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20 Abstract

21 Objectives: Rapid rate-of-kill (RoK) is a key parameter in the target candidate profile 1 (TCP1) for the 

22 next-generation antimalarial drugs for uncomplicated malaria, termed Single Encounter Radical Cure 

23 and Prophylaxis (SERCaP). TCP1 aims to rapidly eliminate the initial parasite burden, ideally as fast as 

24 artesunate, but minimally as fast as chloroquine. Here we explore whether the relative RoK of the 

25 Medicine for Malaria Venture (MMV) Malaria Box compounds are linked to their mode of action 

26 (MoA) and identify scaffolds of medicinal chemistry interest. 

27 Methods: We used a Bioluminescence Relative RoK (BRRoK) assay over 6 and 48h, with exposure to 

28 equipotent-IC50 concentrations, to compare the cytocidal effects of Malaria Box compounds to 

29 benchmark antimalarials.

30 Results: BRRoK assay data demonstrate the following relative RoK from fast to slow: inhibitors of 

31 PfATP4 > parasite hemoglobin catabolism > DHFR-TS > DHODH > bc1 complex. Core scaffold 

32 clustering analyses reveal intrinsic rapid cytocidal action for diamino-glycerols and 2-

33 (aminomethyl)phenol, but slow action for 2-phenylbenzimidazoles, 8-hydroxyquinolines, and 

34 triazolopyrimidines. 

35 Conclusion: This study provides proof of principle that a compound�s RoK is related to its MoA, and 

36 target�s intrinsic RoK is also modified by factors affecting a drug�s access to it. Our findings highlight 

37 that as we use medicinal chemistry to improve potency, we can also improve the RoK for some 

38 scaffolds. Our BRRoK assay provides the necessary throughput for drug discovery and a critical 

39 decision-making tool to support development campaigns. Finally, two scaffolds, diamino-glycerols, 

40 and 2-phenoxybenzylamine, exhibit fast cytocidal action, inviting medicinal chemistry improvements 

41 towards TCP1 candidates.

42

43
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44 Introduction

45 Resistance by P. falciparum to front-line therapeutics necessitates new drugs with novel 

46 MoA to circumvent parasite resistance mechanisms.1,2 This need was initially met by the 

47 identification of 20,000 hits with sub-micromolar potency against P. falciparum intraerythrocytic 

48 stages from an extensive screening campaign of around four million compounds from the libraries of 

49 St. Jude Children's Research Hospital, TN, USA, Novartis and GSK. 2�6 Triaging these hits to establish 

50 development priorities requires additional pharmacodynamic information, key amongst which is 

51 their rate-of-kill (RoK).7 Rapid RoK is specifically identified by MMV as a key requirement within a 

52 future SERCaP to treat malaria.1,8 The target candidate profile TCP1 requires an immediate effect to 

53 rapidly eliminate parasites, minimally as fast as chloroquine and ideally as fast as artesunate. If 

54 resistance renders artemisinin ineffective, TCP1 candidates will ideally replace it.1,8

55 Antimalarial RoK is currently determined in vivo with mouse models or phase IIa clinical 

56 trials.9 It is defined by (i) the parasite reduction ratio (PRR), the fold-reduction from starting 

57 parasitaemia after 48 hours (h, one erythrocyte-stage cycle) of treatment and (ii) parasite clearance 

58 time (PCT), time until parasites are no longer detectable in peripheral blood films9. The only in vitro 

59 RoK assay that provides the PRR and PCT parameters is the recrudescence assay at GSK Tres 

60 Cantos,10 representing the gold-standard for RoK determination in vitro. However, its challenging 

61 technical aspects, such as requirements for parasite recrudescence over 21-28-days, limit 

62 applicability to small-scale lead validation.7,11�13 To address this assay bottleneck, we reported a 

63 microplate-based BRRoK assay that discriminates between minimum essential and ideal TCP1 

64 candidates within 6h (BRRoK6h), 10 and published RoK data for 370 open-access Medicine for Malaria 

65 Venture�s Malaria Box compounds relative to a panel of known antimalarial benchmarks. 2,7 In this 

66 study, we extend this study of RoK for the Malaria Box compounds to demonstrate the following 

67 proof-of-principles. First, to show that compounds with similar BRRoK have similar MoA, we 

68 compared BRRoK6h from Malaria Box compounds to their predicted MoA. Five clusters emerged, 
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69 with each representing distinct relative RoK correlating with different MoA. Second, to demonstrate 

70 that Malaria Box compounds with related scaffolds have similar rates of antimalarial killing, BRRoK6h 

71 were compared based on compounds� core scaffold with five clusters emerging that we then 

72 correlated with what we know about potential MoA. Third, we had previously identified 178 Malaria 

73 Box compounds that showed little cytocidal activity within 6h.10 Thus, we extended the assay over 

74 48h (BBRoK48h) to ensure completion of one intraerythrocytic cycle. Most compounds without 

75 activity in the BRRoK6h showed activity in the BRRoK48h, providing links to their MoA. Our data 

76 demonstrates that a revised BRRoK assay at two timepoints, 6 and 48h, provides a critical decision-

77 making tool for antimalarial drug discovery and development campaigns. 
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79 Methods 

80 The transgenic Dd2 P. falciparum clone (Dd2luc)14,15 were cultured as described previously.7 

81 The antimalarial drugs and the Malaria Box compounds were prepared as shown in Table S1. Malaria 

82 Box IC50 were measured in Dd2luc and deposited in the ChEMBL � Neglected Tropical Disease Open 

83 Access repository (ChEMBL3392923, see Van-Voorhis et al.,16).

84 The BRRoK48h assay was carried out as described previously7. Briefly, compounds were 

85 serially diluted (9×�IC50, 3x�IC50, 1x�IC50 and 18�KL
(50 concentrations from a determination of IC50 at 

86 48h) in 96-multiwell plates, trophozoite-stage (20�26 h post-infection) cultures of Dd2luc were added 

87 and mixed by pipetting to give a final 200 M* volume in each well with 3-fold IC50 dilution series of 

88 drugs, 1% parasitaemia and 2% haematocrit. To estimate the BRRoK48h, the plates were incubated 

89 continuously in the presence of the compounds for 48h prior to assay at 37°C. As described 

90 previously, 7,17 40PM* of P. falciparum culture were transferred to a white 96-multiwell plate (Greiner, 

91 UK) and lysed with 10PM* of passive lysis buffer (Promega, UK). An equal volume, 50PM*� of the 

92 supplied luminogenic substrate was mixed with the lysed parasites and the bioluminescence was 

93 measured for 2Ps in a Glomax-Multi Detection System (Promega, UK). Experiments were carried out 

94 as technical triplicates on the same plate, with three independent biological repeats of each plate 

95 performed. Controls in each biological replicate consisted of trophozoite-stage culture with no drug 

96 added (100%) or uninfected erythrocytes (0%). The mean and standard deviation (SD) of 

97 bioluminescence data from three independent biological repeats were expressed as a proportion of 

98 the untreated control (100%) and calculated as follows: �11LK QM<�=LRLM <R=SM <:=LRLM <R=T� where M<�=� 

99 M (+) and M <R= represent the means for the sample in question and 100% and 0% controls, 

100 respectively. The ZU score of the BRRoK48h assay was calculated as follows: ZULVL�LRL 

101 [(3�(+)L:L��<R=)/�(+)LRL�<R=], where �(+)and �(+) are the mean and SD of the no-drug (untreated) positive 

102 control, respectively, and �<R= and �<R= are the mean and SD from uninfected erythrocytes (negative 

103 control), respectively.18 The signal/background (S/B) ratio was calculated as follows: [�(+)����<R=]/�<R=. 
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104 As previously described,7 a principle components analysis (PCA) was performed on the BRRoK assay 

105 data for the MMV Malaria Box compounds (48h assays using a 9×�IC50, 3x�IC50, 1x�IC50 and 

106 18�KL
(50 series) using the KNIME analytics platform, to reduce the dimensionality of these data 

107 sets19, allowing the concentration-rate relationship to be captured in one parameter. The first 

108 principle component (PC1) accounted for 78% of the total variance of the data (see supplementary 

109 materials). A zero-meaned PC1 value is used to provide a description of the RoK relative to known 

110 antimalarial benchmark controls (see Table S1).7 
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112 Results 

113 The BRRoK6h for the Malaria Box identifies compound clusters linked by common modes of 

114 antimalarial action 

115 That antiplasmodial in vitro RoK correlates with MoA has been established for a small 

116 number of antimalarial drugs, predominantly within classes that have been or are currently used.10 

117 We have previously described a determination of the rates of initial cytocidal kill (over 6h) using the 

118 Bioluminescence Relative Rate of Kill (BRRoK) assay for 370 compounds from the Malaria Box open-

119 access drug discovery resource relative to a range of benchmark antimalarials for which both in vitro 

120 and in vivo rates of kill data were available.7 This determination used a P. falciparum strain 

121 genetically modified to express a bioluminescent luciferase reporter protein, with cytocidal action 

122 determined by loss of bioluminescent signal following exposure to increasing concentrations of test 

123 compound. Analysis of the normalised concentration-dependant bioluminescent signals by principle 

124 components analysis provides for a rank of initial cytocidal action that enables rate of kill relative to 

125 known controls to be described. Termed PC1, for first principle component, these are presented as 

126 zero-meaned data where low values such as -97.4 relate to the extremely rapid acting 

127 dihydroartemisinin and higher values, such as 55.4, for the slow-acting atovaquone.7 

128 With BRRoK6h data for 370 Malaria Box compounds, we correlated these with MoA data 

129 made available as part of this open source drug discovery project (Figure 1).20�34  PC1 were plotted 

130 against their IC50 (ChEMBL3392923, see Van-Voorhis et al.,16) and mapped against benchmark 

131 antimalarials. Compounds with RoK X dihydroartemisinin (DHA, PC1= -97.4) and X chloroquine (CQ, 

132 PC1 = -73.7, log PRR= 4.5, 99% PCT= 32h) meet the TCP1 ideal and minimum essential criteria, 

133 respectively. Generally, compounds with RoK X CQ are considered fasting acting, those with a RoK X 

134 Quinine (QN, PC1 = -52), Mefloquine (MQ, -(�LVLR��8�� log -''LVL�8	 and 99.9% -(�LVL��Ph) or 

135 Piperaquine (PQ, PC1 = -37, log PRR = 4.6, 99% PCT = 33h) are considered moderate acting, and 

136 those with RoK X Atovaquone (ATQ, PC1��L��8�� log -''LVL�8, and 99.9% -(�LVL,1Ph) are slow-acting 
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137 (Figure 1, S1 Table). Thus, compounds with an initial rapid RoK and nM potency, like artemisinins, 

138 occupy the bottom-left quadrant those such as atovaquone, whilst potent, being slow-acting 

139 occupies the upper left-hand quadrant (Figure 1). 

140 MoA data was sourced from specific activity assays (e.g. in vitro enzyme inhibition assays) to 

141 comparative metabalomic profiling, and as such the MoA association for the Malaria Box are often 

142 tentative. We hypothesized that compounds with a shared MoA would exhibit similar BRRoK6h data. 

143 Five MoA including compounds targeting (i) PfATP4, a Na+-ATPase in the parasite�s plasma 

144 membrane, ii) bifunctional Plasmodium enzyme dihydrofolate reductase-thymidylate synthase 

145 (DHFR-TS), (iii) dihydroorotate dehydrogenase (DHODH), (iv) the bc1 complex of the mitochondrial 

146 electron transport chain and (v) parasite hemoglobin catabolism (Figure 1A-E) were clustered. These 

147 MoA were selected because in vitro PRR data are available for > 10 compounds (Table S2) in each 

148 class.16,20,21,27,28,35 RoK were identified from fast to slow: PfATP4 > parasite hemoglobin catabolism > 

149 DHFR-TS > DHODH > bc1 complex. Using one-way ANOVA with a post-hoc Tukey test 7,16,20,29,30, we 

150 found that compounds targeting PfATP4 exhibit the fastest RoK and are significantly faster than 

151 other clusters (Figure 1F). Compounds targeting parasite hemoglobin catabolism are significantly 

152 faster than those targeting DHFR-TS, DHODH and bc1 complex, and compounds targeting DHFR-TS 

153 are faster than DHODH and bc1 complex inhibitors (all p < 0.01), while other pairwise comparisons 

154 are not significant. 

155 BRRoK6h highlights rapid cytocidal activity for diamino-glycerols and 2-(aminomethyl)phenol 

156 scaffolds in the Malaria Box

157 The Malaria Box compounds were selected to be structurally diverse.2 We wished to 

158 determine whether substructure analysis of these novel Malaria Box compounds reveals novel core 

159 scaffolds with shared RoK activity, and thus potentially with new MoA. BRRoK6h data was overlaid 

160 with five distinct scaffolds; diamino-glycerols, 2-(aminomethyl)phenol, 2-phenylbenzimidazole, 8-

161 hydroxyquinolines, and triazolopyrimidine (Figure 2). Table S3 shows full structures and the core 

Page 8 of 60

Journal of Antimicrobial Chemotherapy: under review

Journal of Antimicrobial Chemotherapy



Confidential: for peer review only
162 scaffold substructures, with > 5 compounds for each scaffold annotated. We found a fast BRRoK for 

163 diamino-glycerols and 2-(aminomethyl)phenols, and slow BRRoK for 2-phenylbenzimidazoles, 8-

164 hydroxyquinolines and triazolopyrimidines (Figure 2A-E). The five core scaffolds identified BRRoK 

165 ranking from fast to slow: diamino-glycerols > 2-(aminomethyl)phenol > 2-phenylbenzimidazole > 8-

166 hydroxyquinolines > triazolopyrimidine. The diamino-glycerol scaffold exhibited the fastest cytocidal 

167 action among the group (p < 0.01 for all, except 2-(aminomethyl)phenol where p > 0.05 by ANOVA 

168 (Figure 2F). Similarly, compounds in the 2-(aminomethyl)phenol scaffold exhibited significantly faster 

169 action (p < 0.01) than the 2-phenylbenzimidazole, 8-hydroxyquinolines and triazolopyrimidine 

170 scaffolds (Figure 2F).

171 BRRoK48h confirms slow cytocidal action for a subset of compounds in the Malaria Box 

172 The BRRoK6h assay identified fast-acting Malaria Box compounds as TCP1 candidates, 

173 including the fastest-acting PfATP4 inhibitor spiroindolone MMV396749 (Table S2). However, almost 

174 half of the Malaria Box showed little cytocidal activity against intraerythrocytic trophozoites over 6h. 

175 We predicted that these compounds might have a lag phase in their cytocidal action, such as shown 

176 by the antimalarial atovaquone with a 48h lag in cytocidal action.10 We therefore employed a revised 

177 BRRoK assay over 48h (BRRoK48h) to ensure completion of one full intraerythrocytic cycle. For 

178 validation, we selected different benchmark antimalarials, which covered multiple MoA.7 Dd2luc 

179 parasites were exposed to a 3-fold serial dilution (9�18��LKL
(50) for 48h, the resulting 

180 bioluminescence signal normalized to an untreated control, and the normalized bioluminescent 

181 signal plotted against drug concentration (Figure S1). We found the identical relative ranking order 

182 of benchmark antimalarial drugs (i.e. ��
�%������LDL������@����LDL�;

183 %�
�����@���������LDL�
�!�@����= to  BRRoK6h,7 which is identical to both the in vivo and in 

184 vitro RoK.31�33,35 

185 We had sufficient material available for 178 slow-acting Malaria Box compounds. Along with the 

186 benchmark antimalarial drugs ATQ, CQ, DHA, MQ, PPQ, pyronaridine (PYN) and QN, we subjected 
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187 them to a BRRoK48h assay (Table S4; Figures S2, S3). 95% confidence intervals for the ZU score (0.85-

188 0.95), maximum coefficient of variation (0.9%-2.84%), and signal/background ratio (2580-5001) 

189 indicate a robust and sensitive microplate-based assay of the BRRoK48h data. Using mean ± SD for 

190 each IC50-fold BRRoK48h normalized bioluminescent signal, a PCA was carried out for concentration-

191 dependent effects (Figure S4; Tables S5-S6). PC1 accounts for 78% of the variance at 48h, with most 

192 contributions provided by the 3X IC50 data. 

193 We next plotted BRRoK6h and BRRoK48h PC1 against IC50 data (Figure 3, Table S7). Figure 3A 

194 highlights these compounds� slow action over 6 h, with compounds clustering adjacent to the slow 

195 acting atovaquone. Plotting BRRoK48h data against IC50 results in a wide distribution of 48h RoK for 

196 these compounds (Figure 3B). Interestingly a number of initially slow acting compounds now show a 

197 48h RoK within the TCP1 target range (>chloroquine) and presumably reflect a shorter lag phase in 

198 their action, such as the 24hr lag phase reported for pyrimethamine.10 The majority of compounds, 

199 however, still show a BRRoK PC1 more similar to atovaquone, and thus potentially a longer lag 

200 phase. To explore this, compounds with two predicted slow-acting MoA16,20,22�26,29,30,34,36�39 were 

201 correlated with BRRoK48h; 38 were DHODH inhibitors (Figure 4A, Table S7) and 18 were bc1 complex 

202 inhibitors (Figure 4B, Table S7). Unfortunately, due to small sample size, one-way ANOVA did not 

203 indicate statistical significance (p > 0.05) (Fig 4C) between these different MoA but did indicate that 

204 their longer lag phases resulted in higher BRRoK48h PC1 scores (Figure 4C). 
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206 Discussion 

207 The next-generation antimalarial drugs should rapidly eliminate parasite burden, ideally as 

208 fast as artesunate, but at least as fast as chloroquine.1 Whilst we have previously used the BRRoK6h 

209 assay to measure the relative RoK for 370 Malaria Box compounds, here we show that BRRoK6h data 

210 provides links to the antimalarial MoA (with PfATP4 > parasite hemoglobin catabolism > DHFR-TS > 

211 DHODH > bc1 complex) and that comparison with scaffold sub-structures identified five core 

212 scaffolds with the relative RoK: diamino-glycerols > 2-(aminomethyl)phenol > 2-phenylbenzimidazole 

213 > 8-hydroxyquinolines > triazolopyrimidine. We also predicted that compounds with minimal activity 

214 at 6h might have a lag phase, like atovaquone and DSM265.7,10,35 Thus, we determined the RoK of 

215 apparently slow-acting compounds using a BRRoK48h assay and show that many of the slow-acting 

216 compounds are likely DHODH and bc1 complex inhibitors.  In short, compounds in the Malaria Box 

217 with similar targets and chemical core substructure exhibit similar time-dependant RoK dynamics. 

218 Although our study is limited to a library of 400 compounds that lack a full biochemical target 

219 validation, it provides the proof-of-principle that BRRoK data offers an opportunity to rapidly 

220 prioritize compounds in the TCAMS, or other, library by informing predictions of structure-activity 

221 and MoA. Moreover, we note that using the BRRoK assay at two-time points, 6 and 48h, we not only 

222 have the potential to rapidly identify and discriminate between compounds that meet the ideal and 

223 minimum TCP1 criteria, but also identify compounds that likely exhibit a lag time in drug action 

224 between 6 and 48h. This BRRoK assay format, however, does not provide a reliable assessment of 

225 the extent and timing of this lag time, as would be reported by a recrudescence assay.10 

226 A compound�s immediate cytocidal activity likely results from the nature of the target and 

227 the ease of access to the target. The first aspect considers how quickly a deficit in this target�s 

228 function will lead to cell death � i.e. its MoA. In vitro assays of RoK report that antimalarial drugs 

229 with a similar MoA result in similar RoK.7,10 We have significantly extended this observation here for 

230 the open Source Malaria Box, a critical collection of antimalarial drug discovery compounds. Whilst 
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231 an important caveat is that for most compounds described the target association is tentative, this 

232 library is still the best described and investigated resource in this endevour.21 Nonetheless, here we 

233 were able to consider five MoA groups due to availability of  in vitro PRR data and at least 10 MMV 

234 compounds annotated for each MoA from a range of sources.16,20,21,27,28,35 Specifically; (i) PfATP4 

235 (Figure 1A): 33 compounds are annotated as PfATP4 inhibitors (Figure 1A).20,29 In vitro PRR data are 

236 available for exemplar PfATP4 inhibitors (+)-SJ733,3621 a dihydroisoquinoline with a slow-to-

237 moderate RoK, and KAE609/NITD609,27 a spiroindolone with a moderate to fast RoK. Most potential 

238 Malaria Box PfATP4 inhibitors were reported as having a BRRoK6h between the moderate mefloquine 

239 10 (comparable to the PRR reference pyrimethamine10) and the rapidly-acting dihydroartemisinin. 

240 The fastest-acting PfATP4 inhibitor was the spiroindolone MMV396749, with several studies 

241 reporting a fast to moderate cytocidal activity for PfATP4 inhibitors.7,16,20,21,27,29 The Malaria Box also 

242 contains five structural analogues of the slower acting PfATP4 inhibitor (+)-SJ733; two have PC1s 

243 falling between the fast-acting dihydroartemisinin and chloroquine with the remaining three 

244 between mefloquine and atovaquone, supporting the prediction of a moderate to slow RoK of the 

245 dihydroisoquinolines. (ii) Plasmodium dihydrofolate reductase-thymidylate synthase (DHFR-TS) 

246 (Figure 1B): 14 compounds are annotated as DHFR-TS inhibitors, clustering with known antifolate 

247 antimalarial drugs that target DHFR-TS, P218, pyrimethamine, and WR99210.29,40�42 Pyrimethamine 

248 has a lag phase of 24 h, which is the slowest RoK after ATQ.10 The BRRoK6h confirms slow cytocidal 

249 activity for this cluster, between slow-acting atovaquone and moderate-acting pyronaridine. (iii) 

250 Dihydroorotate dehydrogenase (DHODH) (Figure 1C): 43 compounds are annotated as DHODH 

251 inhibitors, and BRRoK6h show that they share a slow initial cytocidal action. This slow RoK correlates 

252 with the atovaquone-like in vitro PRR data for DSM26535, due to its 24-48h lag phase. One outlier, 

253 MMV666102, falls between pyronaridine and mefloquine showing a slow-to-moderate cytocidal 

254 action. Whilst no additional target information is available, we predict that this compound may have 

255 additional targets. (iv) bc1 complex inhibitors: 18 compounds are annotated as bc1 complex 

256 inhibitors and are slowly cytocidal in the BRRoK6h and are comparable to atovaquone which shares 
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257 the same MoA.10 Comparing BRRoK with the predicted MoA for all four groups indicates that 

258 compounds with a similar MoA have similar RoK. The predicted MoA used here was primarily 

259 obtained through metabolomics16,29,30 and readily highlights the potential for BRRoK to complement 

260 such studies. (v) Parasite hemoglobin catabolism: Allman et al.,29 reports a compound group in the 

261 Malaria Box that perturbs parasite hemoglobin catabolism. Parasite hemoglobin catabolism 

262 compounds formed our second fastest-acting cluster (Figure 1E). However, as expected, the BRRoK6h 

263 data reveals a broad RoK range for these compounds, which agrees with metabolomics data, as 

264 these compounds have a range of predicted targets. For example, chloroquine, known for 

265 accumulation within the digestive vacuole of Plasmodium, clusters with this group, but the resulting 

266 metaprint is divergent, due to the overall lack of significant metabolic changes or dysregulation 

267 induced by chloroquine.29,43 MMV390048, which inhibits the phosphatidylinositol 4-kinase (PI4K), 

268 and AZ412, which inhibits the putative vacuolar ATPase,12,29,44 also clusters with this group. 

269 Interestingly, as expected from compounds with different targets, the BRRoK6h appears to form 

270 subclusters within this group. Upon additional target data availability, we would predict that this 

271 currently broad class of compounds could be further categorised into slow, moderate, and fast-

272 acting groups.

273 A second means to classify compounds for comparison to the BRRoK6hr data is through their 

274 chemical structure (Figure 2). Our analysis suggests that structurally similar compounds exert a 

275 similar RoK. This is not surprising if they share the same target, and our analysis suggests that 

276 medicinal chemistry may not only improve IC50 potency for candidates but may also help improve 

277 RoK within chemical class and a well-defined MoA. For example, all five triazolopyrimidine scaffold 

278 members (Figure 2A) inhibit DHODH and are structural analogs of DSM265, a known slow-acting 

279 compound in clinical trials.35 However, their PC1 varies between 23 and 67, highlighting room to 

280 influence the initial cytocidal action within the limits of this chemical class and the intrinsic limits of 

281 the MoA. A range of slow cytocidal activity is also reported for 8-hydroxyquinolines (PC1 of 8.8-95.4) 

282 (Figure 2B), with one annotated as a DHODH inhibitor. We also report two fast-acting scaffolds: 
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283 diamino-glycerols and 2-(aminomethyl)phenol (Figure 2C-D).  The diamino-glycerol is the fastest 

284 scaffold described here, which agrees with a predicted MoA as four of these nine compounds are 

285 PfATP4 inhibitors.16,20,29 It would be interesting to investigate whether the remaining five compounds 

286 also affect PfATP4. Three of these five compounds are designated as probe-like and were not 

287 characterised in metabolomic studies that focussed on drug-like compounds in the Malaria Box.29 

288 Furthermore, five compounds are structurally related to the amino alcohol-carbazoles, which has 

289 demonstrated long-lasting and fast-acting antimalarial activity in vivo,45 in agreement with BRRoK6h 

290 measurements here. The next most fast-acting compound cluster is the 2-(aminomethyl)phenol 

291 scaffold. Interestingly, BRRoK6h indicated five of 14 compounds in this scaffold are likely inhibitors of 

292 parasite hemoglobin catabolism (PC1 between -79 and -51),29 which is the second fastest-acting 

293 compound cluster according to MoA comparisons and agrees with our chemical clustering analyses. 

294 Eight compounds are probe-like, so metabolomic data are not available, however, Creek et al.43 have 

295 shown an artemisinin-like metabolomic signature for three of these compounds, thus confirming the 

296 relative fast action of this scaffold. These data illustrate how BRRoK data can be effectively 

297 employed alongside other datasets to inform how decisions are made regarding the selection of 

298 targets for further study and/or development.

299 Given the short timeframe of the BRRoK6h, a second attribute that may influence RoK is ease 

300 of target access. Within our in vitro assay, compounds must migrate through up to four membranes 

301 to access a target within an infected erythrocyte and the biophysical parameters of size, 

302 hydrophobicity, hydrogen-bonding capabilities and charge may contribute to how easily access 

303 occurs. Another consideration for compounds with a basic charge at physiological pH, is that of 

304 access/accumulation within the digestive vacuole in the trophozoite, irrespective of the final target 

305 site. Biophysical properties span charge type, lipophilicity, polarity, size, 3D-shape, flexibility and H-

306 bond properties.46 To investigate what influence molecular properties have on BRRoK6h, we 

307 calculated key biophysical properties for Malaria Box compounds (PC1) (Table S8) and compared 

308 compounds with relative RoK faster than DHA and slower than atovaquone to see if extremes of RoK 
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309 are associated with significantly different molecular properties. We expanded analyses to include 

310 compounds reported to have a common, fast MoA (PfATP4), a common, slow MoA (bc1 complex), a 

311 common fast core (2-(Methylamino)-Phenols, 2-MAP), and a common, slow core (2-

312 Phenylbenzimidazoles, 2-Ph-Bz) (Table S8-9). These analyses do not reveal molecular property 

313 differences associated with BRRoK, although an important limitation here are the numbers of 

314 compounds in each group. Finally, we compared individual compounds with the fastest BRRoK6h and 

315 slowest BRRoK6h in the five MoA clusters investigated here and found some small differences (Table 

316 S10). The fastest compound in each MoA often has a lower MW, less rotatable bonds and is more 

317 aromatic in nature compared to the slowest, suggesting that careful biophysical property control 

318 may allow compound design to achieve improvements in RoK within a well-defined MoA/chemical 

319 class.

320 Perhaps the key benefit of RoK analysis considering both the MoA and chemical substructure 

321 is that outliers emerge that would appear to warrant additional validation or follow up. An example 

322 from this study are the three 1,2-diaza-9-fluorenones (MMV666021, MMV6666026 and 

323 MMV665934) for which the proposed MoA is the bc1 complex, which would imply a very slow RoK. 

324 However, we instead found that two of these have very fast BRRoK. Also, of interest is the structural 

325 singleton MMV142383, which has the fastest RoK (PC1= -131.5) and is categorised as acting by 

326 hemoglobin catabolism. Exceptions found using sub-structure analysis may have either 

327 miscategorized MoA or alternatively, they may have more than one MoA. The latter would be of 

328 particular interest as would theoretically lead to less resistance if more than one target is involved. 

329 In summary, we provide a demonstration that for leading antimalarial drug discovery 

330 compounds that their RoK are related to their MoA, and that a compound�s RoK is also likely 

331 modified by factors that affect target access. Thus, as we use medicinal chemistry to improve 

332 compound potency, we could also influence the RoK for some scaffolds. Our modified BRRoK assay 

333 provides the necessary throughput for drug discovery and a critical decision-making tool to support 

334 development campaigns. Although our study was performed on a small pool of compounds, the 
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335 scaffolds we identified provide a strong basis for discovery antimalarial prioritization. Our core 

336 analysis approach has identified two scaffolds, diamino-glycerols, and 2-(aminomethyl) phenol, that 

337 exhibit fast cytocidal action, inviting medicinal chemistry improvements towards possible TCP1 

338 candidates. Some less-represented scaffolds have also been identified with fast cytocidal action, and 

339 medicinal chemistry may allow discovery of compounds that meet the TCP1 profile. Further insights 

340 might be gained from our data, as targets are defined for additional MMV compounds.

341
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479

480 Figure 1.  Correlating mode of drug action with the BRRoK6h in the MMV Malaria Box compounds. 

481 Zero-meaned PC1 data for known antimalarial drugs (open squares), all Malaria Box compounds 

482 (grey filled squares) and Malaria Box compounds predicted to use the indicated MoA (black filled 

483 circles) for (A) PfATP4, (B) parasite hemoglobin catabolism, (C) dihydrofolate reductase-thymidylate 

484 synthase (DHFR-TS), (D), dihydroorotate dehydrogenase (DHODH) and (E) mitochrondrial bc1 

485 complex are plotted against their IC50. Faster initial rates of cytocidal activity are represented with 
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486 lower PC1 values. See Table S2 for PC1, IC50 and predicted MoA data for individual compounds.  (F) 

487 One-way ANOVA with post-hoc Tukey test comparing the BRRoK6h data7 for each MoA group 

488 (whisker plots represent the mean and SD)16,20,29,30. � = PfATP4 cluster, significantly different from all 

489 clusters (p < 0.01). ¥ = parasite hemoglobin catabolism (H catabolism), significantly different than 

490 DHODH and bc1 complex (p < 0.01). $ = DHFR-TS, significantly different than the bc1 complex (p < 

491 0.01). ATQ, atovaquone; CQ, chloroquine; DHA, dihydroartemisinin; MQ, mefloquine; PPQ, 

492 piperaquine; PYN, pyronaridine; QN, quinine. 
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494

495

496 Figure 2. BRRoK6h data illustrates related compounds in the MMV Malaria Box that share a similar 

497 relative RoK. Zero-meaned PC1 data for known antimalarial drugs (open squares), all Malaria Box 

498 compounds (grey filled squares) and Malaria Box compounds sharing the indicated related core 

499 scaffolds (black filled circles) of (A) diamino-glycerols, (B) 2-(aminomethyl)phenol, (C) 2-

500 phenylbenzimidazole, (D) 8-hydroxyquinolines, and (E) triazolopyrimidine are plotted against their 
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501 IC50. Faster initial rates of cytocidal activity are represented with lower PC1 values. See Table S3 for 

502 PC1, IC50 and structures for individual compounds. (F) One-way ANOVA with post-hoc Tukey test 

503 comparing the BRRoK6h data7 for each group (whisker plots represent the mean and SD) based on 

504 the indicted related core scaffold. � = Diamino-glycerols, significantly different than 2-

505 phenylbenzimidazole, 8-hydroxyquinolines, and triazolopyrimidine scaffolds (p < 0.01). $ = 2-

506 (aminomethyl)phenol, significantly different than 2-phenylbenzimidazole, 8-hydroxyquinolines, and 

507 triazolopyrimidine scaffolds (p < 0.01). ATQ, atovaquone; CQ, chloroquine; DHA, dihydroartemisinin; 

508 MQ, mefloquine; PPQ, piperaquine; PYN, pyronaridine; QN, quinine. 
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510

511

512 Figure 3. Distribution of BRRoK (PC1) against IC50 for the MMV Malaria Box compounds.

513 Zero-meaned PC1 data for 178 compounds in the MMV Malaria Box (grey filled squares) and 7 

514 benchmark antimalarial drugs (open squares) are plotted against their IC50 for (A) 6hr and (B) 48h. 

515 See Table S2 for PC1 and IC50 data for individual compounds. ATQ, atovaquone; CQ, chloroquine; 

516 DHA, dihydroartemisinin; MQ, mefloquine; PPQ, piperaquine; PYN, pyronaridine; QN, quinine.
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518

519

520 Figure 4. Correlating mode of drug action with the BRRoK48h in the MMV Malaria Box compounds. 

521 Zero-meaned PC1 data for known antimalarial drugs (open squares), all Malaria Box compounds 

522 (grey filled squares) and Malaria Box compounds with a predicted MoA (black filled circles) that 

523 targets, (A) DHODH or (B) the bc1 complex are plotted against their IC50. See Table S2 for PC1, 

524 IC50 and predicted MoA data for individual compounds.  (C) One-way ANOVA with post-hoc Tukey 

525 test comparing the BRRoK48h data (whisker plots represent the mean and SD) for both groups 

526 clustered based on the indicted predicted MoA data16,20,29,30. No significant difference was found (p = 

527 0.6).  ATQ, atovaquone; CQ, chloroquine; DHA, dihydroartemisinin; MQ, mefloquine; PPQ, 

528 piperaquine; PYN, pyronaridine; QN, quinine.

529
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Table S1: The antimalarial drugs were sourced from Sigma�Aldrich and prepared as shown below and were stored 

at ?!9@A#4 The Malaria Box was provided by MMV (www.mmv.org) and was provided as 20CD% solutions of 10CmM 

concentration in DMSO and stored at ?!9@A#4 

Drug/compound Stock Concentration Solvent

Atovaquone (AQ) 10mM DMSO

Artemether 50mM Ethanol

Chloroquine 100mM Deionized water

Dihydroartemisinin 50CmM Methanol

Mefloquine 50CmM DMSO

Piperaquine 100mM Ethanol

Pyronaridine 100mM Deionized water

Quinine 50mM Ethanol

Malaria Box compounds 10mM DMSO

Page 30 of 60

Journal of Antimicrobial Chemotherapy: under review

Journal of Antimicrobial Chemotherapy



Confidential: for peer review only

Figure S1: Equipotent IC50 concentration-dependent loss of bioluminescence for standard antimalarial drugs. The 

mean (error bars represent ±SD from three biological replicates) bioluminescence signal, normalized against an 

untreated control, remaining after a 6 (closed circles) or 48Ch (open squares) exposure to the indicated fold-IC50 

concentration of drug. A serial 3-fold dilution from H@I@�#50 to 94**@I@�#50 is reported. See Figure S1 and S2 for 178 

compounds of the MMV Malaria Box compounds. 
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Table S4 is to be used in conjunction with panels (drug-like) D1 to D11 and (probe-like) P1 to P10 in Figures S2 and 

S3, respectively. Listed below are the Compound ID for the MMV Malaria Box compounds tested in this study. The 

panel on which the dose-response curve for that compound is shown in these supplementary materials is indicated 

below.

COMPOUND_ID Drug-Like Position COMPOUND_ID Probe-Like Position 

MMV019066 D1 MMV396680 P1

MMV011259 D1 MMV666601 P1

MMV006278 D1 MMV008294 P1

MMV006427 D1 MMV666688 P1

MMV020439 D1 MMV666062 P1

MMV396672 D1 MMV020885 P1

MMV019871 D1 MMV008416 P1

MMV665874 D1 MMV665977 P1

MMV001246 D1 MMV666607 P1

MMV665916 D2 MMV007695 P2

MMV011099 D2 MMV666101 P2

MMV020492 D2 MMV666596 P2

MMV665782 D2 MMV396679 P2

MMV665876 D2 MMV666691 P2

MMV396703 D2 MMV000642 P2

MMV006937 D2 MMV666600 P2

MMV665820 D2 MMV006309 P2

MMV007116 D2 MMV666023 P2

MMV020548 D3 MMV007160 P3

MMV019258 D3 MMV085203 P3

MMV011256 D3 MMV007384 P3

MMV666693 D3 MMV665827 P3

MMV008956 D3 MMV396678 P3

MMV007839 D3 MMV006861 P3

MMV000662 D3 MMV006457 P3

MMV666103 D3 MMV396693 P3

MMV666057 D3 MMV665908 P3

MMV007564 D4 MMV666054 P4

MMV000563 D4 MMV007127 P4

MMV665850 D4 MMV006389 P4

MMV666105 D4 MMV665934 P4

MMV666072 D4 MMV665994 P4

MMV665909 D4 MMV665980 P4

MMV665940 D4 MMV007577 P4

MMV665899 D4 MMV000720 P4

MMV665961 D4 MMV006753 P4
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MMV666108 D5 MMV666125 P5

MMV006188 D5 MMV007574 P5

MMV665799 D5 MMV007557 P5

MMV008149 D5 MMV000699 P5

MMV019074 D5 MMV009127 P5

MMV665798 D5 MMV006250 P5

MMV666067 D5 MMV007199 P5

MMV665939 D5 MMV085471 P5

MMV009060 D5 MMV665797 P5

MMV019758 D6 MMV666095 P6

MMV665901 D6 MMV019690 P6

MMV666081 D6 MMV019241 P6

MMV666009 D6 MMV665783 P6

MMV019746 D6 MMV000787 P6

MMV666093 D6 MMV666106 P6

MMV007571 D6 MMV666022 P6

MMV665954 D6 MMV498479 P6

MMV666075 D6 MMV007396 P6

MMV666070 D7 MMV665923 P7

MMV000788 D7 MMV007228 P7

MMV665879 D7 MMV073843 P7

MMV006913 D7 MMV667492 P7

MMV008127 D7 MMV007764 P7

MMV403679 D7 MMV665886 P7

MMV019700 D7 MMV396664 P7

MMV019670 D7 MMV086103 P7

MMV001344 D7 MMV084434 P7

MMV019124 D8 MMV666692 P8

MMV006767 D8 MMV665836 P8

MMV007808 D8 MMV665875 P8

MMV396681 D8 MMV396726 P8

MMV019202 D8 MMV006962 P8

MMV075490 D8 MMV396652 P8

MMV007374 D8 MMV008160 P8

MMV020700 D8 MMV665810 P8

MMV007906 D8 MMV665927 P8

MMV000911 D9 MMV009085 P10

MMV007430 D9 MMV638723 P10

MMV007977 D9 MMV396594 P10

MMV665883 D9 MMV396665 P10

MMV084940 D9 MMV396723 P10

MMV000963 D9 MMV011832 P10

MMV006319 D9 MMV665898 P10

MMV000972 D9 MMV665814 P10

MMV665904 D9 MMV007041 P10
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MMV006820 D10 MMV645672 P11

MMV011576 D10 MMV011438 P11

MMV020651 D10 MMV665840 P11

MMV396705 D10 MMV667489 P11

MMV007881 D10 MMV396770 P11

MMV008212 D10

MMV007791 D10

MMV665843 D10

MMV396595 D10

MMV019762 D11

MMV020942 D11
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Figure S2. Equipotent-IC50 concentration-dependent loss of bioluminescence plots for drug-like compounds 

screened from the MMV Malaria Box. The data for these drug-like compounds are shown on seven panels (D1-11). 

The mean (error bars represent SD from three biological replicates) bioluminescence signal, normalised against an 

untreated control, remaining after a 6 h (closed circles) or 48 h (open squares) exposure to the indicated fold-IC50 

concentration of drug.
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Figure S3. Equipotent-IC50 concentration-dependent loss of bioluminescence plots for probe-like compounds 

screened from the MMV Malaria Box. The data for these probe-like compounds are shown on 10 panels (P1-10). 

The mean (error bars represent SD from three biological replicates) bioluminescence signal, normalised against an 

untreated control, remaining after a 6 h (closed circles) or 48 h (open squares) exposure to the indicated fold-IC50 

concentration of drug.
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Details of Principle Components Analysis of 9xIC50 to 0.33xIC50 endpoints for 178 Malaria Box compounds

Principle components analysis was performed on the 0.3x, 1x, 3x and 9x endpoints for BRRoK assessed at the 48 h 

timepoint using the KNIME analytics platform (https://www.knime.org/) to reduce the dimensionality of these 

data set, allowing the concentration-rate relationship to be captured in one parameter. This analysis reports that 

two principle components (PC1 and PC2) explain 92% of the variance in the parameters, with the first principle 

component explaining 78% of the total variance in the four original variables. A zero-meaned PC1 value was used 

to represent the BRRoK48hr parameter.

Table S5. Eigenvalues and breakdown of % variance and cumulative variance explained by each principle 

component. 

Eigenvalue % Variance explained Cumulative variance explained

PC 1 1820.361 78 78

PC 2 319.7312 14 92

PC 3 130.3651 6 97

PC 4 68.0949 3 100

Table S6. Eigenvectors for each principle component showing the contribution (non-zero-meaned) that each 48 h 

BRRoK readout at different equipotent concentrations makes to the principle components.

BRRok Readout PC1 PC2 PC3 PC4

9xIC50 0.27 0.64 0.66 0.29

3xIC50 -0.50 -0.50 0.45 0.55

1xIC50 -0.51 0.09 0.44 -0.73

0.33xIC50 -0.65 0.57 -0.42 0.27
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Table S9. The range of all the biophysical properties seen in each set are summarized. Also, see table S7 for 

individual compounds data. 

MW, molecular weight; LogP, log distribution coefficient; PSA, polar surface area (Å2); RB, rotatable bonds; HBD/HBA, hydrogen bond 

donor/acceptor; Fsp3; fraction of sp3 carbons; 2-MAP, 2-(Methylamino)-Phenols;  2-Ph-Bz, 2-PhenylBenzimidazoles

All compounds tested in 

MMV-Box (370)

Fast

MoA

Slow

MoA

Fast

Core

Slow

Core

Property PC1 <DHA PC1>ATQ PfATP4 bc1 2-MAP 2-Ph-Bz

LogD 1 to 5.5 2 to 6.5 1 to 5 1-8 2-4 3-7
MW 250-400 250-500 300-450 200-600 250-400 350-500
PSA <80 <90 =<90 =<80 =<60 =<90
RB =<9 =<9 =<8 =<7 =<7 =<6

HBD =<2 =<2 =<2 =<1 =<2 >=2
HBA =<6 =<6 =<5 =<5 =<4 =<4
Fsp3 0.0 � 0.6 0.0 - 0.5 <0.45 <0.4 <0.65 <0.2

No. Rings =<6 =<6 =<5 <5 <4 >=4
Basic pKa <10 <10 <10 <5 <11 <7
Acidic pKa >8 >6 >9 >9 >8 >10
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Table S10: Biophysical properties for compounds in the indicated modes of action. Also, see table S7 for individual 

compound data. 

MW, molecular weight; LogP, log partition coefficient; PSA, polar surface area (Å2); RB, rotatable bonds; HBD/HBA, hydrogen bond 

donor/acceptor; Fsp3; fraction of sp3 carbons

PfATP4 Hgb catabolism DHFR-TS DHODH bc1

Fastest 
RoK

Slowest 
RoK

Faste
st 

RoK

Slowest 
RoK

Fastest 
RoK

Slowest 
RoK

Fastest 
RoK

Slowest 
RoK

Fastest 
RoK

Slowest 
RoK

MMV 
396749

MMV 
000642

MMV 
1423

83

MMV 
011576

MMV 
006706

MMV 
667486

MMV 
666102

MMV 
006937

MMV 
665940

MMV 
084434

MW 368.4 469 310.4 445 359.5 261 252.3 279.3 293.3 358.4
LogP 4.18 5.51 5.43 2.6 3.93 1.3 2.56 4.31 3.4 3.5
PSA 68 59 42 83 48 89 58 50 48 60
RB 1 6 3 6 2 3 2 1 4 4
HBD 2 1 1 6 0 2 2 1 0 1
HBA 4 3 2 1 4 3 3 3 3 5
Fsp31 0.1 0.28 0.22 0.35 0.45 0.38 0.13 0.29 0.1 0.1
No. Rings 6 4 3 5 5 2 3 4 3 3
Basic pKa <5 - - - 8.8 8.4 6.8 <5 - -
Acidic pKa - - - - - - - - - -
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Additional Supplementary data

These Supplementary data files do not form part of the PDF but are available from the JAC 

Editorial Office (jac@bsac.org.uk) on request:

1. Table S2.xlsx

2. Table S3.xlsx

3. Table S7.xlsx

4. Table S8.xlsx
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