LIVERPOOL

On the dimensionality of inference in credal nets with interval probabilities

De Angelis, M., Estrada Lugo H. D., Patelli E., Ferson S.
Institute for Risk and Uncertainty, University of Liverpool
marco.de-angelis@Liverpool.ac.uk

Statement

The number of decision variables (or dimensionality) required to compute the inference in two-state credal networks with interval probabilities grows at most linearly with the number of nodes directly connected to the queried variable.

Strategy and proof

We prove this statement by means of the interval gradient on a vacuous credal network. A vacuous credal network is a network whose probabilities are in the open interval $(0,1)$. The interval gradient is obtained from the derivatives of the independent inputs over the open interval. x_{k} is the $k^{t h}$ independent input.

$$
\begin{align*}
& \{x\}^{\downarrow}=\left\{x_{k}:\left.\frac{\partial P_{\text {infer }}\left(x_{k}\right)}{\partial x_{k}}\right|_{(0,1)}<0, k=1, \ldots, D\right\} \tag{1}\\
& \{x\}^{\uparrow}=\left\{x_{k}:\left.\frac{\partial P_{\text {infer }}\left(x_{k}\right)}{\partial x_{k}}\right|_{(0,1)}>0, k=1, \ldots, D\right\} \tag{2}\\
& \{x\}^{M}=\{x\}^{\downarrow} \cup\{x\}^{\uparrow}, \quad\{k\}^{M}=\left\{k: x_{k} \in\{x\}^{M}\right\} \tag{3}\\
& R=D-\#\{k\}^{M} \tag{4}
\end{align*}
$$

The proof needs specialisation on the network under study, however coefficients can be stored upfront on recurring architectures. In (4) the integer R is the reduced dimension of the credal network.

Example: Multiply-connected network
Queries:

Algorithm

$P\left(G_{j} \mid C\right)=\frac{\sum_{\left\{g_{1}, \ldots, g_{N}\right\} \backslash g_{j}} P\left(G_{1}, \ldots, G_{N}, C\right)}{P(C)}=\frac{P\left(G_{j}, C\right)}{P(C)}=$
$=P\left(X_{k}\right)=\frac{P\left(G_{j}, C\right)}{P(C)}$

1. $x_{k}=\left\{g_{1}, g_{2}, \ldots, g_{j}, \ldots, g_{N}, c_{1}, c_{2}, \ldots, c_{2^{N}}\right\}$
2. $k^{\{M\}}=\left\{k:\left.\frac{\partial P_{j}\left(x_{k}\right)}{\partial x_{k}}\right|_{(0,1)} \backslash\{0\}\right\}$
3. $x_{k}=\left\{g_{1}, g_{2}, \ldots, g_{j}, \ldots, g_{N}, c_{1}, c_{2}, \ldots, c_{2^{N}}\right\}$
4. $x_{\{k\}^{M}}=\left\{g_{j}, c_{1}, c_{2}, \ldots, c_{\left.2^{N}\right\}}\right\} \quad x_{\{k\}^{\prime}}=\left\{g_{1}, g_{2}, \ldots, g_{N}\right\}$
5. $\underline{P}\left(x_{k}\right)=\min _{k \in\{k\}\urcorner M} P\left(x_{k}\right) \quad \bar{P}\left(X_{k}\right)=\max _{k \in\{k\}\urcorner M} P\left(x_{k}\right)$
