
Analysis of Branch Misses in Quicksort∗

Conrado Martínez† Markus E. Nebel‡§ Sebastian Wild‡

November 8, 2014

Abstract
The analysis of algorithms mostly relies on count-
ing classic elementary operations like additions,
multiplications, comparisons, swaps etc. This ap-
proach is often sufficient to quantify an algorithm’s
efficiency. In some cases, however, features of mod-
ern processor architectures like pipelined execution
and memory hierarchies have significant impact on
running time and need to be taken into account to
get a reliable picture. One such example is Quick-
sort: It has been demonstrated experimentally that
under certain conditions on the hardware the clas-
sically optimal balanced choice of the pivot as me-
dian of a sample gets harmful. The reason lies in
mispredicted branches whose rollback costs become
dominating.

In this paper, we give the first precise ana-
lytical investigation of the influence of pipelining
and the resulting branch mispredictions on the ef-
ficiency of (classic) Quicksort and Yaroslavskiy’s
dual-pivot Quicksort as implemented in Oracle’s
Java 7 library. For the latter it is still not fully
understood why experiments prove it 10 % faster
than a highly engineered implementation of a clas-
sic single-pivot version. For different branch pre-
diction strategies, we give precise asymptotics for
the expected number of branch misses caused by
the aforementioned Quicksort variants when their

∗Part of this research was done during a visit at UPC, for which
the second and third authors acknowledge support by project
TIN2007-66523 Formal methods and algorithms for system de-
sign (FORMALISM) of the Spanish Ministry of Economy and
Competitiveness
†Department of Computer Science, Univ. Politècnica de

Catalunya, Email: conrado@cs.upc.edu
‡Computer Science Department, University of Kaiserslautern,

Email: {wild,nebel}@cs.uni-kl.de
§Department of Mathematics and Computer Science, Univer-

sity of Southern Denmark

pivots are chosen from a sample of the input. We
conclude that the difference in branch misses is too
small to explain the superiority of the dual-pivot
algorithm.

1 Introduction
Quicksort (QS) is one of the most intensively used
sorting algorithms, e.g., as the default sorting
method in the standard libraries of C, C++, Java
and Haskell. Classic Quicksort (CQS) uses one
element of the input as pivot P according to which
the input is partitioned into the elements smaller
than P and the ones larger than P , which are then
sorted recursively by the same procedure.

The choice of the pivot is essential for the ef-
ficiency of Quicksort. If we always use the small-
est or largest element of the (sub-)array, quadratic
runtime results, whereas using the median gives an
(asymptotically) comparison-optimal sorting algo-
rithm. Since the precise computation of the median
is too expensive, sampling strategies have been in-
vented: out of a sample of k randomly selected
elements of the input, a certain order statistic is se-
lected as the pivot— the so-called median-of-three
strategy is one prominent example of this approach.

In theory, Quicksort can easily be generalized
to split the input into s ≥ 2 partitions around s−1
pivots. (CQS corresponds to s = 2). However,
the implementations of Sedgewick and others did
not perform as well in running time experiments as
classic single-pivot Quicksort [15]; it was common
belief that the overhead of using several pivots is
too large in practice. In 2009, however, Vladimir
Yaroslavskiy proposed a new dual-pivot variant
of Quicksort which surprisingly outperformed the
highly engineered classic Quicksort of Java 6, which

then lead to its replacement in Java 7 by Yaroslav-
skiy’s dual-pivot Quicksort (YQS).

An analytic explanation of the superiority of
YQS was lacking at that time (and is still open
to some extent). We showed that YQS indeed
saves 5 % of comparisons (for random pivots);
but also that it needs 80 % more swaps than
CQS [18, 19]. Arguably, these traditional cost
measures do not explain the running times well
and it is likely that features of modern CPUs like
memory hierarchies and pipelines are the prime
reason for the algorithm’s efficiency. This would
be in accordance with the aforementioned results
in which multi-pivot Quicksort was less efficient,
as the experiments were done in a time when
computers simply did not have such features.

In this paper we address the effects of pipelines,
which are used to speed up execution as follows:
Inside the CPU, machine instructions are split into
phases like “fetching the instruction”, “decoding
and loading data”, “executing the instruction”, and
“writing back results”. Each phase takes one CPU
cycle. Modern CPUs execute different phases in
parallel, i.e., if there are L phases, one can execute
L instructions at once, each in a different phase,
resulting in a speed-up of L.

The downside of this idea, however, comes with
conditional jumps. For those, the CPU will have to
decide the outcome before it has actually been com-
puted—otherwise it could not go on with the first
phases of the subsequent commands. To cope with
that, several branch prediction schemes have been
invented, which try to guess the actual outcome. In
the simplest case each branch (conditional jump) is
marked “probably taken” or “probably not taken”
at compile time and the CPU acts accordingly.
As branch outcomes most often depend on data
not known at compile time, this strategy is quite
limited. In order to adapt predictions to actu-
ally observed behavior special hardware support
is needed. For the so-called 1-bit predictor, the
CPU stores for each branch in the code whether
or not it was taken the last time it was executed
and assumes the same behavior for the future. In
a 2-bit prediction scheme, the CPU has to make
a wrong prediction twice before switching. Such
simple schemes have been used by the first CPUs

with pipelining. Modern microprocessors imple-
ment more sophisticated heuristics [5], which try
to recognize common patterns in branching behav-
ior. As they seem too intricate for precise analysis
and are probably inferior to the simple schemes in
Quicksort1 we focus on the basic predictors from
above.

In case of a false prediction (branch mispredic-
tion or branch miss, briefly BM) the CPU has to
undo all erroneously executed steps (phases) and
load the correct instructions instead. A branch
miss is thus a costly event. As an extreme example,
Kaligosi and Sanders [9] observed on a Pentium 4
Prescott CPU (a processor with an extremely long
pipeline and thus a high cost per BM) that the run-
ning time penalty of a BM is so high that a very
skewed pivot choice outperformed the typically op-
timal median pivot, even though the latter leads to
much less executed instructions in total. The effect
was not reproducible, however, on the slightly dif-
ferent Pentium 4 Willamette [1]. Here two effects
counteract: a biased pivot makes branches easier
to predict but also gives unbalanced subproblem
sizes. Brodal and Moruz [2] have shown that this
is a general trade-off in comparison-based sorting:
One can only save comparisons at the price of ad-
ditional branch misses.

Differences in the number of branch misses
might be an explanation for the superiority of
YQS and will thus be analyzed in this paper in
connection with pivot sampling. We will also
reconsider branch misses in classic Quicksort by
continuing the analyses of Kaligosi and Sanders [9]
and Biggar et al. [1], we present precise leading
terms2 and explicitly address pivot sampling for
finite sample sizes k.

We find that CQS and YQS cause roughly
the same number of branch misses and hence
pipelining effects are not a likely explanation for
the superiority of YQS. Even if this result in

1There are no branch patterns in Quicksort (cf. Section 5.1)!
2By our discussion in Section 5.1, we also answer a question

posed by Kaligosi and Sanders [9] in their footnote 2, where they
ask for an argument to make their heuristic analysis—assuming
a constant probability α for an element to be small— rigorous.
We find it most appropriate to answer a footnote question also in
a footnote, even though we consider the settlement of this open
problem quite noteworthy.

2

Algorithm 1. Classic Crossing-Pointer Partitioning.

PartitionSedgewick(A, left, right, p)
// Assumes left ≤ right and a sentinel A[0] = −∞.
// Rearranges A such that with return value ip holds{

∀ left ≤ j < ip, A[j] ≤ p;
∀ ip ≤ j ≤ right, A[j] ≥ p.

1 k := left − 1; g := right
2 do
3 do k := k + 1 while A[k] < p end while
4 do g := g − 1 while A[g] > p end while
5 if g > k then Swap A[k] and A[g] end if
6 while g > k
7 return k

Invariant:

left right
≤ P

k

≥ P
g
←→

?

isolation appears negative, it still entails valuable
new insights: it provides further evidence for the
hypothesis of Kushagra et al. [10] that it is the
impact of memory hierarchies in modern computers
that renders YQS faster.

2 Generalized Quicksort
In this section, we review classic Quicksort and
Yaroslavskiy’s dual-pivot variant and introduce the
generalized pivot-sampling method.

2.1 Generalized Pivot Sampling. For the
one-pivot case, our pivot selection process is declar-
atively specified as follows: for t = (t1, t2) ∈ N2

a fixed parameter, choose a random sample
V = (V1, . . . , Vk) of size k = k(t) := t1 + t2 + 1
from the input. If we denote the sorted sample
by V(1) ≤ V(2) ≤ · · · ≤ V(k), we choose the pivot
P := V(t1+1) such that it divides the sorted sample
into regions of respective sizes t1 and t2:

V(1) . . . V(t1)︸ ︷︷ ︸
t1 elements

≤ V(t1+1)︸ ︷︷ ︸
=P

≤ V(t1+2) . . . V(k)︸ ︷︷ ︸
t2 elements

.

The choice t = 0 corresponds to no sampling at all.
For dual-pivot Quicksort, we have to choose

two pivots instead of just one. Therefore, with
t ∈ N3, we choose a sample of size k = t1+t2+t3+2

Algorithm 2. Yaroslavskiy’s dual-pivot partitioning.

PartitionYaroslavskiy (A, left, right, p, q)
// Assumes left ≤ right.
// Rearranges A s. t. with return value (ip, iq) holds

∀ left ≤ j ≤ ip, A[j] < p;
∀ ip < j < iq, p ≤ A[j] ≤ q;
∀ iq ≤ j ≤ right, A[j] ≥ q.

1 ` := left; g := right; k := `
2 while k ≤ g
3 if A[k] < p
4 Swap A[k] and A[`]
5 ` := `+ 1
6 else
7 if A[k] ≥ q
8 while A[g] > q and k < g
9 g := g − 1

10 end while
11 if A[g] ≥ p
12 Swap A[k] and A[g]
13 else
14 Swap A[k] and A[g]
15 Swap A[k] and A[`]
16 ` := `+ 1
17 end if
18 g := g − 1
19 end if
20 end if
21 k := k + 1
22 end while
23 return (`− 1, g + 1)

Invariant:

left right
< P

`

≥ Q
g

P ≤ ◦ ≤ Q
k ←→ →

?

and take P := V(t1+1) andQ := V(t1+t2+2) as pivots,
which divide the sorted sample into three regions
of respective sizes t1, t2 and t3. Note that by
definition, P is the small(er) pivot and Q is the
large(r) one.

2.2 Classic Crossing-Pointer Partitioning.
The classic implementation of (single-pivot) Quick-
sort dates back to Hoare’s original publication of
the algorithm [8], later refined and popularized by
Sedgewick [16]. Detailed code for the partition-
ing procedure is given in Algorithm 1. It uses two

3

“crossing pointers”, k and g, starting at the left
resp. right end of the array and moving towards
each other until they meet. When a pointer reaches
an element that does not belong to this pointer’s
partition, it stops. Once both have stopped, the
out-of-order pair is exchanged and the pointers go
on. The array is thereby kept invariably in form
shown below the code in Algorithm 1.

2.3 Yaroslavskiy’s Dual-Pivoting Method.
Yaroslavskiy’s partitioning method also consists
of two indices, k and g, that start at the left
resp. right end and scan the array until they
meet. Additionally, however, a third index `
“lags” behind k to further divide the region left
of k. Detailed pseudocode is given in Algorithm 2,
where we also give the invariant maintained by the
algorithm (below the code).

2.4 From Partitioning to Sorting. When
partitioning is finished, k and g have met and thus
for CQS, divide the array into two ranges, con-
taining the elements smaller resp. larger than P ;
for YQS, ` and g induce three ranges, containing
the elements that are smaller than P , between P
and Q resp. larger than Q; (see also the invariants,
when the “?”-area has vanished). Those regions
are then sorted recursively, independently of each
other.

We omit detailed pseudocode for the full sort-
ing procedures since the only contributions to the
leading term of costs come form partitioning.3 (Re-
call that we consider k = O(1) constant.)

To implement generalized pivot sampling, k
elements from the array are chosen and the needed
order statistic(s) are selected from this sample.
Note that after sampling, we know for sure to which
partition the sample elements belong, so we can
exclude them from partitioning: the partitioning
methods as they are given here are only applied to
the “ordinary” elements, i.e., the n − k elements
that have not been part of the sample.

3Note, however, that some care is needed to preserve random-
ness in recursive calls, which is in turn crucial to set up recurrence
equations. See Appendix B of [13] for further details on how to
achieve this for Generalized Yaroslavskiy Quicksort.

For subarrays with at most w elements, we
switch to Insertionsort (cf. [16] resp. [13]), where
w is constant and at least k. The resulting
algorithms, Generalized Classic resp. Yaroslavskiy
Quicksort with pivot sampling parameter t and
Insertionsort threshold w, are henceforth called
CQSwt and YQSwt .

3 Notation and Preliminaries
To unify formal notation, we denote by s ≥ 2 the
number of partitions produced in one step, i.e.,
s = 2 for CQS, s = 3 for YQS, and no other values
for s are considered in this paper. Recall that s−1
pivots are needed for partitioning into s parts.

We write vectors in bold font, for example
t = (t1, . . . , ts). For concise notation, we use ex-
pressions like t + 1 to mean element-wise applica-
tion, i.e., t+1 = (t1 +1, . . . , ts+1). By Dir(α), we
denote a random variable with Dirichlet distribu-
tion and shape parameter α = (α1, . . . , αd) ∈ Rd>0.
Likewise, U(a, b) is a random variable uniformly
distributed in the interval (a, b). We use “D=” to
denote equality in distribution.

As usual for the average case analysis of sorting
algorithms, we assume the random permutation
model, i.e., all elements are different and every
ordering of them is equally likely. The input is
given as array A of length n and we denote the
initial entries of A by U1, . . . , Un. We further
assume that U1, . . . , Un are i. i. d. uniformly U(0, 1)
distributed; as their ordering forms a random
permutation [11], this assumption is without loss
of generality.

For YQS, we call an element small, medium, or
large if it is smaller than P , between P and Q, or
larger than Q, respectively; for CQS, elements are
either smaller than P or larger.

4 Generalized Quicksort Recurrence
For t ∈ Ns and Hn the nth harmonic number, we
define the discrete entropy H as

H = H(t) =
s∑
l=1

tl + 1
k + 1 (Hk+1 −Htl+1) .(4.1)

In the limit k → ∞, such that the ratios tl/k
converge to constants τl, H(t) coincides with the

4

entropy function H∗ of information theory:

H(t) ∼ −
s∑
l=1

τl
(
ln(tl + 1)− ln(k + 1)

)
(4.2)

∼ −
s∑
l=1

τl ln(τl) =: H∗(τ) .(4.3)

The first step follows from the asymptotic equiva-
lence Hn ∼ ln(n) as n→∞.

Theorem 4.1. (Quicksort Recurrence)
The total expected costs for sorting a random
permutation with Quicksort using a partitioning
method that incurs expected costs E[Tn] of the form
E[Tn] = an + O(1) to produce s partitions and
whose s − 1 pivots are chosen by generalized pivot
sampling with parameter t ∈ Ns are asymptotically
∼ a
H n lnn, where H is given by (4.1).

Theorem 4.1 has first been proven by Hen-
nequin [7, Proposition III.9] using arguments on
the Cauchy-Euler differential equations for the cor-
responding generating function of costs. A more
concise and elementary proof using Roura’s Con-
tinuous Master Theorem [14] is given in the ap-
pendix of [13].

5 Branch Mispredictions
Thanks to Theorem 4.1 we can easily make the
transition from expected partitioning costs to the
corresponding overall costs, so in the following, we
can focus on the first partitioning step only.

For our Quicksort variants, there are two differ-
ent types of branches: those which correspond to a
key comparison and all others (loop headers etc.).
It turns out that all non-comparison branches are
highly predictable, meaning that any reasonable
prediction scheme will only incur a constant num-
ber of mispredictions (per partitioning step):

In CQS we have one backward branch at the
end of the outer loop with condition “g > k” (line 6
of Algorithm 1) and an if-statement with the same
condition (line 5), both are violated exactly once,
then we exit. Similar in YQS, there is an outer loop
branch with “k ≤ g” (line 2 in Algorithm 2) and an
inner one with “k < g” (line 8), which again fail at
most once. For the leading term of the number of

branch misses (BM), we can therefore focus on the
comparison-based branches (two in CQS and four
in YQS).

All prediction schemes analyzed in this paper
are local in the sense that for any branch instruc-
tion in the code, the prediction of its next out-
come only depends on formerly observed behavior
of this very branch instruction. As a consequence,
predictions of one branch instruction in the code
are independent of the history of any other branch
instruction. Note however that the histories them-
selves might be highly inter-dependent in general,
which complicates the analysis of branch misses.

5.1 Dirichlet Vectors and Conditional In-
dependence. Recall that our input consists of
i. i. d. U(0, 1) variables. If, for CQS, we condition
on the pivot value, i.e., consider P fixed, an ordi-
nary element U is small, if U ∈ (0, P), and large
if U ∈ (P, 1). If we call the (random) lengths of
these two intervals D = (D1, D2) = (P, 1 − P),
then D1 and D2 are the probabilities for an ele-
ment to be small resp. large. For YQS, we con-
dition on both P and Q and correspondingly get
D = (D1, D2, D3) = (P,Q− P, 1−Q) as the prob-
abilities for small, medium resp. large elements:

0 1P Q

D1 D2 D3

The random variable D ∈ [0, 1]s is a vector of
spacings induced by order statistics from a sample
of U(0, 1) variables in the unit interval, which is
known to have a Dirichlet Dir(t + 1) distribution
(Proposition C.1 in Appendix C).

The vital observation for our analysis is that
the probabilities D of the class of an element U are
independent of all other (ordinary) elements! For
the comparisons during partitioning, this implies
that their outcomes are i. i. d.; precisely speaking:
the sequence of (binary) random variables that cor-
respond to the outcomes of all executions (in one
partitioning step) of the key comparison at one
comparison location are i. i. d., and their distribu-
tion only depends on the pivot values (via D). The
outcome of a comparison does neither depend on
the position in the array, nor on the number of, say,
small elements that we have already seen.

5

As the outcomes for different comparison lo-
cations are always independent, so are the corre-
sponding branch histories and predictions. Condi-
tioning on D, we can therefore count the branch
misses separately for all comparison locations.

5.2 Probabilities of Branches in CQS. CQS
has two comparison-based branch locations: C(c1)

and C(c2) in the two inner loops (lines 3 and 4
in Algorithm 1). The first one jumps back to
the loop header if A[k] < P , the second one if
A[g] > P . Conditional on D = (D1, D2), the
two branches are executed C(c1)

n = D1n + O(1)
resp. C(c2)

n = D2n + O(1) times in expectation
(in the first partitioning step) and each time, they
are taken i. i. d. with probability P(c1)

taken = D1 resp.
P(c2)

taken = D2, (the probabilities for the element to be
small resp. large).

Note that CQS is symmetric: At both C(c1)

and C(c2), we compare an element with P , so
the two branches behave the same w. r. t. branch
misses. It is then convenient to work with the
combined (virtual) comparison location C(c) which
is executed C(c)

n = C(c1)
n + C(c2)

n = n + O(1) times
with branch probability P(c)

taken = D1. (Such tricks
will fail for the asymmetric YQS.) Denoting by
P(c)

BM the probability for a BM at C(c), the expected
number of BMs in one partitioning step of CQS is
then simply

E[TBM (n)] = E[P(c)
BM]n+O(1) .(5.4)

5.3 Probabilities of Branches in YQS. For
YQS, we have four comparison locations: C(y1)

(line 3 in Algorithm 2), C(y2) (line 7), C(y3) (line 8)
and C(y4) (line 11). Table 1 lists their execution
frequencies. Note that C(y2) is only reached for
elements where C(y1) determined that they are not
small, so at C(y2), we already know the element
is either medium or large. Similarly, C(y4) only
handles elements that C(y3) proved to be non-large.
Recalling that the probability of an (ordinary)
element to be small, medium or large is D1, D2 and
D3, respectively, a look at the comparisons yields

P(y1)
taken = D2 +D3 , P(y2)

taken = D2
D2 +D3

,(5.5)

Location Expectation conditional on D

C(c1)
n D1 · (n+O(1))

C(c2)
n D2 · (n+O(1))

C(y1)
n (D1 +D2) · (n+O(1))

C(y2)
n (D1 +D2)(D2 +D3) · (n+O(1))

C(y3)
n D3 · (n+O(1))

C(y4)
n D3(D1 +D2) · (n+O(1))

Table 1: The expected execution frequencies of the
comparisons locations in CQS and YQS, conditional
on D. The full distributions of the frequencies are
given in [13], the conditional expectations are then
easily computed using the lemmas in Appendix C
of [13].

P(y3)
taken = D1 +D2 , P(y4)

taken = D1
D1 +D2

.(5.6)

There are no symmetries to exploit in YQS (all
comparisons are of different type), so we will get
different BM probabilities P(y1)

BM , . . . ,P(y4)
BM for all

locations. The expected number of BM in one
partitioning step is

E[TBM (n)] =
4∑
l=1

E
[
C(yl)
n · P(yl)

BM

]
.(5.7)

5.4 Branch Prediction Schemes. For each
comparison location C(i) in the code, we deter-
mined the probability P(i)

taken = P(i)
taken(d) that, con-

ditional on {D = d}, this branch will be taken.
The optimal strategy would then be to predict this
branch to be taken iff P(i)

taken(D) ≥ 1
2 —which, of

course, is not possible since we do not know D at
runtime. (This theoretical scheme has been consid-
ered by Kaligosi and Sanders [9] as benchmark.)

Actual adaptive prediction schemes try to esti-
mate P(i)

taken using a limited history of previous out-
comes and base predictions on their current esti-
mate. As the CPU has to keep track of this his-
tory for many branches, typical memory sizes are
as low as 1 or 2 bits. However, in practice it is im-
possible to reserve even just a single bit of branch
history for every possible branch-instruction loca-
tion. Therefore actual hardware prediction units
use hash tables of history storage, which means
that all branch instructions whose addresses hash

6

0.2 0.4 0.6 0.8 1.0

p

0.1

0.2

0.3

0.4

0.5

f H p L

Figure 1: Comparison of the steady-state miss-
rate functions for the 1-bit (thick gray), the 2-
bit saturating-counter (black) and the 2-bit flip-on-
consecutive (dashed) predictors. The x-axis varies
p from 0 to 1. All functions are symmetric around
1/2—where they have a peak with value 1/2—and
then drop to 0 as p approaches 0 or 1. Note that the
2-bit saturating counter leads to the best predictions
for any p (as long as all the branch executions are
i. i. d. and taken with probability p).

to the same value will share one history storage.
The resulting aliasing effects have typically small,
but rather chaotic influences on predictions in prac-
tice. We ignore those to keep analysis tractable.

The behavior of an (idealized) local adaptive
prediction scheme (for a single branch instruction)
forms a Markov chain over the states of its finite
memory of past behavior. Each state corresponds
to a prediction (“taken” / “not taken”) and has two
successor states depending on the actual outcome.

As the involved Markov chains have only 2 or 4
states, they approach their stationary distributions
very quickly.4 For the asymptotic number of
branch misses for partitioning a large array, we
can therefore assume the predictor automaton to
have reached its steady state. Averaging over the
states and the outcomes of the next branch, we
get the (expected) BM probability: P(i)

BM = f(P(i)
taken)

for a (deterministic) function f : [0, 1] → [0, 1]
depending on the prediction scheme that we call its
steady-state miss-rate function. (Biggar et al. [1]
call p 7→ 1 − f(p) the steady-state predictability.)
The schemes considered herein only differ in the
topology of the Markov chain and thus in f(p).

4Numeric experiments show that after 100 iterations the
dependence of the state distribution on the initial state is less
than 10−6.

1
taken

2
taken

3
not t.

4
not t.

taken

not t. not t. not t. not t.

takentakentaken

Figure 2: 2-bit saturating-counter predictor.

1
taken

2
taken

3
not t.

4
not t.

taken

not t. taken

not t.

not t.

takennot t.

taken

Figure 3: 2-bit flip-on-consecutive predictor.

1-Bit Predictor. The 1-bit predictor is arguably
the simplest possible adaptive prediction scheme:
it always predicts a branch to behave the same way
as the last time it was executed. We thus encounter
a branch miss for a comparison location C(i) if
and only if two subsequent executions happen on
elements with different comparison results. As the
branch probabilities for two executions of the same
comparison location in one partitioning step are
the same and branching is independent, we get

f1-bit(p) = 2p(1− p) .(5.8)

2-Bit Saturating-Counter Predictor. The
very limited memory of the 1-bit predictor fails
on the frequent pattern of a loop branch that is
taken most of the time and only once in a while
used to leave the loop. In this situation, it would
be much better to treat the loop exit as an out-
lier that does not change the prediction. 2-bit
predictors can achieve that. They use 2 bits per
branch instruction to encode one of four states of
a finite automaton. The prediction is then made
based on this current state and after the branch
has executed, the state is updated according to the
transition matrix of the automaton.

There are two variants of 2-bit predictors de-
scribed in the literature, that use slightly different
automata and thus give slightly different results.
The first one is the 2-bit saturating counter (2-
bit sc) shown in Figure 2, which is used by Brodal
and Moruz [2] and Biggar et al. [1]. The second
one is 2-bit flip-on-consecutive predictor (2-bit fc)

7

described by Kaligosi and Sanders [9]; see below.
As both predictors are sensible choices, we analyze
both. Moreover, it is interesting to see the differ-
ence between the two; see Figure 1 for that, as well.

To derive the steady-state miss-rate function,
we translate the automaton shown in Figure 2 to
a Markov chain, compute its steady-state distri-
bution and from that the expected misprediction
rate. Details are given in Appendix B. The result-
ing function is

f2-bit sc(p) = p(1− p)
1− 2p(1− p) .(5.9)

2-bit Flip-On-Consecutive Predictor. The
second 2-bit variant flips its prediction only after
two consecutive mispredictions and we thus call it
“2-bit flip-on-consecutive predictor” (see Figure 3).
It is analyzed in the very same manner as 2-bit sc,
details are again given in Appendix B, where we
find

f2-bit fc(p) = 2p2(1− p)2 + p(1− p)
1− p(1− p) .(5.10)

5.5 Results. Finally, we are in the position to
put everything together. As the involved constants
become rather large, we need to introduce some
shorthand notation: We write α = t + 1 = (t1 +
1, . . . , ts + 1) and κ = k + 1 = α1 + · · · + αs.
Moreover, xn denotes the nth rising factorial power
of x and by γ(c)

a,b we denote the integral

γ
(c)
a,b = 1

B(a, b)

∫ 1

0

xa(1− x)b
1
c − x(1− x)

dx .(5.11)

where B(a, b) is the Beta function (see Appen-
dix C). We will only need the cases c = 1 and
c = 2, for which we have explicit, but unwieldy
expressions (see Figure 4 on page 9).

Theorem 5.1. (Main Result)
Let E[BM CQS

n] and E[BM YQS
n] be the expected num-

ber of branch misses incurred when sorting a ran-
dom permutation of length n with classic resp. Yar-
oslavskiy’s Quicksort under generalized pivot sam-
pling with parameter t = α− 1 ∈ Ns. Then

E[BM CQS
n] ∼ aCQS

H
n lnn and

E[BM YQS
n] ∼ aYQS

H
n lnn ,

with H = H(t) given in (4.1) and the constants
aCQS = gα1,α2 and
aYQS =

(α1
κ gα1+1,α2+α3 + α2

κ gα1,α2+α3+1
)

+
(α1α2
κ2 gα2+1,α3 + α1α3

κ2 gα2,α3+1

+ α2
2
κ2 gα2+2,α3 + α2α3

κ2 gα2+1,α3+1
)

+
(α3
κ gα1+α2,α3+1

)
+
(α1α3
κ2 gα1+1,α2 + α2α3

κ2 gα1,α2+1
)

where gx,y depends on the prediction scheme:

(i) 1-bit: gx,y = 2xy/(x+ y)2,

(ii) 2-bit sc: gx,y = 1
2γ

(2)
x,y,

(iii) 2-bit fc: gx,y = 2xy
(x+y)2γ

(1)
x+1,y+1 + γ(1)

x,y.

In the limit k →∞ s. t. t/k → τ ∈ [0, 1]s, we find
E[BMn] ∼ a∗

H∗ n lnn for H∗ defined in (4.2) and an
algorithm-dependent constant a∗:

a∗CQS = f(τ1) and
a∗YQS = (τ1 + τ2) · f(τ2 + τ3)

+ (τ1 + τ2)(τ2 + τ3) · f(τ2)
+ τ3 · f(τ1 + τ2)
+ τ3(τ1 + τ2) · f(τ1),

where f is the steady-state miss-rate function of the
prediction scheme, see (5.8), (5.9) resp. (5.10).

Proof. We plug the different steady-state miss rate
functions into (5.4) resp. (5.7) and apply Theo-
rem 4.1. What remains is to compute the leading
term constants, i.e., E[C(i)

n f(P(i)
taken)] for all compar-

ison locations. Table 1 (page 6) gives the expected
execution frequencies C(i)

n conditional on D and the
branch taken probabilities are P(c)

taken = D1 for CQS
and as given in (5.5) for YQS.

Using the properties of the Dirichlet distribu-
tion collected in Appendix C, we can rewrite the
involved expectations/integrals until we can either
evaluate them explicitly (as is the case for 1-bit) or
express them in terms of γ(c)

a,b. Full detail compu-
tations are given in Appendix D.

For the k → ∞ part, one might compute
the limit of the above terms; however, there is a
simpler direct argument: For k → ∞ s. t. t/k →

8

∫ 1

0

xa(1− x)b

1− x(1− x) dx = −
b−1∑
i=0

B(a− i, b− i) +
ba−b3 c∑
i=1

(−1)i−1(1
(a−b)−3i+2 + 1

(a−b)−3i+1
)

+ ρ1(a− b). (a ≥ b)

∫ 1

0

xa(1− x)b
1
2 − x(1− x)

dx = −
b−1∑
i=0

2−iB(a− i, b− i) + 2−b
ba−b4 c∑
i=1

(
−1

4
)i−1(1

(a−b)−4i+3 + 1
(a−b)−4i+2 + 1/2

(a−b)−4i+1
)

+ 2−bρ2(a− b).

ρ1(d) = (−1)b
d
3c


2π

3
√

3
if d ≡ 0 (mod 3)

π

3
√

3
if d ≡ 1 (mod 3)

1− π

3
√

3
if d ≡ 2 (mod 3)

, ρ2(d) =
(
− 1

4

)bd4c

π if d ≡ 0 (mod 4)
π/2 if d ≡ 1 (mod 4)
1 if d ≡ 2 (mod 4)
3
2 −

π
4 if d ≡ 3 (mod 4)

.

Figure 4: Explicit expressions for the integrals involved in γ(1)
a,b and γ(2)

a,b. The formulas are only valid for
a ≥ b, but since the integrals are symmetric, one can simply use a′ = max{a, b} and b′ = min{a, b}. The proof
consists in finding recurrences for the polynomial long division of the integrand, solving these recurrences and
integrating them summand by summand. Details are given in Appendix C.

2 4 6 8 10 12 14
t

0.62

0.64

0.66

0.68

0.70

0.72

BM

Figure 5: Branch mispredictions, as a function
of t, in CQS (black) and YQS (red) with 1-bit
branch prediction (fat), 2-bit saturating counter
(thin solid) and 2-bit flip-consecutive (dashed) using
symmetric sampling: tCQS = (3t + 2, 3t + 2) and
tYQS = (2t+ 1, 2t+ 1, 2t+ 1)

τ the Dir(t + 1) distribution degenerates to a
deterministic vector, i.e., D → τ in probability.
By the continuous mapping theorem, we also have
the limit (in probability) f(D1) → f(τ1) and thus
E[f(D1)]→ f(τ1). �

6 Discussion
Table 2 (page 10) summarizes the leading factor
(the constant in front of n lnn) in the total ex-
pected number of branch mispredictions for both
CQS and YQS under the various branch prediction
schemes and different pivot sampling strategies.

In practice, classic Quicksort implementations
typically use median-of-3 sampling, while in Ora-
cle’s YQS from Java 7 the chosen pivots are the
second and the fourth in a sample of 5 (tertiles-of-
5). With 1-bit prediction, this results in approx-

2 4 6 8 10 12 14
t

0.2

0.3

0.4

0.5

0.6

BM

Figure 6: Branch mispredictions, as a function of t,
in CQS (black) and YQS (red) with 1-bit (fat), 2-
bit sc (thin solid) and 2-bit fc (dashed) predictors,
using extremely skewed sampling: tCQS = (0, 6t+4)
and tYQS = (0, 6t+ 3, 0)

imately 0.6857n lnn vs. 0.6867n lnn BMs in the
asymptotic average; for the other branch predic-
tion strategies the difference is similar. It is very
unlikely that the substantial differences in running
times between CQS and YQS are caused by this
tiny difference in the number of branch misses.

6.1 BM-Optimal Sampling. Figure 5 shows
the leading factor of BMs as a function of t, where
pivots are chosen equidistantly from samples of size
k = 6t + 5, i.e., in CQS we use the median as
pivot, in YQS the tertiles. Notice that, contrary to
many other performance measures, sampling can
be harmful with respect to branch mispredictions.
In particular, notice that with symmetric sampling
(i.e., median-of-(2t+1) for CQS, tertiles-of-(3t+2)
for YQS) the expected number of BMs increases

9

Classic Quicksort (CQSwt) Yaroslavskiy (YQSwt)

1-bit 2/3 = 0.6 101/50 = 0.673
no sampling 2-bit sc π/2− 1 ≈ 0.57080 31π/40− 37/20 ≈ 0.58473

2-bit fc 4π/
√

3− 20/3 ≈ 0.58853 49π/5
√

3− 1288/75 ≈ 0.60190

k = 5, 1-bit 180/259 ≈ 0.69498 274/399 ≈ 0.68671
tCQS = (2, 2), 2-bit sc 225π/74− 330/37 ≈ 0.63322 785π/532− 535/133 ≈ 0.61306
tYQS = (1, 1, 1) 2-bit fc 1200π

√
3/37− 45540/259 ≈ 0.64766 1280π

√
3/133− 20644/399 ≈ 0.62899

k = 5, 1-bit 600/959 ≈ 0.62565 4070/6419 ≈ 0.63406
tCQS = (4, 0), 2-bit sc 420/137− 225π/274 ≈ 0.48592 3135/917− 3405π/3668 ≈ 0.50242
tYQS = (0, 3, 0) 2-bit fc 23340/959− 600π

√
3/137 ≈ 0.50691 335500/6419− 8720π

√
3/917 ≈ 0.52299

k →∞, 1-bit 1/2 ln 2 ≈ 0.72135 7/9 ln 3 ≈ 0.70796
τCQS = (1/2, 1/2), 2-bit sc 1/2 ln 2 ≈ 0.72135 11/15 ln 3 ≈ 0.66751
τYQS = (1/3, 1/3, 1/3) 2-bit fc 1/2 ln 2 ≈ 0.72135 47/63 ln 3 ≈ 0.67907

k →∞, 1-bit (large, but explicit term) ≈ 0.55370 (large, but explicit term) ≈ 0.55987
τCQS = (1/10, 9/10) 2-bit sc (large, but explicit term) ≈ 0.33762 (large, but explicit term) ≈ 0.34509
τYQS = (1/10, 8/10, 1/10) 2-bit fc (large, but explicit term) ≈ 0.35900 (large, but explicit term) ≈ 0.36746

Table 2: Coefficient of the leading term of BMs in CQSwt and YQSwt for various combinations of branch
prediction schemes and sampling parameters.

(and approaches a limit) as the size of the sample
grows.

We can weaken this undesirable effect by choos-
ing skewed pivots. Figure 6 shows the same sample
sizes as Figure 5, with the t that gives the min-
imal number of BM for this sample size, which
is to choose the extreme order statistics. Not
surprisingly, CQS and YQS behave almost iden-
tically when we use such highly skewed sampling
parameters. It is worth mentioning, though, that
for YQSwt , t = (0, 6t + 3, 0) is better than t =
(6t+ 3, 0, 0) or t = (0, 0, 6t+ 3), as far as BMs are
concerned. Of course, such skewed t seriously pe-
nalize other performance measures such as compar-
isons, cache misses, etc. as unbalanced partitions
become more likely.

In the limiting situation of very large samples,
i.e., for k →∞ with t/k → τ ∈ [0, 1]s, the leading
coefficient of the expected number of BMs tends
to 0 if we pick the smallest or the largest element
in the sample, i.e., τCQS = (0, 1) or τCQS = (1, 0)
in CQS. The same happens in YQS if we pick
extremal pivots, i.e., if we take τYQS = (0, 0, 1)
(the two smallest elements), τYQS = (0, 1, 0) (the
smallest and the largest), or τYQS = (1, 0, 0) (the
two largest elements). This limiting behavior is

independent of the branch prediction strategy, but
the trend doesn’t show up unless the sample size is
unrealistically large. Due to its asymmetries, the
convergence to the limit in YQS is not equal for
the three choices of τ .

6.2 Overall Costs for CQS. As the use of
very skewed pivots severely runs against other im-
portant cost measures (including comparisons and
cache misses), we need to consider the combined
cost of several measures to determine choices for t
with good practical performance. As a simplified
model (which still exhibits the fundamental fea-
tures of the problem) we shall consider the lin-
ear combination of low-level machine instructions
(here: Bytecodes (BC)) and branch misses:

Q = BC + ξ · BM .

The relative cost ξ of one BM (in terms of BCs) de-
pends on the machine. As a mispredicted branch
always entails a complete stall of the pipeline, we
need at least ξ ≥ L (the number of stages) to re-
cover full speed. Rollback of erroneously executed
instructions might require another L cycles of ad-
ditional work, so L ≤ ξ ≤ 2L seems a reasonable
range.

10

0.2 0.4 0.6 0.8 1.0

Τ 1

20

30

40

50

60

70

Q

Figure 7: The function qξ(τ) for CQS with sample
size k → ∞ and τ = (τ1, 1 − τ1), for 1-bit (fat
lines), 2-bit sc (thin solid) and 2-bit fc (dashed). For
each branch prediction strategy, we give four plots
corresponding to ξ = 5 (black), ξ = 15 (green),
ξ = 30 (orange) and ξ = 50 (blue).

As long as we are only interested in the main
order term of Q, we only need the main order term
of BC . For CQSwt with t = (t1, t2) we have [12, 17]

E[TBC (n)] =(
6 + 18(t1 + 1)(t2 + 1)

(k + 1)(k + 2)

)
· n + O(1) .

We are only interested in the coefficient qξ(t) of the
leading term of E[TQ(n)] which depends on ξ and
the sampling parameter t.

Again, we consider the limit k → ∞ to reduce
the parameter space and write

qξ(τ) = lim
k→∞:
t/k→τ

qξ(t).

Figure 7 shows the value of qξ(τ) for several val-
ues of ξ and the three different branch prediction
strategies. For ξ = 5, the three prediction schemes
yield almost identical results as the weight of BMs
is rather small. For larger values of ξ, the shape of
the function qξ(τ) changes and differences between
the prediction schemes become more pronounced.
The two 2-bit strategies do not differ very signifi-
cantly (2-bit sc is always slightly better), but both
perform much better than 1-bit prediction.

6.3 Total-Costs-Optimal Sampling in CQS.
It is natural to ask for choices of t (and implicitly
k = k(t)) that minimize qξ(t), for a given value of
ξ. In the limit of k →∞, we look for optimal τ ∗.

It is well-known that if ξ = 0 (the contribution
of BMs to qξ(t) is disregarded) for finite-size sam-
ples the best choice for the pivot is the median of
the sample, thus for any k,

t∗(0, k) =
(
bk−1

2 c, d
k−1

2 e
)
.

Here, by t∗ = t∗(ξ, k) we mean the sampling
parameter that minimizes qξ(t), for fixed ξ and
sample size k. In the limit when k → ∞, we thus
have that τ ∗ = (1

2 ,
1
2) as long as ξ = 0 [12].

As can be seen in Figure 7, this changes for
larger values of ξ: There is a threshold ξc such
that for ξ > ξc the optimal sampling parameter is
τ ∗ = (τ∗, 1 − τ∗) with τ∗ < 1/2. (By symmetry,
(1 − τ∗, τ∗) is also optimal). For ξ > ξc, τ∗ is the
unique real solution in [0, 1/2) of

d
dτ qξ

(
(τ, 1− τ)

)
= 0.

Figure 8 shows the function τ∗ = τ∗(ξ) for our
branch prediction strategies. The critical threshold
ξc and the shape of τ∗(ξ) differ depending on the
prediction scheme, but τ∗ always decreases steadily
to 0 as ξ →∞, in accordance with our finding that
the number of BMs is minimized when t/k → τ =
(0, 1). ξc is the solution of the equation

d2

dτ2 qξ
(
(τ, 1− τ)

)∣∣∣
τ=1/2

= 0,

because ξ = ξc is the point where τ = 1/2 changes
from a local minimum to a local maximum. The
respective thresholds are

ξ(1-bit)
c = 3(7− 6 ln 2)

2 ln 2− 1 ≈ 22.0644,

ξ(2-bit sc)
c = 3(7− 6 ln 2)

4 ln 2− 1 ≈ 4.8084,

ξ(2-bit fc)
c = 9(7− 6 ln 2)

10 ln 2− 3 ≈ 6.5039.

6.4 Comparison with Experimental Data.
Kaligosi and Sanders [9] report that running time
was significantly improved by choosing skewed piv-
ots on a Pentium 4 Prescott processor. They picked
the (τ · n)-th of the array to partition (because
the array contents where regular and known in ad-
vance); this same effect can be achieved via sam-
pling with k →∞ and picking the (τ · k)-th within

11

20 40 60 80

Ξ

0.1

0.2

0.3

0.4

0.5

Τ
*

Figure 8: The function τ∗ = τ∗(ξ) for CQS with
sample size k →∞ and τ = (τ, 1− τ), for 1-bit (fat
line), 2-bit sc (solid thin) and 2-bit fc (dashed).

the sample at each stage [12]. They also did a (par-
tial) analysis of BMs in the infinite-size sampling
regime. From their experiments, they concluded
that τ∗ ≈ 1/10. If we assume that the Pentium 4
used 2-bit fc predictor this corresponds to ξ ≈ 73
(for 2-bit sc, we get ξ ≈ 83). As L = 31 for this
processor [1], this means that ξ is a bit larger than
expected—or that our simple model is not fully
accurate here. As the optimal τ∗ is not much dif-
ferent for ξ = 30 or ξ = 50, see Figure 7, the model
fits the observations satisfactorily.

Experiments conducted in other architectures
(Opteron, Athlon, Sun) with shorter pipelines (L ≤
20) did not support the use of highly skewed
pivots [1, 9], and τ∗ would be closer to 1/2.

In conclusion, despite we have proposed a
very simplistic model (BC + ξBM) of running
time, it seems to capture essential features of the
problem (the most important contribution missing
is that due to memory hierarchies). The model
has some explanatory power, even at a quantitative
level, for the phenomena observed in experiments.
As processor manufacturers often do not provide
information or just very sketchy descriptions on
their architectures, we can only “guess” the used
branch prediction strategy and the value of ξ.

References
[1] P. Biggar, N. Nash, K. Williams, and D. Gregg.

An experimental study of sorting and branch pre-
diction. Journal of Experimental Algorithmics, 12:
1, June 2008.

[2] G. Brodal and G. Moruz. Tradeoffs between
branch mispredictions and comparisons for sorting

algorithms. In WADS 2005, volume 3608 of LNCS,
pages 385–395. Springer, 2005.

[3] H. A. David and H. N. Nagaraja. Order Statistics.
Wiley-Interscience, 3rd edition, 2003. ISBN 0-471-
38926-9.

[4] L. Devroye. Non-Uniform Random Variate Gener-
ation. Springer New York, 1986.

[5] A. Fog. The microarchitecture of Intel, AMD and
VIA CPUs, 2014. URL http://www.agner.org/
optimize/#manuals.

[6] R. L. Graham, D. E. Knuth, and O. Patashnik.
Concrete mathematics: a foundation for computer
science. Addison-Wesley, 1994. ISBN 978-0-20-
155802-9.

[7] P. Hennequin. Analyse en moyenne d’algorithmes :
tri rapide et arbres de recherche. PhD Thesis, Ecole
Politechnique, Palaiseau, 1991.

[8] C. A. R. Hoare. Algorithm 63: Partition. Commu-
nications of the ACM, 4(7):321, July 1961.

[9] K. Kaligosi and P. Sanders. How branch mispredic-
tions affect quicksort. In T. Erlebach and Y. Azar,
editors, ESA 2006, volume 4168 of LNCS, pages
780–791. Springer, 2006.

[10] S. Kushagra, A. López-Ortiz, A. Qiao, and J. I.
Munro. Multi-Pivot Quicksort: Theory and Ex-
periments. In ALENEX 2014, pages 47–60. SIAM,
2014.

[11] H. M. Mahmoud. Sorting: A distribution theory.
John Wiley & Sons, 2000. ISBN 1-118-03288-8.

[12] C. Martínez and S. Roura. Optimal Sampling
Strategies in Quicksort and Quickselect. SIAM
Journal on Computing, 31(3):683, 2001.

[13] M. E. Nebel and S. Wild. Pivot Sampling in
Dual-Pivot Quicksort. In AofA 2014, 2014. URL
http://arxiv.org/abs/1403.6602.

[14] S. Roura. Improved Master Theorems for Divide-
and-Conquer Recurrences. Journal of the ACM, 48
(2):170–205, 2001.

[15] R. Sedgewick. Quicksort. PhD Thesis, Stanford
University, 1975.

[16] R. Sedgewick. Implementing Quicksort programs.
Communications of the ACM, 21(10):847–857,
1978.

12

http://www.agner.org/optimize/#manuals
http://www.agner.org/optimize/#manuals
http://arxiv.org/abs/1403.6602

[17] S. Wild. Java 7’s Dual Pivot Quicksort. Master
thesis, University of Kaiserslautern, 2012.

[18] S. Wild and M. E. Nebel. Average Case Analysis
of Java 7’s Dual Pivot Quicksort. In L. Epstein
and P. Ferragina, editors, ESA 2012, volume 7501
of LNCS, pages 825–836. Springer, 2012.

[19] S. Wild, M. E. Nebel, and R. Neininger. Average
Case and Distributional Analysis of Dual-Pivot
Quicksort, 2013. URL http://arxiv.org/abs/
1304.0988.

Appendix
A Index of Used Notation
In this section, we collect the notations used in this
paper. (Some might be seen as “standard”, but we
think including them here hurts less than a potential
misunderstanding caused by omitting them.)

Generic Mathematical Notation
lnn natural logarithm.

x to emphasize that x is a vector, it
is written in bold;
components of the vector are not
written in bold: x = (x1, . . . , xd).
operations on vectors are
understood elementwise, e.g.,
x + 1 = (x1 + 1, . . . , xd + 1)

X to emphasize that X is a random
variable it is Capitalized.

Hn nth harmonic number;
Hn =

∑n
i=1 1/i.

Dir(α) Dirichlet distributed random
variable with parameter α ∈ Rd>0;
see Appendix C.

U(a, b) uniformly in (a, b) ⊂ R distributed
random variable.

Gamma(k, θ) . . . Gamma distributed random
variable with shape parameter
k ∈ R>0 and scale parameter
θ ∈ R>0.

Gamma(k) Gamma(k, 1) distributed random
variable.

B(α1, . . . , αd) . . d-dimensional Beta function;
given in equation (C.13)
(page 16).

E[X] expected value of X.

E[X | Y] the conditional expectation of X
given Y .

P(E), P(X = x) . probability of an event E resp.
probability for random variable X
to attain value x.

X D= Y equality in distribution; X and Y
have the same distribution.

X(i) ith order statistic of a set of
random variables X1, . . . , Xn,
i.e., the ith smallest element of
X1, . . . , Xn.

ab, ab factorial powers notation of [6]; “a
to the b falling resp. rising”.

ED(α)[f(X)] . . . expectation of f(X) over Dir(α)
distributed X; formally for
α ∈ Rd>0
ED(α)[f(X)] =∫

∆d

f(x)
xα1−1

1 · · ·xαd−1
d

B(α) µ(dx),

where ∆d is the standard
(d− 1)-dimensional simplex, see
(C.11).

γ(c)
a,b see equation (5.11) on page 8;

γ(c)
a,b = ED(a,b)

[
X1X2

1
c−X1X2

]
H = H(t) discrete entropy; defined in

equation (4.1) (page 4).

H∗ = H∗(p) . . . continuous (Shannon) entropy
with base e; given in
equation (4.2) (page 5).

Input to the Algorithm
n length of the input array, i.e., the

input size.

A input array containing the items
A[1], . . . ,A[n] to be sorted;
initially, A[i] = Ui.

Ui ith element of the input, i.e.,
initially A[i] = Ui.
We assume U1, . . . , Un are i. i. d.
U(0, 1) distributed.

Notation Specific to the Algorithms
s number of subproblems, i.e., s = 2

for classic Quicksort and s = 3 for
Yaroslavskiy’s Quicksort; s− 1 is
thus the number of pivots in one
partitioning step.

13

http://arxiv.org/abs/1304.0988
http://arxiv.org/abs/1304.0988

CQS, YQS CQS is the abbreviation for
classic (single-pivot) Quicksort
using Sedgewick’s partitioning
given in Algorithm 1; YQS
likewise stands for Yaroslavskiy’s
(dual-pivot) Quicksort using the
partitioning given in Algorithm 2.

t ∈ Ns pivot sampling parameter.
k = k(t) sample size; defined in terms of t

as
k(t) = t1 + t2 + · · ·+ ts + (s− 1) =
‖t‖1 + dim(t)− 1.

w Insertionsort threshold; for n ≤ w,
Quicksort recursion is truncated
and we sort the subarray by
Insertionsort.

CQSwt , YQSwt . . CQSwt is the abbreviation for
generalized classic Quicksort,
where the pivot is chosen by
generalized pivot sampling with
parameter t and where we switch
to Insertionsort for subproblems
of size at most w; similarly YQSwt
for Yaroslavskiy’s dual-pivot
partitioning.

V ∈ Nk (random) sample for choosing
pivots in the first partitioning
step.

P , Q (random) values of chosen pivots
in the first partitioning step; for
classic Quicksort, only P .

D ∈ [0, 1]s+1 . . . (random) spacings of the unit
interval (0, 1) induced by the
pivot(s), i.e., for CQS we have
D = (P, 1− P) and for YQS
D = (P,Q− P, 1−Q); in both
cases, we have D D= Dir(t + 1).

small element . . element U is small if U < P .
medium element . (only for YQS) element U is

medium if P < U < Q.
large element . . for CQS: element U is large if

P < U ; for YQS: if Q < U .
ordinary element the n− k array elements that

have not been part of the sample.
k, g, ` index variables used in the

partitioning methods, see
Algorithm 1 and Algorithm 2
(page 3); ` only appears in
Algorithm 2.

Notation for Analysis of Branch Misses
BM shorthand for branch miss
1-bit, 2-bit sc, 2-bit fc

branch prediction schemes
analyzed in this paper; see
Section 5.4.

C(c1), C(c2) key comparison locations in CQS:
C(c1) corresponds to the
comparison in line 3, C(c2) to
line 4 of Algorithm 1.

C(c) the virtual combined comparison
location consisting of C(c1) and
C(c2).

C(y1), . . . , C(y4) . key comparison locations in YQS:
C(y1) is in line 3, C(y2) in line 7,
C(y3) in line 8 and C(y4) is in
line 11 of Algorithm 2.

C(i)
n i ∈ {c1, c2, c, y1, y2, y3, y4};

expected execution frequency of
comparison location C(i) in the
first partitioning step.

P(i)
taken i ∈ {c1, c2, c, y1, y2, y3, y4};

probability (conditional on D) for
the branch at comparison location
C(i) to be taken; all executions of
this branch are i. i. d.

P(i)
BM i ∈ {c1, c2, c, y1, y2, y3, y4};

probability (conditional on D) for
the branch at comparison location
C(i) to be mispredicted; depends
on the prediction scheme.

fbps, fbps(p) . . . bps ∈ {1-bit, 2-bit sc, 2-bit fc};
steady-state miss-rate function for
the branch prediction scheme bps;
fbps(p) is the probability for a BM
at a branch that is i. i. d. and
taken with probability p—in the
long run, i.e., when the predictor
automaton has reached its steady
state.

BMn (random) total number of branch
misses to sort a random
permutation of length n.

T◦ (random) number of branch
misses (◦ = BM), Bytecodes
(◦ = BC) resp. combined costs
(◦ = Q) of the first partitioning
step on a random permutation of

14

size n; T◦(n) when we want to
emphasize dependence on n.

a coefficient of the linear term of
E[T(n)] see Theorem 4.1 (page 5).

τ for the limiting case when k →∞,
we assume that
t/k = (t1/k, . . . , ts/k)→ τ . This
corresponds to selecting precise
order statistics, s. t. the relative
size of subproblem i becomes
precisely τi.

a∗ limit of a when k →∞ and
t/k → τ .

ξ cost of one branch miss relative to
one CPU cycle; used in Q.

L length of the instruction pipeline,
i.e., the number of stages each
instruction is broken into.

Q combined cost measure
Q = BC + ξ · BM ,

B Steady-State Miss-Rate Functions
In this appendix, we give details on the computation
of the steady-state miss-rate for the two 2-bit predic-
tor variants. These functions have also been derived
by Biggar et al. [1] and Kaligosi and Sanders [9], re-
spectively. We show the derivations here again for the
reader’s convenience.

B.1 2-Bit Saturating Counter. Consider a
branch instruction, which is i. i. d. taken with prob-
ability p. The saturating-counter automaton then
corresponds to the following Markov chain with states
ordered as in Figure 2 (page 7):

Π = Π(p) =


p 1− p 0 0
p 0 1− p 0
0 p 0 1− p
0 0 p 1− p

 .(B.1)

The stationary distribution is found to be

π(p) = 1
1− 2p(1− p)(B.2)

·
(
p3, p2(1− p), p(1− p)2, (1− p)3) .(B.3)

The next branch execution is mispredicted iff we are
in state 1 or 2 and the branch was not taken or if we
are in state 3 or 4, but the branch was taken. Thus
if we assume the predictor has reached its steady-state

distribution, then we obtain the branch miss probability
in dependence of the branch probability p as

f2-bit sc(p) = π(p) · (1− p, 1− p, p, p)T(B.4)

= p(1− p)
1− 2p(1− p) .(B.5)

B.2 2-Bit Flip-On-Consecutive. The analysis
is along the same lines as above. The underlying Markov
chain for the 2-bit fc predictor is shown in Figure 3
(page 7) and has the transition matrix

Π̃ = Π̃(p) =


p 1− p 0 0
p 0 0 1− p
p 0 0 1− p
0 0 p 1− p

 .(B.6)

with stationary distribution

π̃(p) = 1
1− p(1− p)(B.7)

·
(
p2, p2(1− p), p(1− p)2, (1− p)2) .(B.8)

Again assuming this steady state has been reached, the
branch miss probability is

f2-bit fc(p) = π̃(p) · (1− p, 1− p, p, p)T(B.9)

= 2p2(1− p)2 + p(1− p)
1− p(1− p) .(B.10)

C Properties of the Dirichlet Distribution
We herein collect definitions and basic properties of the
Dirichlet distribution, which plays a central rôle for the
analyses in this paper. We use the notation xn and xn of
Graham et al. [6] for rising and falling factorial powers,
respectively.

For d ∈ N let ∆d be the standard (d−1)-dimensional
simplex, i.e.,

∆d :=
{

(x1, . . . , xd) : ∀i : xi ≥ 0 ∧
∑

1≤i≤d
xi = 1

}
.

(C.11)

Let α1, . . . , αd > 0 be positive reals. A random variable
X ∈ Rd is said to have the Dirichlet distribution with
shape parameter α := (α1, . . . , αd)—abbreviated as
X D= Dir(α)— if it has a density given by

(C.12) fX(x1, . . . , xd) :={
1

B(α) · x
α1−1
1 · · ·xαd−1

d , if x ∈ ∆d ;
0, otherwise.

15

Here, B(α) is the d-dimensional Beta function defined
as the following Lebesgue integral:

B(α1, . . . , αd) :=
∫

∆d

xα1−1
1 · · ·xαd−1

d µ(dx) .

(C.13)

The integrand is exactly the density without the nor-
malization constant 1

B(α) , hence
∫
fX dµ = 1 as needed

for probability distributions.
The Beta function can be written in terms of the

Gamma function Γ(t) =
∫∞

0 xt−1e−x dx as

B(α1, . . . , αd) = Γ(α1) · · ·Γ(αd)
Γ(α1 + · · ·+ αd)

.(C.14)

(For integral parameters α, a simple inductive argument
and partial integration suffice to prove (C.14).)

Note that Dir(1, . . . , 1) corresponds to the uniform
distribution over ∆d. For integral parameters α ∈ Nd,
Dir(α) is the distribution of the spacings or consecutive
differences induced by appropriate order statistics of
i. i. d. uniformly in (0, 1) distributed random variables:
Proposition C.1. ([3, Section 6.4])
Let α ∈ Nd be a vector of positive integers and set
k := −1 +

∑d
i=1 αi. Further let V1, . . . , Vk be k random

variables i. i. d. uniformly in (0, 1) distributed. Denote
by V(1) ≤ · · · ≤ V(k) their corresponding order statistics.
We select some of the order statistics according to α:
For j = 1, . . . , d − 1 define Wj := V(pj), where pj :=∑j
i=1 αi. Additionally, we set W0 := 0 and Wd := 1.
Then, the consecutive distances (or spacings) Dj :=

Wj − Wj−1 for j = 1, . . . , d induced by the selected
order statistics W1, . . . ,Wd−1 are Dirichlet distributed
with parameter α:

(D1, . . . , Dd)
D= Dir(α1, . . . , αd) .

�

In the computations of expected partitioning costs,
mixed moments of Dirichlet distributed variables show
up, which can be dealt with using the following general
statement for f ≡ 1.

Lemma C.1. (“Powers-to-Parameters”)
Let X = (X1, . . . , Xd) ∈ Rd be a Dir(α) distributed
random variable with parameter α = (α1, . . . , αd). Let
further m = (m1, . . . ,md) ∈ Zd be an integer vector
with m > −α (componentwise) and abbreviate the sums
A :=

∑d
i=1 αi and M :=

∑d
i=1mi. Then we have for an

arbitrary (real-valued) function f : ∆d → R the identity

E
[
Xm1

1 · · ·Xmd

d · f(X)
]

=
αm1

1 · · ·αmd

d

AM
· E
[
f(X̃)

]
,

where X̃ = (X̃1, . . . , X̃d) is Dir(α+ m) distributed.

Proof. Using Γ(z+n)
Γ(z) = zn for all z ∈ R>0 and n ∈ N,

we compute

E
[
Xm1

1 · · ·Xmd

d · f(X)
]

=
∫

∆d

xm1
1 · · ·xmd

d f(x) ·
xα1−1

1 · · ·xαd−1
d

B(α) µ(dx)

= B(α+ m)
B(α) ·

∫
∆d

f(x)·

xα1+m1−1
1 · · ·xαd+md−1

d

B(α+ m) µ(dx)

= B(α1 +m1, . . . , αd +md)
B(α1, . . . , αd)

· E
[
f(X̃)

]
=

(C.14)

αm1
1 · · ·αmd

d

AM
· E
[
f(X̃)

]
.

�

Theorem C.1.
(“Characterization via Gamma” [4, Thm 4.1])
Let X = (X1, . . . , Xd) be Dir(α) distributed with
α ∈ Rd>0 and let G1, . . . , Gd be d independent Gamma
distributed variables with parameters α, i.e., Gi D=
Gamma(αi). Further define S = G1 + · · ·+Gd. Then

X D=
(
G1

S
, . . . ,

Gd
S

)
.

�

Lemma C.2. (“Aggregation”)
Let X = (X1, . . . , Xd) ∈ Rd be a Dir(α) distributed
random variable with parameter α = (α1, . . . , αd). For
two components 1 ≤ i < j ≤ d define the “aggregated
vector” X̂ = (X̂1, . . . , X̂d−1) with

X̂l =


Xl, if l < j ∧ l 6= i;
Xi +Xj , if l = i;
Xl+1, if l ≥ j,

i. e., the ith and jth components have been added up.
Then, X̂ is Dir(α̂) distributed with the aggregated pa-
rameter vector α̂ = (α̂1, . . . , α̂d−1) where

α̂l =


αl, if l < j ∧ l 6= i;
αi + αj , if l = i;
αl+1, if l ≥ j.

Proof. Using Theorem C.1, we have X D= G/S for G =
(G1, . . . , Gd) with Gi D= Gamma(αi) for i = 1, . . . , d and
S = G1 + · · · + Gd. Defining the aggregated Gamma
vector Ĝ = (Ĝ1, . . . , Ĝd−1) analogously to X̂ via

Ĝl =


Gl, if l < j ∧ l 6= i;
Gi +Gj , if l = i;
Gl+1, if l ≥ j,

16

we get again by Theorem C.1 that X̂ = Ĝ/S has a
Dir(α̂) distribution, as claimed. �

Lemma C.3. (“Zoom”) Let X = (X1, . . . , Xd) ∈ Rd
be a Dir(α) distributed random variable with parameter
α = (α1, . . . , αd). For two components 1 ≤ i < j ≤
d define the “zoom variable” X◦ = Xi

Xi+Xj
. Then,

(X◦, 1−X◦) is Dir(αi, αj) distributed.

Proof. As in the proof of Lemma C.2, we use Theo-
rem C.1 to write X D= G/S for G = (G1, . . . , Gd) with
Gi

D= Gamma(αi) for i = 1, . . . , d and S = G1+· · ·+Gd.
Then, X◦ D= Gi/(Gi+Gj) and by applying Theorem C.1
once more, X◦ D= Dir(αi, αj). �

Lemma C.4. (“Geometric Beta integrals”)
Let a ≥ b > 0 be two integer constants. Then with c = 1
or c = 2, the integral∫ 1

0

xa(1− x)b
1
c − x(1− x)

dx

has the value given in Figure 4 (page 9).

We require a ≥ b just for convenience of notation;
the integrals are symmetric in a and b.

Proof. In both cases, we find recurrences for the polyno-
mial long division of the integrand where we first decre-
ment a and b simultaneously by 1 until b becomes 0.
Then, we decrement a by 3 (for c = 1) resp. by 4 (for
c = 2). More precisely with I(c)

a,b := xa(1−x)b

1
c−x(1−x) , we have

for a ≥ b ≥ 0:

I
(1)
a+1,b+1 − I

(1)
a,b = −xa(1− x)b and

I
(1)
a+3,b + I

(1)
a,b = (x+ 1)xa(1− x)b.

Together with the base cases

I
(1)
0,0 = 1

1− x(1− x) ,

I
(1)
1,0 = x

1− x(1− x) and

I
(1)
2,0 = 1 + I

(1)
1,0 − I

(1)
0,0

we get a telescoping recurrence for the integrand I(1)
a,b

that allows to write the fraction as a polynomial in
x plus a multiple of one of the base cases (I(1)

d,0 for
d = (a− b) mod 3 to be precise). The advantage of this
representation is that it can easily be integrated term-
wise: The polynomials trivially and the base cases using
suitable linear combinations of the anti-derivatives∫ 1

1− x(1− x) dx = 2√
3

arctan
(

2√
3
x− 1√

3

)
∫ 2x− 1

1− x(1− x) dx = ln
(
1− x(1− x)

)

We thus obtain a recurrence for the integrals, which
again directly telescopes. Simplifying the involved
Beta function terms gives the “closed form” shown in
Figure 4. (For the sums involved in this term, we could
not find more succinct representations.) This finishes
the proof of the first part (c = 1).

For c = 2, the recurrence is only slightly different:

I
(2)
a+1,b+1 −

1
2I

(2)
a,b = −xa(1− x)b and

I
(2)
a+4,b + 1

4I
(2)
a,b = (1

2 + x(x+ 1))xa(1− x)b.

with the base cases

I
(2)
0,0 = 1

1
2 − x(1− x)

,

I
(2)
1,0 = x

1
2 − x(1− x)

I
(2)
2,0 = 1 + I

(2)
1,0 − 1

2I
(2)
0,0 and

I
(2)
3,0 = x+ 1 + 1

2I
(2)
1,0 − 1

2I
(2)
0,0 .

Term-wise integration gives again a telescoping recur-
rence for the geometric beta integral with c = 2, where
we use the anti-derivatives∫ 1

1
2 − x(1− x)

dx = −2 arctan(1− 2x)∫ 2x− 1
1
2 − x(1− x)

dx = ln
(
1− 2x(1− x)

)
to integrate the base cases. The remaining steps are as
for the c = 1 case. �

D Detailed Computations of Expected Toll
Functions

In this appendix, we give detailed computations of
the expected number of branch misses in the first
partitioning steps of CQS and YQS, respectively, which
means in particular to derive the values for aCQS and
aYQS given in Theorem 5.1.

The computations heavily use the lemmas about
Dirichlet distributed random variables from Appen-
dix C, and the following notation is excessively used:
We write ED(α)[f(X)] for the expectation of any term
f(X) that depends on X where X D= Dir(α), i.e., for-
mally for α ∈ Rd>0

ED(α)[f(X)] =
∫

∆d

f(x)
xα1−1

1 · · ·xαd−1
d

B(α) µ(dx) ,

where ∆d is the standard (d − 1)-dimensional simplex,
see (C.11). Here, X is to be understood as a formal pa-
rameter, i.e., a local, bound variable whose distribution
potentially differs between two ED(◦)[◦] terms. We can

17

Scheme Miss Rate (q = p(1− p))

1-bit 2q

2-bit sc q

1− 2q

2-bit fc 2q2 + q

1− q

Table 3: The steady-state miss-rate functions for
our branch prediction schemes, given in terms of
q = p(1−p). This change of variable is possible since
the functions are symmetric: fbps(p) = fbps(1 − p)
for all p ∈ [0, 1]

express the abbreviation terms γ(c)
a,b (see eq. (5.11) on

page 8) concisely as Dirichlet expectation:

γ
(c)
a,b = ED(a,b)

[
X1X2

1
c −X1X2

]
.(D.15)

Moreover, we abbreviate αi = ti+1 and κ = k+1 =
α1 + · · ·+αs, as those terms occur very often below, so
that we need a more convenient way to write them.

D.1 Classic Quicksort. As already discussed in
the main text, for CQS the two comparison location
behave symmetrically, which simplifies analysis. More
precisely, we have for f the steady-state miss-rate
function of the used branch prediction scheme

E[TBM (n)] = E[C(c1)
n f(P(c1)

taken)] + E[C(c2)
n f(P(c2)

taken)]
=

(
E[D1f(D1)] + E[D2f(D2)]

)
n + O(1)

=
symmetry of f

E[(D1 +D2)f(D1)]n + O(1)

= E[f(D1)]n + O(1) .

The second equation uses the quantities given in Ta-
ble 4. This gives a more analytical proof of equa-
tion (5.4) (page 6). With the abbreviation

gx,y = ED(x,y)[f(X1)] = ED(x,y)[f(X2)]

we obtain aCQS = gα1,α2 as claimed in Theorem 5.1 —
it only remains to show that, upon inserting the actual
steady-state miss-rate functions (collected in Table 3 for
convenience), gx,y has the following explicit terms:

(i) 1-bit: gx,y = 2xy/(x+ y)2,

(ii) 2-bit sc: gx,y = 1
2γ

(2)
x,y,

(iii) 2-bit fc: gx,y = 2xy
(x+y)2 γ

(1)
x+1,y+1 + γ(1)

x,y.

Location i E[C(i)
n |D]

/
n P(i)

taken

i = c1 D1 D1
i = c2 D2 D2
i = c 1 D1

i = y1 D1 +D2 D2 +D3
i = y2 (D1 +D2)(D2 +D3) D2

D2+D3
i = y3 D3 D1 +D2
i = y4 D3(D1 +D2) D1

D1+D2

Table 4: Summary of the quantities used for the
analysis of branch misses in CQS (i = c1, c2, c)
and YQS (i = y1, y2, y3, y4). For the execution
frequency, the table lists only the leading term
coefficients, e.g., E[C(c1)

n |D] = D1n+O(1).

We compute

ED(x,y)[f1-bit(X1)] = ED(x,y)[2X1X2]

=
Lemma C.1

2xy
(x+ y)2

for 1-bit prediction;

ED(x,y)[f2-bit sc(X1)] = ED(x,y)

[
X1X2

1− 2X1X2

]
= 1

2 ED(x,y)

[
X1X2

1
2 −X1X2

]
=

(D.15)

1
2γ

(2)
x,y

for the 2-bit sc predictor and finally with the 2-bit fc
predictor

ED(x,y)[f2-bit fc(X1)]

= ED(x,y)

[
2(X1X2)2 +X1X2

1−X1X2

]
=

Lemma C.1

2xy
(x+ y)2

ED(x+1,y+1)

[
X1X2

1−X1X2

]
+ ED(x,y)

[
X1X2

1−X1X2

]
=

(D.15)

2xy
(x+ y)2

γ
(1)
x+1,y+1 + γ(1)

x,y.

Together with Theorem 4.1, this proves the part of
Theorem 5.1 concerning CQS.

D.2 Yaroslavskiy’s Quicksort. In YQS, we
have four instead of just two comparisons locations,
and here, no symmetries can be exploited to ease
computations. Nevertheless, essentially the same pro-
cedure as for CQS remains possible when using further
properties of Dirichlet vectors.

18

We consider the four comparison locations of YQS
separately to keep the presentation accessible. For
convenience, Table 4 collects the needed information
about the comparison locations: how often they are
executed and with which probability the corresponding
branches are taken, both averaged over all choices for
the ordinary elements, but conditional on fixed D, i.e.,
fixed pivot values.

D.2.1 C(y1). For the first comparison location, we
get (using linearity of the expectation and Lemma C.1)

E[C(y1)
n f(P(y1)

taken)]/n
= ED(α)[(X1 +X2) · f(X2 +X3)] + O(1

n)

= α1

κ
ED(α+(1,0,0))[f(X2 +X3)]

+ α2

κ
ED(α+(0,1,0))[f(X2 +X3)] + O(1

n).

Expectations of this form are easily dealt with using
aggregation (Lemma C.2):

ED(α+(1,0,0))[f(X2 +X3)] = ED(α1+1,α2+α3)[f(X2)]
= gα1+1,α2+α3 ,

ED(α+(0,1,0))[f(X2 +X3)] = ED(α1,α2+α3+1)[f(X2)] .
= gα1,α2+α3+1.

(Note that X is a three-dimensional vector on the left
hand sides and a two-dimensional one on the right hand
sides.)

The total contribution of the first comparison loca-
tion to the expected number of branch misses is then
simply

E[C(y1)
n f(P(y1)

taken)] =(α1

κ
gα1+1,α2+α3 + α2

κ
gα1,α2+α3+1

)
n + O(1)

D.2.2 C(y2). For the second comparison location,
the involved terms get a little messier. The leading term
coefficient of E[C(y2)

n f(P(y2)
taken)] is (cf. Table 4)

ED(α)

[
(X1 +X2)(X2 +X3) · f

(
X2

X2 +X3

)]
.

After expanding (X1 +X2)(X2 +X3) and splitting the
expectation into summands, we can use the powers-to-
parameters rule (Lemma C.1) to get four simpler terms,
the first two of which are

ED(α)

[
X1X2 f

(
X2

X2+X3

)]
=

α1α2
κ2 ED(α+(1,1,0))

[
f
(

X2
X2+X3

)]
,

ED(α)

[
X2X2 f

(
X2

X2+X3

)]
=

α2
2
κ2 ED(α+(0,2,0))

[
f
(

X2
X2+X3

)]
,

and the remaining two are similar. Here, the argument
of the steady-state miss-rate function f is a fraction,
more precisely, it is the ratio between component X2
and the “subtotal” X2 + X3. This means, the rest of
the vector (namelyX1) is immaterial for the expectation
and we can “zoom” in using Lemma C.3:

ED(α+(1,1,0))

[
f
(

X2
X2+X3

)]
= ED(α2+1,α3)[f(X1)]

= gα2+1,α3 ,

and similarly for the other terms.
Adding up the four summands, the overall contri-

bution of C(y2) is then

E[C(y2)
n f(P(y2)

taken)] =(
α1α2

κ2
gα2+1,α3 + α1α3

κ2
gα2,α3+1 + α2

2

κ2
gα2+2,α3

+ α2α3

κ2
gα2+1,α3+1

)
n + O(1).

D.2.3 C(y3). The third comparison location is very
similar to C(y1) (in fact even a little simpler), so we only
give the main steps:

E[C(y3)
n f(P(y3)

taken)]/n
= ED(α)[X3 · f(X1 +X2)] + O(1

n)

= α3

κ
ED(α1+α2,α3+1)[f(X1)] + O(1

n)

= α3

κ
gα1+α2,α3+1 + O(1

n).

D.2.4 C(y4). The last comparison location is simi-
lar to C(y2); the main trick is again to use the zooming
lemma. We compute

E[C(y4)
n f(P(y4)

taken)]/n

= ED(α)

[
X3(X1 +X2) · f

(
X1

X1 +X2

)]
+ O(1

n)

= α1α3

κ2
ED(α+(1,0,1))

[
f
(

X1
X1+X2

)]
+ α2α3

κ2
ED(α+(0,1,1))

[
f
(

X1
X1+X2

)]
+ O(1

n)

= α1α3

κ2
gα1+1,α2 + α2α3

κ2
gα1,α2+1 + O(1

n).

Adding up the contributions of all four comparison
locations, we obtain the the value claimed for aYQS in
Theorem 5.1.

19

	1 Introduction
	2 Generalized Quicksort
	3 Notation and Preliminaries
	4 Generalized Quicksort Recurrence
	5 Branch Mispredictions
	6 Discussion
	A Index of Used Notation
	B Steady-State Miss-Rate Functions
	C Properties of the Dirichlet Distribution
	D Detailed Computations of Expected Toll Functions

