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A functional genomics screen reveals a
strong synergistic effect between docetaxel
and the mitotic gene DLGAPS5 that is
mediated by the androgen receptor

Kay Hewit'"?, Emma Sandilands'?, Rafael Sanchez Martinez', Daniel James®, Hing Y. Leung®'~, David M. Bryant®'”,
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Abstract

Based on a molecular classification of prostate cancer using gene expression pathway signatures, we derived a set of
48 genes in critical pathways that significantly predicts clinical outcome in all tested patient cohorts. We tested these
genes in a functional genomics screen in a panel of three prostate cancer cell lines (LNCaP, PC3, DU145), using RNA
interference. The screen revealed several genes whose knockdown caused strong growth inhibition in all cell lines.
Additionally, we tested the gene set in the presence of docetaxel to see whether any gene exhibited additive or
synergistic effects with the drug. We observed a strong synergistic effect between DLGAPS knockdown and docetaxel
in the androgen-sensitive line LNCaP, but not in the two other androgen-independent lines. We then tested whether
this effect was connected to androgen pathways and found that knockdown of the androgen receptor by si-RNA
attenuated the synergy significantly. Similarly, androgen desensitized LNCaP-Al cells had a higher ICs to docetaxel and
did not exhibit the synergistic interaction. Short-term exposure to enzalutamide did not significantly alter the
behaviour of parental LNCaP cells. An immunofluorescence analysis in LNCaP cells suggests that under the double
insult of DLGAPS knockdown and docetaxel, cells predominantly arrest in metaphase. In contrast, the knockdown of
the androgen receptor by siRNA appears to assist cells to progress through metaphase in to anaphase, even in the
presence of docetaxel. Our data suggest that DLGAP5 has a unique function in stabilizing spindle formation and
surviving microtubule assault from docetaxel, in an androgen-regulated cell cycle system.

Introduction androgen deprivation therapy (ADT), and anti-androgen

Prostate cancer is a common disease—the third most
common cancer in males—that is characterized clinically
by a wide diversity of outcomes. While a large fraction of
patients has indolent, localized and manageable disease,
there is a smaller subset of patients that suffer from
aggressive forms with lethal metastatic potential. Until
recently, initial treatments including surgery, radiation,
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therapy, were followed by chemotherapy once recurrence
set in. After two large-scale clinical trials (CHAARTED,
STAMPEDE) showed benefits for combined treatments in
advanced tumours’, chemotherapy, commonly with the
agent docetaxel (DCT), can now be used together with
ADT as an initial treatment for higher-grade tumours.
However, while the improved guidelines extend the life of
patients with aggressive prostate cancer, there is still no
cure for this disease. Furthermore, while a multitude of
clinical trials is underway to test other therapeutic agents
in prostate cancer, at the time of writing DCT remains the
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most widespread chemotherapy that patients receive and
the only standard recommendation.

Here we aim to explore further options to target the
aggressive, lethal form of prostate cancer. To this end, we
make use of a molecular classification of prostate cancer
based on gene expression data that we established pre-
viously®. This classification system identifies a subtype of
highly aggressive tumours with poor outcomes, char-
acterized by gene expression signatures for embryonic
and induced pluripotent stem cells (ESC, iPSC), and
for loss of function of the tumour suppressors PTEN and
p53. This ESC|PTEN-|p53- subtype is opposed to a
normal-like subtype with a good prognosis, defined by
differentiation and functional PTEN and p53 pathway
signatures. We hypothesize that the ESC|PTEN-|p53-
subtype may contain molecular features that make these
tumours both more prone to metastasis and more resis-
tant to therapies. We selected genes highly enriched in the
ESC|PTEN-|p53- subgroup relative to the normal-like
subgroup across several patient data sets. From these we
curated a small set of 48 genes that were also associated
with p53 function, cell cycle mechanics or stemness. We
then utilised a functional genomics screen to test these
genes in three metastatic prostate cancer lines, with and
without the addition of DCT. Data analysis aimed to
identify genes whose knockdown would either sig-
nificantly inhibit the growth of the cell lines in general, or
whose knockdown would be synergistic with DCT.

Results
A 48 gene signature predicts aggressive prostate cancer
In order to determine genes that may affect outcomes in
aggressive prostate cancer (PCa) we applied our pre-
viously developed classification scheme® to data from
three large PCa patient cohorts with associated survival
outcomes (TCGA-PRAD, GSE21034, GSE16560)>~°. The
classification scheme in particular detects an aggressive
subtype that is characterized by the expression of pathway
signatures indicating loss of PTEN or activation of the
PI3K-AKT pathway, loss of p53 function, and stemness as
indicated by loss of differentiation signals and gain of
embryonic stem cell signatures (ESC|PTEN-|p53- sub-
type). The combination of these characteristic pathway
enrichments effectively predicts malignant cancer and
poor clinical outcome®. To collect these signatures into a
more usable predictive gene set, we compared the ESC]|
PTEN-|p53- subtype in each cohort to the subtype with
the opposite signature pattern, a ‘normal-like’ subgroup
with a signature profile indicating differentiation and
intact p53 and PTEN function. Differential expression
analysis across all three sets produced a list of 233 genes
most significantly enriched in ESC|PTEN-|p53- tumours
versus normal-like tumours (see Methods, compare
Fig. 1a). As expected, the list contained a large number of
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genes associated with cell proliferation. In order to focus
our gene set on the characteristic pathways, we manually
curated a subset of 48 genes using a keyword search on
the extended GeneCards annotation, with keywords
comprising terms such as ‘apoptosis’, ‘stem cell’ and
‘meiosis’ (see Methods). Proliferation genes were sub-
selected for direct mechanistic function in the cell cycle
and function within the PTEN-AKT/PI3K pathway. The
final list is shown in Table 1. We evaluated the 48 gene list
as a predictive signature on the three data sets and an
additional patient data set with clinical annotation®°,
using single-sample gene set enrichment analysis
(ssGSEA). The resulting scores for each data set were
clustered into three groups (high, intermediate, low sig-
nature scores). A high score effectively predicted poor
patient outcome in all sets (Fig. 1b). The gene set was also
expressed at significantly higher levels in castration
resistant prostate cancer (CRPCa) (Fig. 1c, upper left), and
metastatic disease compared to primary PCa (Fig. lc,
upper right, Supp Fig. 1A, left), in distant metastatic
samples compared to prostate recurrent disease (Fig. 1c,
lower right, Supp Fig. 1A, right) and in high Gleason
grade tumours (Fig. 1c, lower left), overall supporting the
idea that these genes might contribute to metastatic
potential, as well as treatment resistance (early recur-
rence, castration resistance). In addition, expression for all
individual genes in the set was highly correlated in all data
sets. This ensures in particular that individual genes in the
list have a similar predictive value as the set (compare
Table 2). We would like to point out here that the list of
48 genes was not derived as the most effective predictor of
survival. Instead, we tried to focus on crucial pathways
that might contribute directly and mechanistically to
aggressive features.

Functional genomics screen of 48 genes reveals novel
growth inhibitors in aggressive PCa models

We tested the 48 genes in a functional genomics assay
using siRNA knockdown in a panel of three PCa cell lines
with aggressive features; LNCaP, PC3 and DU145
(Fig. 1a). Of these, only LNCaP cells are androgen sensi-
tive with an intact active androgen receptor (AR), and
wild-type p53. All three lines are defective in PTEN. The
PC3 and DU145 lines served as models for metastatic
disease, while LNCaP was included to model the differ-
ence towards androgen-sensitive disease. We performed a
viability screen using commercially available sets of four
individual siRNAs per gene (‘deconvoluted’ screen, cell
count assay, see Methods). Deconvolution does not
exclude false negative results, but may help pinpointing
off-target effects. The screen was performed with two
arms, where DCT or vehicle (DMSO) was added after 24
h. Data from the vehicle arm were evaluated for genes that
affect growth across the three cell lines. A gene was
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Fig. 1 Functional genomics screen of 48 genes in aggressive prostate cancer a Schematic representation of gene selection and screen design.
DCT, docetaxel. b The 48 gene set was evaluated for outcome prediction from (recurrence-free) survival data from four prostate cancer cohorts.
Patient samples were clustered into three groups (kmeans) based on ssGSEA scores for the 48 gene set. Groups with high scores are shown in red,
intermediate in grey and low in blue. Each plot is inset with a heatmap showing the clustering of scores. Logrank p-values (high versus low) are
annotated in plots. ¢ Mean expression of all 48 genes was used to plot differences by sample type. The gene set is highly expressed in castration-
g Yy Y 9 gnly
resistant prostate cancer (CRPCa, upper left), metastatic PCa (upper right), distant metastases (lower right), and high-Gleason PCa (lower left). Overall
ANOVA p-values are annotated in the plots. d Heatmap illustrating screening results in DMSO condition. Columns are sorted into cell lines indicated
on top, four individual siRNAs per gene (si-1/2/3/4) and three replicates. A full red colour indicates 100% growth inhibition relative to NTC, a blue
colour indicates negative growth inhibition (Gl). Genes are sorted top to bottom by increasing overall mean Gl. e Average Gl values for six genes of
interest (mean of experiments + SEM, n = 3)
J

considered significant if its knockdown caused growth
inhibition (GI) above mean plus standard deviation in at
least two sequences and in at least two cell lines (Fig. 1d,
e). si-PLK1 served as a positive control and was the top hit
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with GI > 78% in more than two sequences in all cell lines
(PLK1 satisfied significance requirements in our human
data analysis; its knockdown also inhibits growth effec-
tively in many cancer cell lines'>'"). The top two most
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effective growth inhibitory genes identified in the screen
were TPX2 (>70% GI, 2+ siRNAs) and RRM2 ( > 55% GI,
2+ siRNAs, Fig. 1e). Both are unsurprising candidates as
drivers of growth, since they are essential in mitosis, and
in DNA duplication, respectively. Interestingly however,
knockdown of Denticleless E3 Ubiquitin Protein Ligase
Homologue (DTL) also showed good results in all cell
lines with a GI>40% in 2+ sequences (Fig. le, panel
centre bottom). DTL is part of the DCX (DDB1-CUL4-X-
box) complex that is required for cell cycle control, and
particularly for DNA damage response and repair. DTL
has been implicated in gastric tumour growth and inva-
sion, and in ovarian cancers'>'®. Furthermore, knock-
down of sperm associated antigen 5 (SPAGS5), a gene
associated with spermatogenesis and mitosis regulation,
had a pronounced effect in PC3 and DU145 cells,
demonstrating GI > 50% in both with at least two siRNAs:
it was less effective in LNCaP cells by a factor two (Fig. 1e,
panel top right). This result is supported by a recent
animal study showing that SPAG5 is upregulated in
metastatic but not primary prostate tumours, and that its
knockdown reduces tumour growth and metastasis
in vivo'®. Based on our results, one might speculate that
this SPAG5 activity is linked with either the androgen
status of the tumour cells, or their p53 status. Conversely
RADS1 knockdown produced a GI of 60% in LNCaPs,
with approximately half that in the other cell lines (Fig. le,
panel bottom right). RAD51 is a DNA damage response
gene that has been associated with resistance to radiation
and PARP inhibitors in PCa, and is co-regulated by p53'°~"".
Opverall, the GI assay in DMSO detected both known PCa
associated genes, as well as an interesting candidate not
previously associated with PCa (DTL).

Functional genomics screen in the presence of DCT reveals
cell cycle genes CDC20, TPX2 and DLGAP5

The 48 genes in the signature are highly expressed in
metastatic and recurrent tumours (Fig. 1c). These tumour
types are candidates for chemotherapy in the clinic. We
therefore sought to test whether knockdown of any of
these genes added to the effect of treatment with DCT,
the standard chemotherapeutic agent in PCa and CRPCa.
DCT was given at ECsg in each cell line (LNCaP, 1.8 nM,
PC3, 1.36 nM, DU145, 3.28 nM) for 48 h. The results
showed a moderate effect overall, with little difference in
GI observed tDCT (Mean %GI all genes, LNCaP,
+DCT =24.6%, —DCT =19.8%: PC3,+DCT =25.2%,
—DCT =24.2%:  DU145, +DCT = 14.2%, —DCT =
23.1%). The effect of gene knockdown in vehicle treated
cells was subtracted from those treated with DCT to
generate a ‘window’ of efficacy. Again, little difference in
overall window was observed between cell lines (mean +
sd, all genes LNCaP —4.80 + 16.71, DU145 -3.54 + 11.97,
PC3 —1.02 + 9.57, Fig. 2a). To identify candidates, genes
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Table. 1 The 48 gene list
Gene symbol Entrez Gene name
gene ID

APOBEC3B 9582 Apolipoprotein B mRNA editing enzyme,
catalytic polypeptide-like 3B

ASF1B 55723 Anti-silencing function 1B histone
chaperone

AURKB 9212 Aurora kinase B

BIRC5 332 Baculoviral IAP repeat- containing 5

BUB1B 701 BUB1 mitotic checkpoint serine/
threonine kinase B

CDC20 991 Cell division cycle 20

CDCA5 113130 Cell division cycle associated 5

CDCA8 55143 Cell division cycle associated 8

CDKN3 1033 Cyclin-dependent kinase inhibitor 3

CEP55 55165 Centrosomal protein 55 kDa

DEPDC1B 55789 DEP domain containing 1B

DIP2B 57609 DIP2 disco-interacting protein 2
homologue B (Drosophila)

DLGAP5 9787 Discs, large (Drosophila) homologue-
associated protein 5

DNMT3B 1789 DNA (cytosine-5-)-methyltransferase 3
beta

DTL 51514 Denticleless E3 ubiquitin protein ligase
homologue (Drosophila)

EXO1 9156 Exonuclease 1

EZH2 2146 Enhancer of zeste homologue 2
(Drosophila)

FOXM1 2305 Forkhead box M1

GTSE1 51512 G-2 and S-phase expressed 1

HJURP 55355 Holliday junction recognition protein

IQGAP3 128239 IQ motif containing GTPase activating
protein 3

KDM2B 84678 Lysine (K)-specific demethylase 2B

KDM5B 10765 Lysine (K)-specific demethylase 5B

KIAA0101 9768 KIAAQ101

L2HGDH 79944 L-2-hydroxyglutarate dehydrogenase

LMNB1 4001 Lamin B1

LRPPRC 10128 Leucine-rich pentatricopeptide repeat
containing

MELK 9833 Maternal embryonic leucine zipper kinase

MYBL2 4605 v-myb avian myeloblastosis viral

oncogene homologue-like 2
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Table. 1 continued

Gene symbol Entrez Gene name
gene ID

NAA15 80155 N(alpha)-acetyltransferase 15, NatA
auxiliary subunit

NCAPG 64151 Non-SMC condensin | complex, subunit
G

PBK 55872 PDZ binding kinase

PLK1 5347 Polo-like kinase 1

PTTG1 9232 Pituitary tumour-transforming 1

RAD51 5888 RADS51 recombinase

RAD54L 8438 RAD54-like (S. cerevisiae)

RRM2 6241 Ribonucleotide reductase M2

SPAG5 10615 Sperm associated antigen 5

TET3 200424 Tet methylcytosine dioxygenase 3

TK1 7083 Thymidine kinase 1, soluble

TMEM97 27346 Transmembrane protein 97

TOP2A 7153 Topoisomerase (DNA) Il alpha 170 kDa

TPX2 22974 TPX2, microtubule-associated

TRIP13 9319 Thyroid hormone receptor interactor 13

TROAP 10024 Trophinin associated protein

TTK 7272 TTK protein kinase

UBE2C 11065 Ubiquitin-conjugating enzyme E2C

UHRF1 29128 Ubiquitin-like with PHD and ring finger

domains 1

with a window > mean + sd in 2+ cell lines and 2+ siR-
NAs were selected: these were CDC20, TPX2, MYBL2,
DLGAPS5, SPAGS, and LMNBI. Of these, CDC20 and
TPX2 satisfied the criteria in all cell lines. Strikingly, five
of these six genes are directly involved in mitosis.
Knockdown of CDC20 had a window of GI>10% in all
cell lines and three siRNAs (Fig. 2b, top panel). CDC20 is
part of the anaphase-promoting complex APC(CDC20),
and recent reports corroborate synergistic effects with
DCT in PCa'®'?, We confirmed the knockdown capacity
of the siRNAs by western blotting (Fig. 2¢, €). Comparison
with GI in DMSO condition (Fig. 2b) suggested off-target
effects in some of the siRNAs. A validation growth assay
performed in PC3 cells (Incucyte assay evaluating con-
fluency of cell populations over time, see Methods)
showed that one siRNA had a significant added effect with
DCT (Fig. 2f). TPX2 knockdown also had an added effect
with DCT in all cell lines, in two siRNAs (Fig. 2b middle
panel). TPX2 binds with AURKA and is expressed during
mitosis, on the spindle microtubules emanating from the
poles®®%, Its expression along these forms a gradient
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with the expression of another gene in the list, DLG
associated protein 5 (DLGAP5), which is expressed on the
chromatin side. The data for DLGAP5 suggested a strong
synergistic effect with DCT that only occurred in LNCaP
cells (Fig. 2b bottom panel). Because of the striking nature
of this result, we focused on investigating DLGAP5.

DLGAPS5 knockdown is synergistic with DCT in LNCaP cells
We observed a strong synergistic effect between the
knockdown of DLGAPS5 and DCT in LNCaP cells, but
not in PC3 or DU145 cells. This synergistic effect was
observed with three out of four individual siRNA
sequences (combination index by Bliss independence
model, CI<0.635, stderr <0.035, where CI<1 signifies
synergy, see Supp Fig. 1A, B), each of which achieved a
window > 45 percentage points, and resulted in>60%
total GI in the presence of DCT (Fig. 2b bottom panel).
This is a near 5-fold change of GI (p < 0.001), compared to
a modest 1.3-fold change in PC3 and negative effect
observed in DU145 cells. Consistently, the three effective
siRNAs each produced an >80% knockdown of relative
protein content by western blotting, while the fourth was
ineffective (Fig. 2d, e bottom panels). We further con-
firmed the synergistic effect using an Incucyte growth
assay in LNCaP cells with different doses of DCT (Fig. 2g,
Supp Fig. 2C). The same three siRNAs were effective in
this assay. While the knockdown alone did not affect
growth significantly, we observed a dramatic growth
reduction with addition of DCT at 1nM, producing a
significant divergence of relative growth curves (p < 0.01,
by AUC). Phenotypically, the cells appeared to undergo
growth arrest followed by apoptosis (rounding, blebbing,
Supp Fig. 1E). In PC3 cells, the Incucyte growth assay did
not reveal significant added effects (0.5-3 nM DCT, data
not shown). For the remainder of the study we used a pool
of the three effective siRNAs, referred to as siDLGAPS5.

DLGAPS5-DCT synergy is attenuated by loss of AR function

In contrast to PC3 and DU145, LNCaP cells are
androgen-sensitive. We therefore tested whether the
synergistic effect would change under AR knockdown.
Combining siDLGAP5 and siAR attenuated the synergy
between DCT and DLGAP5 knockdown (Fig. 3a, sig-
nificance measured by AUC). This was seen both in the
confluency growth assays and a CytoxGreen cytotoxicity
assay performed in the Incucyte (Fig. 3b). Knockdown of
AR alone did not have a significant effect on DCT sen-
sitivity, while DLGAP5 knockdown shifted the ECs, into
the sub-nanomolar range (< 0.5nM, 48 h DCT exposure,
Fig. 3c), with intermediate values for the double knock-
down (0.5 < EC39 < 1.0nM). We then tested an AR inde-
pendent sub-line, LNCaP-Al, that was cultured in
charcoal-stripped hormone free medium. LNCaP-Al
cells were more resistant to DCT than LNCaPs, with a
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Table 2 Correlation and prognostic values of the 48 genes

Analysis Correlation: 7 data sets Survival: logrank high vs low, tertiles

Gene Mean PCC Stderr PCC Mean log,,(PV) TCGA GSE21034 GSE16560 GSE25136
APOBEC3B 04856 0.0656 10.0992 1.71E-03 1.35E-01 2.04E-01 2.11E-02
ASF1B 0.8587 0.0325 423520 3.34E-04 1.25E-02 na 491E-01
AURKB 06929 0.0714 21,6256 5.58E-03 857E-03 na 3.59E-01
BIRC5 0.8350 0.0360 43.6592 3.33E-04 1.10E-03 7.25E-07 7.92E-02
BUB1B 0.8192 0.0593 47.0013 7.69E-04 1.76E-03 242E-02 1.54E-01
CDC20 0.7861 0.0787 37.6874 2.95E-05 4.01E-04 4.95E-02 1.18E-01
CDCA5 09218 0.0053 60.1906 3.67E-06 335E-03 na na
CDCA8 0.8701 0.0486 50.5426 1.50E-04 6.42E-03 na 4.30E-01
CDKN3 08370 0.0317 43.7493 4.53E-03 5.89E-05 4.39E-04 6.98E-02
CEP55 0.8610 0.0418 485437 240E-03 292E-03 na 1.85E-01
DEPDC1B 0.8575 0.0280 49.0341 7.68E-03 5.62E-04 na na
DIP2B 0.2916 0.0909 4.6882 4.87E-01 4.23E-01 na na
DLGAP5 0.9002 0.0219 56.1288 481E-04 1.80E-04 na 2.65E-01
DNMT3B 0.6054 0.0372 15.7632 1.59E-03 9.30E-02 na 3.55E-01
DTL 0.8058 0.0435 425223 2.13E-03 3.76E-04 na 3.02E-01
EXO1 0.8281 0.0500 46.2383 2.23E-04 7.67E-03 na 2.84E-01
EZH2 0.7299 0.0609 28.9437 391E-04 841E-02 1.10E-02 7.81E-02
FOXM1 0.8335 0.0627 485116 1.13E-03 4.23E-04 3.88E-03 2.13E-01
GTSE1 0.6820 01217 26.8985 8.75E-05 1.08E-03 1.76E-01 1.25E-01
HJURP 0.7048 0.0814 20.2463 2.79E-04 9.97E-02 na 4.75E-01
IQGAP3 06107 0.1535 22.2494 242E-04 4.65E-04 na na
KDM2B 04024 0.0749 9.5927 3.72E-01 297E-02 na na
KDM5B 0.2053 0.1030 3.1869 1.40E-01 3.65E-01 na 9.14E-03
KIAA0101 0.7584 0.0641 323947 1.38E-03 4.84E-03 3.58E-03 7A48E-04
L2HGDH 02832 0.0595 33340 1.91E-01 1.80E-01 na 6.02E-02
LMNB1 0.7537 0.0679 35.3260 8.35E-04 8.12E-03 2.35E-03 2.89E-01
LRPPRC 0.1656 0.0661 20329 844E-03 2.58E-01 4.59E-02 7.25E-03
MELK 0.8342 0.0617 49.5800 3.21E-03 5.06E-05 3.22E-02 2.03E-04
MYBL2 0.7365 0.0773 32.5805 9.75E-06 261E-04 4.22E-02 145E-01
NAA15 0.2681 0.0687 36134 4.18E-01 na na 7.01E-02
NCAPG 0.8956 0.0387 59.2214 1.68E-04 8.05E-04 na 1.48E-01
PBK 0.8279 0.0386 421333 4.35E-05 5.63E-05 na 1.57E-02
PLK1 0.7966 0.0774 42.1368 2.77E-06 371804 2.14E-01 1.84E-01
PTTG1 0.8281 0.0344 42.8207 1.68E-03 2.82E-03 9.37E-05 2.78E-02
RAD51 0.6930 0.0941 27.9681 1.44E-02 2.89E-02 345E-01 4.06E-01
RAD54L 0.7185 0.0951 29.8411 5.19E-05 1.06E-02 1.01E-01 4.39E-02
RRM2 0.8386 0.0362 44.2879 1.54E-04 7.28E-05 8.74E-04 9.17E-05
SPAG5 0.8269 0.0643 475110 2.63E-07 1.02E-03 1.57E-03 2.29E-01
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Table 2 continued

Analysis Correlation: 7 data sets Survival: logrank high vs low, tertiles

Gene Mean PCC Stderr PCC Mean log,,(PV) TCGA GSE21034 GSE16560 GSE25136
TET3 03346 0.0705 3.8902 1.85E-01 3.58E-01 na 547E-02
TK1 0.8103 0.0325 37.8871 1.07E-04 349E-02 1.32E-03 4.63E-01
TMEM97 04398 0.0693 9.7922 843E-02 845E-02 4.25E-02 3.90E-01
TOP2A 0.8044 0.0493 37.9232 1.20E-04 9.33E-04 3.32E-04 1.32E-02
TPX2 0.8554 0.0752 56.1147 2.00E-06 3.63E-04 2.05E-01 3.11E-01
TRIP13 0.6271 0.1025 25.6237 1.23E-03 3.19E-02 2.17E-05 2.76E-01
TROAP 0.7652 0.0682 29.6392 2.06E-05 2.15E-02 745E-03 481E-01
TTK 0.6963 0.0593 29.1810 5.31E-03 1.58E-03 3.78E-01 2.38E-01
UBE2C 0.8870 0.0318 59.0475 5.03E-06 6.06E-04 3.86E-03 1.31E-01
UHRF1 0.8612 0.0150 434272 4.80E-05 291E-03 na na

Pearson correlation coefficients (PCC) between individual gene expression and the mean expression of the 48 gene set were calculated in seven data sets (TCGA,
GSE21034, GSE16560, GSE25136, GSE35988, SU2C, FHCC). Average PCC and standard errors are listed, along with the average —-log10(p-value) of the correlations.
Survival columns contain logrank p-values for Kaplan-Meier analyses for individual genes, calculated by splitting each data set into tertiles based on expression, and
comparing high versus low tertiles. Note that in GSE25136 this yields lower p-values due to the small size of groups (n =79)

lower response rate at higher doses (ECy0>4nM com-
pared to <2nM in LNCaPs). Remarkably, the LNCaP-AI
cells did not respond synergistically to siDLGAP5 + DCT
in this dose range (Fig. 3d). On the other hand, short-term
suppression of AR activity with the AR antagonist enza-
lutamide did not change the synergy effect of siDLGAP5
+ DCT in LNCaPs (Fig. 3e). Similarly, switching LNCAP-
AT cells to regular medium supplemented with 10 nM
dihydrotestosterone (DHT) at transfection did not
reproduce the effect seen in the parental cells (Supp
Fig. 2B). We then tested whether AR knockdown had an
effect on DLGAPS5 protein expression and vice versa, with
and without DCT (Fig. 3f, g). There was no significant
difference in protein levels relative to control in either
case. Furthermore, DHT stimulation of LNCaPs increased
DLGAPS5 protein levels only slightly (p >0.1), consistent
with a small increase in mitotic rate (23.5%, measured by
CCNBI levels, p > 0.1, Supp Fig. 2C, D). Microarray data
sets describing LNCaP cells stimulated by 24 h of 10 nM
DHT (GSE60721, GSE4636, GSE69330%°%°) confirmed a
slight increase of both DLGAP5 and CCNB1 (Supp
Fig. 2E). Taken together these data support an indirect
interaction between DLGAP5 and AR, rather than a direct
one.

DLGAP5-DCT synergy impacts metaphase, attenuated by
AR knockdown

Direct interaction between the AR and DLGAPS5 proteins
is indeed unlikely given their expression patterns during
the cell cycle. DLGAP5 is strongly expressed during all
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phases of mitosis, is located at the spindle microtubule®®?’,

and is present at low levels during the remainder of the cell
cycle®. The AR protein is present and builds up during the
cycle but vanishes at the onset of mitosis where it remains
absent until division is complete®. We confirmed this
effect in our cells, using an ICC/IF assay to analyse mitotic
health (Fig. 4a). The degradation of the AR during mitosis
was unaffected by DLGAP5 knockdown (Supp Fig. 2F).
Likewise, AR knockdown did not seem to suppress
expression of DLGAP5 at the mitotic spindle apparatus
(not shown). DLGAPS5 is involved in microtubule organi-
sation during mitosis*”*°. It is expressed on the kine-
tochores of spindle fibres and has been implicated in the
nucleation of central spindle microtubules during ana-
phase®®. The gradient it forms with TPX2 towards the
spindle poles during mitosis might also be involved in the
contraction of spindle microtubule in anaphase®!. This
indicates that the metaphase-to-anaphase transition might
be critical in our setting. DCT arrests cells in metaphase,
and consistently we found that under DCT (0.5 nM), the
ratio of metaphase-to-post-metaphase mitotic cells was
decreased (Fig. 4b, c). This ratio decreased even further
under siDLGAP5 + DCT (0.6FC to 0.4FC, Fig. 4d), sug-
gesting that the cells are predominantly arrested in meta-
phase in this condition. Interestingly, the ratio was
increased in siAR treated cells (Fig. 4c), and was not sig-
nificantly changed by DCT in that condition (Fig. 4d). This
indicates that AR knockdown might help cells progress
through metaphase and initiate anaphase under DCT
insult.
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Discussion

Recent large-scale clinical trials (STAMPEDE,
CHAARTED) have shown that advanced prostate cancers
respond better to a first-line combination of chemother-
apy (DCT) and ADT than to the sequential treatment
where ADT is given first and chemotherapy is given upon
recurrence. However, while the clinical benefits of earlier
chemotherapeutic intervention are clear from these
trials’, advanced prostate cancer is still a lethal disease
and further improvements are urgently needed. The trial
data seems to suggest earlier, more aggressive interven-
tion for the most aggressive tumours; this would suggest
an early point of action also for future targeted therapies
and novel combination approaches. The data also
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emphasizes the importance of androgen status for treat-
ment efficacy and supports treating ADT-naive tumours
with complementary (i.e. non-hormone) therapy. Here we
have analysed a set of 48 genes that were selected based
on their expression and potential function in a highly
aggressive, molecularly defined subgroup of human can-
cer samples. We have evaluated knockdown of these
genes in models of advanced PCa including both
androgen-independent and -sensitive cell lines. Especially
in the above context, the present results suggest an
interesting novel interaction between the androgen
receptor system and mitotic dynamics under DCT. We
have shown here that loss of the mitotic gene DLGAP5
acutely sensitizes androgen-dependent LNCaP cells to
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DCT treatment. This effect is attenuated by knockdown
of the AR, and is absent in the androgen-independent
LNCaP-AI cell line variant, as well as in androgen-
independent PC3 and DU145 cells.

However, the effect is not attenuated under short-term
use of the AR antagonist enzalutamide and it is not re-
established in LNCaP-AI under acute exposure to hor-
mone. This suggests that only full transcriptional loss of
the AR, or long-term transformation to androgen inde-
pendence affect the DLGAP5-DCT synergy. We note here
that, while LNCaP-AI cells do express the AR, its down-
stream transcriptional activity is altered as the cells
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become androgen independent and this affects in parti-
cular also cell cycle regulation®' >3, This in turn seems to
suggest that cells with an active and well-established
androgen pathway rely on DLGAP5 to stabilize mitotic
health and function, while androgen-independent cells do
not nearly as much.

Our immunofluorescence studies suggest that the cri-
tical phase of mitosis is the transition from meta- to
anaphase. Based on this data, the formation of central
spindle microtubule might be the point of vulnerability.
Others have shown that a considerable fraction of central
spindle microtubule is formed by DLGAP5, while another
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part is recruited from remaining interphase micro-
tubule®®. This latter part could be affected in androgen-
dependent cells, as androgen can suppress tubulin
expression and might affect spindle density®* and micro-
tubule nucleation at the centrosomes during interphase®”.
Thus androgen-dependent cells without DLGAP5 might
be increasingly vulnerable to DCT simply because the
density of microtubule in their spindles and especially
their central spindles, is lower, requiring a lower molecule
content of drug to bind and stabilize the spindle micro-
tubule. In other words, in these cells, DLGAP5 might
make up for a lack of ambient microtubule to create
sufficiently thick spindle fibre bundles (Fig. 4e). We are
currently expanding our ICC/IF studies to analyse spindle
density. DLGAP5 also has binding sites for several
androgen-regulated genes in its promoter region,
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including most prominently SREBF1 and NCOR1, which
have been linked to cell-cycle regulation®*~%*, We are
currently investigating these potential regulatory
interactions.

This interaction between the androgen-regulated cell
cycle, DCT and DLGAP5 might also extend to other
cancers. As reported previously®’, DLGAP5 levels alone
have predictive power in prostate cancer (Table 2).
However, the gene was first found as a prognostic indi-
cator in hepatocellular carcinoma (HCC)***'. HCC is
more common in males than in females (2.89-fold higher
incidence, 2.47-fold  higher  mortality, SEER
18 2011-2015, https://seer.cancer.gov/statfacts/html/
livibd.html), and numerous studies have investigated the
AR pathway in this disease®*™*’. In fact, DLGAP5 gene
expression very effectively predicts outcome in male HCC
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patients, but much less so in females (Supp Fig 3A, B, C).
DLGAP5 expression is not gender-biased in these
tumours (TCGA-LIHC, p =0.52, n =115 female, n =239
male), suggesting that interaction networks and back-
ground might play a role in the gene’s functionality. The
gene is also a predictor of poor outcome in ER-positive
breast cancers, but not in ER-negative, or HER2-positive
ones (Supp Fig 3D, E, F), indicating again a
connection with hormone status.

Overall, here we show a novel feature of androgen-
sensitive prostate cancer cells compared to independent
or desensitized ones that might provide a potential new
synergistic target for androgen-sensitive, aggressive
prostate cancers that qualify for first-line DCT treatment.

Methods
Cell culture

LNCaP, DU145 and PC3 were cultured in RPMI 1640
medium supplemented with glutamine and 10% fetal
bovine serum. LNCaP-AlI cells were cultured in charcoal-
stripped DMEM medium minus phenol red.

siRNA transfection and screen

Human OnTarget plus siRNAs were ordered from
Horizon Discovery (Dharmacon), either individual
(screening library) or as pool (AR). Cells were transfected
with siRNAs using a reverse transfection protocol with
Lipofectamine RNAiIMAX (Invitrogen), following the
manufacturer’s instructions. The same protocol was used
for all cell lines transfected with siRNA.

Viability screen

SiRNA screening was performed in triplicate with a
custom library of 48 human genes, and a set of four
individual siRNAs per gene (Horizon). Cell stocks were
grown to confluency, harvested, counted and seeded in
96-well plates at the following densities to reflect differing
growth rates: PC3 at 3000 cells per well (cpw), DU145 at
2500 cpw and LNCaP at 5000 cpw. A reverse transfection
method was used in order to transfect cells with siRNA.
Subsequently cell suspensions were added to the plates
using an XRD automated reagent dispenser (FluidX).
Plates were incubated at 37 °C, 5% CO2 for 24 h, after
which either EC3y DCT (PC3: 1.36 nM), (DU145: 3.28
nM), (LNCaP: 1.80 nM) or DMSO was added to cells.
After incubation for a further 48 h, the medium was
removed and cells were fixed with 4% formaldehyde and
stained with DAPI/Tx-100 in 1x PBS (0.25 pg/ml/0.001%
final concentration/well). Images of nuclei were acquired
using the Operetta High Content Imaging system (Per-
kinElmer) and the number of nuclei in each well were
quantified as a measure of cell growth using Columbus
High Content Imaging and Analysis Software
(PerkinElmer).
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Incucyte growth assay

Cells were seeded in 96-well Greiner black glass bottom
plates (Greiner 665090), and transfected with siRNA at
seeding where needed. Depending on cell type, wells were
seeded with 5000 to 12000cpw in 100 ul medium. Plates
were incubated overnight and transferred to the Incucyte.
Drugs were added with additional 50 ul medium (spike-in)
between scans. CytoxGreen reagent was added according
to manufacturer’s protocol along with drugs, where
required. In each experiment, plates contained three or
more replicate wells per condition and two pictures were
taken per well per scan. Confluence data were down-
loaded, plotted and analysed using MATLAB custom
routines. In particular, for relative GI, we first normalized
confluence growth curves by the confluence at time of
drug addition in order to balance out variation in seeding.
We then calculated the ratios of confluence measures for
drug over DMSO for each condition, in each experiment.
We then plotted the mean of experiments with the SEM
indicated in error bars. In order to analyse differences
between the curves we calculated area under curves and
compared these values using a Student’s T-test.

Western blots

Cells were seeded in 6-well plates and transfected at
seeding as needed. Cells were seeded at 300,000 cpw in
2000 ul medium. Cells were incubated overnight and
drugs (DMSO, DCT) were added in additional medium
(200 ul) and were left on for required periods (24 h). Cells
were washed once with PBS and lysed in buffer (50 mM
TRIS ph7.5, 0.5% SDS) with cOmplete Mini preparation
(Roche). Lysates were collected in Qiagen shredder col-
umns (Qiashredder) and centrifuged through the column
for 2 min at high speed. Lysates were buffered in NuPage
LDS sample buffer with 5% mercaptoethanol, and heated
to 100°C for 5min. Western blotting was performed
using the NuPage system, with NuPage Bis-Tris 4—-12%
precast gels. Gels were run in MES buffer (NuPage MES
SDS running buffer, 135V, 80 min), and were transferred
onto nitrocellulose membranes (GE Healthcare Amer-
sham Protran 0.2NC) in NuPage transfer buffer plus 20%
methanol (100 V, 90 min). Membranes were stained with
Poinceau solution, washed in TBS, blocked in 5% milk in
TBS for 1h and incubated with primary antibodies (see
below) at manufacturer’s recommended concentrations
overnight. Blots were washed with TBS and incubated
with secondary antibodies (Licor) for 1h. Blots were
washed in TBS followed by distilled water and were
screened on Licor System. Licor software was used to
perform quantitation.

Antibodies:

CDC20: CDC20 (D6C2Q) Rabbit mAB #14866, Cell
Signaling Technology

DLGAP5: HPA005546, Sigma Aldrich
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AR: AR(441):s¢c-7305, Santa Cruz Biotechnology

TUB: Anti-Tubulin Antibody YL1/2 ab6160, abcam

CCNB1:  Anti-Cyclin Bl  Antibody ab32053,
abcamFKBP5: FKBP5 (D5@G2) Rabbit mAB #12210, Cell
Signaling Technology
GAPDH: GAPDH Rabbit PolyAB CatNo 10494-1-AB,
Proteintech Europe

ICC/IF

For immunofluorescence, LNCaP cells were plated on
Greiner black myClear Cellstar 96-well plates (Greiner
655090) and were transfected with siRNA at seeding. Cells
were seeded at 12,000 cpw. After incubation for 36h,
0.5nM DCT or DMSO was added to the wells and plates
were incubated for an additional 12h. Cells were then
washed once with PBS and fixed in 4% para-formaldehyde
for 20 min. Plates were washed three times in PBS,
blocked for 1h in PFS (0.5 L PBS, 3.5¢ fish skin gelatin,
1.25 mL 10% saponin stock) and incubated with primary
antibodies (DLGAPS5, AR, TUB, same as above) in PFS at
manufacturer’s recommended doses overnight. Cells were
washed in PFS and incubated with secondary antibodies
(Alexa 488, 594, 647, DAPI) in PFS for 1 h. After another
round of washing, wells were filled with 200 ul PBS and
plates were screened using the Opera system at x20 and
x63 resolution. Images were analysed using the system
software (Columbus High Content Imaging and Analysis
Software, PerkinElmer). Meta- and post-metaphase cell
counts were performed manually using the x20 resolution
images with Tubulin and DAPI channels (36 image fields
per well, three replicate wells per condition per experi-
ment). Ratios of post-meta/metaphase cells were calcu-
lated for each well, ratios were averaged over replicate
wells in each experiment, and mean of experiments was
plotted with error bars indicating SEM.

Computational analyses

Gene expression data were downloaded from the Gene
Expression Omnibus (GEO) (GSE21034, GSE16560,
GSE25136, GSE35988, GSE44905, GSE60721, GSE4636,
GSE69330) and from The Cancer Genome Atlas (TCGA)
portal (TCGA-PRAD). TCGA, GSE21034 and GSE16560
data sets were classified using our previously described
classification scheme®. In short, gene expression sig-
natures characterizing ESC, iPSC, PRC?2 targets, p53 status
(p53+, p53—), PTEN status (PTEN +, PTEN—), MYC
status (MYC upregulated), RAS pathway, Cytokines,
TMPRSS2-ERG fusion, Mesenchyme, Proneural and
Proliferation, were analysed using single-sample GSEA
(ssGSEA)™ on each sample in a data set, resulting in an
array of 14 signature scores per sample. The signature
score arrays were then clustered using an unsupervised
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clustering algorithm that applies several clustering rou-
tines and a range of cluster numbers and determines the
optimal clustering using a Bayesian arbiter (best fit to a
mixed Gaussian data model). In all three data sets, we
found a cluster that was highly associated with the ESC,
PTEN— and p53— signatures as well as with proliferation
signatures (Proliferation, MYC), and a group with the
opposite signals. In each of the three data sets, the dif-
ferential expression of all individual genes was calculated
on these groups (stem-like versus normal-like). To com-
pare these across data sets, since not all genes were
represented on all platforms, we designated a gene to be
significant if it satisfied a significance cutoff in at least two
data sets. For the resulting list of genes, GeneCard
annotation was downloaded and searched for terms: cell
cycle, PI3K, p53, DNA repair, DNA damage, stem cell,
meiosis and spermatogenesis. This included a search of
the literature annotations associated with each gene in
addition to its descriptors. Genes were also evaluated for
their expression in the cell lines PC3, DU145 and LNCaP
using data from GSE21034, GSE44905 and internal
RNASeq data (Hing Leung). Genes were included in the
final list based on an evaluation of their p-values of
enrichment in the data sets, their expression (present) in
the cell lines, and their annotations. To evaluate the list of
48 genes as a signature, we used ssGSEA to calculate
signature scores for each sample in a set, and then clus-
tered the scores into three groups using kmeans. Survival
data was then analysed using Kaplan—Meier analysis and
logrank p-values. It was tested in a fourth cohort®. Mean
expression of the gene set was used to test differential
expression in sample types in additional gene sets’ and
ANOVA p-values were calculated using MATLAB stan-
dard script. All data were handled using Matlab and Unix
shell script.

Statistical analyses

Screening data were analysed for quality control, and Z
prime scores were calculated for each plate using the
Dotmatics Studies software (all Z prime scores were
greater than 0.5). Each plate contained eight samples
negative and positive controls (siNTC, siAS). The median
of the eight negative controls on each plate was used to
calculate sample values for the siRNA probes (value =
(median(siNTC) — SAMPLE) / (median(siNTC)) x 100).
Mean of three experiments was calculated for each cell
line, each gene, each sequence and each condition
(DMSO, DCT). Window sizes were calculated across all
genes and sequences in a given cell line, and mean plus
two standard deviations was used as a cutoff to determine
significant sequences. Genes with two or more significant
sequences were considered significant in that cell line.
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Furthermore, combination indices (CI) were calculated
using the Bliss independence model, for each gene,
sequence and experiment in each cell line. For each cell
line, we plotted the distribution of all CI scores and
determined the 0.05 quantile in order to obtain a sig-
nificance value relative to the screening data.

Incucyte data were downloaded as percent confluence
in phase and green channels (CytoxGreen). Mean of
technical replicates (three or more wells per condition,
two images per well per scan) was used for all calculations
and data were normalized by the confluency at time of
drug addition for all conditions. Relative GI curves were
then calculated as DCT/DMSO and plotted using mean of
experiments and error of means. Significant differences
between groups of curves were determined by calculating
AUC using the trapezoidal rule for each curve, followed
by Student’s T-test.
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