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Abstract—This paper proposes a novel deep learning-based ra-
dio frequency fingerprint (RFF) identification method for internet
of things (IoT) terminal authentications. Differential constellation
trace figure (DCTF), a two-dimensional (2D) representation
of differential relationship of signal time series, is utilized to
extract RFF features without requiring any synchronization. A
convolutional neural network (CNN) is then designed to identify
different devices using DCTF features. Compared to the existing
CNN-based RFF identification methods, the proposed DCTEF-
CNN possesses the merits of high identification accuracy, zero
prior information and low complexity. Experimental results have
demonstrated that the proposed DCTF-CNN can achieve an
identification accuracy as high as 99.1% and 93.8% under SNR
levels of 30 dB and 15 dB, respectively, when classifying 54 target
ZigBee devices, which significantly outperforms the existing RFF
identification methods.

Index Terms—Physical layer security, radio frequency finger-
print, differential constellation trace figure, convolutional neural
network

I. INTRODUCTION

ADIO frequency fingerprint (RFF)-based device identi-

fication is an emerging physical layer (PHY) security
technique to classify the identity of wireless devices [1], [2],
which could be used in many internet of things (IoT) appli-
cations such as vehicular communications, electronic vehicle
license plate authentication, etc. There are subtle differences
among wireless components because of the manufacturing
imperfections. These differences are termed as RFF, which are
unique and persistent, and can be treated as the “DNA” of a
device [3]. RFF will be presented in signal waveforms and RFF
identification designs advanced signal processing protocols to
extract these unique and inherent physical features of each
device to authenticate the user identity.

RFF identification usually involves a two-stage protocol,
including training and classification, which is a classical
machine learning classification problem. At the training stage,
the devices will enrol their RFF by transmitting a signal to

This work was supported in part by the National Natural Science Foundation
of China under Grant 61501022, 61571110, 61601114, 61602113 and Purple
Mountain Laboratories for Network and Communication Security. The work
of J. Zhang was supported by Royal Society Research Grants under grant ID
RGS/R1/191241.

L. Peng and A. Hu are with the School of Cyber Science and Engineering,
Southeast University, No. 2 Sipailou, Nanjing, China and Purple Mountain
Laboratories, Nanjing, China (email: {pengln, aghu} @seu.edu.cn).

J. Zhang is with the Department of Electrical Engineering and Electronics,
University of Liverpool, Liverpool, L69 3GJ, United Kingdom. (email:
junging.zhang @liverpool.ac.uk).

M. Liu is with the Beijing Key Lab of Transportation Data Analysis and
Mining, Beijing Jiaotong University, No. 3 Shangyuancun, Beijing, China.
(email: mingliu@bjtu.edu.cn).

the authenticator who will extract a particular transmitter RFF
feature, e.g., carrier frequency offset (CFO), In-phase (I) and
Quadrature (Q) offset, non-linear variation. The CFO is caused
by the oscillator variations. The I/Q offset is generated from
I/Q channel gain and DC offset. The transmitter amplifier non-
linearity creates unique non-linear behaviour of waveforms
near maximal power. The authenticator will maintain a table
of the device index and its RFF features in the database.
During the classification stage, the authenticator will classify
the index/label of the device according to the previously stored
database when it receives a new transmission from a device to
be classified. Many machine learning algorithms have been
used, including k-nearest neighbor (KNN), support vector
machine (SVM), random forest (RndF), multiple discriminant
analysis (MDA), etc [4], [5]. However, the identification
accuracies of these algorithms are limited especially when
there are a large number of targets.

There are recent research efforts employing deep learning
to improve the identification accuracy. Deep learning has been
used widely for wireless channel estimations [6], [7], human
motion behavior detections [8], speech language identifica-
tions [9] and RFF device identifications [10], [11]. Time
domain I/Q complex baseband samples are directly used as the
CNN input in most of convolutional neural network (CNN)-
based RFF device identification. As the data samples are
sequential input, we call this sample-based CNN. Merchant et
al. achieved an accuracy of 91% over seven target devices
in experiments [11]. However, in order to obtain stable 1I/Q
samples for CNN training and verification, prior knowledge is
required for carrier frequency and time synchronization [11].
In addition, due to the complexity consideration, the length of
the I/Q sequence in existing sample-based CNN schemes are
usually quite short [11], which results in a limited identifica-
tion accuracy. Ding et al. designed a sophisticated bispectrum-
based CNN method for RFF identification and achieved an
accuracy of 87% over five target devices [10]. However, it
is worth noting that the spectrum-based RFF features are
sensitive to the noise and environment [12]. The bispec-
trum estimation also requires high computational complexity.
Hilbert-Huang transform (HHT) is introduced for RFF feature
extractions in [13]. Similar to the bispectrum, different Hilbert
spectrums are employed for identification. An algorithm em-
ploying the Fisher’s discriminant ratio (FDR) is used to select
elements of the Hilbert spectrum for classifications.

A differential constellation trace figure (DCTF)-based fea-
ture extraction method is introduced in [14], which converts
the time domain I/Q samples to a 2D image containing RFF
features. DCTF essentially provides a visualization of the sta-
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Fig. 1. DCTF-CNN-based RFF identification

tistical distribution of differential operation. The concentration
of the differential results reflects the statistical average, and
their spread suggests the variation due to the noise and channel
randomness. In general, the high intensity in DCTF represents
the influence of RFF features, such as CFO, I/Q offset, non-
linear variation and so on.

Motivated by the success of CNN at complex classification
tasks in image recognition, this paper applies CNN to classify
DCTFs obtained from different devices. Being different from
most of RFF identification schemes using sample-based CNN,
the proposed scheme directly classifies different targets using
the “fingerprint” liked figures, which is termed as figure-based
CNN. The main contributions of this paper are as follows:

¢ We propose and design a novel DCTF and CNN-based
scheme for RFF identification. The generated DCTF is
a “fingerprint” liked figure and thus image recognition
CNNs can be used for identification.

o We analyze the source of the RFF behaviours in DCTF
generation. Compared with existing sample-based CNN
for RFF identification, the proposed DCTF-based feature
extraction does not require any prior information for
synchronization. In addition, the CFO feature, which is
usually eliminated in sample-based CNN schemes, is
naturally retained in DCTF-CNN.

e The DCTF-CNN parameters are optimized for RFF iden-
tification, which enables that the DCTF-CNN scheme
outperforms existing CNN-based RFF identification
methods in our 54 ZigBee devices classification.

o The implementation complexity of DCTF-CNN is investi-
gated. The DCTF generation is a statistical process, which
is with low complexity. The final DCTF-based CNN
complexity is determined by the DCTF size. Therefore,
DCTF-CNN can utilize any segment of the received
signal, regardless of the original signal length.

II. DCTF-CNN-BASED RFF IDENTIFICATION

The system block diagram is shown in Fig. 1. We first
sample the waveforms from RF devices. A DCTF generation
method is then employed to generate the “fingerprint” figure
for each device. A deep learning CNN is designed to train and
classify different RF modules based on their unique DCTFs.

DCTF is beneficial because it would include most of the
RFF. The transmitted RF signal can be written as:

X(t) = (B, (2, () + ;) + 5B, (w4 (8) + ag)) - e 72 (1)

where x, (t) and z, (t) are the signals at the I and Q branches,
respectively, f! is the carrier frequency at transmitter, o, and
a,, are the DC offset at I/Q channels, 3, and 3, are the I/Q
gain imbalances. We assume that the channel and receiver is
ideal, the received signal could be downconverted as:

Y(t) =y, () + jyo (t) = X(t) - /7", 2)

where y,(t) and y,(t) are the received baseband I and Q
signal components, respectively; f. is the carrier frequency at
the receiver. Because of the manufacturing imperfections, f!
and f7 will deviate with a slight CFO, ¢ = f7 — fL.

The differential process is carried out with no frequency and
time synchronization required, which can be given as

D(t) = d, () + jdq (t)
= (0, (1) + o () - (y, (E+X) + g (E+ A +2)),
3)
where d,(t) and d,(t) are the I/Q channel signals, A is
the differential time interval, ¢ is the introduced I/Q phase
mismatch to enlarge the fingerprint feature, and (-)* denotes

the conjugation operation. Upon substitution of (1) and (2)
into (3), the differentiated signal can be further written as
D(t) =(B, (2, (1) + ;) + jBg (x4 (t + ) + ag)) - ™
(B (@, (E+A) + o)) = By (2 (E+ A +e) +ay))
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The CFO ¢ turns into a fixed parameter e 72™*¥ in (4),
which causes a fixed I/Q sample rotation. For the simplicity
of analysis, we assume that ¢ is 0. We analyse the distribution
of samples in D(t) with the following two simple scenarios:

(i) z,(t) =z, (t+A),2,(t) =2,(t+A);
(i) x,(t) = —z,(t + ), 2,(t) = —z,(t+A). (5
In the case (i), D(t) can be simplified as
(i) D(t) = ((Bz(t) + Bl (1) + B, (o, + 22, (1))
+ BéaQ (o, + 22, (1)) - eI (6)
In the case (ii), D(t) can be simplified as
(ii) D(t) = (= (B72(t) + 5222 (1) + B2af + B2a?
+ 528, B, (z, (), — 3, (t)ay,)) - e 20 (7)

In (6) and (7), /Q DC offset o, and «, are much smaller
than the signal components z,(t) and x,, (). Therefore, the
I channel signal (B82z2(t) + Béxé(t)) could present the
transmitted signal power with the I/Q gain imbalance impact,
which could be mostly affected by amplifier non-linearity. In
addition, we can also find that in (7), D(t) exists residual
Q channel signal caused from 1/Q DC offset o, and ay,.
The differentiated signal D(t) owns different gathering centers



Device 1, A =10,¢ =1 Device 1, A=12,¢ =1 Device 1, A=10,¢ =2

Q Channel
Q Channel
Q Channel

| Channel
Device 2, A =10,¢ =2

| Channel
Device 2, A\=12,¢ =1

200
100

0

| Channel
Device 2, A =10,¢ =1

Q Channel
Q Channel
Q Channel

| Channel

| Channel

| Channel

Fig. 2. Generated DCTFs from real devices with different parameters
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rotation.

It is intuitive that a method should be designed to present
these features. Constellation map is straightforward to evaluate
the signal qualities but synchronization will be required. An
alternate constellation trace figure is employed to present
the differential result D(t). Furthermore, it is sensible to
investigate the trace distribution density in the figure, which
is the essential characteristic due to the RFF. A measurement
matrix @ is built to count the distribution density.

The measurement matrix ® could be generated with a size
of M x N pixel grids ranging from -A to +A. The values of
elements ®,, ,, are initialized as zero. For each D(t), we get
the index (m,n) of ® by following process:

d,(t)+AM

d,(t)+ A
— N
2A

ryul

Jin=1

where [] is the round operation. Then we add the element
of @, , by 1 when D(t) falls to the index (m,n). Finally,
when all of the samples are counted and added in the specific
index of measurement matrix, ® could represent the distri-
bution density of the entire waveform. The elements of ® are
normalized by re-scaling the pixel values from 0O to 255, which
can be seen as a M x N image.

®)

m=|

In practical systems, wireless signal is affected by channel
fading, which causes different received signal powers. There-
fore, the received signal is initially power-normalized. After
differential process in (3), the ranging value A in (8) should be
larger than 3 in order to avoid overflow in low SNR scenarios.
Finally, we can obtain DCTF from measurement matrix &
generated in aforementioned process. Some DCTF examples
are shown in Fig. 2.

As DCTF is a 2D image, it inspires us to employ the popular
deep learning CNN. Being different from the existing CNN
designed to identify the I/Q samples, the neural network in
our method aims to recognize the underlying RFF patterns
in a 2D image. The neural network is trained with DCTFs
from different devices in different conditions, e.g., SNR, A, ¢,
image sizes (M x ). In the classification stage, the scheme
will classify the target device by finding out its label based on
the network parameters provided by the CNN training stage.

III. EXPERIMENTAL DESIGN
A. Experiment Setup

Extensive experiments were carried out to evaluate the
performance of DCTF-CNN. L = 54 TI CC2530 system-on-
chip ZigBee modules are employed as the target devices to
be classified. A universal software radio peripheral (USRP)
software defined radio (SDR) hardware platform is built to
collect ZigBee RF waveforms. A PC installed with MATLAB
R2018b and NVIDIA GTX1060 graphic card is setup for
signal processing and carrying out CNN training and clas-
sification.

B. ZigBee Burst Collection

Similar to the most of the deep learning-based RF fin-
gerprint identification work, we performed ten measurements
for each ZigBee device at different locations with line-of-
sight (LOS) transmission. The carrier frequency of the ZigBee
device was set as 2505 MHz with offset quadrature phase
shift keying (OQPSK) modulation. It took five minutes for
the devices to warm up and reach a steady working condition.

A USRP receiver was employed to capture RF waveforms
from different ZigBee devices at 2505 MHz. The receiver sam-
pling rate was 10 Msample/s, which owns ten times oversam-
pling compared to ZigBee 1M chip rate. Each measurement
was composed of 9 frame segments and each segment can
generate a DCTF. For each frame segment, the USRP receiver
captured approximately 40K samples.

We use a spectrum estimation method to evaluate the SNR
of the received signal. Due to the different locations and
transmitter variations, the estimated SNR of the captured
signals was 20~25 dB. In order to save experiment time,
we added different levels of additive white Gaussian noise
(AWGN), varying from 0~30 dB, to the received waveforms
in order to emulate various signal qualities.

In order to optimize the DCTF-CNN parameters and evalu-
ate the performance, we divided the overall ten measurement
data into two groups, each with five measurements. The first
group was used to find the optimal parameters of DCTF and
CNN, including ), €, image size, batch size and initial learning
rate; the second group was used for testing performance
with different SNRs. For each group, we added specified
AWGN via ten simulations and used the waveforms from
two measurements for training. The training and validation
sets were randomly split with 85% and 15% respectively. The
rest three measurements served as separate test sets. In each
measurement, we can obtain nine frames for DCTF generation.
Therefore, for each group, we have 54%9+10+2%0.85 = 8262
training DCTFs, 54% 9% 10%2x0.15 = 1458 validation DCTFs
and 54 % 9 % 10 * 3 = 14580 testing DCTFs.

C. CNN Design

Inspired by the famous LeNet-5 network which has been
successfully used to solve the canonical MNIST digits recog-
nition [15], we chose a neural network with three 2D convo-
lutional layers followed by a fully connected layer. The kernel
size was set to [3x3] to capture the local details of RFF in



the DCTF. Channel numbers were chosen to 16, 32 and 64 to
accommodate more higher level features. The rectified linear
unit (ReLU) was employed as the activation function to reduce
the likelihood of vanishing gradient and accelerate the training.
Two [2x2] max pooling layers were applied after the first two
convolutional layers to down-sample the output features and
limit the size of the neural network. A fully connected layer of
L outputs together with the Softmax activation was used in the
last stage to perform the classification among L target devices.
Cross entropy for L mutually exclusive classes was adopted as
the loss function of classification. Gradient descent algorithm
was used in the network training process. For an input image
size of [65x65], the parameters of each layer are as follows.

« The first convolutional layer: There are (3%) x 1 x 16
weights and 16 biases. The number of trainable parame-
ters is 160. After a [2x2] max pooling, the image size is
[32x32].

« The second convolutional layer: There are (3%) %1632
weights and 32 biases. The number of trainable parame-
ters is 4640. After a [2x2] max pooling, the image size
is [16x16].

o The third convolutional layer: There are (32) * 32 *
64 weights and 64 biases. The number of total trainable
parameters is 18464.

o The last fully connected layer: As the final image size
is [16x16] and channel number is 64, there are (162) x
64 weights and 1 bias for each tensor. The number of
trainable parameters is L x 16,385 when there are L target
devices.

Therefore, the total trainable parameters of this network
is 160+4640+18464+Lx 16385 = 23,264 + Lx16,385, with
weights and biases.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Performance with Different DCTF Generation Parameters

When receivers have zero prior information of the target
signal, the differential interval A and introduced 1/Q phase
mismatch distortion ¢ are arbitrarily chosen because the signal
symbol rate and modulation type are not known at the receiver.
This section investigated effects of the differential interval and
I/Q phase mismatch distortion. The SNR was 30 dB and the
DCTF image size was 65 x 65.

Some examples of the obtained DCTFs with different gen-
eration parameters were shown in Fig. 2. The DCTFs varied
greatly with A and e. The diversity among different devices
was also distinguishable under specific parameter setup.

Fig. 3 depicts the accuracy of DCTF-CNN with different
DCTF generation parameters. As shown in Fig. 3, although
the accuracy dramatically decreases when extremely short
differential interval X is selected, the overall accuracy is higher
than 97% when A is larger than 3. In addition, Fig. 3 shows
that the overall accuracy is always higher than 97% when ¢
is selected as O, 1, 2 and 3. In particular, the introduced 1/Q
phase mismatch distortion € of 1 had the best performance.

B. Performance with Different DCTF Image Qualities

DCTF image quality is affected by the DCTF size, M x N,
and the number of used samples for generating DCTF. It is
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TABLE I
CNN TRAINING COST WITH DIFFERENT DCTF SIZES

Size Epochs | Time (s) Size Epochs | Time (s)
257 x 257 23 498 33 x33 33 28
129 x 129 42 202 17 x 17 23 19

65 x 65 31 52 9%x9 30 23

obvious that the larger size of the DCTF image, the lower
chance of the different samples falling into the same pixel,
which consequently requires more data samples to maintain
the details of the figure. On the other hand, lower size of
DCTF will blur features among devices. In addition, the
larger number of used samples for generating DCTF, the
better quality of the image, at a cost of higher complexity.
This section evaluated the effect of the image quality on the
identification accuracy, when SNR =30dB, A = 10 and e = 1.

The accuracy with different DCTF image qualities is de-
picted in Fig. 4. An image size of 65 x 65 pixels offers the
best performance for our designed CNN. When DCTF image
size was smaller than 17 x 17, the RFF feature got blurred.
It is also evident that the smaller DCTF image size, the less
network complexity. Table I demonstrates the CNN training
time cost with different DCTF sizes, which shows that the
overall complexity of DCTF-CNN is very low. The maximal
training time was only 498 seconds even with 257 x 257
DCTF image size. It is worth noting that the smaller size of
DCTF image, the lower complexity of network computation.
Therefore, the DCTF image size with 65 x 65 and 33 x 33
are preferable setup choices that achieve a satisfactory tradeoff
between performance and complexity.

When DCTF image size is fixed, Fig. 4 shows that the more
samples used for generating DCTF, the better identification
accuracy, thanks to the better DCTF image quality. However,
we find that with the DCTF size of 65 x 65, the accuracy
difference between 20K and 40K samples was negligible. The
DCTF-CNN accuracy can be higher than 97% when more than
10K samples were used.

C. Performance with Different CNN Training Parameters

CNN efficiency and accuracy are affected by batch sizes,
maximal epoches and initial learning rates. In particular, batch
size is one of the most important hyperparameters to tune
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in deep learning training [16]. In our 54 ZigBee devices
identification problem, 8262 training DCTFs with the size
of 65 x 65 were used. We evaluated the performance with
different batch sizes from 32 to 1024 and different maximal
epoches from 5 to 40. We also evaluated the performance
with different initial learning rates at 0.01 and 0.1. Extensive
simulations were taken with 20 loops averaging. The obtained
results are shown in Fig. 5.

Fig. 5 demonstrates that the network training can be faster
and more accurate when initial learning rate is reduced from
0.1 to 0.01. In addition, the system performance is better when
the batch size is between 128 and 256. Larger batch size
requires more hardware resources to load DCTFs and more
epoches to get the converged result. However, it is observed
that DCTF-CNN accuracies dramatically deteriorated when
batch size was larger than 256 for both initial learning rates at
0.01 and 0.1. On the other hand, small batch sizes also cause
performance degradations when initial learning rate is 0.1.

D. Performance with Different SNR

Configured with the optimized parameters, we evaluated the
performance of the DCTF-CNN under different SNR levels in
the range of {0, 5, 10, 15, 20, 25, 30} dB. The A was set
to 10 and € was set to 1. The DCTF size was 65 x 65, 40K
samples were used to generate a DCTF.

Fig. 6 compares the identification accuracy among the
DCTF-based k-means classification method [14], time-
domain I/Q signal-based CNN method [11], bispectrum-
based CNN [10] and Hilbert-Huang Transform (HHT)-based
method [13]. The same data set was used for all of the
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evaluations. The FFT length for bispectrum generation is 128.
The HHT size is 512, the maximum number of intrinsic mode
functions (IMF) extracted is 5. The DCTF-CNN confusion
matrixes at 10 dB and 15 dB SNRs for the 54 ZigBee devices
identification problem are depicted in Fig. 7. When SNR is
higher than 20 dB, the accuracy of the proposed DCTF-CNN
is higher than 98% and can even reach 99.1% at 30 dB.

The DCTF with a k-means clustering algorithm can achieve
an accuracy of 60.1%. The best performance was around 96%
even when the system was enhanced by multiple features [14].
Thanks to the feature representation and classification capabil-
ity of CNN, the proposed DCTF-CNN acquired a significant
performance enhancement, especially in high SNR scenarios.
Our DCTF-CNN scheme can achieve an identification accu-
racy of 99.1% among 54 target devices in contrast to the 91.4%
accuracy with I/Q samples-based CNN, 81.4% accuracy with
bispectrum-based CNN and 41.7% accuracy with HHT-based
CNN. In low SNR scenarios, the DCTF-CNN had similar
performance compared to I/Q samples-based CNN, but also
with higher accuracy than spectrum-based CNN methods.

V. CONCLUSION

In this correspondence, we proposed a novel RFF identifica-
tion method that combined the DCTF-based feature extraction
and the CNN-based classification. Different from existing
sample-based CNN RFF identification methods that exploit
complex (I/Q channel) signal samples, we directly classified



target devices without requirement of any synchronization
and compensation. In addition, the complexity of DCTF-
CNN is very low due to the small input figure size. We
carried out extensive experiments with a testbed including 54
ZigBee devices. We initially investigated parameter optimiza-
tions in our DCTF-CNN system. With the help of optimal
DCTF generation parameters and CNN training parameters,
the identification accuracy is as high as 99.1% and 93.8%
at the SNR levels of 30 dB and 15 dB, respectively, which
significantly outperforms the existing deep learning-based RFF
identification methods. The future work includes study of
target movements in DCTF-CNN identification.
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