) = Z Vp(m)a
p
where v, is the standard p-adic valuation, the sum is over all primes p and ©(m) is infinite
if and only if m = 0. We can extend 2 to a function Qpn(g) defined on P*(Q) in the obvious

way, namely by finding for each # € P*(Q) an element x € Z"'! with x = [x] and letting

prim

Qpn(@)(l’) = (1_[ l’Z) .

Here Zg“ stands for integer vectors x € Z"™! with ged(xg, ..., x,) = 1; it is easy to see that

Qpn(q) is well-defined.
Definition 1.1 (Saturation number). Let X < P" be a variety defined over Q. The satura-

tion number of X, denoted by r(X), is defined as the least » € N U oo such that the set of
points x € X (Q) with Qpn(g)(2) < r forms a Zariski dense subset of X.

This definition is essentially due to Bourgain, Gamburd and Sarnak [I]. Varieties X with
X(Q) being not Zariski dense will necessarily have r(X) = oo. Let us note that Zariski
density is the geometric analog of the existence of infinitely many almost prime elements in
a sequence of integers. Indeed, if the Zariski density condition was relaxed to existence of
infinitely many points x € X (Q) with Qpn(g)(z) < r in the definition above then the possible
presence of (linear, for example) subspaces defined over Q and contained in X makes the
problem more tractable, see [3]. Recall that a variety X defined over Q is said to be Q-
unirational if there exists a positive integer m and a dominant morphism = : P™ --» X

defined over Q.

Theorem 1.2. Any smooth projective variety defined over Q has finite saturation if it is
Q-unirational.

We shall prove this by using the dominant map to parametrise points and then apply the
weighted sieve to the forms associated to w. Theorem covers new cases where the number
of variables is small. We illustrate this with a few examples.

Corollary 1.3. The following varieties have finite saturation:
(I) Del Pezzo surfaces defined over Q, of degree larger than 2 and with at least one
Q-point;
(IT) Smooth projective cubic hypersurfaces defined over Q, of dimension larger than 1 and
with at least one Q-point;
(ITT) Smooth projective hypersurfaces of odd degree d = 5, defined over Q and of dimension
larger than ¢ = ¢(d);
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(IV) Smooth projective quadric hypersurfaces defined over Q, of positive dimension and
with at least one Q-point.

The proof of the corollary can be inferred immediately from Theorem and the fact
that the varieties in the statement are Q-unirational. Indeed, unirationality follows from
the work of Manin [25](part (I)), Kollar [20] (part (II)) and Brandes [2, Th.1.3] (part (III)).
It is a standard result that all varieties in part (IV) are Q-rational, in particular, they are
Q-unirational, thus are covered by Theorem [L.2l

There are additional results on unirationality of hypersurfaces, see, for example, the work
of Marchisio [26] and Conte, Marchisio, Murre [§], respectively for quartic and quintic hy-
persurfaces of small dimension. It is worth mentioning that over algebraically closed fields,
unirationality is known to hold for general hypersurfaces of dimension sufficiently large com-
pared to the degree. In the same setting, Harris, Mazur and Pandharipande [I§] provided
explicit criteria for unirationality of smooth hypersurfaces.

1.1. Effective saturation. One would wish to have an explicit bound on the saturation
number r(X) in terms of X. In the generality of Theorem [[.2 this bound must necessarily
depend on the embedding of X. Indeed, as the example (m!)%zox; = 22, (m € N), reveals,
the saturation r(X) can be rather large, however, one could still try to bound it in terms of
the coefficients. This is achieved in our next result.

Theorem 1.4. Assume that X < P™ is smooth, defined over Q and Q-unirational, so that
there exists m € N, forms f; € Z|xy, ..., Ty] and a dominant rational morphism m : P™ --» X
given by m = (fo:...: fa). Letting f =11\, fi, the saturation r(X) is at most

10” deg (f) log(2] £]),

where | f|| is the mazimum of the absolute values of the coefficients of f.

It is possible that there exists a positive integer greater than 1 that divides f(x) for every
x € Z™*1. Therefore, if one is allowed to make linear transformations to change the equations
defining X, an improved saturation can be obtained, specifically, one depending solely on

deg(f).

1.2. Improved saturation in the presence of a fibration with a (Q-section. Consider

the Fermat cubic surface X, given by Z?:o z3 = 0. Tt is well-known that it is Q-birational

to P2, thus in particular it is Q-unirational and is therefore covered by Theorem [[.4l One
parametrisation was already given by Euler (see [17, §13.7]), however for our needs it will
be more convenient to use the one given by Elkies [12]. More specifically, he showed that X
is dominated by 7 : P? --» X, where 7 is given by m = (fy : ... : f3) and

fo=—(y1 +yo)ys + (47 + 295)y2 — Y1 + Youi — 2Y5%1 — Yo,

fr=1y5 = +y0)vs + (Wi + 205)v2 + voyi — 2u5y1 + Yo,

fa=—ya + (1 +y0)ys — (Wi + 2y5)y2 + 240Y5 — Yoy1 + 24,

fa = (g1 = 2y0)45 + (U5 — y1)v2 + ¥ — yoyi + 29511 — 2.
Thus Theorem [L.4] supplies us with the estimate

r(X) < [10°-127 - (log(2-2%)] = (1.24...) x 10"
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The Elkies parametrisation provides f; with slightly smaller coefficients compared to the
one given by Euler, thus giving a smaller value for | f|| in Theorem [[.4] and hence a better
value for 7(X). When a subtler geometric structure is available then one can hope to obtain
an improved saturation number. Indeed, we shall see that if a variety can be covered by
many lower-dimensional Q-unirational subvarieties then we can parametrise the subvarieties
‘uniformly” and apply sieve methods directly to them. Potential examples of such varieties
are those that are equipped with a fibration that has a section over the base field. The
approach of using sections to reduce the saturation is realised for a class of varieties of
dimension 2 in our next result.

Theorem 1.5. Every smooth cubic surface in IP’% that contains two rational skew lines can
be linearly transformed over Q so that it has saturation at most 32.

We have allowed for linear transformations in order to eliminate the effect of small prime
factors in the saturation. Such surfaces have a conic bundle with a section over Q; indeed,
the fibers correspond to the residual conics in the pencil of planes through one of the skew
lines and the other skew line ensures that each of these conics has a Q-point, see [13]. It
must be pointed out that Theorem does not cover the Fermat cubic surface. This surface
was proved to have saturation at most 20 in a recent work of Wang [37].

In the ‘section-approach’ one can sometimes replace the sieve tools by results originating
in additive combinatorics. This has the advantage of providing an almost best possible
saturation number. For example, we shall use work of Green—Tao and Ziegler to show that
the smooth cubic surface given by

X o (w9 — 621)75 + 36212973 + 36(20 + 671 )75 = ToTe + 2162773 (1.1)

has saturation
r(X) < 10,

see Remark 7 This should be compared with the recent work of Tsang and Zhao [35],
a special corollary of which is that for every sufficiently large integer N satisfying certain
necessary congruence conditions, the Lagrange equation

2 2 2 2
N=$0+SL’1+$2+SL’3

has a solution x € N* with
Q(l’oxl.l’gl':g) < 16.

1.3. Improved saturation in the presence of a fibration without a QQ-section. In the
setting of Theorem [LL3] the variety is equipped with a conic bundle that has a section over
the ground field, i.e. can be covered by curves which always have a Q-point. It is therefore
desirable to ask whether a geometric approach can still provide a satisfying saturation number
in cases where X has a fibration without a section over Q. We answer this affirmatively in
our next result.

Theorem 1.6. The Fermat cubic threefold
4

me’:O

1=0

has saturation at most 42.
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The method of proof consists of equipping the threefold with a section-less conic bundle
fibration over P2, finding sufficiently many Q-rational fibers, and applying sieve machinery to
this thin subset of the fibers. Progress on the arithmetic of cubic hypersurfaces of dimension
3,4 and 5 has been sporadic, see [4], [5] and the references therein for progress in higher
dimensions. Smooth cubic threefolds over Q that contain a line defined over Q have finite
saturation by the second part of Corollary To obtain a good bound on the saturation
one can try to adopt the approach used in the proof of Theorem for every threefold in
this family, since they are always equipped with a conic bundle over IP’(%Q. We hope that the
approach in the proof of Theorem [[L6l will assist with future investigations regarding Sarnak’s
saturation problem for varieties X defined over Q such that X (Q) is Zariski dense and X is
not Q-unirational. For example, Swinnerton-Dyer [34], §5] has given a way to describe curves
of genus 0 on the K3 surface

:cé + x‘f = x% + :c§
and one might attempt to adopt his method to produce enough Q-rational curves of genus
0 on quartic surfaces with smaller Picard rank. This would allow to parametrise a large set
of these curves and then follow the method in the proof of Theorem

Notation. For any functions f,g : [1,0) — C, the equivalent notations f(z) =0y (g(x)),
and f(z) <o g(x), will be used to denote the existence of a positive constant A, which depends
at most on the set of parameters . such that for any x > 1 we have |f (x)] < A|g(z)|. As
usual, we denote the Mdbius function by u(n). We denote the number of prime factors of n
without multiplicity by v(n). We shall furthermore denote by Res(f, g) the resultant of two
integer binary forms f, g, and by rad(n) the square-free kernel of n. Finally, the symbol || f|
is reserved for the maximum absolute value of the coefficients of an integer polynomial f.

Acknowledgements. We are indebted to Tim Browning for suggesting the problems that
led to Theorems[I.2, [.4land [[.6l Furthermore, we wish to express our gratitude to Jean-Louis
Colliot-Thélene, Tim Browning and Roger Heath-Brown for several useful suggestions. This
investigation was performed while the first author was supported by the London Mathemat-
ical Society via the 150th Anniversary Postdoctoral Mobility Grant and the second
author was supported by NSFC (11601309).

2. SIEVE PRELIMINARIES

Before providing the proofs of our theorems let us record certain auxiliary results. We
shall begin by stating a form of the weighted sieve. Suppose that &7 is a subset of the
integers of cardinality Y and that & is any set of primes which includes every sufficiently
large prime. Our setting includes a non-negative multiplicative arithmetic function w that
is supported on multiples of primes in &?. We define for integers d, <7; := {a € & : d|a} and
we let By = #oty — “9LY. The following result appeared in [10, Th.11.1] and in an earlier

d
form in [9] Th. 0 & Th.1].

Theorem 2.1 (Diamond-Halberstam). Assume that there exist real constants k > 1 and
Ay, Ay, Az, Ay = 2 such that the following conditions are satisfied,

a€ o pla=pe P,

0<w(p) <p forallpe £,
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Z ()4 D\ R, < Ay Y/ (log V) for some 0 < a < 1,

d<Y®(logY)~43
pld=peP

there exists p € R such that a € & = |a] <Y,

—1 K
H (1—M) g(logz) (1+ Ay >f0r2<z1<z.
s P log z log z;

Then there exists B, = 2 such that whenever u,v € R satisfy o' <u < v, B, < au, and

Y, #Ap < ALY/ (logY)"H,

Yl/v <p<yl/u
peP

then for any integer r with

r>apu—1+

fv/u F.(av — s) <1 - Es) ds (2.6)

1 v S

fr(av)

we have

#laed :Qa)<r}>»Y |] (1_%).

p<Y1/1}

The functions f., F,. are defined as the solutions to the delay-differential equations supplied
in [9, Th.0].

Condition (F') is required to ensure that higher prime powers have little effect in the
calculations yielding the value of r given in (2I]). This condition is missing from [9, Th. 0
& Th.1] but appears in a slightly more general form in [10, (11.2)] as condition Qq. It is
later stated in the same tract [10, pg. 140] that for the purpose of proving [10, Th.11.1],
condition Qg is only needed to ensure condition (F') as given in Theorem 211

We shall furthermore use the bound

Br < 3.75k, (2.7)

valid for all kK > 1 and proved in Theorem 17.2 and Proposition 17.3 in [I0]. Let us note
that, as shown in [I0, pg. 146], when v = S,u then the quantity

p—1+ (p—r)(1=1/Bc) + (5 + 1) log by (2.8)

is an upper bound for the right side of (2.1]) and thus can be used in its place in Theorem 2.1

While the weighted sieve is useful in situations where o7 is composed of values assumed
by general integer forms, in the special case that all forms are linear one can do significantly
better due to the groundbreaking work of Green, Tao and Ziegler [14, Cor. 1.9], [15] and [16].
We shall later use the following very special case of their work.

Theorem 2.2 (Green, Tao, Ziegler). Let Li,...,Ls € Z[u,v] be linear forms which are
pairwise non-proportional and assume that for each prime p there exists (ug,vg) € Z? such
that p does not divide L;(ug,vo) for anyi = 1,...,5. Let Z be a box of R* containing a point
(ug,vo) € Z* such that L;(ug,vo) > 0 fori=1,...,5. Then there exist infinitely many pairs
(u,v) € Z N Z* such that L;(u,v) are all prime.
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Lemmas 2.312.6] will be used in the proof of Theorem [[.4] to make the dependence of
the saturation on the small prime factors completely explicit in terms of the underlying
polynomials.

Lemma 2.3. Assume that a,b € Rsq and that a positive integer m satisfies
m < ab’™.
Then we have m < 16a? exp(b°).

Proof. If t*™ < m!'/? holds, then the assumption of the lemma ensures that m < a?, which
is sufficient for the proof. If 5™ < m'? fails, then logm < 2(logb)v(m). We are free to
assume that loglogm > 1, since otherwise we have m < e® < 16 and the lemma holds.
Then [30, Eq.(30)] guarantees that v(m) < 3(logm)(loglogm)~!, hence

logm < 2(log b)3(logm)(loglogm) .
Thus we obtain m < exp(b°®), which concludes the proof. O

For an integer polynomial of degree at least 2 we denote its discriminant by Dy.

Lemma 2.4. Assume that f € Z|x] is a non-constant polynomial with non-zero discriminant
and of degree at least 2. Then the set

{(WeN:zeZ=W divides f(zx)}
15 bounded. Furthermore, every element in this set is at most
16D s exp(4096(deg(£))°). (2.9)
Proof. In the case deg(f) = 1 it is easy to see that for every prime p we have

vp(W) < min{y,(f(0)), v (f'(0))},

which is sufficient due to || f|| = max{|f(0)[,|f’(0)|}. Hence we can assume that deg(f) > 2
for the rest of the proof. First, write f(x) = cofo(x), where ¢ € Z\{0} is the greatest
common factor of the coefficients of f. Every integer W in the set of the lemma must satisfy

W
7 = ———— . 2.10
T e b= ng(CQ, W) | fo(l’) ( )
Letting Wy := W/ged(co, W) we observe that Dy # 0, thus the work of Cameron [33|
Eq.(43)] reveals that the number of solutions of
fo(l‘) =0 mod W(]

is at most

[T (27" + deg(f) - 2).

pIWo
By (2.10) the number of solutions is also equal to Wy, therefore we have
Wo < [ (29702 + 2deg(f)) < Dy (4 deg(f)) .
p|Wo
Combining the last inequality with Lemma yields the following bound,
Wy < 16Dy, exp(4096(deg(f))°).
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Recall that the discriminant of a polynomial g is an integer form in its coefficients that has
degree 2(—1 + deg(g)). This shows that, in light of f = ¢qfo, one has

Df _ Cg(—l‘*‘deg(f))D

0

therefore
W = ged(co, W)W < coWo < 16¢5 ) D exp(4096(deg(f))°).
Noting that deg(f) > 2 guarantees that cgfzdeg(f ) < 1 concludes the proof of our lemma. [

We wish to obtain a version of Lemma 2.4 that is valid for polynomials in many variables.
To do so we shall assign small integer values to all variables except one and apply Lemma 2.1
We first deduce a weaker, but more useful, version of Lemma 2.4

Lemma 2.5. Assume that f € Z[z] is a non-constant polynomial with non-zero discriminant.
Then every element in the set

{(WeN:xeZ=W divides f(x)}

1s bounded by
| £[129°8) exp (5000 deg®(£)).

Proof. The case deg(f) = 1 is easy to handle and is thus left to the reader. In all other cases
we use the first corollary in page 261 of the work of Mahler [24], which states that

Dy < (deg(f))tee 202,
where L is the sum of the moduli of the coefficients of f. The inequality

L < (L+deg(f))|f]
is obvious. Using (k + 1)* < ek, valid for every k € N, we see that

Dyl < (deg(f))* =D f[24D72((1 + deg(f))/e)

and the bounds ([Z9), ((1 + deg(f))/e)™? < 2 show that every element in the set in the
statement of our lemma is bounded by

32(deg(f))* =] |40 exp(4096(deg(f))°).
Using the inequality 32d3¢ < e* valid for all d € N, concludes our proof. U

Lemma 2.6. Let F € Z|xq,...,x,] be a polynomial of positive degree that does not have
repeated polynomial factors. Then every element in the set
(WeN:xeZ™ = W divides F(x)}

1s bounded by
| F||248) exp (6000 deg®(F)).

Proof. The case m = 0 is contained in Lemma We can therefore assume that m > 1 for

the rest of the proof. We may consider the discriminant of the polynomial in the variable xq

obtained by fixing every other variable, i.e. we bring into play the integer polynomial
H<x17”-7xm) = DF(m,ml ..... Tm)*

We note that H is not identically zero, since otherwise there would exist a non-zero integer
c and an integer polynomial h(z,...,x,,) such that

(cx — h(x1,...,2p))* divides F(x,z1,...,2m)
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in the polynomial ring Q(z, z1,. .., x,,). This would contradict the assumption that F' does
not have repeated polynomial factors. Now, since H(xy,...,2,,) is a non-zero polynomial
we have the trivial bound

#{xe (Nn[l,B))™: H(x) =0} < (deg(H))B™', (BeN),

obtained by fixing m — 1 of the variables z;. If every x € (N n [1, B])™ is a zero of F' then
we infer B < deg(H), therefore there exists y € N with the properties

ly| <1+deg(H) and Dpgy,,. . ym) # 0.
We fix this choice of y and define f(z) = F(x,y1,...,ym). We have deg(f) < deg(F) and
IFI<[EN(1 + deg(H))).

Recalling that the discriminant of a polynomial of degree d is a polynomial in the coefficients
that has degree 2(d—1) we see that deg(H) < 2(deg(F)—1), hence | f| < |F|(2 deg(F))ds).
As a final step, we apply Lemma to f, thus getting that every integer W in our lemma
must be at most

|f|124e8) exp (5000 deg®(f)) < |[F|>des) (2 deg(F))Megz(F) exp (5000 deg®(F)).
The inequality (2d)2* < exp(1000d9), valid for all d € N, concludes the proof. O

Finally, we shall need certain results on the number of zeros of affine varieties over finite
rings.

Lemma 2.7. Let F € Z[xo,...,xy] be a primitive polynomial. Then for all primes p we
have
4ix € (Z/pZ)™ : F(x) =0 mod p} < (deg(F))p".

Proof. A hypersurface F' = 0 can have at most deg(F) irreducible components, thus one
might try to use the Lang—Weil estimate [23]. However, their upper bound is of the form
deg(F)p™ 4+ Op(p™~1/?), and for the purpose of proving Theorem [[.4] we need explicit con-
stants. We begin the proof by remarking that since the polynomial F' is primitive, it contains
a term of the form ¢ [, xfi, where ¢ € Z is coprime with p and the d; € Z~( are such that
>'d; = > deg(F;) (here ¢ and d; depend on p). We infer that there exists i such that d; > 0,
therefore we may view F' as a polynomial in the variable x; by fixing every other variable.
The fact that c is coprime to p ensures that this polynomial is not identically zero in IF),
thus fixing any of the variables z;,j # i, we obtain a non-zero element in F,(z;) that must

therefore have at most deg(F') roots. O

Lemma 2.8. Let F € Z|xq,...,xy] be a polynomial of positive degree that does not have
repeated polynomaial factors. Then for all primes p we have

#{x e (Z/p*Z)™" : F(x) =0 mod p*} «p p*™.

Proof. We begin by estimating the number of zeros of F' in (Z/p*Z)™"* that are lifted from
smooth zeros of F' in F,,, we call this cardinality X,. By Hensel’s lemma, smooth zeros of
F in F, can lift to at most «z p™ zeros in (Z/p?)™ . Thus, in light of Lemma 2.7 we
obtain X, « #{x € Fj'*!' : F' = 0}p™ «p p*™. Next, we estimate the number of zeros of
F in (Z/p?Z)™! that reduce to singular zeros of F in F,, we call this cardinality Y,. Note
that such zeros can certainly exist (e.g. when F' = F}F, then every non-zero [F,-point in
F, = F, = 0 is singular) and these can lift in any number of ways to Z/p*Z; the trivial
bound for such lifts is < p™*!. The number of singular zeros is however rather small: the
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variety Z given by F' = VF = 0 and defined over F, is a subvariety of A™™(F,) that has
codimension at least 2 for all sufficiently large primes p. This is because F' is separable over
Q, therefore it reduces to a separable polynomial in I, for all sufficiently large primes p. Now
by the Lang-Weil estimate [23] we see that Z(F,) has at most <z p™ ' points, therefore
Y, «p p™'#{lifts} < p*™. We obtain that the number of zeros of F in (Z/p*Z)™"! is
X, +Y, <r p*™, thus concluding our proof. O

3. THE PROOF OF THEOREMS AND [T 4]

We commence by recording a result regarding almost prime values of completely general
forms. The result is a straightforward application of the weighted sieve.

Theorem 3.1. Let f € Z|xy, . .., x| be any form of positive degree. Then there exists r € N
such that for any non-empty box Z© < R™ we have

#{x ez 0 ZOBQ X)) < 1} > 500 B (log B)~ 440,

for all sufficiently large B. Furthermore, one can take r as the integer part of
6 deg®(f)(log 2| f]) + 10" deg"(f)

Although we make no claim as to the given value of r being best possible, the example
f(xo,...,xy) =2"(zg...x,)™ illustrates that r must depend on | f|| and deg(f), unless the
lower bound B 1*°0) ig replaced by B™*°(1). This is because

log | f] 2
og 2 + (deg f)

holds for all integer vectors |x| < B, except those at a set of size O(B™). For the application
towards Theorem it is important to stress that we need a lower bound of the form
Bm+1+o(l) in Theorem B.1], otherwise Zariski density might not be obtained.

Theorem [3.1] is proved immediately after the proof of the next proposition.

Q2"(xo...xm)") =n+mim+1) =

Proposition 3.2. Let F,..., F, € Z[x,...,xy]| be non-zero, primitive, irreducible forms
of positive degree such that F(x) := [[]_, Fi(x) does not have repeated polynomial factors.
Then there exists ro € N, such that for any non-empty box Z° < R™ ! we have

} Bm+1

#{x e 2" n ZYB,Q(F (X)) < 7o »p a0 (log B)des(®)

as B — +o0. Furthermore, one can take ro as the integer part of
4 deg(F)(log 2| F|) + 10* deg®(F).

Proof. The main tool used in the proof is Theorem [2.Il Before using it we need to study the
following function, defined for d € N,

wo(d) = —#{xe (Z/dZ)™ ﬁF =0 mod d}.
=1

Note that wy is multiplicative, therefore Lemma 2.7 shows that for every d € N we have

p(d (Zdeg )V(d , (3.1)
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while Lemma [2.§] ensures that for every prime p we have

wo(p?) «r, 1. (3.2)

We now continue with the application of the weighted sieve by introducing the related set-
up. Let D be the maximum positive integer dividing F'(x) for all x € Z™*!. By Lemma
we obtain

D < |F|?%®) exp(6000 deg®(F)). (3.3)

Define G(x) := F(x)/D and observe that G(x) attains integer values for all x € Z™*!. The
definition of D shows that for every prime p the integer p'**»(”) cannot divide F(x) for all
x € Z™*1. Hence for each p|D there exists z, € Z™*! with p'*»(P) | F(z,) and letting

W .= I_Ilerup(D)7
p|D
we get the existence of some z € Z™*! such that
x=z mod W = ged(G(x),W) = 1. (3.4)

We denote the set of prime divisors of D by &2 and we define the multiplicative function
w via w(p) := 1x(p)wo(p). Note that by ([B.1) we have the following for all d € N,

11(d)*w(d) < (deg F)" @ (3.5)
Next, we define
U:={xeZ"" :x=2z mod W}.
We shall use Theorem 2] to sieve the multiset of integers given by
o = {G(x) : x € Z""'~ B#Y ~ T}.
For all integers d coprime to W define <7, := {a € & : d|a}. For d € N we have

Hal; = Z #{xeZ™ A B# Y x=2z mod W,x=u mod d},
u mod d
G(u)=0 mod d
thus a simple counting argument involving integer points in boxes gives

w(d) B™vol(# )
Ay = d Wmtl

Invoking (B3] and writing

Op, w0 (w(d)d™ + w(d)B™). (3.6)

B yol(#©)

Y= Wm+l ’
allows us to infer that for square-free d that are coprime to D one has
d v
Ry = |Hty — #Y « (deg F)"” <d’” + Ylfm*H) , (3.7)

where the implied constant depends at most on F}, Z(®) and W.

Next, we fix any values a € (0,1/(m + 1)), k > deg(F), p > aonrn» and verify the
conditions of Theorem 21l Condition (A) holds owing to the observation that if p | G(x) for
some x € &/ then p{ D due to (B.4). Condition (B) follows from the fact that the definition
of D implies that if p ¥ D then there exists x € Z™™! such that p { F(x). Condition (C)
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is satisﬁed as a consequence of ([B.7) while condition (D) is validated with any choice of
1> ey Condition (E) holds due to (8.5) and the estimate

k) log 2 \ " 1
(7)) - (ee) (rolims))
ipes P log z; log z;

Combining (3:2)) with (3.6]), one sees that

2m+1
N Hdp <Y (Y p) 4 YiEatE 4y
Yl/vgp<yl/u Yl/v<p
peP

The sum over p is « Y~/¥ hence condition (F) is satisfied since 2 < B, < au combined

with o < 1/(m + 1) imply that v > 2m + 1. Therefore Theorem 2] yields a finite value r
such that
#ixeZ™ A Z9B : Q(G(x)) <1} »p B (log B) ™",

as B — o0. We can provide an explicit value for r, namely r can be be the least integer
which is greater than 10° deg®(F) because it can be shown that ¢, is small enough so that

10% deg®(F) = 2deg(F) + (1 + deg(F))log(3.75 deg(F))

and, furthermore, we can choose k = deg(F'), « sufficiently close to 1/(m + 1) and u suffi-
ciently close to k/(a(m + 1)), observe that

p—1+(p—r)(1—=1/8s) + (k+1)log B, < 2deg(F) + (1 + deg(F)) log(3.75 deg(F))
and allude to (2.7) and (2.8). Note that ([B.3]) reveals that

(D) < log D

log 2
which, when coupled with the equality Q(|F(x)|) = Q(D)+Q(|G(x)]|), proves our lemma. [

< 4 deg(F)(log |F|) 4+ 9000 deg®(F),

To prove Theorem [3.1] we factorise f as
—CHF “i (y; €N, ceZ—{0}),

where each F; is a primitive irreducible integer form of positive degree, and then apply
Proposition B2 to F' := [ [{_, F;. Utilising the inequalities

Qf)]) < Q([e]) + (deg f) Q([F(x)])
and Q(|c]) < (log|c])/(log2) < (log| f)/(log2) < 2log | f| yields the desired value of r.

We are now ready to prove Theorems and [[L4

It is sufficient to show that with the value of r given in Theorem [[.4] the set of rational
points x € X(Q) satisfying Qpn(g)(x) < 7, is dense in the image of the Q-points of P under
the map 7 and with respect to the real analytic topology. Let us therefore fix any € > 0 and
a rational point 7(y), where y = [y] € Pgy for some integer vector y = (y;)i%,. By continuity
of the forms f; there exists ¢ > 0, which depends on ¢, f; and y, such that for any X € R™*!
specified by |X —y| < 0, one has |f;(X;) — f;(y;)| < e for all i and j. Applying Theorem B.1]
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to the form f := [], f; and the box Z© = [, [y: — 6, y: + 6], we are presented with a
value of r in the range
r < 6deg?(f)(log 2| f]) + 10" deg'(f),

a rational point x = [x] satisfying Qpn(g)(2) < r and whose image is e-close to 7(y) due to

gd(e:ng)J — fj(yl) < €.

This concludes the proof of Theorems and [[L4] owing to
6 deg®(f)(log 2| f]) + 10" deg™(f) < 10° deg”(f) log(2[ f]).

4. THE PROOF OF THEOREM

Throughout this section X will be a smooth cubic surface with two rational skew lines.
We begin by picking an appropriate model for X.

Lemma 4.1 (Minimal model). There ezist integers a;,d;, f; (i = 0,1) and bj,e; (j = 0,1,2)
such that X is given by F' = 0, where

F = a(xo, 931)953 + d(xo, x1)x273 + f(i)fo,ifl)ifg + b(zo, 21)22 + €(T0, 21)T3, (4.1)
a(xg,x1) ap v
d(l’o, ZL’l) = d() dl ( 1’0 )
f(ifo,l'l) fo fi !
and )
b (370, 931) o bo b1 by I:c;
e(xg,x1) )~ €y €1 €3 Zn% !

Furthermore these integers satisfy the following two properties.

(1) The greatest common factor of the six integers a;,d;, f; (i = 0,1) is 1 and this also
holds for the six integers b, e; (j = 0,1,2).

(2) The integers agby and 6 are coprime and each other of the aforementioned twelve
integers is divisible by 6.

Proof. A linear change of variables over Q allows us to assume that the pair of skew lines
is given by o = x; = 0 and 25 = x3 = 0. Therefore X is given by C; + Cy = 0, where
(1 is linear in xg,r; and quadratic in x5, x3 and the opposite is true for Cs, a statement
which immediately shows (@I]). It follows from the non-singularity of the surface that the
polynomials a and b are not identically zero. Then under a suitable linear change of variables,
if necessary, we may have agby # 0.

Let k; and kg be the greatest common divisor of the the six integers b;,e; (j = 0,1,2) and
a;,d;, fi (i = 0, 1) respectively. Then the linear change of variables

(370> Z1, T2, 933) — (k‘szo, koxy, kyas, k1553)

shows that we can assume that k; = ko = 1, which proves (1). In order to prove claim (2),
let us define the integers

a =1+ max{s(ag) + v2(bp), 212(b)} and 5 = 1 + max{vs(ag) + va(bo), 212(ag)}-
Then the transformation

(w0, w1, T2, 3) > (2720w, 2021, 2720 2y 2%a5)
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reveals that property (2) holds for the prime 2. An identical argument for the prime 3
concludes the proof of the lemma. O

We turn our attention to the conic bundle structure present in X. Writing F' = xqQo—21Q1,
where (); are integral quaternary quadratic forms, we see that X is equipped with a dominant
morphism 7 : X — Pg such that

m(z) = 20 : 2] if (o, 21) # 0,
[Q1(z) : Qo(x)] if (Q1(x),Qo(z)) # 0.

Lemma [Tl reveals that the fibres 7 !(s : t) are the conics Qs; = 0 given by
Qsi(,y,2) := a(s, t)z® + d(s,t)zz + f(s,t)2> + b(s, t)xy + e(s, t)zy.

Their discriminant
A(s,t)=(ae® + fb° — bde)(s, )

is a quintic binary form and is separable owing to the non-singularity of X (see [32, 80,
11.6.4, Proposition 1]).

Lemma 4.2. The following polynomials are not identically zero,
a,b,e, f,d* — 4daf.

Furthermore the forms a,d, f do not share a common polynomial divisor and the same holds
for b and e.

Proof. If the forms a,d, f had a common divisor in Q[s, ¢] then the polynomials
pi(z,y) = apz® + dozy + foy? and py(x,y) = a2 + dyxy + fry?,

would share a common zero [« : 8] € P* (@) We would then obtain a singularity on the
cubic surface, since VF(0,0,z,y) = (p1(x,y),p2 (z,v),0,0). If a = 0 or f = 0 then the
partial derivatives of F' vanish at the points (0,0,1,0) and (0,0, 1,0) respectively. These
observations prove that d* # 4af since Q[s,t] is a unique factorisation ring. The fact that
the discriminant A(s,t) is separable implies that b and e are coprime forms. In particular
they can neither be identically zero, which finishes our proof. O

We deduce that the resultant W, := Res(b, e) is a non-zero integer. We furthermore get
that at least one pair of the linear forms a, d, f has a non-zero resultant, say Wj.
Define for (s, t) € Z2,,,, the forms

prim
Got(u,v) == b(s,t)u+e(s,t)v and Hy,(u,v) = a(s,t)u* +d(s,t)uv + f(s,t) v?,
where the polynomials a, ..., f were defined in Lemma [£.1]

Each conic s; = 0 contains the obvious point (0, 1,0), a fact which can be used to provide
the following parametrisation of Qs:(x,y,2) = 0,

(x,y,2) = (uGst(u,v), —Hs 1(u,v), vGy 1(u, v)).

The weighted sieve will allow us to to show that for appropriate values of s,t both forms
Gst(u,v) and H4(u,v) attain almost prime values. We begin by establishing certain facts
required for the sieving process.
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Lemma 4.3. For each prime p there exists so,to € (Z/pZ)* such that both integers
ged(b(so, o) , e(s0,t0)) and  ged(a(so, to) , d(S0,t0) 5 f (S0, t0))
are coprime to p.

Proof. The second part of Lemma [4.1] implies that one can take so = tg = 1 mod p when
p = 2 or 3. Let p be any prime larger than 3. The first part of Lemmal[4.Tstates that p cannot
divide all six integers b;, e, (j = 0,1, 2) so we may assume by symmetry that p { ged(bo, by, ba).
We may similarly assume that p t ged(ag, a;). We proceed to show the validity of the bounds

5.t € (Z/pL)", plb(s, )} <2(p— 1) and §{s,t € (Z/pL)", plas,0)} <p - 1.

The first bound is obvious in the case p|(bo, b2). In the opposite case we may assume that p 1 by
so the number of solutions of b(s,t) = 0 mod p is the same as the number of solutions of
(2bos + bit)® = (b2 — 4bghy) t2 mod p, which is at most 2 (p — 1). The second bound follows
by the fact that p 1 (ag,a1) . Combining the two bounds implies that

t{s,t € (Z/pZ)", pla(s,t)b(s,t)} <3(p—1),

which is strictly smaller than (p — 1)2 for p > 3 and that concludes the proof of the lemma.
O

Lemma 4.4. There exists a square-free W and integers so,ty with (sotg, W) = 1 such that
whenever the coprime integers s and t satisfy (s,t) = (so,t9) mod W, then both integer
forms Gy, Hg 4 are primitive.

Proof. We define W as the product of the primes appearing in W, and W;. Combining the
Chinese remainder theorem and Lemma for the primes dividing W provides congruence
classes mod W, say so and ty. Assume that the coprime integers s and t satisfy

(s,t) = (so,tp) mod W

and suppose for a contradiction that G, is not primitive so that there exists a prime p that di-
vides both b(s,t) and e(s, t). Elimination theory applied to b(x, 1), e(x, 1) and b(1, z), e(1, x)
shows that there are integer binary forms g;(s,t) (i = 1,...,4) and non-negative integers
w; (j =1,2) such that

b(s,t)g1(s,t) +e(s,t)ga(s, t) = Wyttt and b(s,t)gs(s,t) + e(s,t)ga(s,t) = Wysh2.

The coprimality of s and ¢ implies that p divides W, and this contradicts the choice of s, ¢y
by Lemma [£.3] A similar argument works proves that H,,; is also primitive and thus the
proof is complete. O

Define the following binary integer forms,

®y (u,v) : = u,

Dy (u,v) : = v,

O3 (u,v) : = bu + ev,

Oy (u,v) : = au® + duv + fov?

and let
P = O, P22
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Our aim henceforth is to show that the form ®(u,v) attains almost prime values infinitely
often. To this aim it is natural to assume the following local conditions,

6| (e, d, f), ged(6, ab) =1, (4.2)
D is a non-zero integer,

where

D = rad(2-3-5-abef (& — daf) (ac® + f* — bde) ).

There are two cases to consider according to the splitting behavior of the quadratic form ®4
over the rationals. Although both cases can be treated via the weighted sieve we shall use
Theorem for the former case. The reason is that this approach provides special examples
of smooth cubic surfaces (see (ILI])) for which the saturation number is particularly small.
As an application we deduce the following lemma.

Lemma 4.5. Assume that the integers a,b,d, e, f satisfy conditions ([A2)-([d4) and that
d? — 4af is a non-zero integer square. Let Z# be any non-empty box in R%. Then

Jim t{(u,v) € Z2nZB, Q®(u,v)) < 8} = +o0.

Proof. Assume that d* — 4af = 6 for some natural §. This implies that there are integers
ai, ap with a = ajay that divide the integers (d — 9) /2, (d + 0) /2 respectively. The identity

®y(u,v) = (CLQU + (d - 5)1)) (alu + (d + 5)1))

2&1 20,2

shows that ®, splits into two integer linear binary forms, say L4, Ls. Note that &, has no
fixed prime divisor owing to (£2)) and (4.3]) and thus this property also holds for both linear
forms.

We apply Theorem with L; = ®; for i = 1,2,3. The condition (4.4]) guarantees that
the linear forms are pairwise non-proportional. Let us verify the remaining condition of
Theorem by contradiction. Assume that for every prime p and all integers u,v there
exists an index 1 < i < 5 such that p|L;(u,v). We may show that we only need to restrict
attention to the primes p = 2, 3 since if p > 5 then

t{u,ve (Z/pZ)* ,pt (LsLsLs) (u,v)} <3(p—1),
which is strictly smaller than (p — 1)?. Regarding the primes p = 2,3 we note that condi-
tions (.2)) and (43]) ensure that we get a contradiction.
Theorem provides a choice of signs s; € {1,—1},7 = 1,...,5, such that the 5 linear
form s;L; attain prime values infinitely often. Recalling the extended definition of 2 given
in the introduction proves the statement of our lemma. O

We next apply a level of distribution result [27, Th.3] to prove the corresponding result in
the remaining case.

Lemma 4.6. Assume that the integers a,b,d, e, f satisfy conditions (A2)-(44), that d*>—4af
is not an integer square and let Z be a box of R?. Then
2

tH{(u,v) e Z2nZB, Q(P(u,v)) <30} » oz B)"
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for B = 2. The implied constant in the lower bound depends at most on the coefficients of
® and Z%.

Proof. Arguing as in Lemma for every prime p|D and using the Chinese remainder
theorem, we get that there are integers ug, vy mod D such that

ged(P(ug, vp), D) = 1. (4.5)

Define the integer binary form ®' := ®,®,®3®, and the subset of Z2,
U= {(u,v) € Z*: (u,v) = (up,v) mod D}.

We write &’ := {®’ (u,v) : (u,v) € ZBn ¥} and we let for every non-zero integer d,

oy = {d e " :d|d}.
Let for any ¢ = (c1,...,c4) € N4 p(c) be the the multiplicative function given by

p(c) :==t{(u,v) modcy...cq:¢|P; (u,v),i=1,...,4}.
Define the following sets of primes,
B := {p prime : pt D} and P := {p prime : p| D}

and define the multiplicative function w(n) to be supported on square-free integers and

o) =p@) p Y plp)uer). . ples) 220

cilp (Cl. ..04)
i=1,...,4
pler...cq

and define for d € N the quantity

Rdzzu%'—#y.

We need to verify the conditions (A)-(E) appearing in [27, Th.3] as well as condition Qg
appearing in [10, Eq.(11.2)], which does not seem to appear in [27].
Condition (Qy): Here we have to verify that the estimate

Z ﬁ%2 « YilogY

Z2<p<Ky

+y

holds for all 2 < z < y with an implied constant that is independent of z,y and Y. The
equality

oAy = {(u,v) e #B : (u,v) = (ug,v9) mod D,p?|®(u,v) .. .<I>4(u,v)}

p

shows by (L5) that <7, is empty if p|D. Note that since ged(D, ®(ug, vp)) = 1 and (u,v) =
(ug,v9) mod D we get that ged(D,®'(u,v)) = 1 and hence no pair of integers (u,v) with
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®'(u,v) = 0 is counted by «7),. We therefore obtain that >, _ _ 447, is
4
< Z Z ﬂ{(u> U) € %37 @l(u’ U) ta 07 ng(D> éz(u> U)) = 1,p2|<1>,-(u, U)}

i=12<p<y

piD
+ 3N jj{(u,v)EQ?B,CDI(u,v)#0,p|(¢i(uav)>®j(u>v))}-

1<i,j<4 2<p<y
i#j  ptD
Recall the definition of D given immediately after (4.4 and note that the primes dividing
the resultants of each pair of forms ®;, ®; divides D. Hence, since p { D in the previous
sums, we see that
2

Jj{(u,v) e ZB, p|(®:(u,v), cpj(u,v))} « jj{(u,v) e %B,pl(u,v)} « % +1.

For i = 1 we have #{(u,v) € ZB, ¥ (u,v) # 0,p*®;(u,v)} « #{(u,v) € ZB,uv # 0,p*|u},
which is at most « B?p~? and one obtains the same upper bound in the case i = 2. Fori = 3
we have the bound « #{(u,v) € ZB, (bu + ev)v # 0, p*|bu + ev} and the change of variables
x1 = bu + ev,zy := v reveals that the quantity is bounded by « #{|z1],|z2| « B, z129 #
0, p*|x1}, which is easily seen to be at most « B*p~2. For i = 4 we have

jj{(u,v) € ZB, uv®,(u,v) # 0,ged(D, ®;(u,v)) = 1,p2|®,~(u,v)} < Z 7D, (P*1),
1<p?n« B2
ged(pn,D)=1
where the function rp,(n) denotes the number of representations of an integer n by all binary
quadratic forms forming a set of representatives of discriminant equal to

DQ = diSC((I)4) = d2 — 4Cl,f

Note that Dy is a non-zero integer which is not a square since ®, is irreducible and that
ged(n, Do) = 1 holds in the previous summation since all primes dividing Dy also divide D
by its definition. Using the fact that rp, can be written as a Dirichlet convolution of 1 and a
quadratic character we obtain the trivial bound rp,(n) « 7(n), where 7 denotes the classical
divisor function. Writing n = p”ng with p { no we obtain

D o) « X Y, (no) < b 10ng > )

v
1<p®n«B? no« B2 /p?tv p v=0 p
ged(pn,D)=1 ptno

The function >, _,(3+v)p™ = (3—2/p)(1—1/p)~? has modulus at most 8 for p > 2. Hence,
we get that #.47), « 1+ %, which along with the estimate ] 2 « 27! shows that

B?log B
Z #Hol « %ngy.

p

p>zp

This is the required estimate since Y is of order B2.

Condition (A): It is shown in [27, §3.1,pg. 310] that @w(p) < p for all p > 5 and since
{2,3,5} < B we get that w(p) =0 for p = 2,3 and 5.

Condition (B): Everything goes through as in [27, §3.2,pg.311] where the dimension of the
sieve is Kk = 4.
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Condition (C): It appears that the argument justifying the analogous result in [27, pg.314]
is not sufficiently detailed. More specifically, for values of k that are small in comparison to
Y the term Yl/]j 22 in line 17 has order of magnitude which is larger than the claimed bound
for E (k) in line 21. Correcting this inaccuracy we get

(20v)"?  yuzoQ
+ ).
k k

for some absolute constant v. Therefore condition (C) is satisfied with « = 1/2 — 5, for any
arbitrarily small and positive value of 7.

Condition (D): Follows directly from (4.5]).

Condition (E): Every element o' € &/’ satisfies a’ « B, where the implied constant
depends on F’ and #Z. Therefore there exists p > g, which depends on F, % and 7, such that

la'| < Y.
Hence the conditions of theorem [27, Th.3] are fulfilled.
Furthermore, arguing similarly as in [22, §6], we obtain that one may take any value of r
larger than m(\) := 4log 54+ (5 — é +log B4) A\ —4log A — Alog A. Note that by [11, App.I1I]
we have 5, = 9.0722... . We thus deduce that

min m(\) = m(0.606519...) = 15.4274522 . . .

E (k) « Q" (QQ +

0<A<py
and therefore with the value » = 16 one has
B2
#{(u,v) e 72 A BB, QP (u,v)) < 7’} >
(log B)

as B — . The pairs of integers (u,v) € ZB with Q(uv) < 1 are such that |uv|is 0,1 or a
prime, thereby showing that there are at most « B such pairs. We conclude that
2

#{(u,v) e Z? " #B, QP (u,v)) < 16 and Q(uv) > 2} >

(log B)"
as B — oo. This observation coupled with the equality Q(®(u,v)) = 2 Q(P'(u,v)) — Q(uv)
completes the proof of Theorem 4.6l O

We continue by using Lemmas and to ensure that the Q-rational fibre 7=!([s:t])
is birationally equivalent to Rb through almost prime values.

The case corresponding to n = 2 of [20, Th.1.1] implies that X (R) = X. For any point
€= (&,...,&) € X (R) let us define

Mg : = b(&0,&1)62 + e(o, 61)83

— —a(€0, £1)€2 — (€0, &1)EaEs — f (€0, €1)E2

and note that the points satisfying §&; Mg # 0 are also Zariski dense. Hence in order to
prove Zariski density of almost prime points it suffices to prove that given any such & and
any € > 0 there exists B € Q* and x € Z* with Q (|xg ... x3|) < 34 such that [x] € X and

Z;

= -6

Let 6 € (0,1) be a constant to be specified in due course and consider the following box of
R?,

max
0<i<3

<e. (4.6)

B = [ — 6,8 + 6] x[&1—0,& + 0]
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The prime number theorem for arithmetic progressions [19, §5.6] supplies a large positive
number P such that the box P2 contains a pair of, not necessarily positive, primes (s, )
lying in the progressions mod W specified by Lemma 44l A standard application of the
mean value theorem yields

\b(% %)52 n e(%,%)fs M| «xe (4.7)

and

s 1 s 1 s 1
‘G<Fa F)&S + d(ﬁa F) 283 + f(ﬁa F) £ + Mg‘ <xg 0, (4.8)
where the implied constant in both bounds is independent of P and 4. Let
B [52—5 §2+5]X[€3—5 §3+5]
TP P LPAL P/ )
Applying Lemma or Lemma respectively according to as if (d* —4af)(s,t) is an

integer square or not, provides integers (u,v) € B2% such that uvH 2, (u,v) G2, (u,v) has
respectively at most 8 or 30 prime factors counted with multiplicity. Define x € Z* by

xo = —sHg(u,v),
xy = —tHg(u,v),
Ty = u Ggy(u,v),

x3 = v Ggy(u,v).

A further application of the mean value theorem and a use of (A1)- (L8] shows that

L
a5 = 6] <xed
thereby proving (4.6)) for an appropriate 6 := 9§ (¢, X, &) .

Remark 4.7. It is worth pointing out that a special corollary of the work in this section is
that whenever a;,e;, fi, (i = 0,1) b;,d;(j = 0,1,2) are 12 integers with

ng(aiadiafi) = ng (bi>6i> = 1ang(67aobO> = 1a6 | ng(alablab2)76 | ng(diaei7fi)

i=0,1 §=0,1,2 =0,1
and the binary integer quadratic form
(dos + dit)? — 4(ags + ar1t)(fos + fit)

is the square of a polynomial in Q[s, t], then the cubic surface X given by the vanishing of

(aozo + a121)x3 + (dowo + drr)zaxs + (foxo + fiz1)w]

+ (bowd + biwory + boxd)wy + (€0xh + 110y + €9xh) w3
is smooth and has saturation number

r(X) < 10.

It is easily seen that ([I.T]) constitutes a special case of the surfaces alluded to in the present
remark. This proves the claim regarding the saturation of the surface in (I.T]) that was made
in the introduction.
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5. THE PROOF OF THEOREM

The Fermat cubic threefold is equipped with a conic bundle over IP’?@ and we begin by
describing its structure. The change of variables

1+ T3 _$2+LE4 _$1—I3 _.CL’Q—LU4
2 y Y2 2 » Y3 9 y Ya 9 )

Yo = To, Y1 =
transforms the hypersurface
Xoad+advad+ad+a3=0
into

Y : yg’ + 21 (y% + 3y§) + 2ys (y% + SyZ) = 0.

Let us record here that any y € Y (R) has yo, 1, y2 not of the same sign. Projecting away
from the line yp = y; = y» = 0 contained in Y provides a conic bundle morphism 7 : ¥ — IP%.
The transformation y = (rz, sz, tx,y, z) shows that the fibres @, ;+ = 0 are given by

2? (r® + 25 4 2t%) + y* (6s) + 2% (6t) = 0.

We wish to construct an infinite family of conic fibres each member of which is Q-rational
and with a parametrisation for their rational points which is easy to describe. We focus on
the conics given by @, _pzp2 = 0, where p; are primes. Note that they contain the obvious

point (0, p3, p2), thus providing the parametrisation
T = 12p2p§uv,
y = 6p3u’ + ps (p} — 205 + 2p5) v*,
z = —6p2p§u2 + pa (p‘z’ — 2pg + 2pg) v?
Tracing the substitutions backwards allows us to conclude that the points (xo,...x4) given
b
' (12p1pop3 fo(u, v) , p3 fi(u, v) , psfo(u, v) , pafs(u,v) , pafa(u,v))
lie in the threefold X, where the binary integer forms f; € Z[u, v| are defined through
fo :=uv,
fi = 6psu® — 12p3psuv + (pi — 2p§ + 2p§) v,
fo = —6p u? — 12p3psuv — (p1 —2p8 + 2p3) v,
f3:= —6p3u + 12p3uv + (pl — 2pg + 2pg) vz,
fa:= 6p§u2 + 12p§uv — (p‘z) — 2pg + 2pg) v?

Observe that all x € Z® on X satisfy 7| [['_, ;. We have

H fi (u, v)) )

Now suppose that we are given a point (&, ...,&s) € X (R) which we shall approximate. The
linear change of variables

G = 0,61 =

4

| [ = 84pip3ps <

1=0

~|

§2—&
2

§1+53 = 52—554 C3:f1;fs

7C4
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shows that ¢ € Y(R) thus allowing us to assume without loss of generality that
CO > O>C1 < O>C2 > 0.

owing to an earlier observation.
Now let § be a small positive constant satisfying 0 < § < 1. For a large constant C' > 0,
the Siegel-Walfisz theorem allows us to pick primes pq, po, p3 satisfying

p;=1 mod ¢ foralli=1,23forall ¢ =2,3,5,49, (5.1)
(p1, —p3,15) € C((Co — 0,Go +8) x (C1 = 6,(1 + ) x (G2 — 8,2 + 1)),

p3 {0t — 2p3,

pi — 8py + 2p3 # 0,

p3 (P} — 205 + 2p5) # 0, (5.2)

With this choice of p; we shall apply the weighted sieve, as in the proof of Lemma [4.6] in
order to deduce that the form

F(u,v) := %Hf, (u,v)

attains almost prime values infinitely often. Firstly, for ¢+ = 1,...,4, each f; is irreducible,
disc(f1) = disc(fo) = 24p3 (—p} + 8p5 — 2p5) -

The condition (5.1)) yields —p$ + 8p§ — 2p§ = 2 mod 3 and hence disc(f;) # 0. Furthermore
the same condition gives 3|disc(f1), i.e. fi and f, are irreducible over Q. A similar argument
shows that the same holds true for both f3 and f;. We next deduce that for i = 1,...,4
since the assumptions p; = 1 mod 6,7 = 1, 2, 3 yield that

ged (6,p‘z’ —2p5 + 2pg) =1
and it suffices to note that ps { (p — 2pS) . Condition (C) is then proved as follows. Let us

define
D := rad(( H p) <Uaicidisc(f,-)> < H Res(f;, fj)>>>

p<10 <ij<4

where a; and ¢; are the coefficient of u? and v? in f; respectively. Note that (5.2)) guarantees
that u or v are coprime forms to each f;, Vi # 0. We need to find some z such that

(u,v) =z mod D

in order to have

ged (% Hfi(u,v), D) = 1. (5.3)

For the primes p = 2,3, 5,7 we make the choices for (u,v) mod p given by
(1,1),(1,1),(1,2),(1,1)

respectively. For the primes p > 11 we have the estimate

ﬁ{uvv € (Z/pZ)*,p| Hfl(uvv)} < 8(]) - 1>7
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which implies that we can pick an admissible vector (u,v) mod p. Alluding to the Chinese
remainder theorem we deduce that there exists z satisfying (5.3) thus allowing any value r
satisfying

4
r > (3+6logf) + (10 — N + log fs)A — 6log A — Alog A := m (\)
6

to work. Note that condition () is verified as previously, the key element of this verification
being that each f;,7 # 0 is irreducible, and that f;, f; are coprime for ¢ # j. Indeed since
fi, f; are coprime as polynomials, there are non-zero integers R; ; such that if p|f;(u,v) and
p|f;(u,v) then p|R; ju and p|R; ;v. Hence

2

B
#{u,v ~ B :p|(filu,v), fi(u,v)} <« #{u,v ~ B :p|(u,v)} « p_2 + 1.
Using [11, App.I1I] we deduce that
min m()\) = m(0.4978357377...) = 29.1527037101 . . .,

0<A<pPs

so we can choose r = 30.

In order to finalise the Zariski density argument we need to prove that |x;/B —&| < ¢, for
which it suffices to establish that |y;/B — (;| < €/2. To this end suppose that (a, 3) is the
solution to the system

af

Then the choices
ue ((a ~§)C-iB3, (a + 0) C—%B%> and v e ((B _§)CTiBE, (B + ) C—%B%>

&

and 6¢za” + (¢ +2¢7 +2¢3) B° = N

1
T 12V=GG

make the inequality |y;(u,v)/B — ;| < § M;(&) available. We deduce that the saturation
number satisfies
r(F) < 42.

The final stage of the proof of Theorem [[.@l is similar to that of Theorem [[5 and is therefore
omitted.

REFERENCES

[1] J. Bourgain, A. Gamburd and P. Sarnak, Affine linear sieve, expanders, and sum-product. Invent. Math.
179 (2010), 559-644.

[2] J. Brandes, Linear spaces on hypersurfaces over number fields. arXiv:1610.08863, (2016).

[3] J. Briiddern, R. Dietmann, J. Y. Liu, T. D. Wooley, A Birch-Goldbach theorem. Arch. Math. (Basel) 94
(2010), 53-58.

[4] T. D. Browning and P. Vishe, Cubic hypersurfaces and a version of the circle method for number fields.
Duke Math. J. 163 (2014), 1825-1883.

[5] , Rational points on cubic hypersurfaces over Fy(t). Geom. Funct. Anal. 25 (2015), 671-732.

[6] J. R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at
most two primes. Sci. Sinica 16 (1973), 157-176.

[7] B. Cook and A. Magyar, Diophantine equations in the primes. Invent. Math. 198 (2014), 701-737.

[8] A. Conte, M. R. Marchisio and J. P. Murre, On the unirationality of the quintic hypersurface containing
a 3-dimensional linear space. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 142 (2008), 89-96.

[9] H. Diamond and H. Halberstam, Some applications of sieves of dimension exceeding 1, Sieve methods,
exponential sums, and their applications in number theory (Cardiff, 1995). Cambridge Univ. Press,
Cambridge (1997).




[10]
[11]

[12]

[37]
[38]

[39]

[40]

EFTHYMIOS SOFOS AND YUCHAO WANG

A higher-dimensional sieve method. Cambridge University Press, Cambridge, (2008).

H. Diamond, H. Halberstam and H.-E. Richert, Combinatorial sieves of dimension exceeding one. J.
Number Theory 28 (1988), 306-346.

N. Elkies, Complete cubic parametrization of the Fermat cubic surface.
http://www.math.harvard.edu/ elkies/4cubes.html.

C. Frei and E. Sofos, Counting rational points on smooth cubic surfaces. Math. Res. Lett. 23 (2016),
127-143.

B. Green and T. Tao, Linear equations in primes. Ann. of Math. (2) 171 (2010), 1753-1850.

, The Md&bius function is strongly orthogonal to nilsequences. Ann. of Math. (2) 175 (2012),
541-566.

B. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers U*T![N]-norm. Ann. of Math. (2)
176 (2012), 1231-1372.

G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Oxford University Press,
Oxford, Sixth edition, (2008).

J. Harris, B. Mazur and R. Pandharipande, Hypersurfaces of low degree. Duke Math. J. 95 (1998),
125-160.

H. Iwaniec and E. Kowalski, Analytic number theory. American Math. Soc. Providence, RI, (2004).

J. Kollar, Unirationality of cubic hypersurfaces. J. Inst. Math. Jussieu 1 (2002), 467-476.

K. Kawada and T. D. Wooley, On the Waring-Goldbach problem for fourth and fifth powers. Proc.
London Math. Soc. 83 (2001), 1-50.

J. Liu and P. Sarnak, Integral points on quadrics in three variables whose coordinates have few prime
factors. Israel J. Math. 178 (2010), 393—426.

S. Lang and A. Weil, Number of points of varieties in finite fields. Amer. J. Math. 76 (1954), 819-827.
K. Mahler, An inequality for the discriminant of a polynomial. Michigan Math. J. 11 (1964), 257-262.
Y. I. Manin, Cubic forms. North-Holland Publishing Co., Amsterdam, (1986).

M. R. Marchisio, Unirational quartic hypersurfaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8)
3 (2000), 301-314.

G. Marasingha, Almost primes represented by binary forms. J. Lond. Math. Soc. (2) 82 (2010), 295-316.
A. Magyar and T. Titichetrakun, Almost prime solutions to diophantine systems of high rank. Int. J.
Number Theory 13 (2017), 1491-1514.

A. Nevo and P. Sarnak, Prime and almost prime integral points on principal homogeneous spaces. Acta
Math. 205 (2010), 361-402.

G. Robin, Estimation de la fonction de Tchebychef 6 sur le k-ieéme nombre premier et grandes valeurs
de la fonction w(n) nombre de diviseurs premiers de n. Acta Arith. 42 (1983), 367—389.

D. Schindler and E. Sofos, Sarnak’s saturation problem for complete intersections. arXiv:1705.09133,
(2017).

I. R. Shafarevich, Basic algebraic geometry. 1. Springer-Verlag, Berlin, (1994).

C. L. Stewart, On the number of solutions of polynomial congruences and Thue equations. J. Amer.
Math. Soc. 4 (1991), 793-835.

H. P. F. Swinnerton-Dyer, Applications of algebraic geometry to number theory. 1969 Number Theory
Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969). Amer.
Math. Soc., Providence, R.I., (1971), 1-52.

K.-M. Tsang and L. Zhao, On Lagrange’s four squares theorem with almost prime variables. J. reine
angew. Math. 726 (2017), 129-171.

I. M. Vinogradov, Representation of an odd number as a sum of three primes. C. R. Acad. Sci. URSS
15 (1937), 169-172.

Y. Wang, On the saturation number for cubic surfaces. J. Number Theory 156 (2015), 52-74.

S. Y. Xiao and S. Yamagishi, Zeroes of polynomials in many variables with prime inputs.
arXiv:1512.01258, (2015).

S. Yamagishi, Prime solutions to polynomial equations in many variables and differing degrees.
arXiv:1703.03332, (2017).

, Diophantine equations in semiprimes. arXiv:1709.03605, (2017).




FINITE SATURATION FOR UNIRATIONAL VARIETIES

MAX PLANCK INSTITUTE FOR MATHEMATICS, VIVATSGASSE 7, BONN, 53111, GERMANY
E-mail address: sofos@mpim-bonn.mpg.de

DEPARTMENT OF MATHEMATICS, SHANGHAI UNIVERSITY, SHANGHAI, 200444, CHINA
E-mail address: yuchaowang@shu.edu.cn

25



	1. Introduction
	2. Sieve preliminaries
	3. The proof of Theorems 1.2 and 1.4
	4. The proof of Theorem 1.5
	5. The proof of Theorem 1.6
	References

