
Spatial Reasoning about Motorway Traffic
Safety with Isabelle/HOL?

Sven Linker

Department of Computer Science, University of Liverpool, UK
s.linker@liverpool.ac.uk

Abstract. Formal verification of autonomous vehicles on motorways is a
challenging problem, due to the complex interactions between dynamical
behaviours and controller choices of the vehicles. In previous work, we
showed how an abstraction of motorway traffic, with an emphasis on
spatial properties, can be beneficial. In this paper, we present a semantic
embedding of a spatio-temporal multi-modal logic, specifically defined to
reason about motorway traffic, into Isabelle/HOL. The semantic model
is an abstraction of a motorway, emphasising local spatial properties, and
parameterised by the types of sensors deployed in the vehicles. We use
the logic to define controller constraints to ensure safety, i.e., the absence
of collisions on the motorway. After proving safety with a restrictive
definition of sensors, we relax these assumptions and show how to amend
the controller constraints to still guarantee safety.
Keywords. Spatial logic, Isabelle, interactive theorem proving, motor-
way traffic, verification, safety.

1 Introduction

Due to the current and ongoing interest in autonomous vehicles, proving that
such vehicles will behave correctly is of growing importance. Since vehicles are
complex, dynamical systems, proving properties about them often involves solv-
ing differential equations, where spatial elements, e.g., position and braking dis-
tance, are functions of time. However, safety is fundamentally a spatial property:
the absence of collisions, i.e., no two vehicles occupy the same space.

To overcome the complexities of proving safety properties, we proposed to
separate the dynamical behaviour from the concrete changes in space [1]. To
that end, we defined Multi-Lane Spatial Logic (MLSL), which was used to ex-
press guards and invariants of controller automata defining a protocol for safe
lane-change manoeuvres. Under the assumption that all vehicles adhere to this
protocol, we proved that collisions were avoided. Subsequently, we presented an
extension of MLSL to reason about changes in space over time, a system of natu-
ral deduction, and formally proved a safety theorem [2,3]. This proof was carried
out manually and dependent on strong assumptions about the vehicles’ sensors.

? This work was supported by the EPSRC Research Programme EP/N007565/1 Sci-
ence of Sensor System Software (S4).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/237018863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Sven Linker

In this paper, we define a semantic embedding of a further extension of
MLSL into the theorem prover Isabelle/HOL [4]. That is, we present the first
tool to mechanically assist reasoning with MLSL. Subsequently, we show how
the safety theorem can be proved within this embedding. Finally, we alter this
formal embedding by relaxing the assumptions on the sensors. We show that the
previously proven safety theorem does not ensure safety in this case, and how
the controller constraints can be strengthened to guarantee safety.1

Recently, many approaches to verify traffic safety have been published. A
main distinction between them is the way they abstract properties of traffic.
Loos et al. used the theorem prover KeYmaera [5] to verify safety of motorway
scenarios [6]. The underlying logic of KeYmaera is Differential Dynamic Logic
[7], where the dynamical behaviour of systems is explicitly encoded within hybrid
programs. This contrasts with our approach, where the main focus is on spatial
aspects of traffic. However, they abstract away from the way real vehicles change
lanes, i.e., vehicles may change to any lane, not only adjacent ones, in one step.
We restrict the possibilities of lane changes to exactly the adjacent lanes.

Rizaldi and Althoff presented a formal implementation of traffic rules [8].
Similar to our work, they choose Isabelle/HOL to analyse several laws from
the Vienna Convention on Road Traffic. However, they focus on whether the
behaviour of vehicles is compliant with these laws. Our formalisation does not
take legal issues into account, and concentrates only on the absence of collisions.

The distinction between dynamical behaviour and a higher-level is not unique
to our work. Kamali et al. [9] used a combination of the Belief-Desire-Intention
approach to model agents, and Timed Automata [10]. They distinguish between
the planning component of a vehicle and its underlying dynamics. The plan-
ning component creates the new intentions of a vehicle according to its current
belief about the situation on the road, and its general desires. The underly-
ing dynamics then implement the plan constructed by the planning component.
Both components can be verified on their own, the planning component with the
model checker AJPF [11], and the dynamics with Uppaal [12]. Our spatial ab-
straction could serve as a middle tier between their planning component and the
dynamics, by abstracting concrete values (e.g., distances) to spatial properties.

In a similar fashion, Campbell et al. used π-calculus processes to define and
reason about the communication structure of vehicle networks [13]. The lower
level dynamics are implemented as Hybrid Automata [14], and the connection
between both levels is given by connecting the messages in the higher level with
input and output messages of the automata. Our results imply that the amount
of necessary communication between vehicles depends on sensor capabilities of
each vehicle. Hence our results could inform the instantiations of their models.

The structure of our paper is as follows. Section 2 presents the semantic
embedding of MLSL into Isabelle/HOL. In Sect. 3 and Sect. 4 we discuss the
proofs for safety with different sensor capabilities. Section 5 concludes the paper.

1 The code of the formalisation can be found at www.github.com/svenlinker/HMLSL.
It is compatible with Isabelle2016-1.

www.github.com/svenlinker/HMLSL

Spatial Reasoning about Motorway Traffic Safety with Isabelle/HOL 3

2 Embedding MLSL into Isabelle/HOL

In this section, we present our abstraction of motorway traffic, as well as Hybrid
Multi-Lane Spatial Logic (HMLSL), an extension of Multi-Lane Spatial Logic
(MLSL), by introducing concepts from Hybrid Logic [15] and universal modali-
ties. In the majority of the paper, we will only present the formalisation within
Isabelle, but explain the relation to previous work [1,2,3].

Notations. Isabelle/HOL is based on type theory, hence every term t has a
specific type τ , denoted by t :: τ . The type of a function from τ to τ ′ is written
as τ ⇒ τ ′. Within Isabelle, we have to distinguish between the meta-logic and the
object logic. In the case of Isabelle/HOL, both are instantiations of Higher-Order
logic. Implication and equivalence of the meta-logic is denoted by =⇒ and ≡,
respectively. They are generally used to define terms. The object level implication
is −→, which is used within lemmas and theorems. In this paper, conjunction,
disjunction and existential quantification will generally be used within the object
logic, denoted by the operators ∧, ∨, and ∃. Finally, function application will
typically be denoted without parentheses, i.e., instead of f(t), we will write f t.

2.1 Semantic Model

The semantics of HMLSL reflects situations as depicted in Fig. 1. That is, we
consider vehicles driving on a motorway with possibly several lanes. All vehicles
are assumed to drive in one direction (to the right in the figure). The safety
envelope comprises the physical size of c as well as the distance needed for
an emergency braking. Within the model, we distinguish between two spatial
properties of vehicles. The reservation of a vehicle c is the part of the motorway
that c currently drives on, defined by the lanes c uses and its safety envelope.
Reservations may occupy space on up to two adjacent lanes, which indicates that
the vehicle is currently performing a lane-change manoeuvre, see, e.g., vehicle a
in Fig. 1. A claim, depicted by the dotted lines in the figure, is a formalisation
of setting the turn signal, i.e., it is an indicator that c wants to change its lane.
Vehicles may only hold claims while not engaged in a lane change, i.e., as long
as the reservation only contains space on a single lane. A claim of a vehicle is
always adjacent to its reservation and of the same length.

The semantic model we use is twofold. We use traffic snapshots to formalise
the current situation on the whole motorway. The motorway is of infinite length,
modelled by the real numbers, and consists of an arbitrary, but fixed number
of discrete lanes. Furthermore, we assume an infinite number of vehicles, each
of which has a position and dynamic behaviour, e.g., its velocity and current
acceleration. On top of the snapshots, views denote a finite part of the motorway
perceived by a vehicle. To that end, they consist of a closed real-valued interval,
and a finite discrete interval of lanes. Each view is associated with a distinct
vehicle, its owner. In Fig. 1, the traffic snapshot contains three lanes. A possible
view v of the vehicle e is depicted as a dashed rectangle, and contains the two
lower lanes. While both vehicle a and e are fully contained in v, only the safety

4 Sven Linker

e

c

a

b

physical size

braking distance safety envelope

0

1

2

5 25

Fig. 1. Situation on a Motorway at a Single Point in Time

envelope of vehicle b is within this view. If we assume an idealised world, where
each vehicle can perceive the full safety envelope of other vehicles, i.e., both their
physical size and braking distance, then e can sense the presence of b. We call
this type of information perfect. Of course, this assumption is rather strong. If
we assume that vehicles know about their own safety envelope, but only about
the physical size and position of other vehicles, e cannot perceive b. We will refer
to this situation as regular information [1].

2.2 Preliminary Definitions

Formally, we introduce two new types, one for real-valued intervals and another
for discrete intervals. For real valued intervals, we use the type real int , which is a
tuple of two real values (x, y), with the condition x ≤ y. The discrete intervals use
a definition within the Main library of Isabelle to define a consecutive sequence
of numbers between m and n. If m > n, this will result in the empty set.

typedef real int = {r :: (real ∗ real).fst r ≤ snd r}
typedef nat int = {i.(∃(m :: nat)n.{m..n} = i)}

For both of these types, we define several auxiliary functions and predicates.
The function right (left) returns the right (left, resp.) end point of a real-valued
interval. We define a partial order on real int to denote subintervals, i.e., r ≤ s
if, and only if, left r ≥ left s and right r ≤ right s. Within Isabelle, we define this
relation and show that real int instantiates the abstract class order, i.e., we show
reflexivity, transitivity and anti-symmetry. For nat int , we prove more structure.
We define the infimum iu j of two intervals i and j by lifting set intersection to
nat int . Similarly, we can lift the subset relation on sets to nat int , to constitute
a partial order v with a least element, the empty set. Since discrete intervals are
not closed under arbitrary unions, we introduce a new predicate consec i j , to
denote that two intervals are non-empty and max(i) + 1 = min(j). We can then
define i t j as the union of i and j. Furthermore, we need measures for both
types of intervals. For discrete intervals, the measure is its cardinality lifted from
sets, while the measure for real valued intervals is the difference between the left
and right end points, i.e., ‖r‖ ≡ right r − left r.

Spatial Reasoning about Motorway Traffic Safety with Isabelle/HOL 5

Furthermore, we introduce the notion of chopping an interval into two sub-
intervals. The predicate R Chop(r, s, t) is similar to the chopping operation of
Interval Temporal Logic [16]. For discrete intervals, we implemented a ternary
predicate N Chop(i, j, k), which was taken from previous work [2,3].

R Chop(r, s, t) ≡ left r = left s ∧ right s = left t ∧ right r = right t

N Chop(i, j, k) ≡ i = j t k ∧ (j = ∅ ∨ k = ∅ ∨ consec j k)

Finally, we get a countably infinite type cars by a bijection on natural numbers.

2.3 Views

Using these definitions, we construct a type view as a record of three elements:
a real-valued interval modelling the extension along the lanes, a discrete interval
denoting the perceived set of lanes, and an identifier for the owner of the view.

record view = ext :: real int lan :: nat int own :: cars

We lift the chopping on intervals to views. For example, horizontal chopping,
i.e., dividing the extension of the view while keeping the set of visible lanes and
the owner, is defined as follows.

v=u‖w ≡ R Chop(ext v, ext u, ext w) ∧ lan v = lan u ∧ lan v = lan w

∧ own v = own u ∧ own v = own w

The functions lan , ext and own are automatically generated by Isabelle, to
refer to the respective parts of the views. The predicate v=u--w denotes vertical
chopping. Furthermore, we introduce a relation v=c>u to change the owner of
the view v to c, while keeping the spatial borders.

(v=c>u) ≡ ext v = ext u ∧ lan v = lan u ∧ own u = c

We can prove several lemmas about views and their relationships. For exam-
ple, if we can chop a view v vertically into u and w and can switch v to a view
v′ with the owner c, we can chop v′ into counterparts to u and w.

lemma v=u--w ∧ v=c>v′ −→ (∃u′ w′.u=c>u′ ∧ w=c>w′ ∧ v′ =u′--w′)

2.4 Traffic Snapshots

The formalisations of the underlying traffic situations, called traffic snapshots,
have to capture the intuitions given in Sect. 2.1, i.e., reservations, claims, posi-
tions, physical sizes, braking distances and the dynamical behaviour of vehicles.
For all of these, we use functions whose domain is the type cars. Since the defini-
tions for traffic snapshots are long, but straightforward, we mostly refrain from
providing the Isabelle code, but describe the formal concepts. Reservations and
claims are given by the functions res, clm : cars ⇒ nat int , positions, physical
sizes and braking distances are given by pos, ps, bd : cars ⇒ real . The dynamic
behaviours over time, i.e., the increases in the cars’ positions, are given by a real-
valued function for each vehicle: dyn : cars ⇒ (real ⇒ real). Traffic snapshots
are tuples ts = (pos, res, clm, dyn, ps, bd), with the following conditions:

6 Sven Linker

1. res c ∩ clm c = ∅,
2. |res c| ≥ 1,
3. |res c| ≤ 2,
4. |clm c| ≤ 1,
5. |res c|+ |clm c| ≤ 2,

6. clm c 6= ∅ −→
∃n : res c ∪ clm c = {n, n+1},

7. ps c > 0,

8. bd c > 0.

Conditions 1-6 are the sanity conditions from previous work [2,3], that vehi-
cles have to respect to be spatially well-defined. For example, we require reser-
vations and claims to be adjacent, that vehicles have at most one claim, and
so forth. Condition 7 denotes that vehicles have to be physically present (even
though they may be arbitrarily small), while 8 ensures that a vehicle needs some
leading safe space. Subsequently, we will refer to the reservation function of a
traffic snapshot ts by res ts, and also respectively notate the other functions.

Example 1. The traffic situation ts in Fig. 1 can be formalised as follows.

pos ts a = 22 pos ts b = 7 pos ts c = 6 pos ts e = 17

res ts a = {0, 1} res ts b = {0} res ts c = {2} res ts e = {1}
clm ts a = ∅ clm ts b = ∅ clm ts c = ∅ clm ts e = {0}

bd ts a = 3 bd ts b = 6 bd ts c = 2 bd ts e = 6

As an example, we further set ps ts d = 1 and dyn ts d x = 1
2 · ad · x

2 for
all vehicles d. That is, we assume that each vehicle has its own acceleration
ad. The view v indicated by the dashed rectangle is given by ext v = (13, 25),
lan v = {0, 1} and own v = e. Observe that the concrete values of the functions
are less important than the relations between them. In particular, we do not
instantiate dyn in any proofs in this paper, and use it as an abstraction of the
cars’ dynamics.

Between two traffic snapshots ts and ts′, different global and local transitions
are possible. The only type of global transition is the passing of time, i.e., ts′ is
the result of purely dynamical behaviour of vehicles, starting at ts. The passing of
x time units is denoted by ts−x→ts′, during which only the vehicles’ position
is updated according to their dynamic behaviour, with the precondition that
dyn ts c y ≥ 0 for all c and 0 ≤ y ≤ x. This ensures that cars only drive forward.
Furthermore, single vehicles can perform local transitions. A vehicle c can

1. create a new claim, residing on a lane adjacent to its current reservation,
which may only consist of a single lane, denoted by ts−c(c, n)→ts′,

2. create a new reservation, i.e., it has to currently possess a claim and mutates
this claim to a reservation, denoted by ts−r(c)→ts′,

3. withdraw its claim, i.e., remove a currently existing claim from the road,
denoted by ts−wdc(c)→ts′,

4. withdraw a reservation, i.e., if its current reservation comprises two lanes, c
shrinks its reservation to a single lane, denoted by ts−wdr(c, n)→ts′, or

5. adjust its dynamics, i.e., change the function responsible for its dynamic
behaviour to a given function f : real → real , denoted by ts−dyn(c, f)→ts′.

Spatial Reasoning about Motorway Traffic Safety with Isabelle/HOL 7

All of these relations can be straightforwardly defined using the notion of
traffic snapshots. For example, we define creation of a claim as follows.2

ts−c(c, n)→ts′ ≡ (pos ts′) = (pos ts) ∧ (res ts′) = (res ts)

∧ (dyn ts′) = (dyn ts) ∧ (ps ts′) = (ps ts) ∧ (bd ts′) = (bd ts)

∧ |clm ts c| = 0 ∧ |res ts c| = 1

∧ ((n+ 1 ∈ res ts c) ∨ (n− 1 ∈ res ts c))
∧ (clm ts′) = (clm ts)(c := Abs nat int{n})

The definition ensures that except for the claim of c, all parts of ts are equal to
their counterparts in ts′. Furthermore, it requires that within ts, the vehicle c
may only possess a single reservation, and no claim at all. The claim on lane n
may only be created, if the reservation consists of a lane adjacent to n. Finally,
the claims in ts′ are the claims in ts, except for the newly created claim of c.

With these relations, we create two additional types of transition. Evolutions
consists of arbitrary sequences of time passing and dynamic adjustments. We
denote the evolution from ts to ts′ by ts ts′. Within Isabelle, we use an in-
ductive definition to enable reasoning about evolutions. An abstract transition is
an arbitrary transition sequence between ts and ts′. We denote such sequences by
ts⇒ ts′. Similarly to evolutions, we can define abstract transitions inductively.

Example 2. Consider again the traffic snapshot ts depicted in Fig. 1. The vehicle
b can create a claim on lane 1, since its reservation contains only the lane 0. That
is, there is a ts′, such that ts−c(b, 1)→ts′. However, there is no possibility for b
to create a claim on lane 2.

Since views are intended to be relative to their owner, we have to consider the
position of a view if the owner moves. Let v be a view with owner e. If time
passes between snapshots ts and ts′, we have to compute the difference between
the position of e in ts and ts′ and add it to the borders of the extension of v.
Within Isabelle, we define a suitable function move ts ts′ v.

2.5 Sensors

The preceding definitions are independent of the types of sensor the vehicles
possess. The sensors, however, define the information each vehicle may use to
decide, whether manoeuvres on the road can be safely performed, e.g., a lane
change manoeuvre. We parameterise our model with a function representing
the distances obtained from the sensors, i.e., a function returning the perceived
length of a vehicle c by a vehicle e at the current traffic snapshot ts.

sensors :: cars ⇒ traffic ⇒ cars ⇒ real

2 The function Abs nat int takes a set of natural numbers as its input, and returns
an element of type nat int . It is automatically created by Isabelle as a result of the
type definition in Sect. 2.2. Subsequently, we will silently omit these functions.

8 Sven Linker

We require sensors to return a non-zero length for each vehicle. That is, for all
vehicles e, c and all traffic snapshots ts, we have sensors e ts c > 0. Using the
sensor definition as a parameter implies that all vehicles use the same definition
of the sensor function. In general, however, this function can be as complicated
as necessary. We then define the space used by a vehicle c as observed by e.

space ts v c ≡ (pos ts c, pos ts c+ sensors (own v) ts c)

2.6 Restriction to Views

Our intention when using views together with traffic snapshots is to limit the
space a vehicle can perceive at any time, since it can only take a limited amount
of information into account. We need to restrict the perceived length of a vehicle
to the view, as well as the lanes used for claims and reservations.

We denote the perceived length of a vehicle c by the owner of a given view v
by len v ts c. Consider Fig. 1, and the indicated view v owned by the vehicle e.
For the vehicles e and a, we intend that space and len coincide on v. However, for
c, we have to ensure that len is empty, since it drives outside of v. The size of len
for b depends on the type of information we assume: with perfect information,
we want that len is not empty and describes the small part of the safety envelope
of b within in v, while with regular information, we intend that len returns an
empty interval. We therefore define the perceived length as follows.

len v ts c ≡ if (left (space ts v c)) > right (ext v))

then (right (ext v), right (ext v))

else if (right (space ts v c) < left (ext v))

then (left (ext v), left (ext v))

else (max (left (ext v)) (left (space ts v c)),

min (right (ext v)) (right (space ts v c)))

The first two cases ensure that vehicles not visible in the view v (either to the
left or to the right) will be represented by an empty interval. The last case is
defined such that len is always a sub-interval of the extension of the view.

We have proved several properties about len needed in the safety proofs. For
example, if the perceived length of a vehicle fills the extension of a given view,
then it does the same for the horizontal sub-views.

lemma len v ts c = ext v ∧ v=u‖w −→ len u ts c = ext u

lemma len v ts c = ext v ∧ v=u‖w −→ len w ts c = ext w

The restriction of the claims and reservations to a view is the intersection
with the lanes visible in the view. Within Isabelle, we use the following definition.

restrict v f c ≡ (f c) u lan v

Spatial Reasoning about Motorway Traffic Safety with Isabelle/HOL 9

To use this function we partially evaluate one of the functions res or clm. For
example, the restriction of reservations contains at most two lanes at any time.

lemma |restrict v (res ts) c| ≤ 2

However, most properties of restrict hold for any possible function from cars to
lanes. E.g., if a view v can be vertically chopped into sub-views u and w, the
restriction of a function f to v is the union of the restriction of f on u and w.

lemma v=u--w −→ restrict v f c = restrict u f c t restrict w f c

2.7 Hybrid Multi-Lane Spatial Logic

The logic HMLSL is a modal extension of first-order logic. In addition to first-
order operators, HMLSL contains two spatial predicates re(c) and cl(c), which
are true, if, and only if, the current view consists of a single lane that is completely
filled with the reservation of the vehicle denoted by c (or its claim, respectively).
To reason about views with more lanes, and different topological relations be-
tween vehicles, we can chop views either horizontally with the binary modality
a , or vertically using `. Intuitively, φaψ splits the extension of a view into two
disjoint sub-views, where φ holds on the left interval and ψ on the right, while
the set of lanes and the owner is kept. For each type of spatial transition ∗(c), we
use a family of modalities �∗(c). I.e., the modalities are parameterised and this
parameter will be evaluated like other variables in the formulas. Furthermore, we
use a single modality to refer to evolutions between snapshots, i.e., the passing
of time and changes in the dynamical behaviour of the vehicles. The universal
modality G is defined with respect to abstract transitions, i.e., it can be used to
define invariance properties. Finally, we employ a modality @c in the fashion of
Hybrid Logic (HL) [15]. In HL, @c is used to switch to the world c, regardless of
the accessibility relation of the logic. Within MLSL, we use @c to exchange the
owner of the current view, which allows to reason about different perspectives
on parts of the motorway. The information we have at our disposal may change
for different perspectives, depending of the type of sensors in the vehicles. For a
given view v, while we evaluate the formula @c ϕ, we switch to a view v′ with
the same extension and lanes as v, but whose owner is c.

Definition 1 (Syntax of HMLSL). The syntax of formulas of the hybrid
multi-lane spatial logic is given as follows, where c, d are variables of type cars:

φ ::= ⊥ | c = d | re(c) | cl(c) | φ1 → φ2 | ∀c • φ1 | φ1aφ2 | φ1 ` φ2 |Mφ

where M ∈ {�r(c),�c(c),�wd c(c),�wd r(c),�τ,G ,@c}, and c, d are variables.

To define HMLSL within Isabelle, we follow an approach of Benzmüller and
Paulson to embed quantified multi-modal logics into HOL [17]. Essentially, we
encode formulas as functions from the set of worlds to truth values. Since our se-
mantic model consists of both views and traffic snapshots, we define the formulas

10 Sven Linker

of HMLSL to be functions taking both of these entities as parameters, i.e., we
translate them directly into HOL. This allows for a natural definition and nota-
tion of the operators, while still enabling us to use the automatic proof methods
of Isabelle. For brevity, we define a type synonym σ = traffic ⇒ view ⇒ bool.

Most operators combine several terms of type σ, and return a new term of
type σ. For example, negation is of type σ ⇒ σ. Conjunction and the chopping
modalities have the type σ ⇒ σ ⇒ σ, since they are just binary connectives.
The box modalities, however, also take a vehicle as a parameter, i.e., their type
is cars ⇒ σ ⇒ σ. Due to space limitations, we only provide some examples.

¬ϕ ≡ λ ts v.¬ϕ(ts)(v)

ϕ aaa ψ ≡ λ ts v.∃u w.(v=u‖w) ∧ ϕ(ts)(u) ∧ ψ(ts)(w)

���c(c) ϕ ≡ λ ts v.∀ts′ n.(ts−c(c, n)→ts′) −→ ϕ(ts′)(v)

Gϕ ≡ λ ts v.∀ts′.(ts⇒ ts′) −→ ϕ(ts′)(move ts ts′ v)

@c ϕ ≡ λ ts v.∀u.(v=c>u) −→ ϕ(ts)(u)

To avoid confusion with the object logic of Isabelle/HOL, we use bold symbols
for the operators of HMLSL. While the Boolean operators are just translations to
operators of HOL, the operators specific to HMLSL refer to the elements of the
models given in the previous section. E.g., the semantics of the chop modalities
refer to the chopping operations of Sect. 2.3. The behavioural modalities use
the transition relations of Sect. 2.4, e.g., the modality G is defined with respect
to all abstract transitions leaving the current traffic snapshot. The semantics of
atomic formulas refers to the measures of intervals and restrictions to views.

re(c) ≡ λ ts v. len v ts c = ext v ∧ restrict v (res ts) c = lan v

∧ ‖ext v‖ > 0 ∧ |lan v| = 1

These abbreviations correspond directly to the original definitions of MLSL [1,2].
Furthermore, we can define the somewhere modality as an abbreviation.

〈ϕ〉 ≡ > aaa (> `̀̀ ϕ `̀̀ >) aaa >

Finally, we also introduce notions for validity and satisfaction, which allow us to
state lemmas comfortably, but can also be used within proofs of these lemmas.

|= ϕ ≡ ∀ts.∀v.ϕ(ts)(v) ts, v |= ϕ ≡ ϕ(ts)(v)

We prove several lemmas to show that the definitions work as intended.
For example, somewhere distributes over disjunction, which can be proven by a
single application of the blast proof method. Furthermore for each vehicle, there
can be at most two reservations visible anywhere on the motorway. Finally, we
show how the transitions to create reservations are connected to the claims and
reservations on the road. The proof of these lemmas need manual intervention,
but mainly to guide the automatic methods.

lemma |= 〈ϕ∨ ψ〉 ↔ 〈ϕ〉 ∨ 〈ψ〉
lemma |= ¬〈re(c)〉 `̀̀ 〈re(c)〉 `̀̀ 〈re(c)〉
lemma reservation : |= (���r(c) re(c))↔ (re(c)∨ cl(c))

Spatial Reasoning about Motorway Traffic Safety with Isabelle/HOL 11

3 Safety with Perfect Information

In this section, we instantiate the sensor function of the semantic model such
that each vehicle possesses ideal and unrestricted sensors and can thus obtain
perfect information of the space visible in its view. Formally, the sensor function
consists of the sum of the physical size of a vehicle and its safety distance.

sensors e ts c ≡ ps ts c+ bd ts c

Observe that the sensors do not distinguish between the owner of the view and
any other vehicle. That is, they always return the full safety envelope of a vehicle.

Safety in our model is modelled by the absence of overlapping reservations.
That is, our safety predicate can be defined as follows.

safe e ≡ ∀c.¬(c = e)→¬〈re(c)∧ re(e)〉‘

To restrict the allowed behaviour of vehicles on the road, we require them to
adhere to certain protocol specifications. Vehicles have to respect reservations as
long as they only drive on the road without changing lanes, i.e., during evolutions.
This is ensured by the distance controller DC .

DC ≡ G (∀c d.¬(c = d)→¬〈re(c)∧ re(d)〉 → ���τ ¬〈re(c)∧ re(d)〉)

Intuitively, DC ensures that two different vehicles c and d, whose reservations
do not overlap initially, will keep their distances so that no overlap occurs, as
long as only time passes and dynamics are adjusted.

The only transition after which new reservations appear on the road is the
creation of reservations. Observe that a unsafe situation can only occur, if there
was already a claim overlapping with a reservation before the transition hap-
pened. Hence we have to forbid the creation of reservations in this case. To that
end, we define the potential collision check.

pcc c d ≡ ¬(c = d)∧ 〈cl(d)∧ (re(c)∨ cl(c))〉

Finally, the lane change controller restricts the vehicles such that if a vehicle
holding a claim created a reservation, while a potential collision exists, we would
get a contradiction. Hence, such a transition cannot occur.

LC ≡ G (∀d.(∃c.pcc c d)→ ���r(d) ⊥)

Observe that this formula is slightly more restrictive than necessary. The po-
tential collision check is already satisfied, if two claims overlap, which does not
immediately lead to overlapping reservations, if only one of the vehicles changes
the claim to a reservation. That is, in a model with interleaving semantics, as we
defined in Sect. 2.4, we could reduce this check to only be satisfied, if the claim
overlaps with a reservation. However, the given formula even ensures safety, if
we allowed for synchronous creation of reservations [18].

Our safety theorem is as follows. If the initial situation is safe, and all vehicles
adhere to DC and LC, safety is an invariant along all possible transitions.

theorem safety : |= (∀e.safe e)∧DC ∧ LC → G (∀e.safe e)

12 Sven Linker

Proof. We only present a proof sketch, since the proof itself consists of roughly
200 lines of Isar proof script. We fix an arbitrary traffic snapshot ts and view v,
and proceed by induction on transition sequences ts⇒ ts′. The base case follows
by the assumption ∀e.safe e. The induction step consists of a case distinction
for the different transition types, where we assume that ts⇒ ts′ holds for some
ts′ and ts′, v |= ∀e.safe e. In all cases, we prove the theorem by contradiction.

For evolutions, fix a ts′′ with ts′ ts′′ and ts′′,move ts ts′′ v |= ¬∀e.safe e.
That is, there are c and e, such that ts′′,move ts′ ts′′ v |= 〈re(c)∧re(e)〉. By the
induction hypothesis and DC , we get ts′,move ts ts′ v |= ���τ ¬〈re(c)∧ re(e)〉,
and thus ts′′,move ts ts′′ v |= ¬〈re(c)∧ re(e)〉. This yields the contradiction.

For creations of reservations, fix d and ts′′, such that both ts−r(d)→ts′′

and ts′′,move ts ts′′ v |= ¬∀e.safe e. That is, there are c and e, such that
ts′′,move ts ts′′ v |= 〈re(c) ∧ re(e)〉. Subsequently, we have to distinguish the
cases whether d = c or d = e, or neither. In the latter case, we have that
the overlap exists on ts′ as well and get a contradiction. The other two cases
are similar, and we only discuss the case d = e. In this case, we get that on
ts′, a claim or a reservation of e was overlapping with the reservation of c, i.e.,
ts′,move ts ts′ v |= (〈re(c)∧re(e)〉∨〈re(c)∧cl(e)〉). The first case contradicts the
induction hypothesis. The latter case implies ts′,move ts ts′ v |= 〈re(c)∧(re(e)∨
cl(e))〉 This is exactly the potential collision check pcc e c. With LC , we get the
contradiction. The other cases are all proved in similar ways, by concluding that
the overlap existed on ts′, contradicting the induction hypothesis. ut

The safety theorem states that our controllers ensure safety, from the perspective
of a single vehicle, since we never employ the hybrid modality @c . However,
with our assumption of perfect knowledge, we can prove the following theorem,
which shows that switching to a different owner does not impact safety.

lemma |= (∀e.safe e)→ @c (∀e.safe e)

Hence, no vehicle perceives a collision, which implies that safety is an invariant
along all transitions for all vehicles.

4 Safety with Regular Information

In this section, we discuss how the proof given previously is affected, if we assume
regular sensors. That is, while a vehicle can compute its own braking distance, it
is not able to refer to the braking distance of other vehicles. However, we assume
that the sensors can identify the physical size of other vehicles.

sensors e ts c ≡ if (e = c) then ps ts c+ bd ts c else ps ts c

Hence, each vehicle e has complete information about its own safety envelope
(the sum of its physical size and braking distance), but does not know anything
about the braking distance of other vehicles. Note that the sensor function is
a global parameter of HMLSL, i.e., all vehicles use the same function. With
this sensor definition, we can still proceed to prove the safety theorem given in

Spatial Reasoning about Motorway Traffic Safety with Isabelle/HOL 13

Sect. 3. However, since we neither refer to views with different owners in the
safety property, nor in the theorem itself, we cannot prove the invariance of
safety if we switch owners. Instead, we can prove the following lemma.

lemma ∃ts v. ts, v |= ∀e.safe e∧ (∃c.@c ¬(∀e.safe e))

The proof consists of a straightforward, but tedious, construction of a suited
traffic snapshot ts and view v. The essential parts of ts and v are shown in
Fig. 2. Vehicle e is currently engaged in a lane change, while the vehicle c drives
behind e on one lane. The view v indicated by the dashed rectangle is owned by
e, hence e can only perceive the physical size of c, and not its full safety envelope,
denoted by the dashed lines in front of c. For e, the situation seems perfectly
safe, since the part of c visible to e is disjoint from e’s reservation. In particular,
we get ts, v |= ∀e.safe e. However, if we switch the view to be owned by c, we
get overlapping reservations, i.e., we also have ts, v |= ∃c.@c ¬(∀e.safe e).

e

c

Fig. 2. Unsafe Situation with Regular Information

We can amend our controller specification, however, to also take the perspec-
tive of other vehicles into account.

DC ′ ≡ G (∀c d.¬(c = d)→ @d ¬〈re(c)∧ re(d)〉 → ���τ @d ¬〈re(c)∧ re(d)〉)
LC ′ ≡ G (∀d.(∃c.@c (pcc c d)∨@d (pcc c d))→ ���r(d) ⊥)

Note that withinthe distance controller, we still only refer to the perspective of
a single vehicle, i.e., this specification can be implemented without coordinating
with other vehicles. In the lane change controller, however, we specifically refer
to views with different owners to restrict the possible transitions of one vehicle.
For implementations, this implies that information has to be passed between
vehicles. This is in line with our previous automata based specification of the
lane change controller for regular sensors [1].

With these definitions, we can prove a slightly refined safety theorem. We not
only require that safe e is satisfied for all vehicles e, but that safe e is satisfied,
after we switch to the view owned by e. This addition is sufficient, since for each
e, the views it owns contain the maximum amount of information about e.

theorem safety : |= (∀e.@e (safe e))∧DC ′ ∧ LC ′→ G (∀e.@e (safe e))

The proof of this theorem is then similar to the safety proof in Sect. 3, insofar that
we start by induction on the length of transition sequences, and then proceed

14 Sven Linker

by contradiction. We need to distinguish several more cases, but these cases
themselves are proven analogously to the original proof.

5 Conclusion

We presented a semantical embedding of the spatio-temporal logic HMLSL,
specifically designed to reason about motorway traffic, into Isabelle/HOL, and
thus implemented the first computer-based assistance for reasoning with HMLSL.
Isabelle/HOL as a framework enabled us to use its highly sophisticated auto-
matic proof methods. Within this embedding, we proved the absence of colli-
sions, if the controllers of all vehicles adhere to a certain set of constraints. The
constraints needed for proving safety differ, if we reduce the capability of the
sensors deployed in the vehicles. Parameterising our embedding with the types
of sensors allowed us to prove general theorems and rules of MLSL, which could
subsequently be used by all instantiations of HMLSL.

Of course, our level of abstraction is high, since we focus on the spatial aspects
of the motorway. However, our safety theorems show which capabilities vehicles
have to possess, to ensure safety on a motorway. E.g., for perfect information, the
controllers only have to adhere to the constraints implied by the reservations. For
regular information, the vehicles need more capabilities, in particular, the ability
to pass information between them. Olderog et al. examined ways to link a formal
model very similar to ours (i.e., based on similar notions of traffic snapshots and
views) with concrete controller implementations [19]. They specify high-level
controllers, where MLSL formulas may be used as guards and invariants. To
link our presentation to their work, the semantics of these controllers, as well as
the linking predicates that specify the connection between the dynamics and the
high-level controllers would have to be formalised within Isabelle/HOL. Then,
proving safety amounts to proving that the controllers satisfy our requirements.
Since Olderog et al. assumed perfect information for the controllers, their general
approach has to be refined to take less idealistic information into account.

Our current proofs show safety of motorway traffic, which can be achieved,
if the vehicles do not drive at all. Hence, proving liveness properties would be
an interesting extension of our current approach. Both sensor definitions we pre-
sented are very idealistic. For example, we did not take imprecision or probabilis-
tic failures into account. However, such properties could be encoded into more
complex sensor functions, e.g., by using probability measures in Isabelle/HOL
as defined by Hölzl [20]. Since our definition of HMLSL is parametric in the
sensor definition, the main properties of the logic can be reused, and only the
new implications of the sensor definition have to be proven.

Furthermore, the embedding is designed for motorway traffic, i.e., vehicles
driving into one direction on a multi-lane highway. A natural extension would
be to take oncoming traffic into account and could be done along lines of previous
work [21]. In this case, the model would probably just need slight adjustments,
e.g., to distinguish vehicles driving in different directions. Extensions to model
urban traffic could be defined following, e.g., Hilscher and Schwammberger [22]

Spatial Reasoning about Motorway Traffic Safety with Isabelle/HOL 15

or Xu and Li [23]. However, the models in both of these approaches differ strongly
from the model for motorway traffic.

References

1. Hilscher, M., Linker, S., Olderog, E., Ravn, A.: An abstract model for proving safety
of multi-lane traffic manoeuvres. In: ICFEM. Volume 6991 of LNCS., Springer
(2011) 404–419

2. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. LMCS 11 (2015)
3. Linker, S.: Proofs for Traffic Safety: Combining Diagrams and Logic. PhD thesis,

University of Oldenburg (2015) http://oops.uni-oldenburg.de/2337/.
4. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)
5. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems.

In: IJCAR. Volume 5195 of LNAI., Springer (2008) 171–178
6. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed,

and now formally verified. In: FM. Volume 6664 of LNCS., Springer (2011) 42–56
7. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, IEEE (2012)

541–550
8. Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous

vehicles. In: ITSC, IEEE (2015) 1658–1665
9. Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification

of autonomous vehicle platooning. arXiv preprint arXiv:1602.01718 (2016)
10. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126 (1994) 183 – 235
11. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent

programming languages. ASE 19 (2012) 5–63
12. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. STTT 1 (1997)

134–152
13. Campbell, J., Tuncali, C.E., Liu, P., Pavlic, T.P., Ozguner, U., Fainekos, G.: Mod-

eling concurrency and reconfiguration in vehicular systems: A π-calculus approach.
In: CASE, IEEE (2016) 523–530

14. Alur, R.: Principles of Cyber-Physical Systems. MIT Press (2015)
15. Braüner, T.: Hybrid logic and its proof-theory. Springer (2010)
16. Moszkowski, B.C.: A temporal logic for multilevel reasoning about hardware. Com-

puter 18 (1985) 10–19
17. Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory.

Logica Universalis 7 (2013) 7–20
18. Bochmann, G.V., Hilscher, M., Linker, S., Olderog, E.R.: Synthesizing and verify-

ing controllers for multi-lane traffic maneuvers. FAC (2017) 1–18
19. Olderog, E.R., Ravn, A.P., Wisniewski, R.: Linking discrete and continuous models,

applied to traffic manoeuvrers. In: Provably Correct Systems, Springer (2017) 95–
120

20. Hölzl, J.: Markov processes in Isabelle/HOL. In: CPP 2017, ACM (2017) 100–111
21. Hilscher, M., Linker, S., Olderog, E.R.: Proving safety of traffic manoeuvres on

country roads. In: Theories of Programming and Formal Methods. Volume 8051
of LNCS., Springer (2013) 196–212

22. Hilscher, M., Schwammberger, M.: An abstract model for proving safety of au-
tonomous urban traffic. In: ICTAC. Volume 9965 of LNCS., Springer (2016) 274–
292

23. Xu, B., Li, Q.: A Spatial Logic for Modeling and Verification of Collision-Free
Control of Vehicles. In: ICECCS, IEEE (2016) 33–42

http://oops.uni-oldenburg.de/2337/

	 Spatial Reasoning about Motorway Traffic Safety with Isabelle/HOL
	Sven Linker

