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ABSTRACT

An important ingredient of time-dependent reliability analysis of civil structures is to

choose a proper model for the applied loads. The stochastic process theory has been widely

used in existing studies to perform structural time-dependent reliability analysis. However,

the use of many types of power spectral density function leads to an inefficient calculation

of structural reliability. This paper proposes an analytical method for structural reliability

assessment, where a new power spectral density function is developed to enable the relia-

bility analysis to be conducted with a simple and efficient formula. A non-Gaussian load

process, if present, is first converted into an “equivalent” Gaussian process to improve the

assessment accuracy. Illustrative examples are presented to demonstrate the applicability of

the proposed method. Results show that a greater autocorrelation in the load process leads

to a smaller failure probability. The structural reliability may be significantly overestimated

if one simply treats the non-Gaussian load process as a Gaussian one. Moreover, the impact

of modeling the load process as a continuous process or a discrete one on structural reliability

is also investigated.
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INTRODUCTION3

Civil structures and infrastructures are subjected to both environmental attacks (e.g.,4

Chloride-induced corrosion to RC structures) and severe load effects (e.g., over-weighted5

traffic loads to bridges) during their service life. Such factors may essentially impair the6

structural service reliability. A probability-based approach should be used to evaluate the7

serviceability level and remaining life of an engineered structure (Mori and Ellingwood 1993;8

Enright and Frangopol 1998; Akiyama and Frangopol 2014; Wang et al. 2017). The basic9

concept of structural reliability assessment is to examine whether the load effect (S) exceeds10

the structural resistance (load-bearing capacity, R). Both R and S are practically uncertain11

due to the randomness arising from structural geometry, material strength, load volume, and12

others. Mathematically, the structural failure probability, P, is estimated by P = Pr(R−S <13

0), where Pr denotes the probability of the event in the bracket. For the reliability assessment14

of a structure within a specific reference period (e.g., during its lifetime), however, both the15

resistance and the external loads may vary with time and thus cannot be simply represented16

by a single random variable. Under this context, let R(t) and S(t) denote the resistance and17

load effect at time t, respectively. The time-dependent reliability within a service period of18

[0, T ], L(T ), is given by19

L(T ) = Pr {R(t) > S(t), ∀t ∈ [0, T ]} =
∫ T

0

∫
Z(t)>0

fZ(t)(z(t))d[z(t)]dt (1)

where Z(t) = R(t) − S(t) is the limit state function at time t, and fZ(t) is the probability20

density function (PDF) of Z(t), which also varies with t. By definition, the time-dependent21

failure probability, P(T ), is the complementary of L(T ), i.e., P(T ) = 1 − L(T ). Note that22

Eq. (1) indeed involves a multi-fold integral, as well as the potential association between23

different folds, and thus is often difficult or even impossible to solve directly. Specifically,24
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in terms of the external loads, both the non-stationarity and the temporal autocorrelation25

should be considered in a reasonable manner. As such, some simplifications have been26

introduced to achieve a practical yet sufficiently accurate solution to the reliability problem27

(Mori and Ellingwood 1993; Melchers 1999; Li et al. 2005; Li et al. 2015; Wang et al. 2016;28

Wang and Zhang 2018). One of the existing methods to model the external loads is to29

employ a discrete stochastic process (e.g., a Poisson process) to represent the occurrence of30

significant loads that may impair structural safety directly. A remarkable work was done by31

Mori and Ellingwood (1993), who considered a stationary Poisson process for the loads, and32

proposed a closed-form solution for structural time-dependent reliability,33

L(T ) = exp
{

λ
∫ T

0
FS[r0 · g(t)]dt − λT

}
(2)

where r0 is the initial resistance, λ is the mean occurrence rate of the Poisson process (i.e.,34

on average λ event(s) occurs within a unit time), FS is the cumulative density function35

(CDF) of each load effect, and g(t) is the deterioration function of resistance (i.e., the36

ratio of resistance at time t to the initial resistance). Li et al. (2015) further proposed a37

generalized form of Eq. (2), where the non-stationarity in the load stochastic process was38

also considered. Moreover, note that the autocorrelation in the load process also arises39

due to common physical-based causes (e.g., Ellingwood and Lee 2016). Conceptually, the40

correlation between two load effects at two different time points is expected to decrease as41

the time separation increases. A frequently-used model takes the form of (e.g., Li et al.42

2016b)43

ρ(τ) = exp(−k · ∆τ) = exp(−k|τ1 − τ2|) (3)

where ρ(τ) is the linear correlation coefficient between two loads with a time separation (or a44

spatial distance) of ∆τ , k is the scale factor accounting for the correlation changing rate, τ145

and τ2 are the two occurring times of loads. Eq. (3) is, however, only valid for a continuous46

process as a discrete load process is unavoidably associated with intermittence. Wang and47
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Zhang (2018) proposed a model to describe the autocorrelation in a discrete process, and48

investigated the impact of load temporal correlation on structural time-dependent reliability.49

Ellingwood and Lee (2016) studied the autocorrelation in the hurricane wind process, where50

an auto-regressive model was used to measure the autocorrelation in the wind loads.51

The aforementioned discrete load processes, however, may fail to describe the cases where52

the load effect is applied continuously to a structure (e.g., underground poles subjected to53

earth pressure). Fig. 1 shows a conceptual comparison between a continuous load process54

(Fig. 1(a)) and a discrete one (Fig. 1(b)). For use in structural reliability assessment, a55

continuous load process could be transformed to a discrete one, where only the significant56

load events (e.g., with a magnitude that exceeds a pre-defined threshold) are considered.57

While this approach has been used in the literature (e.g., Mori and Ellingwood 1993; Li58

et al. 2015), the error induced by such an approximation in structural reliability remains59

unaddressed.60

For a continuous load process which is applied uninterruptedly, the main characteristics61

of the process can be captured by the statistics including the mean value, variance and au-62

tocorrelation. Further, the structural time-dependent reliability analysis can be transformed63

into a problem of a stochastic process crossing a predefined barrier level (e.g., the resistance)64

(Grigoriu 1984; Engelund et al. 1995; Li et al. 2016b). The solution is usually referred to65

as “first passage probability”. This method has been widely used in the literature to esti-66

mate the reliability of civil structures and infrastructure subject to continuous loads (Hagen67

and Tvedt 1991; Ferrante et al. 2005; Li et al. 2005; Pillai and Veena 2006). For exam-68

ple, Li et al. (2005) developed a method for reliability analysis considering a non-stationary69

Gaussian vector process. Beck and Melchers (2005) investigated the error introduced in the70

calculation of the upcrossing rate in the presence of a random barrier. The load stochastic71

process has been, for the most part, modeled as Gaussian in existing studies, which may72

differ significantly from the realistic case since a Gaussian (normal) distribution may lead to73

a non-positive value of the load effect, inconsistent with the physical-based properties. Li74
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et al. (2016a) developed a closed-form solution to the “first passage probability” considering75

a non-stationary lognormal distribution. The Nataf transformation method can be used to76

convert a nonnormal stochastic process into a normal one (e.g., Zheng and Ellingwood 1998),77

which is applicable for cases where the load process follows an arbitrary distribution (e.g.,78

a Weibull or Extreme Type I distribution, as has also been widely used in existing studies79

(Melchers 1999; Tang and Ang 2007)). However, existing approaches for reliability assess-80

ment considering the temporal autocorrelation in the load process are complicated, with81

which the application of reliability assessment in practical use may be difficult. A model of82

load autocorrelation is essentially desirable to enable feasible compatibility to practical cases83

and also an efficient approach of structural reliability assessment.84

This paper develops a method for structural time-dependent reliability analysis, where,85

in order to achieve a simple and efficient solution to the structural reliability, a new power86

spectral density function of the load process is proposed, containing two parameters that87

can be calibrated in an explicit form. Illustrative examples are presented to demonstrate the88

applicability of the proposed method and to investigate the role of stochastic load process in89

structural reliability. The difference between the reliabilities associated with a discrete load90

process and a continuous one is also discussed.91

STOCHASTIC PROCESS-BASED RELIABILITY ASSESSMENT92

Gaussian process of loads93

The time-dependent reliability based on the stochastic process theory has been well94

documented in the literature (Grigoriu 1984; Engelund et al. 1995; Li et al. 2016b) and95

is introduced briefly in this section. Consider the case where the load process in Eq. (1) is96

Gaussian. Let97

Z(t) = R(t) − S(t) = Ω(t) − X(t) (4)

where Ω(t) = R(t)−E[S(t)] and X(t) = S(t)−E[S(t)], with E denoting the mean value of the98

random variable in the bracket. With this, X(t) in Eq. (4) is a stationary Gaussian process99
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with a mean value of 0 and a standard deviation of σX = σS, where σS is the standard100

deviation of S(t). Fig. 2 presents an illustration of the upcrossing rate-based reliability101

problem. The positive upcrossing rate of X(t) relative to Ω(t) at time t, ν+(t), is estimated102

by (e.g., Lutes and Sarkani 2004)103

lim
dt→0

ν+(t)dt = Pr
{
Ω(t) > X(t)

∩
Ω(t + dt) < X(t + dt)

}
= Pr

{
Ω(t + dt) − Ẋ(t)dt < X(t) < Ω(t)

}
=
∫ ∞

Ω̇(t)

[
Ẋ(t) − Ω̇(t)

]
fXẊ

[
Ω(t), Ẋ(t)

]
dẊ(t)dt

(5)

where Ẋ (or Ω̇) denotes the derivative of X (or Ω). Rearranging Eq. (5) gives104

ν+(t) =
∫ ∞

Ω̇(t)

(
Ẋ − Ω̇

)
fXẊ

(
Ω, Ẋ

)
dẊ (6)

Since X(t) is a 0-mean stationary Gaussian process, X(t) are Ẋ(t) are mutually independent,105

with which one has106

fXẊ(x, ẋ) = 1
2πσXσẊ

exp
{

−1
2

(
x2

σ2
X

+ ẋ2

σ2
Ẋ

)}
(7)

where σẊ is the standard deviation of Ẋ(t). Substituting Eq. (7) into Eq. (6) gives107

ν+(t) = 1
2πσX

exp
[
−Ω2(t)

2σ2
X

]
·
{

σẊ exp
(

−Ω̇2(t)
2σ2

Ẋ

)
−

√
2πΩ̇(t)

[
1 − Φ

(
Ω̇(t)
σẊ

)]}
(8)

where Φ( ) is the CDF of standard normal distribution. Assuming that the upcrossings of108

X(t) to Ω(t) are temporally independent and are rare (e.g., at most one upcrossing may occur109

during a short time interval), the Poisson point process can be used to model the occurrence110

of the upcrossings. Let NT denote the number of upcrossings during time interval [0, T ], and111

it follows,112

Pr(NT = i) = 1
i!

{∫ T

0
ν+(t)dt

}i

exp
{

−
∫ T

0
ν+(t)dt

}
(9)
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for i = 0, 1, 2, . . .. Further, the structural reliability during [0, T ] is the probability of NT = 0,113

i.e.,114

L(T ) = [1 − P(0)] exp
{

−
∫ T

0
ν+(t)dt

}
(10)

where P(0) is the failure probability at initial time. Specifically, as P(0) is typically small115

enough, one has (Engelund et al. 1995; Melchers 1999)116

L(T ) = exp
{

−
∫ T

0
ν+(t)dt

}
(11)

Eq. (11) presents the time-dependent reliability for a reference of T years. The derivation of117

ν+(t) in Eq. (11) has been based on the assumption of a Gaussian process of loads. This may118

lead to a significantly biased estimate of structural reliability in many cases where the load119

effect follows a non-Gaussian distribution such as a lognormal, Weibull or Extreme Type I120

distribution. A more generalized case will be discussed subsequently, where the load process121

may follow an arbitrary distribution. Finally, it is noticed that the resistance deterioration122

process is assumed to be deterministic in this paper; for cases where the uncertainties as-123

sociated with the deterioration are non-negligible and shall be taken into account, one may124

use the total probability theorem to obtain the “expectation” of the structural reliability125

(Rackwitz 2001).126

Arbitrary stochastic process of loads127

In this section, the time-dependent reliability in the presence of an arbitrary stochastic128

process of loads is discussed. First, reconsider the time-variant limit state function Z(t) in129

Eq. (4). Note that130

Pr[Z(t) > 0] = Pr[R(t) − S(t) > 0] = Pr
{
Φ−1

[
FS(t)(R(t))

]
− Q(t) > 0

}
(12)

where Q(t) = Φ−1
[
FS(t)(S(t))

]
. With this, the term Q(t) is assigned as a standard Gaussian131

process, and further an “equivalent resistance” is defined as R∗(t) = Φ−1
[
FS(t)(R(t))

]
. In132
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such a way, the time-dependent reliability analysis is transformed into solving a standard133

“first passage probability” problem. That is, Eqs. (8) and (11) apply in the presence of the134

“equivalent” resistance and load.135

A key step herein is to find the correlation in Q(t) provided that the correlation in S(t)136

is known. Suppose that the correlation coefficient between Si = S(ti) and Sj = S(tj) is ρij,137

and the correlation coefficient between the corresponding Qi = Q(ti) and Qj = Q(tj) is ρ′
ij.138

The relationship between ρij and ρ′
ij can be determined by (Liu and Der Kiureghian 1986;139

Melchers 1999)140

ρij =
∫ ∞

−∞

∫ ∞

−∞
Θ1Θ2 · Ψ(y1, y2; ρ′

ij)dy2dy1 (13)

in which Θ1, Θ2 and Ψ are given by

Θ1 =
F −1

Si
(Φ(y1)) − E(Si)√

V(Si)
; (14a)

Θ2 =
F −1

Sj
(Φ(y2)) − E(Sj)√

V(Sj)
; (14b)

Ψ(y1, y2; ρ′
ij) = 1

2π
√

1 − ρ′2
ij

exp
{

y2
1 − 2ρ′

ijy1y2 + y2
2

2(1 − ρ′2
ij)

}
(14c)

where F −1
Si

is the inverse of the CDF of Si, and V( ) denote the variance of the random variable141

in the bracket. Equations. (13) and (14) are the key component of the Nataf transformation142

(i.e., the transformation from S(t) to Q(t) herein) addressing the autocorrelation structure143

of the Gaussian process Q(t). Eq. (13) indicates that ρ′
ij depends on the COV (coefficient144

of variation) of Si and Sj only if ρij is given.145

It is noticed that the method of “equivalent” resistance and load is a generalized form of146

the “translation process” method developed by Grigoriu (1984), where a constant barrier level147

was considered. Moreover, Grigoriu (1984) also suggested that the use of a Nataf transform148

method results in a negligible error in the estimate of upcrossing rate for many common149

distribution types such as Weibull, Extreme Type I, lognormal and Gamma, implying the150

feasibility of the Nataf transformation-based method in dealing with practical reliability151
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problems with a non-Gaussian load process. Kim and Shields (2015) presented a further152

development on Grigoriu’s translation processes for strongly non-Gaussian processes, where153

the transformation was realized with an iteration-based simulation approach that considers154

the autocorrelation function of the stochastic process. However, a simulation-based method155

may limit the applicability of reliability assessment in practical use due to the relatively low156

efficiency compared with a closed-form solution.157

RELIABILITY WITH A CONTINUOUS OR A DISCRETE LOAD PROCESS158

Recall that the time-dependent reliability problem has been addressed in Eqs. (2) and159

(11), respectively. The former considers a discrete load process where only the significant160

load events that may impair the structural safety directly are incorporated, while the later161

is derived based on a continuous load process. The difference between the two types of load162

model is discussed in this section.163

First, consider the CDF of max{X(t)} within a time duration of ∆, FXmax|∆, where164

X(t) = S(t) − E[S(t)] is the normalized load process (c.f. Eq. (4)). In the presence of a165

continuous Gaussian load process, with Eqs. (8) and (11), let Ω(t) = x and Ω̇(t) = 0, which166

corresponds to the case of a constant boundary, one has167

FXmax|∆(x) = exp
{

− σẊ

2πσX

exp
(

− x2

2σ2
X

)
∆
}

(15)

Further, as ∆ is small enough (Newland 1993)168

FXmax|∆(x) ≈ 1 − σẊ∆
2πσX

exp
(

− x2

2σ2
X

)
(16)

which yields a Rayleigh distribution. Eq. (16) suggests that the maximum load effect within169

a time interval that is sufficiently short necessarily follows a Rayleigh distribution, if the170

continuous load process is Gaussian. For a discrete load process, e.g., a Poisson process,171
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however, the distribution of max{X(t)} within a short time interval of ∆ is given by172

FXmax|∆(x) = 1 − λ∆ · (1 − FS(x)) (17)

where λ is the mean occurrence rate of the Poisson process, and FS is the CDF of load173

magnitude conditional on the occurrence of one load event. Eq. (17) indicates that the CDF174

of maximum load is eventually dependent on FS, and thus may vary for different distributions175

of each load event. Letting the two CDFs of maximum load in Eqs. (16) and (17) be equal176

yields177

FS(x) = 1 − σẊ

2πλσX

exp
(

− x2

2σ2
X

)
(18)

Eq. (18) suggests that if a continuous Gaussian process is transformed to a discrete one,178

the CDF of the load effect conditional on the occurrence of one load event simply follows a179

Rayleigh distribution.180

For the more generalized case of a non-Gaussian load process, X(t) can be converted into181

a Gaussian process Q(t), as discussed before. With this, for a reference period of ∆, the182

CDF of max{X(t)} is given by183

FXmax|∆(x) = Pr

 ∩
0≤t≤∆

(
Φ−1[FS(S(t))] < Φ−1(FS(x))

) (19)

Let x∗ = Φ−1(FS(x)), and Eq. (19) becomes184

FXmax|∆(x) = exp
{

−
σQ̇∆
2π

exp
(

−x∗2

2

)}

≈ 1 −
σQ̇∆
2π

exp
(

−x∗2

2

)

= 1 −
σQ̇∆
2π

exp
{

− [Φ−1(FS(x))]2

2

} (20)

It should be noted that Eq. (20) is only valid when x is large enough. Eq. (20) implies185

that when the load process is non-Gaussian, the maximum load effect within a time interval186
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does not necessarily follow a Rayleigh distribution. The distribution type in Eq. (20) is the187

original development of the present paper and is referred to as “Pseudo-Rayleigh distribution”188

by the authors. Nonetheless, the distribution type of max{X(t)} is determined if X(t) is189

continuous, which again differs from the case of a discrete load process.190

Next, the difference between the reliabilities associated with a discrete load process and191

a continuous one is discussed. For simplicity, the load process is assumed to be Gaussian.192

With a discrete load process, the time-dependent reliability within [0, T ] is estimated by193

Ld(T ) = Pr

 ∩
0<t≤T

(Ω(t) − Xmax > 0)

 = exp
[
− σẊ

2πσX

∫ T

0
exp

(
−Ω2(t)

2σ2
X

)
dt

]
(21)

which takes a similar form of Eq. (11) with a different upcrossing rate ν+(t) in Eq. (8). In194

fact, Eq. (8) can be rewritten as195

ν+(t) = σẊ

2πσX

exp
[
−Ω2(t)

2σ2
X

]
· h(z) (22)

where196

h(z) = exp
(

−z2

2

)
−

√
2πz [1 − Φ (z)] (23)

with z = z(t) = Ω̇(t)
σẊ

. Intuitively, for a constant barrier level, z = 0 since Ω̇(t) = 0, with197

which h(z) = 1, consistent with the results in Gomes and Vickery (1977).198

By noting that z is typically negative as Ω̇(t) < 0 and that h(z) is a monotonically199

decreasing function of z, h(z) ≥ h(0) = 1 for ∀z < 0. For simplicity, Eq. (22) is rewritten as200

ν+(t) = ν+
0 (t) ·h(z). According to Eq. (11), the time-dependent reliability with a continuous201

load process is given by202

L(T ) = exp
{

−
∫ T

0
ν+(t)dt

}
= exp

{
−
∫ T

0
ν+

0 (t)h(z)dt

}
(24)

With the mean value theorem for integrals (e.g., Comenetz 2002), there exists a real number203
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z0 ∈ [minT
t=0 z(t), maxT

t=0 z(t)] such that204

L(T ) = exp
{

−h(z0) ·
∫ T

0
ν+

0 (t)dt

}
= [Ld(T )]h(z0) ≤ Ld(T ) (25)

Thus, it can be concluded that the choice of a discrete load model overestimates the structural205

safety or equivalently, underestimates the failure probability, if the realistic load process is206

continuous. In fact, with Eq. (25), since Pd(T ) = 1 − Ld(T ) is typically small enough for207

well-designed structures, one has208

P(T ) = 1 − [Ld(T )]h(z0) = 1 − [1 − Pd(T )]h(z0) ≈ h(z0) · Pd(T ) (26)

which implies that the failure probability is underestimated by a factor of 1
h(z0) if the con-209

tinuous load process is modeled as a discrete one. It is noticed, however, that the difference210

between P(T ) and Pd(T ) may be fairly small for many practical cases where h(z0) is close211

to 1.0; this point will be further discussed in the following.212

A NEW POWER SPECTRAL DENSITY FUNCTION213

In stochastic process theory based time-dependent reliability analysis, one of the crucial214

ingredients is the modeling of the autocorrelation in the load process. For a stationary215

process, say, X(t), the autocorrelation is only dependent on the time separation τ but not the216

absolute time. With this, the autocorrelation in X(t) is defined as R(τ) = E[X(t)X(t+τ)] =217

R(−τ) (Newland 1993). An illustrative example is presented in Fig. 3, which shows the218

dependence of autocorrelation in the hurricane load process on the time interval between219

two successful hurricane events (Ellingwood and Lee 2016). The autocorrelation decreases220

sharply at the early stage where τ is relatively small, and converges to zero latter with a221

fluctuation along the horizontal axis. Such an autocorrelation function also applies to many222

other types of external loads which are affected by common underlying causes (Wang and223

Zhang 2018).224

The spectral density function of S(ω), which is a Fourier transform of R(τ), also provides
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a tool to describe the statistical characteristics of X(t). Mathematically, one has

RX(τ) = 2
∫ ∞

0
S(ω) cos(ωτ)dω (27a)

σ2
Ẋ = RẊ(0) = −d2RX(0)

dτ 2 = 2
∫ ∞

0
ω2S(ω)dω (27b)

Eq. (27b) implies that a spectral density function, S(ω), consequently gives an estimate of225

the standard deviation of Ẋ(t). However, since an improper integral is involved in Eq. (27b),226

an arbitrary form of S(ω) does not necessarily lead to a converged form of σẊ . For example,227

if R(τ) takes the form of R(τ) = σ2
X exp(−kτ) (c.f. Eq. (3)), where σX is the standard228

deviation of X(t), it follows (e.g., Zheng and Ellingwood 1998)229

S(ω) = 1
π

∫ ∞

0
R(τ) cos(τω)dτ = kσ2

S

π(k2 + ω2)
(28)

with which Eq. (27b) does not converge. Furthermore, even for some spectral density func-230

tions that result in a converged σẊ , the integral operation in Eq. (27b) may be inefficient231

when used in the structural reliability assessment in Eq. (11) (that is, a two-fold integral232

will be involved in Eq. (11) if substituting Eqs. (8) and (27b) into Eq. (11)), especially for233

use in practical engineering.234

In an attempt to achieve a simple and convergent form of Eq. (27b), a new power spectral235

density function is developed in this section, which takes the form of236

S(ω) = a

ω6 + b
, −∞ < ω < +∞ (29)

where a and b are two constants. It can be seen that Eq. (29) satisfies the basic properties237

of a power spectral density function: it’s an even function of ω (i.e., S(−ω) = S(ω)) and238

positive (this is satisfied by noting that both a and b are positive values, see Eq. (35) below).239

With the proposed spectral density function in Eq. (29), according to Eq. (27), it follows
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R(τ) = R(τ, b) = 2a ·
∫ ∞

0

1
ω6 + b

cos(ωτ)dω (30a)

σ2
X = R(0, b) = 2a ·

∫ ∞

0

1
ω6 + b

dω = 2aπ

3b5/6 (30b)

The integral operation involved in Eq. (30a) can be solved in a closed form. To begin with,240

one has241

R(1, b) = 2aπ

12b5/6 exp
(

−b1/6

2

)
·
[
2 exp

(
−b1/6

2

)
+ 4 cos

(√
3

2
b1/6 − π

3

)]
(31)

Further, it is easy to find that242

R(τ, b) = τ 5 · R(1, bτ 6) (32)

As such, Eq. (30) provides a straightforward approach to find a and b in the density function243

S(ω), provided that the autocorrelation function in the load process is known. It is noticed244

that while the autocorrelation function in Eq. (32) has been derived directly based on Eq. (29)245

rather than from a physics-based case, Eq. (32) nevertheless is feasible to capture different246

dependence scenarios of load autocorrelation on the time separation that decreases sharply at247

the early stage and subsequently fluctuates along the time axis with a decreasing magnitude.248

This fact is guaranteed by noting that in Eq. (32), the magnitude of R(τ, b) is controlled249

by the term exp
(
− b1/6τ

2

)
, which is a monotonically decreasing function of τ with a given b,250

while the fluctuation of R(τ, b) is posed by the term 2 exp
(
− b1/6τ

2

)
+ 4 cos

(√
3

2 b1/6τ − π
3

)
.251

For illustration purpose, Fig. 4 shows the dependence of R(τ) on the time separation τ for252

b = 30, 60 and 90, respectively, assuming a = 1 for all the three cases. The autocorrelation253

decreases sharply at the early stage where τ is relatively small, and converges to zero soon254

with a fluctuation along the horizontal axis. The overall trends in Fig. 4 coincide well with255

that in Fig. 3. Moreover, it is seen that the different values of b result in different shapes of256
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the autocorrelation function, indicating that the proposed spectral density function enables257

freedom for different depending scenarios of R(τ) on the time separation τ .258

With the autocorrelation in X(t) addressed, one can further find the correlation coefficient259

in X(t), ρ(τ), by ρ(τ) = R(τ)/σ2
X . For instance, for a unit time separation of τ = 1, one has260

261

ρ(1, b) = 1
4

exp
(

−b1/6

2

)
·
[
2 exp

(
−b1/6

2

)
+ 4 cos

(√
3

2
b1/6 − π

3

)]
(33)

Mathematically, it is easy to see that limb→0 ρ(1, b) = 1 and limb→∞ ρ(1, b) = 0. Eq. (33) can262

be simply extended to other values of τ by noting that263

ρ(τ) = ρ(τ, b) = R(τ, b)
σ2

X

= τ 5 · R(1, bτ 6)
σ2

X

(34)

Further, with S(ω) taking the form of Eq. (29), it follows264

σ2
Ẋ = 2a ·

∫ ∞

0

ω2

ω6 + b
dω = πa

3
√

b
(35)

It can be seen from Eq. (35) that both a and b are positive real numbers due to the fact that265

σ2
Ẋ

is a positive real number. Furthermore, with Eq. (35), it is easy to see that Eq. (8) has a266

simple form with only fundamental algebras involved, which is beneficial for the application of267

structural reliability assessment when substituting Eq. (8) into Eq. (11). The applicability268

of the proposed power density function will be demonstrated in the next section. It is269

emphasized, finally, that for the case where the load process is non-Gaussian, the proposed270

density function also applies, if both the resistance and load effect are converted to the271

“equivalent” ones respectively, as discussed above.272

NUMERICAL EXAMPLE273

In this section, an illustrative example is presented to demonstrate the applicability of the274

proposed power spectral density function in structural time-dependent reliability assessment,275

and to investigate the role of load autocorrelation in structural safety.276
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Consider a structure subjected to the joint effect of both a dead load D and a continuous277

lateral load H (due to, e.g., the lateral earth pressure (Clayton et al. 2014)). Table 1 presents278

the probability distribution of the resistance and loads, with a load combination as follows279

(ASCE standard 7, ASCE 2002),280

0.75Rn = 0.9Dn + 1.6Hn (36)

where Rn is the nominal resistance, Dn is the nominal dead load, and Hn is the nominal281

lateral load. Assume that Dn = Hn.282

The initial resistance and dead load are modeled as deterministic, due to the fact that283

the randomness associated with the live loads contributes to the majority of the overall284

uncertainties for most engineered structures (e.g., Ellingwood et al. 1982; Ellingwood and285

Hwang 1985). The initial resistance has a value of 1.1 times the nominal resistance reflecting286

the modeling bias. The dead load is approximated by the nominal value which coincides287

well with many in-situ surveys. The live load in Table 1 in fact represents the “arbitrary288

point-in-time” load having a value that would be measured if the load process were to be289

sampled at some specific time instants.290

A reference period of 50 years (i.e., T is up to 50 years) is considered in the following291

analysis. Moreover, taking into account the operational environmental factors that are re-292

sponsible for the deterioration of structural resistance (e.g., the corrosion of steel bars in RC293

structures due to the ingression of Chloride in marine/coastal areas (Pang and Li 2016)), it294

is assumed that the structural resistance degrades linearly by 20% over a reference period295

of 50 years. The autocorrelation coefficient in the lateral load process is assumed to be 0.3296

for a time separation of 1 year (i.e., R(1 year) = 0.3σ2
H , where σH is the standard deviation297

of H). It is emphasized that while a lognormal stochastic load process (that is, the load298

process evaluated at an arbitrary time follows a lognormal distribution) is considered herein,299

the method in this paper is also applicable for loads with other distribution types such as a300
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Weibull or Extreme Type I distribution (Melchers 1999; Tang and Ang 2007).301

Note that the lateral load H follows a lognormal distribution, and thus is transformed302

into a standard normal distribution H∗ by FH(H) = Φ(H∗), where FH is the CDF of H.303

With this, according to Eq. (13), the autocorrelation coefficient in the process H∗(t) for a304

time separation of 1 year is found to be ln(1 + 0.3c2
H)

ln(1 + c2
H)

= 0.3241, where cH is the COV of H.305

As such, with Eq. (30), the two parameters a and b can be found numerically as 18.1 and 78.7306

respectively for H∗. Fig. 5 shows the autocorrelation coefficient in H∗ as a function of time307

difference τ , where an exponential decay model is also presented for comparison. It can be308

seen that with both types of correlation coefficient function, the autocorrelation in the load309

process diminishes rapidly for τ being up to three years. to have a similar shape overall.310

Moreover, in Fig. 5, the autocorrelation coefficient in H(t) assuming a Gaussian process311

of H(t) is also plotted, as well as an exponential law of the autocorrelation decay in the312

“assumed” normal H(t). The difference between the time-variation scenarios of correlation313

coefficient functions associated with H∗ and normal H is negligible.314

The spectral density function takes the form of Eq. (29), with which the autocorrelation315

coefficient in H∗(t) is modeled by Eq. (34). With the two parameters a and b obtained,316

one can simulate a sample sequence of H∗(t) and correspondingly, H(t). Since H∗(t) is a317

standard Gaussian process, one has (Newland 1993)318

H∗(t) ∼
√

2
N

·
N∑

j=1
cos(ωjt + θj) (37)

where N is a sufficiently large integer, ωj is a real random variable with a PDF of S(ω) (Note319

that the standard deviation of H∗ is 1.0, and thus
∫∞

−∞ S(ω)dω = 1), and θj is a random320

variable that is uniformly distributed in [0, 2π]. The simulation method for ωj is discussed321

in Appendix I. Fig. 6 demonstrates sample sequences for H∗(t) and H(t) (normalized by322

Hn), respectively. Such realizations in Fig. 6 provide a straightforward impression on the323

time-variation of the stochastic process with certain statistical characteristics.324
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Fig. 7(a) shows the time-dependent failure probabilities for reference periods up to 50325

years, assuming a mean lateral load of 0.4Hn, 0.5Hn (as in Table 1) and 0.6Hn, respectively.326

A greater load magnitude leads to a higher probability of failure. For reference periods327

exceeding 10 years, the logarithmic failure probability increases approximately linearly with328

time, which is consistent with the observations in Li et al. (2015). For comparison purpose,329

Fig. 7(b) presents the time-dependent failure probabilities assuming a Gaussian process of330

loads. It can be seen from the comparison between Figs. 7(a) and (b) that the assumption of331

a Gaussian load process underestimates the failure probability compared with the lognormal332

load process. This observation can be explained by examining the upper tail behaviour of a333

normal distribution and a lognormal distribution, as shown in Fig. 8. With the same mean334

value and standard deviation, a lognormal distribution has a longer upper tail compared with335

a normal distribution, and thus results in a greater probability that the random variable336

exceeds a given threshold. Specifically, suppose that the structural failure probability is337

represented by F (1.0Hn), where F is the CDF of either a lognormal or a normal distribution338

in Fig. 8. For the case of 0.4Hn, the failure probability associated with a lognormal load is339

0.015, which is approximately 10 times of that associated with a normal distribution. This340

fact indicates that treating a non-Gaussian load process as Gaussian may result in significant341

error in the estimate of structural reliability.342

In order to investigate the impact of load autocorrelation on structural time-dependent343

reliability, Fig. 9 presents the time-dependent failure probabilities for different cases of cor-344

relation coefficients in load: case (1) ρ(1 year) = 0.1, case (2) ρ(1 year) = 0.3 (the same as345

before) and case (3) ρ(1 year) = 0.5. Correspondingly, the autocorrelation coefficients in346

H∗ are 0.1107, 0.3241 and 0.5278 for a time separation of 1 year. Further, with Eq. (33),347

the parameter b is found as 371.1, 78.7 and 16.4 respectively for the three cases. In Fig. 9,348

the failure probability increases exponentially with T for reference periods exceeding 10349

years, which is consistent with the observation from Fig. 7(a). Moreover, Fig. 9 suggests350

that a stronger autocorrelation in loads leads to a smaller failure probability. This can be351
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explained by considering an extreme case where the structural survival is represented by352

S1 < r
∩

S2 < r, where r is the resistance (a deterministic value), S1 and S2 are two iden-353

tically distributed loads with a CDF of F . For the case of fully correlated S1 and S2, the354

failure probability is simply 1−F (r), which is greater than that associated with independent355

S1 and S2 (i.e., 1 − F 2(r)). Fig. 9 on one hand implies the importance of identifying the356

load autocorrelation in an accurate estimate of structural reliability, and on the other hand357

suggests that for cases where only insufficient load information is available, the assumption358

of a weak autocorrelation in loads leads to a relatively conservative estimate of structural359

reliability.360

By noting that the load process follows a lognormal distribution, as summarized in Ta-361

ble 1, the CDF of maximum load effect within a reference period of ∆ can be found through362

Eq. (20). Fig. 10 plots the CDFs of maximum load for cases of ρ(1 year) = 0.1, 0.3 and 0.5,363

respectively. A stronger load autocorrelation leads to a shorter upper tail of the CDF, and364

subsequently results in a smaller exceeding probability given a predefined threshold. This365

observation is consistent with the one from Fig. 9 that a greater load autocorrelation leads366

to a smaller failure probability.367

Finally, the difference between the failure probabilities associated with a discrete load368

process and a continuous one is discussed. The failure probabilities are calculated with369

Eqs. (21) and (26), respectively. For the three cases in Fig. 7(a), the difference between370

P(T ) and Pd(T ) is found to be negligible. For instance, for a reference period of 50 years,371

if the mean value of H(t) is 0.5Hn, then P(T ) and Pd(T ) are equal to 0.036 and 0.035,372

respectively (with a difference of less than 2%). This small difference can be explained as373

follows. Consider a Gaussian load process, with which the term z in Eq. (23) is rewritten as374

follows,375

z = Ω̇(t)
σẊ

= Ω̇(t)√
πa

3
√

b

=
√

2Ω̇(t)
σXb1/6 (38)

With the structural configuration in Table 1, for the typical cases where ρ(1 year) ≤ 0.8376
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(correspondingly, b ≥ 0.73 according to Eq. (33)),377

0 > z ≥
−

√
2 · 0.2/50 ·

(
1.1 · 0.9Dn+1.6Hn

0.75

)
0.5 · 0.5Hn · 0.731/6 = −0.0874 (39)

with which 1
h(z0) ∈ [0.8981, 1]. This fact implies that the difference between P(T ) and Pd(T )378

has a maximum of approximately 10%. In fact, even for an extreme case where the resistance379

degrades severely by 50% over a reference period of 50 years, the maximum difference between380

the two failure probabilities is about 20%. As a result, it can be concluded that a continuous381

load process can be reasonably modeled by a discrete process where only significant load382

events are considered.383

CONCLUSIONS384

This paper has proposed a method to estimate the structural time-dependent reliability385

in the presence of a new power spectral density function, which yields a simple and efficient386

solution to the structural reliability. Illustrative examples are presented to demonstrate the387

applicability of the proposed method. The following conclusions can be drawn from this388

paper.389

1. The structural time-dependent reliability analysis in the presence of a non-Gaussian390

load process can be transformed into a standard “first passage probability” problem391

by introducing an “equivalent” load. Provided that the autocorrelation in the load392

process is known, the correlation coefficient function in the “equivalent” load process393

can be uniquely determined.394

2. Some types of power spectral density function of a stochastic process may result in395

a non-convergent estimate of the standard deviation of the process’s derivative, and396

thus cannot be used in reliability assessment directly (c.f. Eqs. (8) and (11)). The397

proposed spectral density function as in Eq. (29), however, enables an analytical398

estimate of the stochastic process’s characteristics, and further yields a closed-form399

formula of structural time-dependent reliability.400
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3. If the load process is non-Gaussian, simply assuming a Gaussian process for loads may401

lead to a significantly biased estimate of structural reliability. This fact indicates the402

importance of properly addressing the distribution type of the load process.403

4. A stronger load autocorrelation leads to a smaller failure probability. For cases where404

the load information is insufficient, the assumption of a weak autocorrelation in loads405

results in a relatively conservative estimate of structural reliability.406

5. The impact of choosing a continuous or a discrete load model on structural reliability407

is compared. The former leads to a specific distribution type (not necessarily Rayleigh408

if the load process is non-Gaussian) of maximum load effect during a time interval of409

interest. The assumption of a discrete stochastic process for loads overestimates the410

structural safety compared with that associated with a continuous load model. The411

difference is, however, negligible for most engineering cases, and thus the two methods412

of modeling load process can be used exchangeably for the purpose of structural safety413

assessment.414
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APPENDIX I. ON THE SAMPLING OF A RANDOM VARIABLE WITH A KNOWN415

PDF416

In this section, the sampling of a random variable with a known PDF is discussed. The417

rejection method can be used to sample a random variable with a known PDF but follows418

an irregular distribution (Ross 2014).419

First, consider a random variable X with a standard deviation of σX and a PDF of420

fX(x) = a0
x6+b

= S(x)
σ2

X
, where S(x) is as in Eq. (29), and a0 = a

σ2
X

. Clearly, one can show421

that
∫∞

−∞ f(x)dx =
∫∞

−∞
S(x)
σ2

X
dx = 1. For further derivation, an auxiliary random variable Y422

is introduced, which has a PDF of fY (y) =
√

b/π
y2+b

. The CDF of Y is FY (y) =
∫ y

−∞

√
b/π

z2+b
dz =423

1
π

(
arctan

(
y√
b

)
+ π

2

)
. Mathematically, it can be proven that424

S(y) = a0

y6 + b
≤ a0(b + 1)π

b1.5 · fY (y) (40)

With this, the procedure of sampling a realization x for X is as follows,425

• Simulate two random numbers u1 and u2 that are uniformly distributed in [0, 1].426

• Set y =
√

b tan
(
u1π − π

2

)
.427

• If u2 ≤ S(y)
a0(b+1)π

b1.5 ·fY (y)
, then set x = y; otherwise return to step 1 (i.e. re-sample u1 and428

u2).429

This procedure has been used in the sampling of H∗(t) and H(t) in Fig. 6.430
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TABLE 1: Probabilistic models of resistance and loads

Item Mean COV Distribution

Initial resistance 1.10Rn 0 Deterministic
Dead load 1.00Dn 0 Deterministic
Lateral load 0.50Hn 0.5 Lognormal

27 May 12, 2019



List of Figures515

1 A comparison between a continuous load process and a discrete one. . . . . . 29516

2 Illustration of the outcrossing rate of stochastic process X(t) relative to Ω(t). 30517

3 Autocorrelation in hurricane load effects (after Ellingwood and Lee 2016). . . 31518

4 Dependence of R(τ) on τ for different values of b. . . . . . . . . . . . . . . . 32519

5 Autocorrelation functions in both H∗(t) (solid line) and Gaussian H(t) (dashed520

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33521

6 Sample sequences of H(t) (normalized by Hn) and H∗(t), respectively. . . . . 34522

7 Time-dependent failure probability for periods up to 50 years. . . . . . . . . 35523

8 Upper tail behaviour of the CDF of H (normalized by Hn). . . . . . . . . . . 36524

9 Dependence of failure probability on the autocorrelation in load process. . . 37525

10 The CDF of max{H(t)} (normalized by Hn) during a unit time ∆ = 1. . . . 38526

28 May 12, 2019



(a)

(b)

time

time

0

0

X
(t

)
X

(t
)

Threshold

Continuous process

Discrete process

Threshold

FIG. 1: A comparison between a continuous load process and a discrete one.

29 May 12, 2019



t

X (t)

ν
+(t)

0

Ω (t), X (t)

t t+dt

Ω (t)

Ω (t)

Ω (t+dt)

X (t)

X (t+dt)

FIG. 2: Illustration of the outcrossing rate of stochastic process X(t) relative to Ω(t).

30 May 12, 2019



Time interval between two points(year)

0 50 100 150

0

-50

100

50

200

150

A
U

to
-c

o
v
a

ri
a

n
c
e

 b
e

tw
e

e
n

 t
w

o
 p

o
in

ts

FIG. 3: Autocorrelation in hurricane load effects (after Ellingwood and Lee 2016).

31 May 12, 2019



0 1 2 3 4 5 6
-0.03

0.00

0.03

0.06

0.09

0.12

0.15

R
(

)

 b = 30
 b = 60
 b = 90

FIG. 4: Dependence of R(τ) on τ for different values of b.

32 May 12, 2019



0 1 2 3 4 5 6
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Proposed decay mode

C
or

re
la

tio
n 

co
ef

fic
ie

nt

t (year)

Exponential decay mode

FIG. 5: Autocorrelation functions in both H∗(t) (solid line) and Gaussian H(t) (dashed line).

33 May 12, 2019



0 10 20 30 40 50
-3

-2

-1

0

1

2

3

4

H
*(

t),
 H

(t)

Time (year)

 H*(t)
 H(t)

FIG. 6: Sample sequences of H(t) (normalized by Hn) and H∗(t), respectively.

34 May 12, 2019



0 10 20 30 40 50
10-5

10-4

10-3

10-2

10-1

100

Fa
ilu

re
 p

ro
ba

bi
lit

y

Time (year)

 0.4Hn
 0.5Hn
 0.6Hn

(a) H follows a lognormal distribution as summarized in Table 1

0 10 20 30 40 50
10-18

10-15

10-12

10-9

10-6

10-3

Fa
ilu

re
 p

ro
ba

bi
lit

y

Time (year)

 0.4Hn
 0.5Hn
 0.6Hn

(b) Assuming a Gaussian process of H(t)

FIG. 7: Time-dependent failure probability for periods up to 50 years.
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FIG. 8: Upper tail behaviour of the CDF of H (normalized by Hn).
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FIG. 9: Dependence of failure probability on the autocorrelation in load process.
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FIG. 10: The CDF of max{H(t)} (normalized by Hn) during a unit time ∆ = 1.
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