Institute for Risk

and Uncertainty

FRPOOL

International Symposium on Imprecise Probabilities: Theories and Applications Ghent, Belgium, EU 3-6 July 2019

On the dimensionality of inference in credal nets with interval probabilities

De Angelis, M., Estrada Lugo H. D., Patelli E., Ferson S. Institute for Risk and Uncertainty, University of Liverpool marco.de-angelis@Liverpool.ac.uk

Statement

The number of decision variables (or dimensionality) required to compute the inference in two-state credal networks with interval probabilities grows at most linearly with the number of nodes directly connected to the queried variable.

Strategy and proof

We prove this statement by means of the *interval gradient* on a vacuous credal network. A vacuous credal network is a network whose probabilities are in the open interval (0, 1). The interval gradient is obtained from the derivatives of the independent inputs over the open interval. x_k is the k^{th} independent input.

General example $\frac{\neg G_2}{1-g_2}$ $\overline{P}(G_j|C) =$ G_2 $\frac{\neg G_1}{1-g_1}$ $=\overline{\underline{P}}_{i}(x_{k})=?$ G_1

$$\{x\}^{\downarrow} = \left\{ x_k : \frac{\partial P_{infer}(x_k)}{\partial x_k} \right|_{(0,1)} < 0, k = 1, \dots, D \right\}$$
(1)

$$\{x\}^{\uparrow} = \left\{ x_k : \frac{\partial P_{infer}(x_k)}{\partial x_k} \right|_{(0,1)} > 0, k = 1, \dots, D \right\}$$
(2)

$$\{x\}^M = \{x\}^{\downarrow} \cup \{x\}^{\uparrow}, \qquad \{k\}^M = \{k : x_k \in \{x\}^M\}$$
(3)

$$R = D - \#\{k\}^M$$
(4)

The proof needs specialisation on the network under study, however coefficients can be stored upfront on recurring architectures. In (4) the integer R is the reduced dimension of the credal network.

Example: *Multiply-connected network*

Queries:

$$\overline{\underline{P}}(C|H) \qquad x_{\{k\}^{M}} = \{\mathbf{c_{1:4}}\} \qquad x_{\{k\}^{\neg M}} = \{\mathbf{m}, \mathbf{s_{1:2}}, \mathbf{b_{1:2}}, \mathbf{h_{1:2}}\}$$
$$\overline{\underline{P}}(S|C) \qquad x_{\{k\}^{M}} = \{\mathbf{s_{1:2}}, \mathbf{c_{1:4}}\} \qquad x_{\{k\}^{\neg M}} = \{\mathbf{m}, \mathbf{b_{1:2}}\}$$

Algorithm

$$P(G_j|C) = \frac{\sum_{\{g_1,\dots,g_N\}\setminus g_j} P(G_1,\dots,G_N,C)}{P(C)} = \frac{P(G_j,C)}{P(C)} =$$
$$= P(X_k) = \frac{P(G_j,C)}{P(C)}$$

1.
$$x_{k} = \{g_{1}, g_{2}, ..., g_{j}, ..., g_{N}, c_{1}, c_{2}, ..., c_{2^{N}}\}$$

2. $k^{\{M\}} = \left\{k: \frac{\partial P_{j}(x_{k})}{\partial x_{k}}\Big|_{(0,1)} \setminus \{0\}\right\}$
3. $x_{k} = \{g_{1}, g_{2}, ..., g_{j}, ..., g_{N}, c_{1}, c_{2}, ..., c_{2^{N}}\}$
4. $x_{\{k\}^{M}} = \{g_{j}, c_{1}, c_{2}, ..., c_{2^{N}}\} \quad x_{\{k\}^{\neg M}} = \{g_{1}, g_{2}, ..., g_{N}\}$
5. $\underline{P}(x_{k}) = \min_{k \in \{k\}^{\neg M}} P(x_{k}) \quad \overline{P}(X_{k}) = \max_{k \in \{k\}^{\neg M}} P(x_{k})$

and skills

Digital twins for improved dynamic design