
Sesquickselect: One and a half pivots for
cache-efficient selection∗

Conrado Martínez† Markus Nebel‡ Sebastian Wild§

January 1, 2019

Abstract: Because of unmatched improvements in CPU performance, memory
transfers have become a bottleneck of program execution. As discovered in recent
years, this also affects sorting in internal memory. Since partitioning around several
pivots reduces overall memory transfers, we have seen renewed interest in multiway
Quicksort. Here, we analyze in how far multiway partitioning helps in Quickselect.

We compute the expected number of comparisons and scanned elements (approxi-
mating memory transfers) for a generic class of (non-adaptive) multiway Quickselect
and show that three or more pivots are not helpful, but two pivots are. Moreover, we
consider “adaptive” variants which choose partitioning and pivot-selection methods
in each recursive step from a finite set of alternatives depending on the current
(relative) sought rank. We show that “Sesquickselect”, a new Quickselect variant
that uses either one or two pivots, makes better use of small samples w.r.t. memory
transfers than other Quickselect variants.

1. Introduction
We consider the selection problem: finding the mth smallest element within an unsorted array
of n distinct elements. Quickselect [17] is the earliest (published) algorithm for general selection
that runs in linear time (in expectation), and it forms the basis of practical implementations
and more advanced algorithms.

From a theoretical perspective, this problem might be considered solved: The randomized
Floyd-Rivest algorithm [12, 22] uses n + min{m,n −m} + o(n) comparisons in expectation,
and this is optimal up to lower order terms [8]. The Floyd-Rivest algorithm is a variant
of Quickselect that uses a large random sample of Θ(n2/3 log1/3 n) elements from which it

∗This work has been partially supported by funds from the Spanish Ministery of Economy, Industry and
Competitiviness (MINECO) and the European Union (FEDER) under grant GRAMM (TIN2017-86727-C2-1-
R), and by funds from the Catalan Government (AGAUR) under grant 2017 SGR 786. The last author is
supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Research
Chairs Programme.

†Department of Computer Science, Universitat Politècnica de Catalunya, Spain.
Email: conrado @ cs.upc.edu

‡Faculty of Technology, Technische Universität Bielefeld, Germany.
Email: nebel @ techfak.uni-bielefeld.de

§David R. Cheriton School of Computer Science, University of Waterloo, Canada.
Email: wild @ uwaterloo.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/237018757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Sesquickselect: One and a half pivots for cache-efficient selection

(recursively) selects two pivots P1 and P2, P1 < P2, so that their ranks surround m with high
probability. Partitioning the input into the elements < P1, between P1 and P2, and > P2,
respectively, yields a subproblem of size o(n) with high probability.

Standard libraries do not use the asymptotically optimal algorithms [38, 1], presumably
because for moderate-size inputs, lower order terms and their large hidden constants are not
negligible, making variants with less overhead desirable. For example, the GNU implemen-
tation of the C++ STL uses introspective median-of-3 Quickselect for std::nth_element.1
Introspective sorting was suggested by Musser [31] and refined by Valois [38].

Given the similarity of Quicksort and Quickselect, it is natural and tempting to employ the
same optimizations for selection that work well for sorting. Indeed, this is exactly what is done
in the GNU STL; the Quickselect implementation uses the same partitioning method, the same
pivot rule (median of three elements), the same protection mechanism against bad-case inputs
(a recursion-depth limit of 2dlg(n+ 1)e with a Θ(n logn) worst-case method based on heapsort),
and the same base case for the recursion (Insertionsort) as in the Quicksort implementation.

On second thought, some of these design decisions are quite questionable in the context of
selection. First, a linear worst case can be achieved instead of the Θ(n logn) one [6, 38]. Second,
it is known that choosing the pivot adaptively, i.e., depending on the value of m (mimicking
the asymptotically optimal Floyd-Rivest algorithm!) improves the average costs by a significant
factor even for small sample sizes [29].

Finally, in light of the recent success of multi-pivot Quicksort [4, 27, 32, 39], a question
programmers will face is whether and how multiway partitioning should also be used for
Quickselect. Using YBB-partitioning2 – the dual-pivot method used in Arrays.sort of Oracle’s
Java runtime library [43, 42] – was shown to be of no advantage for Quickselect w.r.t. the
number of comparisons (averaging over all possible ranks to be selected) [41]. YBB partitioning
can reduce the comparison count in sorting, but the main advantage of multiway partitioning
lies in saving memory transfers, and indeed, the latter is improved using dual-pivot Quickselect
(see § 4). The purpose of this article is thus a comprehensive assessment of the potential of
multiway partitioning in Quickselect.

To this end, we present an average-case analysis of both classical cost measures and memory
transfers. The latter is formalized as the number of scanned elements: the accumulated range
scanned by all index/pointer variables used in the partitioning strategy. This has been shown
to be a good indicator for the number of cache misses that occur during partitioning [32, 4].

Our focus is on low-overhead algorithms suitable for library implementations, and hence on
small fixed-size samples. Taking inspiration from Floyd-Rivest, we propose “Sesquickselect”,3
an adaptive Quickselect variant that uses either one or two pivots from a sample of k elements,
and we give strong evidence for its optimality w.r.t. scanned elements subject to a given sample
size.

Overview and Method. We first consider multiway partitioning and pivot sampling in full
generality (partitioning into any constant number s ≥ 2 of segments while choosing pivots from
samples of any constant size k), under the assumption that a uniformly chosen random rank is
searched. These so-called “grand averages” [28] can be computed using a distributional master
theorem [39] derived from Roura’s continuous master theorem [34]. We can conclude that more
than three segments are indeed not helpful in Quickselect. This matches the intuition that a

1 The code can be browsed online: https://gcc.gnu.org/onlinedocs/gcc-8.1.0/libstdc++/api/a00527_source.html#l04748.
2 Named after its inventors Vladimir Yaroslavskiy, Jon L. Bentley, and Joshua Bloch.
3 After the Latin prefix sesqui- meaning “one and a half”.

https://gcc.gnu.org/onlinedocs/gcc-8.1.0/libstdc++/api/a00527_source.html#l04748

1. Introduction 3

large s “should” not help since all but one segment will be discarded for good, making further
subdivisions superfluous. The precise argument requires some care, though.

Unfortunately, the grand-average analysis does not extend to adaptive methods like Sesquick-
select. For the second part, we hence consider selecting the α-quantile in a large array for
a fixed α ∈ (0, 1) (extending techniques from [29]). We give an elementary proof for the
correctness of a resulting integral equation for the leading-term coefficient as a function of α
(under reasonable assumptions fulfilled for our applications) that appears to be novel. The
setting with two parameters makes computations appreciably more challenging. For Quickselect
with YBB partitioning (without pivot sampling) and Sesquickselect with k = 2 we solve the
integral equations analytically, and we obtain precise numerical solutions for more general cases.
From these, we can derive promising candidates of cache-optimal Quickselect variants for all
practical sample sizes.

Outline. We give an overview of previous work in the remainder of this section. § 2 introduces
notation and preliminaries. In § 3, we state a general distributional recurrence of costs. § 4
discusses the analysis for random ranks. We then switch to fixed ranks and derive the integral
equation in § 5. We solve it for Quickselect with YBB-partitioning (§ 6) and for the novel
“Sesquickselect” algorithm (§ 7). Our paper concludes with a discussion of our findings (§ 8).

The appendix contains a comprehensive list of notation, as well as some technical proofs
and details of the computations.

1.1. Previous Work
The first published analysis of (classic) Quickselect by Knuth served as one of two illustrating
examples in an invited address at the IFIP Congress 1971, with the goal to advertise the
emerging area of analysis of algorithms [24, 25]. The expected number of comparisons in classic
Quickselect is E[Cn,m] = 2

(
(n + 1)Hn − (n + 3 −m)Hn+1−m − (m + 2)Hm + n + 3

)
, where

Hn =
∑n
i=1

1
i .

An asymptotic approximation for selecting the α-quantile, α ∈ (0, 1) fixed, follows with
m = αn: E[Cn,αn] = 2(h(α)+1)·n−8 lnn±O(1), n→∞, where h(x) = −x ln x−(1−x) ln(1−x);
(here we set 0 ln 0 := 0).

Quickselect has been extensively studied. The variance is quadratic and precisely known [33,
21]; large deviations from the mean are very unlikely [9, 14]. Stochastic limits laws have been
established for the random costs divided by n for random ranks [28], small ranks [18] and fixed
quantiles [16].

Like for Quicksort, better pivot selection methods are important in Quickselect. The widely
used median-of-three version was analyzed in [2] and [20], and the generalization of using the
median of any fixed size sample (“median-of-k”) in [30] (expectation and variance for random
ranks) and in [15] (for fixed ranks); refined limit laws for the case where k grows polynomially
with n were recently derived in [37]. Choosing the order statistic of the sample depending on
m/n was studied in [29] (w.r.t. expectation) and [23] (limit laws, including growing k).

If the objects to select from are strings, symbol comparisons rather than key comparisons are
the measure of interest; Quickselect has linear expected cost also in this model [7]. Quickselect
with YBB partitioning was analyzed in [41] and Krenn [26] considered the comparison-optimal
dual-pivot partitioning method of Aumüller and Dietzfelbinger [3].

4 Sesquickselect: One and a half pivots for cache-efficient selection

2. Preliminaries
We introduce important notation here; see Appendix A for a comprehensive list. O-terms
are bounds on the absolute value; we write g = f ± O(e) to emphasize this. f ∼ g means
f/g → 1. Vector’s are written in boldface, e.g., x = (x1, x2, x3), and operations are understood
componentwise: x + 1 = (x1 + 1, x2 + 1, x3 + 1). We use the notation xn and xn of [13] for
rising resp. falling (factorial) powers. (The former is also known as Pochhammer function).

We use capital letters for random variables and E for expectation. X D= Y denotes equality
in distribution. U [1..n] is the discrete uniform distribution over [1..n], U(0, 1) the continuous
uniform distribution over (0, 1). We next recall the beta distribution and some of its properties.
It will play a pivotal role in our analysis.

2.1. The beta distribution and its relatives
The beta distribution has two parameters α, β ∈ R>0 and is written as Beta(α, β). If X D=
Beta(α, β), we have X ∈ (0, 1) and X has the density

f(x) = xα−1(1− x)β−1

B(α, β) , x ∈ (0, 1),

where B(α, β) = Γ (α)Γ (β)/Γ (α+ β) is the beta function. The reason why the beta arise in
our analysis is its connection to order statistics: If we assume the input consists of n i. i.d.
(independent and identically distributed) U(0, 1) random variables, the `th smallest element of
a sample of k elements has a Beta(`, k + 1− `) distribution.

For multi-pivot methods, we will encounter the Dirichlet distribution Dir(α), which is the
multivariate version of the beta distribution. For X D= Dir(α) with α ∈ Rd>0, we use the
convention that Xd = 1 −X1 − · · · − Xd−1 and specify X as a d-dimensional vector. Then
X has the density f(x) = xα−1/B(α), where B(α) = Γ (α1) · · ·Γ (αd)/Γ (α1 + · · ·αd) is the
d-dimensional beta function.

For subproblem sizes, we will furthermore find the Dirichlet-multinomial distribution
DirMult(n,α) D= Mult(n,Dir(α)), which is a mixed multinomial distribution with a Dirichlet-
distributed parameter. For the 2d case, the distribution is called beta binomial distribution,
written as BetaBin(n, α, β).

Since the binomial distribution is sharply concentrated, one can use Chernoff bounds to show
that BetaBin(n, α, β)/n converges to Beta(α, β) in a specific sense. We can obtain stronger error
bounds by directly comparing the PDFs, and the argument generalizes to higher dimensions.
The two-dimensional case appears in [39, Lemma 2.38]; here we extend it to general (fixed)
s ≥ 2. We following the notation used there, in particular we write Σx =

∑s
i=1 xi.

Lemma 2.1 (Local Limit Law for Dirichlet-multinomial): Let (I(n))n∈N≥1 be a family
of random variables with Dirichlet-multinomial distribution, I(n) D= DirMult(n,α) where
α ∈ ({1} ∪ R≥2)s is fixed, and let fD(z) be the density of the Dir(α) distribution. Then we
have uniformly in z ∈ (0, 1)s (with Σz = 1) that

ns−1 · P
[
I(n) = bz(n+ 1)c

]
= fD(z) ± O(n−1),

as n → ∞. That is, I(n)/n converges to Dir(α) in distribution, and the probability weights
converge uniformly to the limiting density at rate O(n−1).

The proof is given in Appendix C.

2. Preliminaries 5

Remark 2.2: Since fD is a polynomial in z, it is in particular bounded and Lipschitz-continuous
in the closed domain z ∈ [0, 1]s with Σz = 1. Hence, the local limit law also holds for the
random variables I(n) + c for any constant c. We use this for subproblem sizes, which are of
this form: Jr = Ir + tr.

2.2. Hölder-Continuity
A function f : I → R defined on a bounded interval I is called Hölder-continuous with exponent
h ∈ (0, 1] when

∃C ∀x, y ∈ I :
∣∣f(x)− f(y)

∣∣ ≤ C|x− y|h.

Hölder-continuity is a form of smoothness of functions that is stricter than (uniform) continuity,
but slightly more liberal than Lipschitz-continuity (which corresponds to h = 1). It provides
a useful requirement in some of our theorems; f : [0, 1] → R with f(z) = z ln(1/z) is a
stereotypical function that is Hölder-continuous (for any h ∈ (0, 1)), but not Lipschitz. We will
also need Hölder-continuity for functions from Rn to R; we extend the definition by requiring∣∣f(x)− f(y)

∣∣ ≤ C‖x− y‖h, i.e., using the Euclidian norm.
The most useful consequence of Hölder-continuity is given by the following lemma: an error

bound on the difference between an integral and the Riemann sum.

Lemma 2.3: Let f : [0, 1]d → R be Hölder-continuous (w.r.t. ‖ · ‖2) with exponent h. Then∫
x∈[0,1]d

f(x) dx = 1
nd

∑
i∈[0..n−1]d

f(i/n) ± O(n−h),

as n→∞.

The proof is given in Appendix B.
We considered only the unit interval resp. unit hypercube as the domain of functions rather

than a product of general compact intervals, but this is no restriction: Hölder-continuity (on
bounded domains) is preserved by addition, subtraction, multiplication and composition (see,
e.g., [36, § 4.6]). Since any linear function is Lipschitz, the above result holds for Hölder-
continuous functions f : [a1, b1]× · · · × [ad, bd]→ R.

If our functions are defined on a bounded domain, Lipschitz-continuity implies Hölder-
continuity and Hölder-continuity with exponent h implies Hölder-continuity with exponent
h′ < h. A real-valued function is Lipschitz if its derivative is bounded resp. if all its partial
derivatives are bounded (in the multivariate case). The latter follows form the mean-value
theorem (in several variables) and the Cauchy-Schwartz inequality.

2.3. The Distributional Master Theorem
To solve the recurrences in §4, we use the “distributional master theorem” (DMT) [39, Thm. 2.76],
reproduced below for convenience. It is based on Roura’s continuous master theorem [34],
but reformulated in terms of distributional recurrences in an attempt to give the technical
conditions and occurring constants in Roura’s original formulation a more intuitive, stochastic
interpretation. We start with a bit of motivation for the latter.

The DMT is targeted at divide-and-conquer recurrences where the recursive parts have a
random size like in Quickselect. Because of the random subproblem sizes, a traditional recurrence
for expected costs has to sum over all possible subproblem sizes, weighted appropriately. That
way, the direct correspondence between the recurrence and the algorithmic process is lost. A
distributional recurrence avoids this. It describes the full distribution of costs, where the cost

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf8a

6 Sesquickselect: One and a half pivots for cache-efficient selection

for larger problem sizes is described by a “toll term” (the partitioning costs in Quickselect) plus
the contributions of recursive calls.

Such a distributional formulation requires the toll costs and subproblem sizes to be stochas-
tically independent of the recursive costs when conditioned on the subproblem sizes. In typical
applications, this is fulfilled when the studied algorithm guarantees that the subproblems on
which it calls itself recursively are of the same nature as the original problem. Such a form of
randomness preservation is also required for the analysis using traditional recurrences.

The DMT allows us to compute an asymptotic approximation of the expected costs directly
from the distributional recurrence. Intuitively speaking, it is applicable whenever the relative
subproblem sizes of recursive applications converge to a (non-degenerate) limit distribution as
n→∞ (in a suitable sense; see Equation (2) below). The local limit law provided by Lem. 2.1
gives exactly such a limit distribution.

Theorem 2.4 (DMT [39, Thm. 2.76]):
Let (Cn)n∈N0 be a family of random variables that satisfies the distributional recurrence

Cn
D= Tn +

s∑
r=1

A(n)
r · C

(r)
J(n)
r
, (n ≥ n0), (1)

where the families (C(1)
n)n∈N, . . . , (C(s)

n)n∈N are independent copies of (Cn)n∈N, which are
also independent of (J (n)

1 , . . . , J (n)
s) ∈ {0, . . . , n− 1}s, (A(n)

1 , . . . , A(n)
s) ∈ Rs≥0 and Tn. Define

Z(n)
r = J (n)

r /n, r = 1, . . . , s, and assume that they fulfill uniformly for z ∈ (0, 1)

n · P
[
Z(n)
r ∈ (z − 1

n , z]
]

= fZ∗r (z) ± O(n−δ), (2)

as n→∞ for a constant δ > 0 and a Hölder-continuous function fZ∗r : [0, 1]→ R. Then fZ∗r is
the density of a random variable Z∗r and Z(n)

r
D−→ Z∗r .

Let further

E
[
A(n)
r

∣∣ Z(n)
r ∈ (z − 1

n , z]
]

= ar(z) ± O(n−δ), (3)

as n→∞ for a function ar : [0, 1]→ R and require that fZ∗r (z) · ar(z) is also Hölder continuous
on [0, 1]. Moreover, assume E[Tn] ∼ Knα logβ(n), as n → ∞, for constants K 6= 0, α ≥ 0
and β > −1. Then, with H = 1−

∑s
r=1 E[(Z∗r)αar(Z∗r)], we have the following cases.

1. If H > 0, then E[Cn] ∼ E[Tn]
H

.

2. If H = 0, then E[Cn] ∼ E[Tn] lnn
H̃

with H̃ = −(β + 1)
s∑
r=1

E[(Z∗r)αar(Z∗r) ln(Z∗r)].

3. If H < 0, then E[Cn] = O(nc) for the c ∈ R with
s∑
r=1

E[(Z∗r)car(Z∗r)] = 1. �

2.4. Adaptive Quickselect
We consider the following generic family of Quickselect variants: In each step, we partition the
input into s ≥ 2 segments, choosing the s − 1 pivots P1, . . . , Ps−1 as order statistics from a
random sample of the input. The pivot-selection process is described by two parameters: the
sample size k and the quantiles vector τ = (τ1, . . . , τs) ∈ [0, 1]s. The `th pivot, ` = 1, . . . , s−1, is

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf8a

2. Preliminaries 7

the (τ1 + · · ·+τ`)-quantile of the sample. Alternatively, we use the vector t = (k+1)τ −1 ∈ Ns≥0
to specify how many elements are omitted between the pivots. As an example, median-of-3 (for
classic s = 2) corresponds to k = 3, τ = (1

2 ,
1
2) or t = (1, 1). Choosing the two largest elements

in a sample of 5 corresponds to k = 5, τ = (2
3 ,

1
6 ,

1
6) or t = (3, 0, 0). Note that τ` is the expected

fraction of elements in the `th segment, ` = 1, . . . , s. See Fig. 1 for another example.
We assume the partitioning algorithm is an instance of the generic one-pass partitioning

scheme analyzed in [39] which unifies practically relevant methods. (A similar such scheme is
considered in [4]). The details of the partitioning method are mostly irrelevant for our present
discussion, and we refer the reader to [39, §4.3] for details; important here is that partitioning
preserves randomness for recursive calls and that the expected partitioning costs are an±O(1)
for a known constant a (depending only on the partitioning method and t).

We consider adaptive Quickselect variants, which are formally given by specifying the
partitioning method and parameters s and t as a function of α = m

n . We assume a fixed, finite
portfolio of methods to choose from and the choice consists in finding the interval containing α
in a finite collection I1, . . . , Id of intervals (with I1 ∪ · · · ∪ Id = [0, 1]). We treat the parameters
as functions of α with the meaning s(α) = sv for the v ∈ [d] with α ∈ Iv, and similarly for
t(α) = t(v) and aF(α) = a(v)

F (introduced in the next section).As a specific example for an
adaptive method, consider Sesquickselect with a sample of size k = 2. There, we can choose s
and t as follows:

s(α) =

1, if α < 0.266;
2, if 0.266 ≤ α ≤ 0.734;
1, if α > 0.734;

t(α) =

(0, 1), if α < 0.266;
(0, 0, 0), if 0.266 ≤ α ≤ 0.734;
(1, 0), if α > 0.734.

Other combinations are of course possible, but we will show in § 7 that this is indeed a good
choice.

2.5. Cost Measures and Notation
We consider several measures of cost for Quickselect: C, the number of key comparisons, SE ,
the number of scanned elements (total distance traveled by pointers / scanning indices), and
WA, the number of write accesses to the array.4 The analysis can mostly remain agnostic to
this in which case we use F as placeholder for any of the above. We use the following naming
conventions for the quantities arising in our analysis:

• Fn,m for the random costs to select the mth smallest out of n elements.
• Fn,Mn is the random cost to select a (uniform) random rank Mn

D= U [1..n] from n elements.
• f(α) is the leading-term coefficients of E[Fn,m] for n→∞ and m/n→ α.
• f̄ is the leading-term coefficient of the grand average: f̄ = limn→∞ E[Fn,Mn]/n.
• AF (n,m) are the random costs of the first partitioning round; they indirectly depend on
m for adaptive methods.

• aF (α) is the leading-term coefficient of partitioning costs for n→∞ and m/n→ α.

4Write accesses are more appropriate than counting swaps for methods that move several elements at a time.

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pfaa

8 Sesquickselect: One and a half pivots for cache-efficient selection

3. Distributional Recurrence
We will focus on the expected costs, E[Fn,m], but a concise description can be given for the full
distribution. The family of random variables (Fn,m)n∈N,m∈[n] fulfills the following distributional
recurrence (notation explained below)

Fn,m
D= AF (n,m) +

s∑
`=1

1{R`−1<m<R`}F
(`)
J`,m−R`−1 (4)

for n ≥ n0; for small n < n0 costs are given by some base-case method that contributes only
O(1) to overall costs. In the general setting, we partition the input into s ≥ 2 segments around
s− 1 pivot elements. We denote by J (n) = (J (n)

1 , . . . , J (n)
s) the (vector of) resulting subproblem

sizes (for recursive calls). R(n)
1 ≤ · · · ≤ R(n)

s−1 are the (random) ranks of the pivot elements; we
set R(n)

0 = 0 and R(n)
s = n + 1 to unify notation for the outermost segments. As in (4), we

usually suppress the dependence on n in our notation for better legibility. Note that pivot
ranks and subproblem sizes are related via J` = R` − R`−1 − 1 for ` = 1, . . . , s (cf. Fig. 1).
For ` = 1, . . . , s, (F (`)

n,m)n∈N,m∈[n] are independent copies of (Fn,m)n∈N,m∈[n], which are also
independent of J (n) (and hence R(n)

1 , . . . , R(n)
s−1) and AF (n,m).

The distribution of the subproblem sizes J is discussed in detail below for the standard
non-adaptive case (§ 4). We remark that Equation (4) remains valid for adaptive variants, i.e.,
where the employed pivot sampling scheme and partitioning method are chosen in each step
depending on α = m

n , the relative rank of the sought element. (The distributions of J and R
are then functions of n and m.)

4. Random ranks
In this section we consider E[Fn,Mn], where Mn

D= U [1..n]. This “grand average” [28] is a
reasonable measure for a rough comparison of different selection methods, and its analysis is
feasible for a large class of algorithms. Indeed, an asymptotic approximation of the costs will
follow from a distributional master theorem (DMT, Thm. 2.4). We consider only non-adaptive
methods in this section, i.e., the splitting probabilities do not depend on the rank of the sought
element.

We will derive an asymptotic approximation for the grand average for a whole class of
Quickselect variants that cover the above special cases as well as many further hypothetical
versions. Our partitioning method splits the input into s ≥ 2 segments using s − 1 pivot
elements and the pivot elements are selected as order statistics from a fixed-size random sample
of the input.

We can write the costs with Fn := Fn,Mn as

Fn
D= AF (n) +

s∑
`=1

1{R(n)
`−1<Mn<R(n)

`
} · F (`)

J(n)
`
, (5)

where (F (`)
j)j∈N are independent copies of (Fn)n∈N for ` = 1, . . . , s, which are also independent

of J (n), AF (n) and Mn.
This distributional recurrence is of the shape required for the distributional master theorem

(DMT) to compute asymptotic approximations for the expected values. We next check the
technical conditions for the DMT.

4. Random ranks 9

Rank-Based World s = 4
n = 25
t = (1, 2, 2, 1)
k = 9sample P1 P2 P3

t1 t2 t3 t4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0 = R0

0 = P0

R1

P1

R2

P2

R3

P3

R4=n+1
P4 = 1

J1 J2 J3 J4

I1 I2 I3 I4t1 t2 t3 t4

Continuous-Values World
sample0 1

0 1

P1 P2 P3

P0 = = P4

D1 D2 D3 D4

Figure 1: Illustration of the notations used in the analysis; top: quantities that refer to counts (sizes of
segments and ranks of elements), bottom: quantities referring to numerical values of certain elements in
the model of sorting n i. i.d. U(0, 1) distributed numbers.

Distribution of Subproblem Sizes. For a single pivot chosen randomly (without pivot sam-
pling) we have J` D= U [0..n − 1], a discrete uniform distribution. In general, we have two
summands: J` = t` + I`. The first one accounts for the part of the sample that belongs to
the `th subproblem, which is a deterministic contribution dictated by the sampling scheme.
I` is the number of elements that were not part of the sample and were found to belong
to the `th segment in the partitioning step. I` is a random variable, and its distribution is
I`
D= BetaBin(n− k, t` + 1, k − t`), a so-called beta-binomial distribution.
The connection to the beta distribution is best seen by assuming n independent and

uniformly in (0, 1) distributed reals as input. They are almost surely pairwise distinct and their
relative ranking is a random permutation of [n], so this assumption is w.l.o.g. for our analysis.
Then, the `th subproblem contains all elements between P`−1 and P`, ` = 1, . . . , s. The spacing
D` := P` − P`−1 has a Beta(t` + 1, k − t`) distribution (by definition!), and conditional on that
spacing I` D= Bin(n − k,D`) has a binomial distribution: Once the pivot values P`−1 and P`
are fixed, any element falls between them with probability D`. The resulting mixture is the
so-called beta-binomial distribution. Note that for t = 0, t` + BetaBin(n− k, t` + 1, k − t`) =
BetaBin(n− 1, 1, s− 1) which coincides with U [0..n− 1] for s = 2.

Convergence of Relative Subproblem Sizes. In light of the stochastic representation of the
beta-binomial distribution, we know that conditional on D`, Z` = I(n)

` /n is concentrated
around D`. Bounding the errors carefully yields the required local limit law for the relative
subproblem size Z`: By Lem. 2.1, we find that Equation (2) is satisfied with δ = 1 and
the limiting density fZ∗

`
(z) = zt`(1 − z)k−t`−1/B(t` + 1, k − t`), which is the density of the

Beta(t` + 1, k− t`) distribution. fZ∗
`
is clearly Lipschitz (and hence Hölder) continuous on [0, 1]

since its derivative is bounded in [0, 1], so the conditions of the DMT are fulfilled.

Conditional Convergence of Coefficients. For the second condition, Equation (3), we have
to consider the distribution of [R`−1 < Mn < R`] conditional on the relative subproblem size
J (n)
` /n for the `th recursive call. Since Mn is uniformly distributed, only the number of choices

10 Sesquickselect: One and a half pivots for cache-efficient selection

for Mn in the considered range [R`−1 < Mn < R`] is important: R` − R`−1 − 1 = J`. So we
have P

[
R(n)
`−1 < Mn < R(n)

`

∣∣ J (n)
`

]
= J(n)

`
n , so Equation (3) is fulfilled with a`(z) = z and δ = 1.

fZ∗
`
(z) · a`(z) is Lipschitz and hence Hölder-continuous as required.

Solution for linear toll functions. We can hence apply the master theorem. The Z∗` from
Thm.2.4 correspond exactly to our spacings D`

D= Beta(t`+1, k−t`). We have E[AF (n)] ∼ aF ·n
with aF a constant depending on the method and F . So α = 1 and β = 0 and we compute

H = 1−
s∑
`=1

E
[
Dα
` a`(D`)

]
= 1−

s∑
`=1

E
[
D2
`

]
= 1−

s∑
`=1

(t` + 1)2

(k + 1)2
.

Since (t`+1)2

(k+1)2 < t`+1
k+1 and

∑s
`=1

t`+1
k+1 = 1, we have H > 0. So by Case 1, we find E[Fn] ∼ aF

H · n.

4.1. Generic Multiway Partitioning
The partitioning methods of practical relevance – classic Hoare-Sedgewick partitioning (s =
2) [35], Lomuto partitioning [5] (s = 2), YBB partitioning (s = 3) [19] and “Waterloo
partitioning” (s = 4) [27] – have been generalized to arbitrary s and analyzed in [39, Chapter 5]
with respect to the expected number of comparisons, scanned elements and write accesses. By
using the respective values for aF given in [39, Thm. 7.1] in the asymptotic expression for E[Fn],
we obtain the overall costs for selecting random ranks; (see Tab. 1 for some results).

4.2. Discussion
Although the results for generic s-way partitioning are readily available we refrain from stating
them in full generality since the expressions are lengthy and many variants are not promising
for selection. Intuitively, a large s can hardly be useful when we always recurse into only a
single subproblem.

s Name E[Cn]/n E[SEn]/n E[WAn]/n

2 classic 3 3 1
3 YBB 3.16 2.6 1.83
4 Waterloo 3.3 2.5 2
5 3.5 2.7 2.35
6 3.6 2.8 2.53
7 3.7857142 3.047619 2.83
8 3.857142 3.2142857 3.03571428

Table 1: The coefficient of the linear term of the expected number of comparisons, scanned elements
and write accesses to the array for Quickselect with s-way partitioning without pivot sampling (t = 0)
when searching a random rank (“grand averages”).

The optimal number of pivots Tab. 1 confirms this intuition; indeed for the classical cost
measures of key comparisons (Cn) and write access (WAn, related to key exchanges) there is no
improvement whatsoever from multiway partitioning in Quickselect (as pointed out before [41]).
In terms of scanned elements (SEn), however, significant savings are observed. Here, Tab. 1
contains a surprise: the minimum for scanned elements is attained for s = 4! This is against

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pff4

4. Random ranks 11

the intuition since there will always be (at least) two adjacent segments whose subdivision was
fruitless. How can this possibly be better than avoiding the extra work to produce a fourth
segment?

The answer is that s = 4 is indeed suboptimal; but our comparison in Tab. 1 is not quite
fair. We do not select pivots from a sample, but the multiway methods do have to sort their
s − 1 pivots to operate correctly. We therefore allow multiway methods to enjoy pivots of
better quality compared to methods with smaller s, thus giving the former an undue advantage.
This unfairness is inherent in any such comparison (as previously noticed in the context of
sorting [39, 40]).

Simulation by binary partitioning. A fair evaluation of the usefulness of multiway partitioning
is nevertheless possible by considering the following (hypothetical) Quickselect variant: We
select pivots as we would for the s-way method, but then use several rounds of classic single-pivot
partitioning to obtain the same segments as with one round of the s-way method. For example,
the four segments produced by Waterloo partitioning could also be obtained by first partitioning
around the middle pivot and then the resulting left resp. right segment around the small resp.
large pivot.

Note that the first round uses the median of three elements (the middle pivot), whereas the
second round effectively runs with pivots selected uniformly from their subrange. By comparing
the cost of both variants, we truly evaluate the quality of the partitioning methods since they
use the same pivot values.

Comparing Waterloo partitioning with its simulation, we observe that both execute exactly
the same set of comparisons, but w.r.t. scanned elements, the simulation scans each element
twice. Waterloo partitioning scans all elements once and only the elements in the outer two
segments a second time (an average of 1.5n vs. 2n scanned elements). This clearly exposes the
superiority of multiway partitioning in terms of cache behavior and explains its advantage for
sorting.

In Quickselect, we will only pursue one subproblem recursively. The simulation of Waterloo
partitioning subdivides both segments resulting from the first split, even though one will
be knowingly useless! We should therefore compare Waterloo select to a binary simulation
without the useless second subdivision. The number of scanned elements then is n for the
first round, plus the size of the segment on which we apply the second subdivision. The
probability to subdivide the left resp. right resulting segment is the relative size of that
segment (the probability that the random rank lies there). The partitioning costs are hence
n+E[(J1 +J2)2/n] +E[(J3 +J4)2/n] ∼ 1.6n (for t = (0, 0, 0, 0)), and the total cost are given by
SEn ∼ 1.6n/H(0, 0, 0, 0) = 2.6. This is still higher than 2.5n, but much closer than 3n. That
Waterloo-select performs so much better than classic Quickselect according to Tab. 1 is thus
mostly due to the use of a median-of-3 pivot for the first partitioning round, and only to a
smaller extent due to its inherent advantage in terms of scanned elements.

We next consider YBB partitioning. Its simulation first partitions around the larger pivot
and then subdivide the left segment around the smaller pivot. This “atomic” version would
incur 3.3n scanned elements, much more than the 2.6n of YBB-Select and indeed more than the
3n for classic Quickselect. But for the lucky case that the sought pivot falls into the rightmost
segment, the second subdivision is not needed and should be skipped; this lazy version incurs
on average n+ E[(J1 + J2)2/n] ∼ 1.5n scanned elements per partitioning step and thus still
1.5n/H(0, 0, 0) = 3n scanned elements in total.

12 Sesquickselect: One and a half pivots for cache-efficient selection

Two pivots are optimal! But how does YBB-select compare to Waterloo-select? A simulation
of one by the other does not seem sensible, but we can use the pivots for Waterloo-select (three
random elements in order, t = (0, 0, 0, 0)) in YBB-select. Ignoring the largest pivot and doing
the three-way split using YBB-partitioning corresponds to YBB-select with t = (0, 0, 1), which
needs ∼ 2.5n scanned elements, the same as Waterloo-select.

This statement is also true when we let Waterloo-select choose pivots equidistantly from a
sample: If t = (t, t, t, t) (for any t ∈ N0), the expected number of scanned elements is ∼ 4t+5

2t+2n.
Selecting pivots the same way, discarding the largest and using YBB-partitioning with the two
smaller pivots yields the same asymptotic result. Of course, Waterloo-select performs more
comparisons and array accesses to achieve this, so we can conclude that when scanned elements
dominate costs, dual-pivot partitioning is the unique optimum choice for Quickselect!

Summary. Splitting the input into several segments at the same time saves memory transfers.
While this unconditionally helps in sorting, the game is different in selection where only one
subproblem is considered recursively. The flexibility to postpone the decision which part of
the input should be further partitioned (and hence the possibility to avoid the splitting of any
discarded segments) outperforms the savings in scanned elements from multiway partitioning.
Dual-pivot partitioning is an exception, though, since all splits were useful when we recurse
into the middle segment.

4.3. Adaptive Methods
All the methods discussed above are non-adaptive: they only take the value of m into account
when they decide which subproblem to recurse into. Unfortunately, this is an inherent limitation
of the single-parameter recurrence that we use. The validity of the recurrence relies on
randomness preservation for m: apart from the which subproblem contains the mth smallest
element, nothing has been learned about the rank of this element within the subproblem.
Conditioned on the event that the sought rank is found in the given subproblem, its rank is
still uniformly distributed within the subproblem.

For adaptive methods, this is different. Since partitioning costs and subproblem size
distribution depend on the v for which α ∈ Iv, we inevitably learn which interval α lies in, in
addition to the index of subproblem on which we recurse. So even if m is originally uniformly
distributed in [n], for recursive calls it is known to lie in a smaller range. The grand average
costs of adaptive Quickselect hence do not follow a simple one-parameter recurrence.

5. Asymptotic Approximation for Linear Ranks
We now consider selecting a fixed α-quantile, where α ∈ (0, 1) is a parameter of the analysis.
We start with the distributional equation (4) and take expectations on both sides. Since we
expect the overall costs to be asymptotically linear, we divide by n:

E[Fn,m]
n

= E[AF (n,m)]
n

+
∑

1≤r<r≤n

r − r − 1
n

×

(
s∑
`=1

P
[
(R`−1, R`) = (r, r)

])
·
E[Fr−r−1,m−r]
r − r − 1 .

Thm. 5.1 below confirms (under very general conditions) that passing to the limit in this
recurrence yields the desired asymptotic approximation.

5. Asymptotic Approximation for Linear Ranks 13

This has been proven for single-pivot Quickselect even in a stochastic sense [15, 16]; the used
techniques can be extended to adaptive methods as outlined in [29]. We give an elementary proof
that covers generic s-way Quickselect and interestingly seems not to appear in the literature.
The details are a bit lengthy and deferred to Appendix F, but we do not need any sophisticated
machinery: We simply use the ansatz E[Fn,m] ∼ f(mn)n to obtain an educated guess for f and
bound the error

∣∣E[Fn,m]− f(mn)n
∣∣. The latter fulfills a similar recurrence as E[Fn,m], but with

a much smaller toll function. A crude bound suffices for the claim.

Theorem 5.1 (Convergence Linear Ranks):
Consider generic (adaptive) Quickselect (as defined in § 2.4) and assume E[AF(n,m)] =
aF (mn)n±O(1). Let f : [0, 1]→ R≥0 be a function that fulfills the following integral equation:

f(α) = aF (α) (6)

+ 1
B
(
(t1, t1−→) + 1

) ∫ 1

u=α
ut1+1(1− u)t1−→f

(α
u

)
du

+ 1
B
(
(ts, ts←−) + 1

) ∫ α

v=0
v
ts←−(1− v)ts+1f

(α− v
1− v

)
dv

+
s−1∑
`=2

1
B
(
(t`←−, t`, t`−→) + 1

) ×
∫ α

u=0

∫ 1

v=α
u
t`←−(v − u)t`+1(1− v)t`−→f

(α− u
v − u

)
dv du,

where we abbreviate t`←− =
∑`−1
r=1(tr + 1)−1 and t`−→ =

∑s
r=`+1(tr + 1)−1. For adaptive methods,

s and t are functions of α, which is suppressed for legibility. Then (6) is required piecewise for
α ∈ Iv, v ∈ [d].

Assume that f is “(piecewise) smooth”, i.e., f (restricted to Iv) is Hölder-continuous
with exponent h ∈ (0, 1] (for all v ∈ [d]). Then the limit limn→∞;m

n
→α E[Fn,m]/n exists for

α ∈ (0, 1) \ A, where A is the set of boundaries of I1, . . . , Id.
Moreover, with m = dαne holds

E[Fn,m] = f(mn)n ± O(n1−2h/3), (n→∞).

Our continuity requirements for f may appear restrictive, but they are fulfilled in all
examples we studied. They might indeed follow from (6) in general, but we do not attempt to
prove this conjecture.

How to obtain f . Equation (6) determines f only implicitly. Our route to an explicit
expression consists of the following steps. 1) Use substitutions to obtain integrals that only
involve f(x) instead of the shifted and scaled arguments. 2) Take successive derivatives on
both sides until all integrals vanish. This will result in a higher-order differential equation for f
that we aim to solve. 3) Compute f by determining constants of integration from boundary
conditions and known results (e.g., symmetry and results for α→ 0 and random ranks).

Separable equations for adaptive sampling. Since taking derivatives does not change the
argument of f , the differential equation will only relate different derivatives of f evaluated
at the same point x. This is vital for adaptive sampling since it means that we can solve the
differential equation for each Iv separately. Only step 3) involves the interactions of the regimes.

14 Sesquickselect: One and a half pivots for cache-efficient selection

We remark that we can obtain the leading-term coefficient of the grand average by integrating:
f̄ =

∫ 1
0 f(α) dα. This also works for adaptive methods.

The discussion in §4 justifies a restriction to s ≤ 3 segments, but an explicit solution for the
differential equation seems out of reach for the general case. We therefore focus on the simplest
special cases first.

6. YBB-Select with Linear Ranks
As a warm-up, and part of our main result on Sesquickselect, we consider YBB-Select (YQS)
without sampling (as studied in [41]). We start with (6) and substitute x 7→ α/u, x 7→ α−v

1−v
and x 7→ α−u

v−u in the first, second and third integral, respectively. Simplifying the integrals is
fairly standard; we show details for the most interesting one:∫ α

v=0

∫ 1

v=α
(v − u)f

(α− u
v − u

)
dv du

=
∫ α

v=0
(v − α)2

∫ α/v

x=0

f(x)
(1− x)3 dx dv

=
∫ 1

x=0

f(x)
(1− x)3

∫ min{1,α
x
}

v=α
(v − α)2 dv dx

= (1− α)3

3

∫ α

x=0

f(x)
(1− x)3 dx + α3

3

∫ 1

x=α

f(x)
x3 dx.

Inserting yields the integral equation for t = (0, 0, 0),

f(α) = aF (α) + (7)

2
(
α2
∫ 1

α

f(x)
x3 dx − α3

∫ 1

α

f(x)
x4 dx

+ (1− α)2
∫ α

0

f(x) dx
(1− x)3 − (1− α)3

∫ α

0

f(x) dx
(1− x)4

+ (1− α)3

3

∫ α

0

f(x)
(1− x)3 dx + α3

3

∫ 1

α

f(x)
x3 dx

)
,

and taking derivatives four times yields

d4f

dα4 = d4aF
dα4 + 2 · 1− 3α(1− α)

α2(1− α)2 · d
2f

dα2 . (8)

For comparisons aC(α) = 19/12 and for scanned elements aSE(α) = 4/3. More generally, if
aF (α) = a for some constant a we can solve (8) to get

f(α) = C1 + C2 · α
+ C3 · (1− (1− α) ln(1− α)− α ln(α))

+ C4
(

3
10α

5 − 3
4α

4 + 1
6α

3 + 1
2α

2

− (1− α) ln(1− α) + 1− α
)

for some constants Ci, i = 1, . . . , 4, to be determined. If aF (α) is symmetric, that is, aF (α) =
aF (1−α) for any α ∈ [0, 1] then f(α) is also symmetric, and this entails C2 = C4 = 0. Therefore

6. YBB-Select with Linear Ranks 15

f(α) = C1 +C3 · (1 + h(α)) where h(α) = −(1−α) ln(1−α)−α ln(α). We have aF (α) = a for
some constant a, and from § 4, we then know f = 2a. Moreover, we can also determine E[Fn,1]
with the DMT (see also [41]) and find f(0) = 3aF (0)/2 (this equality holds in terms of right
limits when α→ 0+). These two equations determine C1 and C3 and we obtain

f [YQS](α) = a[YQS]
(3

2 + h(α)
)
. (9)

Recall that for standard quickselect f [CQS](α) = a[CQS](2 + 2h(x)) (§ 1.1). We stress here that
the values for a are different for CQS and YQS.

Figure 2: Key comparions, c(α), (left) and scanned elements, se(α), (right) for standard Quickselect
(black), YBB-select (red), median-of-three Quickselect (green) and proportion-from-2 (blue).

Discussion. Classic Quickselect (CQS) uses fewer comparisons than YBB-Select (YQS) not
only in the grand average, but for any fixed relative rank, (see Fig. 2 left). Similarly for write
accesses, which we omit due to space constraints. For scanned elements, however, YQS scans
less elements on average than CQS for any relative rank α, (Fig. 2 right)! The difference
se[CQS](α)− se[YQS](α) = 2

3h(α) is positive for all α ∈ (0, 1) and reaches a maximum of about
13.6% more at α = 1/2 (approx. 3.386 vs. 2.924). As we know from § 4 (Tab. 1), se[CQS] = 3
and se[YQS] = 2.6, i.e., on average for random ranks, YQS scans 11.1% less elements than CQS.

Fig. 2 shows two further Quickselect variants. Median-of-three Quickselect (M3) beats YQS
on all ranks, but the comparison is not quite fair because of the larger sample. Proportion-from-2
(PROP2), however, uses the same sample size as YQS: It selects the smaller resp. larger of two
sampled elements depending on whether α ≤ 1/2 or α > 1/2 holds.5 This adaptive variant
was considered in [29]; it is optimal w.r.t. comparisons for sample size 2 and beats YQS w.r.t.
scanned elements for extremal α (roughly when α ≤ 0.281 or α ≥ 0.719) and grand average

5The idea generalizes to proportion-from-k (PROPk) for any sample size k, where further cutoffs are introduced.
In proportion-from-3, for example, if α < ν for a parameter ν ∈ [0, 1

2], the smallest element of three elements
is used as the pivot; if α > 1− ν, the largest element is used, and the median of the sample is used whenever
α ∈ [ν, 1− ν].

16 Sesquickselect: One and a half pivots for cache-efficient selection

(se[PROP2] ≈ 2.598). The dual-pivot equivalent of proportion-from-2 that we study next will
improve on this significantly.

7. Sesquickselect
Like PROP2, Sesquickselect (SQS) uses two sample elements. If α < ν for a parameter ν ∈ [0, 1

2],
we use the smaller element in the sample to partition the array, if α > 1 − ν use the larger
element, and if α ∈ [ν, 1− ν] use both elements as pivots in YBB partitioning. We now analyze
Sesquickselect on linear ranks following the same steps as in § 6.

Provided f(α) = limn→∞,m/n→α E[Fn,m]/n exists (recall § 5), it will be a piecewise-defined
function: f(α) = f1(α) for α ∈ I1 := [0, ν), f(α) = f2(α) for α ∈ I2 := [ν, 1− ν], and f(α) =
f3(α) for α ∈ I3 := (1− ν, 1]. Moreover, since aF (α) is symmetric (i.e., aF (α) = aF (1− α)) so
is f(α), which implies f3(α) = f1(1− α) and f2(α) = f2(1− α). Only two “pieces”, say f1 and
f2, thus have to be determined. For f2(α), we find that it satisfies the very same differential
equation, (8), as f [YQS]. This is not surprising; f2 is the YQS branch of SQS and the differential
equation only uses local properties of f (as pointed out in § 5). And inside I2, f = f2.

Likewise, f1(α) satisfies the same differential equation as the function f1 in PROP2 (see [29]):

d4f1
dα4 = d4aF

dα4 + 2
α2 ·

d2f1
dα2 + 2

(1− α) ·
d3f1
dα3 .

The derivatives of aF (α) vanish (inside any Iv), and we can reduce the order of both differential
equations using φ1 = f ′′1 and φ2 = f ′′2 . This yields

f1(x) = C1
(

1
6x

3 + 1
2x

2 − x− (1− x) ln(1− x)
)

+ C2h(x) + C3x + C6,

f2(α) = C4 + C5h(x),

for constants C1, . . . , C6 that depend on the cost measure and threshold ν. We will write
f(α) = fν(α) resp. ν-SQS to stress this latter dependence. The symmetry of f2 was already
taken into account. Since f1(0) = 3

2aF(0) we can eliminate C6 = 3
2aF(0). To determine the

remaining constants, we insert the general expression for f1 and f2 into the integral equation
and equate. The process is laborious, but doable with computer algebra; we report explicit
expressions for C1, . . . , C5 for comparisons and scanned elements in Appendix D.

Discussion. We will focus on scanned elements. To understand how ν-SQS behaves for
different ν, we consider g1(ν) = limα→ν− f1,ν(α) and g2(ν) = limα→ν+ f2,ν(α), the values of the
two branches of fν at ν. We have g1(0) = limν→0+ g1(ν) = 1.6 and g2(0) = limν→0+ g2(ν) = 2,
but g1(1

2) ≈ 3.11 and g2(1
2) ≈ 2.91 Since g1 and g2 are continuous and strictly increasing for

ν ∈ (0, 1
2), they cross at a unique point ν = ν∗ ∈ (0, 1

2). This point is indeed the right choice:

Theorem 7.1 (Optimal Sesquickselect):
There exists an optimal value of ν∗ ≈ 0.265 717 such that se1,ν∗(ν∗) = se2,ν∗(ν∗). ν∗-SQS scans
fewer elements than other ν-SQS, i.e., seν∗(α) ≤ seν(α), for all ν ∈ [0, 1

2] and all α ∈ [0, 1]; in
particular, seν∗(α) ≤ se[YQS](α) and seν∗(α) ≤ se[PROP2](α) for any α ∈ [0, 1].

The proof is similar to [29, Thm 5.1], we give the details in Appendix E.
Since ν∗ is optimum across all relative ranks, ν∗ minimizes seν(1/2) and seν : we have

seν∗(1/2) ≈ 2.843 and seν∗ ≈ 2.5004, (see also Tab. 2).

7. Sesquickselect 17

Comparisons Scanned elements
α PROP2 YQS ν∗-SQS YQS ν∗−SQS

0 1.5 2.375 1.5 2 1.5
1/2 3.113+ 3.472+ 3.252+ 2.924+ 2.843+

avg 2.598+ 3.16 2.733+ 2.6 2.500+

Table 2: Some special values of c(α) (c) and se(α) (se) for several variants: YQS (ν = 0), PROP2
(ν = 1/2) and ν∗-SQS. (Recall that c[PROP2] = se[PROP2].)

k = 3
0

(0,2)

0.1035

(0,0,1)

0.5

(1,0,0)

0.8965

(2,0)

1

k = 4
0

(0,3)

0.06

(0,0,2)

0.28

(0,1,1)

0.5

(1,1,0)

0.72

(2,0,0)

0.94

(3,0)

1

k = 5 0

(0
,4)

0
.036

(0
,0,

3)

0
.153

(0
,1,

2)

0
.5

(2
,1,

0)

0
.847

(3
,0,

0)

0
.964

(4
,0)

1

k = 6 0

(0
,5)

0
.025

(0
,0,

4)

0
.09

(0
,1,

3)

0
.38

(1
,1,

2)

0
.5

(2
,1,

1)

0
.62

(0
,1,

3)

0
.91

(4
,0,

0)

0
.975

(5
,0)

1

k = 7 0

(0
,6)

0
.02

(0
,0,

5)

0
.06

(0
,1,

4)

0
.2875

(1
,1,

3)

0
.465

(1
,2,

2)

0
.5

(2
,2,

1)

0
.535

(4
,1,

0)

0
.7625

(3
,1,

1)

0
.94

(5
,0,

0)

0
.98

(6
,0)

1

Figure 3: Our conjectured (approx.) optimal SQSk variants for small k. If α falls in the interval
(delimited by the values given below the line), the vector above the line is used for t. When t has two
entries, classic partitioning is used; where three entries are given, we use YBB-partitioning for α ≤ 1

2 and
BBY-partitioning for α > 1

2 .

7.1. Sesquickselect with larger samples
The idea of Sesquickselect naturally extends to more than two sample elements: SQSk adaptively
chooses one or two elements as pivot(s) from a sample of k. (SQS is simply SQS2 in this notation).
For larger k, there are many options to do this and guidance is needed to select good variants.
With pivot sampling, scanned-element costs for YBB partitioning are aSE = 1 + (t1 + 1)/(k+ 1);
when t3 < t1, we can improve this to 1 + (t3 + 1)/(k+ 1) using “BBY partitioning”, a symmetric
variant of YBB partitioning. We hence assume here that aSE = 1 + min{t1,t3}+1

k+1 .
We could give a complete analysis for SQS2, but for larger k the higher-order differential

equations seem to withstand analytic solutions. We can, however, numerically solve the integral
equation (6) to get insight into which adaptive variants are promising algorithms. The code is
available online: https://github.com/sebawild/quickselect-integral-equation. Although numeric convergence
was very good in all our explorations, we do not prove the validity of the numeric procedures.
The smoothness requirement for Thm. 5.1 seemed likewise to be fulfilled in all cases, but it
remains a working hypothesis for this section.

We conjecture that the variants given in Fig. 3 are the (approximately) optimal choices for
the given sample size; they have been found by extensive albeit non-exhaustive search. Fig. 4
compares the scanned-elements cost for Sesquickselect and biased proportion-from-k for small k.

https://github.com/sebawild/quickselect-integral-equation

18 Sesquickselect: One and a half pivots for cache-efficient selection

Figure 4: se(α) for SQSk (thick) and (optimally biased) PROPk (dotted) for k = 2 (blue), k = 3
(yellow), k = 4 (green), k = 5 (red), k = 6 (purple), and k = 7 (brown).

Discussion. We observe that for k ≤ 7 we are still far away from the optimal leading term
of 1 + min{α, 1− α}. For example, se[SQS7] ≈ 1.841, almost 50% more than the optimal 1.25.
This is quite different in sorting, where median-of-7 Quicksort is less than 10% above optimum
in the leading term.

A possible explanation is that the variance of the pivot ranks is too big. Consider, e.g., k = 7
and α ∈ [0.465, 0.5]. The probability to recurse on the middle segment for, e.g., t = (2, 0, 3) is
only roughly 1%. We must therefore use rather balanced sampling vectors (here t = (1, 2, 2))
and thus lose the ability to reduce the problem size to much less than 1

3n in one step.

8. Conclusion
Despite the asymptotic optimality of the Floyd-Rivest algorithm, practical implementations
use Quickselect variants with a fixed-size sample. Since they hence look very similar to sorting
methods based on Quicksort, it is tempting to copy optimizations that fair well in sorting
blindly to the selection routines. However, our results show that the similarities are misleading.
While multiway partitioning is vital in Quicksort for saving memory transfers – a cost measure
of increasing relevance – more than two pivots are not helpful in Quickselect.

Moreover, Quickselect offers a large potential for optimization that has no counterpart in
sorting whatsoever: adapting the strategy to the (relative) sought rank α = m

n . The biased
proportion-from-k variants of single-pivot Quickselect proposed in [29] minimize the number of
comparisons; in terms of scanned elements, however, Sesquickselect – a novel combination of
single-pivot and dual-pivot Quickselect – outperforms proportion-from-k significantly.

In the limit for large sample sizes k → ∞, Sesquickselect converges to the Floyd-Rivest
algorithm. This limit is “degenerate” in that we always choose two pivots (Sesquickselect only
uses a single pivot for extreme α), and that the middle segment has size o(n) (in expectation).
In that case, also the savings of dual-pivot partitioning over its simulation by two binary
partitioning rounds are negligible.

8. Conclusion 19

For practical sample sizes, one cannot rely on this connection to design a good selection
method, though – unlike for single-pivot variants, mimicking Floyd-Rivest too closely can result
in performance much worse than non-adaptive Quickselect. We need analyses that explicitly
take the effect of fixed-size samples into account; such are initiated in this article.

8.1. Future Work
We had to leave many interesting questions about Sesquickselect open; some are not even
known for single-pivot Quickselect.

• How fast do the costs converge to the optimum as k grows? Only an upper bound for
median-of-k seems known [15, Thm. 4].

• In Fig. 3, the number of intervals seems to grow linearly with k; can we avoid the use of
many different versions in adaptive methods while still achieving (close to) optimal costs?

• Do the theoretical improvements translate to faster running time? Preliminary explo-
rations were promising although the relative improvements are small.

• What is the order of the second term / the speed of convergence in the asymptotic
expansion of the costs for fixed quantiles?

• How does adaptive sampling affect the variance, higher moments or full distribution of
costs? Some results for PROPk are shown in [23].

• Does adaptive sampling also improve the number of symbol comparisons?

20 Sesquickselect: One and a half pivots for cache-efficient selection

Appendix
A. Index of Notation
In this appendix, we collect the notations used in this work.

A.1. Generic Mathematical Notation
N, N0, Z, Q, R, Cnatural numbers N = {1, 2, 3, . . .}, N0 = N ∪ {0}, integers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}, rational numbers Q = {p/q : p ∈ Z ∧ q ∈ N}, real
numbers R, and complex numbers C.

R>1, N≥3 etc. restricted sets Xpred = {x ∈ X : x fulfills pred}.

0.3 repeating decimal; 0.3 = 0.333 . . . = 1
3 ;

numerals under the line form the repeated part of the decimal number.

ln(n), ld(n) natural and binary logarithm; ln(n) = loge(n), ld(n) = log2(n).

x to emphasize that x is a vector, it is written in bold;
components of the vector are not written in bold: x = (x1, . . . , xd);
unless stated otherwise, all vectors are column vectors.

limx→a+ , limx→a− . . . directed limits; limx→a+f(x) is limn→∞ f(a+ εn) and limx→a−f(x) is
limn→∞ f(a− εn) for a strictly positive sequence (εn)n∈N with limn→∞ εn = 0.

X to emphasize that X is a random variable it is Capitalized.

[a, b) real intervals, the end points with round parentheses are excluded, those with
square brackets are included.

[m..n], [n] integer intervals, [m..n] = {m,m+ 1, . . . , n}; [n] = [1..n].

[stmt], [x = y] Iverson bracket, [stmt] = 1 if stmt is true, [stmt] = 0 otherwise.

‖x‖pp-norm; for x ∈ Rd and p ∈ R≥1 we have ‖x‖p =
(∑d

r=1 |xr|
)1/p.

‖x‖∞∞-norm or maximum-norm; for x ∈ Rd we have ‖x‖∞ = maxr=1,...,d |xr|.

x+ 1, 2x, f(x) element-wise application on vectors; (x1, . . . , xd) + 1 = (x1 + 1, . . . , xd + 1) and
2x = (2x1 , . . . , 2xd); for any function f : C→ C write
f(x) = (f(x1), . . . , f(xd)) etc.

Σx “total” of a vector; for x = (x1, . . . , xd), we have Σx =
∑d
i=1 xi.

Hnnth harmonic number; Hn =
∑n
i=1 1/i.

O(f(n)), ±O(f(n)), Ω, Θ, ∼
asymptotic notation as defined, e.g., by [11, Section A.2]; f = g ±O(h) is
equivalent to |f − g| ∈ O(|h|).

Γ (z) the gamma function, Γ (z) =
∫∞

0 tz−1e−t dt.

B(α1, . . . , αd) d-dimensional beta function B(α1, . . . , αd) =
∏d
i=1 Γ (αi)/Γ (α+ β).

ab, ab factorial powers notation of Graham et al. [13];
“a to the b falling resp. rising.”

h(x) the binary base-e entropy function h(x) = −x ln(x)− (1− x) ln(1− x).

〈〈an, . . . , a0〉〉 abbreviation for a polynomial with given coefficients;
〈〈an, . . . , a0〉〉 = anν

n + an−1ν
n−1 + · · ·+ a1ν + a0. (used in Appendix D).

Appendix 21

A.2. Stochastics-related Notation
P[E], P[X = x] probability of an event E resp. probability for random variable X to attain

value x.

E[X] expected value of X; I write E[X | Y] for the conditional expectation of X
given Y , and EX [f(X)] to emphasize that expectation is taken w.r.t. random
variable X.

X D= Y equality in distribution; X and Y have the same distribution.

1E , 1{X≤5} indicator variable for event E, i.e., 1E is 1 if E occurs and 0 otherwise;
{X ≤ 5} denotes the event induced by the expression X ≤ 5.

U(a, b) uniformly in (a, b) ⊂ R distributed random variable.

U [a..b]discrete uniformly in [a..b] ⊂ Z distributed random variable.

Beta(α, β) beta distributed random variable with shape parameters α ∈ R>0 and
β ∈ R>0. X D= Beta(α, β) is equivalent to (X, 1−X) D= Dir(α, β).

Dir(α)Dirichlet distributed random variable; α ∈ Rd>0.

Bin(n, p) binomial distributed random variable with n ∈ N0 trials and success
probability p ∈ [0, 1]; X D= Bin(n, p) is equivalent to
(X,n−X) D= Mult(n; p, 1− p).

Mult(n,p)multinomially distributed random variable; n ∈ N0 and p ∈ [0, 1]d with
Σp = 1.

BetaBin(n, α, β) beta-binomial distributed random variable; n ∈ N0, α, β ∈ R>0;
X D= BetaBin(n, α, β) is equivalent to (X,n−X) D= DirMult(n;α, β).

DirMult(n,σ)Dirichlet-multinomial distributed random variable; n ∈ N0, σ ∈ Rs>0.

A.3. Notation for our Analysis
Some notations for the analysis are exemplified in Fig. 1 (page 9).

n length of the input array, i.e., the input size.

m the rank to select, m ∈ [1..n].

α relative sought rank, α = m/n ∈ [1
n , 1] ⊂ [0, 1].

s, s(α) number of segments, s ≥ 2; determines the number of pivots to be s− 1. For
adaptive methods, s depends on α.

t, t(α) pivot-sampling parameter; t ∈ Ns; see Fig. 1. For adaptive methods, t depends
on α.

k, k(α) sample size k ∈ N≥s−1; k + 1 = Σ(t+ 1). For adaptive methods, k depends on
α (via t).

τ quantiles vector for sampling, τ = t+1
k+1 ; we have E[D`] = τ`.

F , C, SE , WA cost measures; F is the generic placeholder for an arbitrary cost measure, C
means number of comparisons, SE means number of scanned elements, WA
means number of write accesses to the array.

Fn,m, Cn,m, SEn,m, WAn,m

(random) costs in the respective cost measure to select the mth smallest out of
n elements.

Mn, Fn,Mn , Fn (random) costs (in the respective cost measure) to select a uniform random
rank Mn

D= U [1..m] out of n elements.

22 Sesquickselect: One and a half pivots for cache-efficient selection

f(α), c(α), se(α), wa(α)
leading-term coefficient of E[Fn,m] for n→∞ and m/n→ α:
f(α) = limn→∞,m

n→α
E[Fn,m]

n ;
similarly for specific cost measures.

f , c, se, wa leading-term coefficient of grand average f̄ = limn→∞
E[Fn,Mn]

n =
∫ 1

0 f(α) dα;
similar for specific cost measures.

AF (n,m), AC(n,m), ASE(n,m), AWA(n,m)
(random) costs of the first partitioning step (in the resp. cost measure) when
selecting the mth smallest out of n elements.
(Not directly a function of m, but indirectly for adaptive methods).

aF , aF (α) leading-term coefficient of E[AF (n,m)] for n→∞ with m/n→ α. (Not
directly a function of m, but indirectly for adaptive methods).

P1, . . . , Ps−1; P0, Ps . . (random) values of chosen pivots in the first partitioning step,
ordered by value 0 ≤ P1 ≤ P2 ≤ · · · ≤ Ps−1 ≤ 1;
P0 := 0 and Ps := 1 are used for notational convenience.

R1, . . . , Rs−1; R0, Rs . (random) ranks of the pivots in the first partitioning step,
1 ≤ R1 ≤ R2 ≤ · · · ≤ Rs−1 ≤ n;
R0 := 0 and Rs := n+ 11 are used for notational convenience.

J ∈ Ns (random) vector of subproblem sizes for recursive calls;
for initial size n, we have J ∈ {0, . . . , n− (s− 1)}s with ΣJ1 = n− (s− 1).

I ∈ Ns (random) vector of segment sizes; for initial size n, we have I ∈ {0, . . . , n− k}s
with ΣI = n− k;
J = I + t and I D= DirMult(n− k, t+ 1); conditional on D we have
I D= Mult(n− k,D).

D ∈ [0, 1]s (random) spacings of the unit interval (0, 1) induced by the pivots
P1 . . . , Ps−1, i.e., Di = Pi − Pi−1 for 1 ≤ i ≤ s; D D= Dir(σ) D= Dir(t+ 1).

H, H(t) “const-entropy” H(t) = 1−
∑s
r=1

(tr+1)2

(k+1)2 .

B. Proof of Hölder integration lemma
In this appendix, we prove the error bound on the integral of Hölder-continuous functions.

Proof: Lem. 2.3 Let C be the Hölder-constant of f . We split the integral into small integrals
over hypercubes of side length 1

n and use Hölder-continuity to bound the difference to the
corresponding summand:∣∣∣∣∣

∫
x∈[0,1]d

f(x) dx − 1
nd

∑
i∈[0..n−1]d

f(i/n)
∣∣∣∣∣

=
∑

i∈[0..n−1]d

∣∣∣∣∣
∫
x∈[0, 1

n
]d+ i

n

f(x) dx − f(i/n)
nd

∣∣∣∣∣
=

∑
i∈[0..n−1]d

∫
x∈[0, 1

n
]d+ i

n

∣∣f(x)− f(i/n)
∣∣ dx

≤
∑

i∈[0..n−1]d

∫
x∈[0, 1

n
]d+ i

n

√
dC
∥∥x− i

n

∥∥h dx
≤
√
dC

∑
i∈[0..n−1]d

∫
x∈[0, 1

n
]d+ i

n

(1
n

)h
dx

Appendix 23

=
√
dCn−h

∫
x∈[0,1]d

1 dx

= O(n−h). �

C. Proof of Local Limit Law
In this appendix, we give the proof for the local limit law of the Dirichlet-multinomial distribution.
It is a straight-forward generalization of the computation given in [39, Lemma 2.38], but we
include it for a self-contained presentation.

Proof of Lem. 2.1: Let z ∈ (0, 1)s with Σz = 1 be arbitrary and write i = i(z) = bz(n+1)c ∈
[0..n]s with Σi = n. We note for reference that for ` ∈ [s] and any constant c ≥ 0

(i`
n

)c =
(bz`(n+ 1)c

n

)c
=

(
z` ±O(1

n)
)c = zc` ± O(1

n), (n→∞). (10)

Moreover, we use the following property of the gamma function

Γ (z + a)
Γ (z + b) = za−b ±O(za−b−1), (z →∞), (a, b constant). (11)

This follows from Equation (5.11.13) of the DLMF [10]. With these preparations, we compute

ns−1 P[I(n) = i]

= ns−1
(
n

i

)
B(i+α)

B(α)

= ns−1

B(α) ·
Γ (n+ 1)∏s
`=1 Γ (i` + 1) ·

∏s
`=1 Γ (i` + α`)
Γ (n+Σα)

= ns−1

B(α) ·
Γ (n+ 1)
Γ (n+Σα) ·

s∏
`=1

Γ (i` + α`)
Γ (i` + 1)

=
(11)

ns−1

B(α) · n
1−Σα(1±O(n−1)

)
·
s∏
`=1

{
1 if α` = 1
iα`−1
` ±O(iα`−2

`) if α` ≥ 2

= 1
B(α) ·

(
1±O(n−1)

)
·
s∏
`=1

1 if α` = 1(i`
n

)α`−1 ±O
((i`

n

)α`−2︸ ︷︷ ︸
O(1)

n−1
)

if α` ≥ 2

=
(10)

1
B(α) ·

(
1±O(n−1)

)
·
s∏
`=1

(
zα`−1
` ±O(n−1)

)
=

∏s
`=1 z

α`−1
`

B(α) ± O(n−1).

This is exactly the density fD(z) of the Dir(α) distribution. �

D. Constants for Sesquickselect
In this appendix, we give the constants for Sesquickselect as functions in ν. With one exception,
the expressions are rather unwieldy and we will have to use some shorthand notation to state

http://dlmf.nist.gov/5.11#E13

24 Sesquickselect: One and a half pivots for cache-efficient selection

concisely. Constant C2(ν) is very simple; for both comparisons and scanned elements we have
C2(ν) = 2.

In order to express the remaining constants, it will be convenient to introduce the following
two auxiliary functions, namely,

∆(ν) := 2
(

60 ln(1− ν)ν6 − 360 ln(1− ν)ν5 − 140ν6 + 780 ln(1− ν)ν4

+ 480ν5 − 840 ln(1− ν)ν3 − 635ν4 + 504 ln(1− ν)ν2

+ 428ν3 − 168 ln(1− ν)ν − 156ν2 + 24 ln(1− ν) + 24ν
)
,

and
Qa(ν) := (ν4 − 4ν3 + 4ν2 − 2ν + a) · (1− ν)2 ln(1− ν), (a ∈ R).

We will also use the shorthand Q(ν) := Q1/2(ν).
Moreover, we will use the notation 〈〈an, . . . , a0〉〉 to denote the polynomial of degree n

anν
n + an−1ν

n−1 + · · ·+ a1ν + a0.

With all these definitions at hand, the expressions for the constants C ′i(ν) = Ci(ν) ·∆(ν)
are collected in Tab.D.1.

Comparisons Scanned Elements

C′1 〈〈20,−120, 260,−276, 162,−52, 7〉〉 〈〈20,−120, 260,−264, 144,−40, 4〉〉

C′3

12Q(ν)(ln ν − ln(1− ν))
+ 〈〈6, 16,−69, 70,−24,−2, 2〉〉 ln(1− ν)

+ 〈〈−26, 92,−125, 86,−33, 6〉〉ν ln ν
+ 〈〈45,−124, 121,−52, 5, 2〉〉ν

48Q(ν)(ln ν − ln(1− ν))
+ 〈〈90,−308, 510,−560, 408,−176, 32〉〉 ln(1− ν)

+ 〈〈−110, 380,−506, 344,−132, 24〉〉ν ln ν
+ 〈〈45,−40,−125, 212,−136, 32〉〉ν

C′4

− 12Q(ν) ln(1− ν)
+ 〈〈168,−956, 2031,−2180, 1317,−446, 65〉〉·

ln(1− ν)

−
20
3
ν9 + 30ν8 −

170
3
ν7

+
1
6
〈〈−1644, 6792,−9409, 6514,−2445, 390〉〉ν

− 48Q(ν) ln(1− ν)
+ 〈〈198,−956, 1890,−2000, 1236,−440, 68〉〉·

ln(1− ν)

−
20
3
ν9 + 30ν8 −

170
3
ν7

+
1
3
〈〈−456, 2352,−3641, 2756,−1146, 204〉〉ν

C′5
228Q15/38(ν)

+ 〈〈−534, 1828,−2415, 1626,−591, 90〉〉ν
192Q3/8(ν)

+ 〈〈−450, 1540,−2034, 1368,−492, 72〉〉ν

Table D.1: Constants for comparisons and scanned elements in Sesquickselect.

Appendix 25

E. Optimal Threshold for Sesquickselect
In this appendix, we prove the existance of a unique optimal cutoff ν∗.

Proof of Thm. 7.1: Given a function g in [0, 1] and a value ν, 0 ≤ ν ≤ 1/2, consider the
following operator

(
T (g)

)
(α) = 2

(
−α3

∫ 1

α

g(x)
x4 dx+ α2

∫ 1

α

g(x)
x3 dx

+ (1− α)3
∫ α

0

g(x)
(1− x)4 dx

)
, (α < ν),

and (
T (g)

)
(α) = 2

(
α2
∫ 1

α

g(x)
x3 dx− α3

∫ 1

α

g(x)
x4 dx

+ (1− α)2
∫ α

0

g(x)
(1− x)3 dx− (1− α)3

∫ α

0

g(x)
(1− x)4 dx

+ (1− α)3

3

∫ α

0

g(x)
(1− x)3 dx+ α3

3

∫ 1

α

g(x)
x3 dx

)
, (ν ≤ α ≤ 1− ν).

Notice that the function fν for Sesquickselect satisfies fν = aF + T (fν); it is important to
emphasize that the function aF will depend on ν since we use single partitioning if α < ν or
α > 1− ν, whereas we use YBB partitioning if ν ≤ α ≤ 1− ν.

To be more precise, the operator T is defined piecewise: T = [T1,ν , T2,ν], and we can define
it so that for h = T (g), we have h1,ν = T1,ν(g1,ν , g2,ν) and h2,ν = T2,ν(g1,ν , g2,ν), with h1,ν being
the restriction of h to [0, ν) ∪ (1− ν, 1], h2,ν the restriction of h to [ν, 1− ν] and similarly for
g1,ν and g2,ν .

Solving the fix-point equation f = T (f) involves the same steps that we have followed to
find the explicit solution for Sesquickselect (the differential equations are identical). But we
arrive here to the conclusion that f = 0 is the unique solution of f = T (f). (Note that the
summand aF is missing in the fix-point equation.)

Let g1(ν) = se1,ν and g2(ν) = se2,ν . Both functions are strictly increasing in (0, 1
2) since

their derivatives with respect to ν are strictly positive. Moreover, we have g1(0) = 5
3 < 2 = g2(0)

and g1(1
2) ≈ 3.112 > 2.910 ≈ g2(1

2), so they cross at a single point ν = ν∗. In other words,
there exists a unique solution ν∗ in (0, 1

2) to the equation g1(ν) = g2(ν).
Taking derivatives with respect to ν on both sides of seν = aSE + T (seν) and setting

ν = ν∗, many terms cancel out because se1,ν∗(ν∗) = se2,ν∗(ν∗) and because of the symmetries
se3,ν(α) = se1,ν(1− α) and se2,ν(α) = se2,ν(1− α), so we conclude

∂seν
∂ν

∣∣∣∣
ν=ν∗

= T

(
∂seν
∂ν

∣∣∣∣
ν=ν∗

)
,

and hence, ∂seν/∂ν|ν=ν∗ = 0 for any α ∈ [0, 1].
Computing the second derivative of seν(α) with respect to α and setting ν = ν∗ shows it is

positive for all α in (0, 1), so we can conclude that ν∗ is always a local minimum. In fact, we
can show that

∂2seν
∂ν2

∣∣∣∣∣
ν=ν∗

= δ(α) + T

(
∂2seν
∂ν2

∣∣∣∣∣
ν=ν∗

)
,

26 Sesquickselect: One and a half pivots for cache-efficient selection

for some function δ(α) which is strictly positive for all α ∈ [0, 1]. To be more precise, δ(α) = δ1(α)
if α ∈ [0, ν∗)∪(1−ν∗, 1] and δ(α) = δ2(α) if ν∗ ≤ α ≤ 1−ν∗; both δ1 and δ2 are strictly positive
in the corresponding ranges of α. Finally, δ > 0 for all α entails that ∂2seν/∂ν2∣∣

ν=ν∗ > 0 for
all α.

The limit values ν → 0 (YQS) and ν → 1/2 (PROP2) are not minimum, hence to complete
the proof we only need to show that for any fixed value of α, seν(α) has no other local extrema
in (0, 1

2). So let ν̂ be such that ∂seν/∂ν|ν=ν̂ = 0 for some α̂. Assume w.l.o.g. that α ≤ 1
2 ;

then if α̂ < ν̂ we assume that ∂se1,ν/∂ν|ν=ν̂ = 0, and if α > ν then ∂se2,ν/∂ν|ν=ν̂ = 0. Since
se = aSE + T (se) and ∂aSE/∂ν = 0, we have ∂seν/∂ν = ∂T (seν)/∂ν. Setting ν = ν̂ on both
sides, we arrive at the conclusion that if ∂seν/∂ν|ν=ν̂ = 0 for some α̂ then we must have
se1,ν̂(ν̂) = se2,ν̂(ν̂). This implies ν̂ = ν∗ since – as argued above – the latter is the unique value
in (0, 1

2) with se1,ν̂(ν̂) = se2,ν̂(ν̂). �

F. Proof of Convergence for Linear Ranks
This appendix gives the details for the proof of Thm. 5.1.

F.1. Derivation of the integral equation
We start with the distributional equation (4) and take expectations on both sides.

E[Fn,m] = E[AF (n,m)] +
s∑
`=1

EJ
[
1{R`−1<m<R`} · E[FJ`,m−R`−1 | J]

]
. (12)

Unfolding the expectation and simplifying yields
s∑
`=1

EJ
[
1{R`−1<m<R`} · E[FJ`,m−R`−1 | J]

]
=

n−1∑
j=1

m∑
a=1

(
s∑
`=1

P[J` = j ∧m−R`−1 = a]
)
· E[Fj,a]

=
m−1∑
r=0

n+1∑
r=m+1

(
s∑
`=1

P[R`−1 = r ∧R` = r]
)
· E[Fr−r−1,m−r].

(Note that the extreme values 0 and n+ 1 for r resp. r are included to handle the outermost
segments ` = 1 resp. ` = s and those with 1 < ` < s in uniform way. Eventually, these two cases
will have to be distinguished, though, since R1, . . . , Rs−1 are actual random variables, whereas
R0 = 0 and Rs+1 = n + 1 are deterministic values.) We can express the joint probabilities
P[(R`−1, R`) = (r, r)] using the relations between R and J and using the aggregation property
of the Dirichlet-multinomial distribution (see, e.g., [39, Lemma 2.37]), but we do not need an
explicit expression for now. We are interested in the limit n,m → ∞ with m

n → α ∈ (0, 1),
i.e., we are selecting the α-quantile of a large list. Since we expect the overall costs to be
asymptotically linear, we divide the recurrence by n:

E[Fn,m]
n

= E[AF (n,m)]
n

+
∑

1≤r<r≤n

r − r − 1
n

×

(
s∑
`=1

P
[
(R`−1, R`) = (r, r)

])
·
E[Fr−r−1,m−r]
r − r − 1 . (13)

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf66

Appendix 27

F.2. Proof of convergence
Thm.5.1 essentially claims that we can take the limit in (13) to obtain a characterizing equation
for f(α).

Proof of Thm. 5.1: It suffices to prove the asymptotic approximation since it implies the
existence of the limit. We first connect Equation (6) (disregarding convergence issues) to the
normalized expected costs E[Fn,m]/n and then prove the claimed asymptotic approximation.

We start with the ansatz E[Fn,m] ∼ f(mn)n for a function f : [0, 1] → R. Inserting into
Equation (13) yields for m

n → α

f(α) = aF (α) +
s∑
`=1

∫ α

z=0

∫ 1

z=α
(z − z)f(P`−1,P`)(z, z) · f

(α− z
z − z

)
dz dz, (14)

where

f(P`−1,P`)(z, z) =

δ0(z) · zt1 (1− z)t1−→
B(t1 + 1, t1−→+ 1) , ` = 0;

z
t`←− (z − z)t` (1− z)t`−→

B(t`←−+ 1, t` + 1, t`−→+ 1) , 1 < ` < s;

δ1(z) · z
ts←− (1− z)ts

B(ts←−+ 1, ts + 1) , ` = s.

Here we write δc(z) for the Dirac-delta function at c, the degenerate density of a random
variable that deterministically has value c ∈ R. By separating the leftmost and rightmost cases
and inserting f(P`−1,P`), we obtain the claimed integral equation for f .

Let now α ∈ (0, 1) \ A be fixed and set m = dαne. We consider the quantity rn,m =
E[Fn,m]− f(mn)n. Inserting the recurrence (12) for E[Fn,m] and the integral equation (14) for
f(mn) yields

rn,m = br(n,m) · n +
s∑
`=1

EJ
[
1{R`−1<m<R`} · rR`−R`−1−1,m−R`−1

]
(15)

with
br(n,m) = aF (mn) ± O(n−1)− aF (α)

+
s∑
`=1

m−1∑
r=0

n+1∑
r=m+1

r − r − 1
n

· P[R`−1 = r ∧R` = r] · f
(

m− r
r − r − 1

)

−
s∑
`=1

∫ α

z=0

∫ 1

z=α
(z − z)f(P`−1,P`)(z, z) · f

(α− z
z − z

)
dz dz.

The outline of the remainder of the proof is to first show that br(n,m) is small, namely
br(n,m) = O(n−2h/3), uniformly in α. For that we show that the difference above is essentially
the difference of an integral and the corresponding Riemann sum. Since the integrand is
sufficiently smooth, we can bound the absolute value of this difference, but some case distinctions
will be necessary for that. Finally, we show that small br(n,m) implies that also rn,m is small
thus completing the proof.

First of all, not that for α /∈ A, we have for large enough n that m
n ∈ Iv iff α ∈ Iv. Hence

also aF(mn) = aF(α) for large n and the two terms cancel. So remains to compare the sums
and integrals. Setting z = r/n and z = r/n we find by Hölder-continuity of f inside the Iv for

28 Sesquickselect: One and a half pivots for cache-efficient selection

α−z
z−z /∈ A that f(m−r

r−r−1) = f(dαne−znzn−zn−1) = f(α−zz−z)±O(n−h) for h ∈ (0, 1) the Hölder exponent of
f . Moreover, P[R`−1 = r ∧R` = r] = P[R`−1/n = z ∧R`/n = z] = n−2fP`−1,P`(z, z)±O(n−3)
by Lem. 2.1. This yields (separating the left- and rightmost call cases)

br(n,m) = 1
n

∑
m<r≤n

z · fP1(z) · f
(
α

z

)
−

∫ 1

z=α
z · fP1(z) · f

(
α

z

)
dz

+ 1
n

∑
1≤r<m

(1− z)fPs(z) · f
(
α− z
1− z

)
−

∫ α

z=0
(1− z)fPs(z) · f

(
α− z
1− z

)
dz

+
s−1∑
`=2

1
n2

∑
1≤r<m<r≤n

(z − z)fP`−1,P`(z, z) · f
(
α− z
z − z

)

−
s−1∑
`=2

∫ α

z=0

∫ 1

z=α
(z − z)f(P`−1,P`)(z, z) · f

(
α− z
z − z

)
dz dz

± O(n−1 + n−h).

Unfortunately, the function

gα : [0, α]× [α, 1]→ [0, 1] with gα(z, z) = α− z
z − z

,

which appears as argument of f (with z = 0 in the first line and z = 1 in the second line)
varies rapidly if z − z becomes small, which causes the sum and integral to differ significantly
in that region. Formally, the partial derivatives of gα approach −∞ as (z, z)→ (α, α). If we
exclude this point and its vicinity, however, gα is well-behaved, in particular gα restricted to
Dα(n) = [0, α− n−1/3]× [α+ n1/3] has partial derivatives bounded by 1

4n
1/3 in absolute value.

This implies the following Lipschitz-condition for gα
∀(u, v), (u′, v′) ∈ Dα(n) :

∣∣gα(u, v)− gα(u′, v′)
∣∣ ≤ n1/3 ·

∥∥(u, v)− (u′, v′)
∥∥

2. (16)

We will therefore consider Dα(n) and Dα(n) = [0, α]× [α, 1] \Dα(n) separately.
Let us first consider Dα(n). We will bound the sum and integral in isolation and show that

their absolute contribution is small, so even though we cannot bound their difference well, the
overall contribution of this regime is insignificant. The integrals resp. sums restricted to that
domain become (we show the middle case ` = 2, . . . , s− 1; other outermost ones are similar)∣∣∣∣∣ 1

n2 ·
∑

m−n2/3≤ r <m<r≤m+n2/3

(z − z)fP`−1,P`(z, z) · f
(
α− z
z − z

)∣∣∣∣∣
+
∣∣∣∣∣
∫ α

z=α−n−1/3

∫ α+n−1/3

z=α
(z − z)f(P`−1,P`)(z, z) · f

(
α− z
z − z

)
dz dz

∣∣∣∣∣ ;

f is continuous on the bounded domains Iv and hence absolutely bounded and fP`−1,P` is a
polynomial, hence continuous and likewise bounded, so this is

≤
∣∣∣∣∣ 1

n2 ·
∑

m−n2/3≤ r <m<r≤m+n2/3

(z − z) ·O(1)
∣∣∣∣∣ +

∣∣∣∣∣
∫ α

z=α−n−1/3

∫ α+n−1/3

z=α
(z − z) ·O(1) dz dz

∣∣∣∣∣,
and with z − z = O(n−1/3)

≤ O
(
n−1/3) · n2/3 · n2/3

n2 + O
(
n−1/3) · n−1/3 · n−1/3

= O(n−1).

Appendix 29

Note that this bound holds uniformly in α. For the outermost cases, ` = 1 and ` = s, a similar
result holds, but the final error bound is only O(n−2/3) since the fraction of summands in
Dα(n) is only n2/3/n.

For the remaining region of integration, we split the large integral into a sum of small
rectangles. Denoting the integrand by

I(z, z) = (z − z)fP`−1,P`(z, z) · f
(
α− z
z − z

)
and setting z = r/n and z = r/n as before, we obtain∣∣∣∣∣ 1

n2

∑
1≤ r≤m−n2/3−1
m+n2/3+1≤ r≤n

(z − z)fP`−1,P`(z, z) · f
(
α− z
z − z

)

−
∫ α−n−1/3

u=0

∫ 1

v=α+n−1/3
(v − u)f(P`−1,P`)(u, v) · f

(
α− u
v − u

)
dv du

∣∣∣∣∣
≤

∑
1≤ r≤m−n2/3−1
m+n2/3+1≤ r≤n

∣∣∣∣∣ 1
n2 · I(z, z) −

∫ z

u=z− 1
n

∫ z

v=z− 1
n

I(u, v) dv du
∣∣∣∣∣

=
∑

1≤ r≤m−n2/3−1
m+n2/3+1≤ r≤n

∫ z

u=z− 1
n

∫ z

v=z− 1
n

∣∣I(u, v)− I(z, z)
∣∣ dv du. (17)

To bound the difference between the integrands, we use that I is “smooth”; some care is needed
to trace errors. We first collect properties of the involved functions. f is Hölder-continuous
inside the Iv’s, so there is a constant Cf with

∀v ∈ [d] ∀x, y ∈ Iv :
∣∣f(x)− f(y)

∣∣ ≤ Cf |x− y|h. (18)

It follows that f is bounded in each Iv and hence their finite union:

∀x ∈ [0, 1] : |f(x)| ≤ f̂ . (19)

Now denote by h(u, v) = (v − u)fP`−1,P`(u, v) (so I(u, v) = h(u, v)f(gα(u, v))). h(u, v) is a
polynomial in u and v, hence Lipschitz-continuous and bounded on a compact domain.

∀(u, v), (u′, v′) ∈ {(x, y) ∈ [0, 1]2 : x ≤ y} :
∣∣h(u, v)− h(u′, v′)

∣∣ ≤ CP ‖(u, v)− (u′, v′)‖2,
(20)

∀(u, v) ∈ {(x, y) ∈ [0, 1]2 : x ≤ y} :
∣∣h(u, v)

∣∣ ≤ ĥ. (21)

Now consider any (r, r) ∈ [1..m − n2/3 − 1] × [m + n2/3 + 1, n], so that there is a single α-
interval Iv with gα

(
[z − 1

n , z] × [z − 1
n , z]

)
⊂ Iv. Call such a pair (r, r) pure. (Its associated

integration region does not contain a boundary of adaptivity intervals.) For any pure (r, r) and

30 Sesquickselect: One and a half pivots for cache-efficient selection

(u, v) ∈ [z − 1
n , z]× [z − 1

n , z] now holds∣∣I(u, v)− I(z, z)
∣∣ ≤ ∣∣∣h(u, v)f

(
gα(u, v)

)
− h(u, v)f

(
gα(z, z)

)∣∣∣
+
∣∣∣h(u, v)f

(
gα(z, z)

)
− h(z, z)f

(
gα(z, z)

)∣∣∣
≤

(18), (20)
h(u, v) · Cf

∣∣gα(u, v)− gα(z, z)
∣∣h + f

(
gα(z, z)

)
· CP ‖(u, v)− (z, z)‖

≤
(19), (21), (16)

ĥ · Cf · nh/3∥∥(u, v)− (z, z)
∥∥h + f̂ · CP ‖(u, v)− (z, z)‖

= O(nh/3−h). (22)

Using this in Equation (17) yields∣∣∣∣∣ ∑
1≤ r≤m−n2/3−1
m+n2/3+1≤ r≤n

1
n2 · I(z, z) −

∫ z

u=z− 1
n

∫ z

v=z− 1
n

I(u, v) dv du
∣∣∣∣∣

≤
∑

1≤ r≤m−n2/3−1
m+n2/3+1≤ r≤n

∫ z

u=z− 1
n

∫ z

v=z− 1
n

{
O(n−h·2/3) if (r, r) pure
ĥ · f̂ otherwise

≤ O(n−h·2/3) + O

(#non-pure (r, r)
n2

)
. (23)

To bound the second term, we observe that by (16), gα
(
[z− 1

n , z]× [z− 1
n , z]

)
⊂ [x, x+

√
2n−2/3]

for some x ∈ [0, 1], i.e., gα can only span a very narrow range inside one patch of the integral.
Indeed, gα(u, v) is (weakly) decreasing in both u and v, so x = gα(z, z). Hence (r, r) is pure if
[gα(z, z), gα(z, z) +

√
2n−2/3] ∩ A = ∅.

We also have to show that gα is not “too flat”, so that we cannot have many patches
containing the same interval boundary. More precisely, for any given x ∈ [0, 1], we claim there
are only O(n4/3) pairs (r, r) with x ∈ gα

(
[z − 1

n , z]× [z − 1
n , z]

)
. We distinguish two cases.

1. x ≤ 1
2 : Let v be fixed. Then we have gα(u, v) ∈ [x, x+ ε] iff u ∈

[
α−vx
1−x ,

α−v(x+ε)
1−(x+ε)

]
. The

size of this range for u is∣∣∣∣∣α− vx1− x − α− v(x+ ε)
1− (x+ ε)

∣∣∣∣∣ = ε ·
∣∣∣∣ v − α
(1− x)(1− x− ε)

∣∣∣∣ ≤ ε · 1
1
2(1

2 − ε)
≤ 5ε

for ε ≤ 0.1. Setting ε =
√

2n−2/3, this holds for n ≥
√

2 · 103/2 ≈ 45. This means, for
every choice of r, there are O(n1/3) choices for r for which (r, r) might be non-pure.

2. x > 1
2 : As above, but we fix u and find that the range for v is∣∣∣∣∣α− u(1− x)

x
− α− u(1− (x+ ε))

x+ ε

∣∣∣∣∣ = ε

∣∣∣∣ α− u
x(x+ ε)

∣∣∣∣ ≤ 4ε.

Summing over the constant number of interval boundaries in A yields O
(#non-pure (r,r)

n2
)

=
O(n−2/3).

The same bound as in Equation (23) follows for the integrals with ` = 1 and ` = s:
Equation (22) holds also for that case by setting z = 0 resp. z = 1, and the number of non-pure

References 31

pairs turns into the number of non-pure values of r resp. r, which can be bounded in the same
way as above.

Finally combining the results for the regimes Dα(n) and Dα(n), we obtain the bound on
br(n,m) = O(n−h·2/3)

Hence the error terms rn,m fulfill the same recurrence as E[Fn,m], but with a smaller toll function
of order O(nε) with ε = 1 − 2h/3 ∈ (1

3 , 1). To finish the proof, we consider r̂n = maxm rn,m.
Since rn,m ≤ r̂n, the claim follows if we can show that r̂n = O(nε). From the recurrence (15)
for rn,m, we obtain

r̂n = O(nε) + max
1≤m≤n

s∑
`=1

EJ
[
1{R`−1<m<R`} · rR`−R`−1−1,m−R`−1

]
≤ O(nε) + max

1≤m≤n

s∑
`=1

EJ
[
1{R`−1<m<R`} · r̂J`

]
≤ O(nε) + EJ

[
max
1≤`≤s

r̂J`

]
= O(nε) + r̂E[max J`].

Clearly, this means we lose a constant fraction of n in each step and the first toll function will
dominate. More formally, we have

E
[

max
1≤`≤s

J`
]

=
n∑

j=dn/se
j · P[max J` = j]

≤
n∑

j=dn/se
j ·

s∑
`=1

P[J` = j]

=
Lem. 2.1

n · 1
n

n∑
j=dn/se

j

n

s∑
`=1

(
fP`(j/n)±O(n−1)

)
=

Lem. 2.3
n ·

s∑
`=1

∫ 1

1/s
zfP`(z) dz︸ ︷︷ ︸

=:ρ < 1

± O(1).

The constant is ρ < 1 since integrating from 0 to 1 would yield exactly 1. So we have
r̂n ≤ r̂ρn +O(nε), and it is easy to prove by induction that r̂n = O(nε). �

References
[1] Andrei Alexandrescu. Fast deterministic selection. In Costas S. Iliopoulos, Solon P. Pissis,

Simon J. Puglisi, and Rajeev Raman, editors, International Symposium on Experimental
Algorithms (SEA 2017), volume 75 of LIPIcs, pages 24:1–24:19, 2017. doi:10.4230/LIPIcs.SEA.
2017.24.

[2] D.H. Anderson and R. Brown. Combinatorial aspects of C.A.R. Hoare’s FIND algorithm.
Australasian Journal of Combinatorics, 5:109–119, 1992.

[3] Martin Aumüller and Martin Dietzfelbinger. Optimal partitioning for dual-pivot Quicksort.
ACM Transactions on Algorithms, 12(2):18:1–18:36, 2015. doi:10.1145/2743020.

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.24
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.24
http://dx.doi.org/10.1145/2743020

32 Sesquickselect: One and a half pivots for cache-efficient selection

[4] Martin Aumüller, Martin Dietzfelbinger, and Pascal Klaue. How good is multi-pivot
quicksort? ACM Transactions on Algorithms, 13(1):8:1–8:47, 2016. doi:10.1145/2963102.

[5] Jon Bentley. Programming pearls: how to sort. Communications of the ACM, 27(4):287–
291, 1984.

[6] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.
doi:10.1016/S0022-0000(73)80033-9.

[7] Julien Clément, James Allen Fill, Thu Hien Nguyen Thi, and Brigitte Vallée. Towards a
realistic analysis of the QuickSelect algorithm. Theory of Computing Systems, 58(4):528–
578, 2015. doi:10.1007/s00224-015-9633-5.

[8] Walter Cunto and J. Ian Munro. Average case selection. Journal of the ACM, 36(2):270–279,
1989. doi:10.1145/62044.62047.

[9] Luc Devroye. Exponential bounds for the running time of a selection algorithm. Journal
of Computer and System Sciences, 29(1):1–7, 1984. doi:10.1016/0022-0000(84)90009-6.

[10] NIST Digital Library of Mathematical Functions. Release 1.0.10; Release date 2015-08-07.
URL: http://dlmf.nist.gov.

[11] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009. (available on author’s website: http://algo.inria.fr/flajolet/Publications/book.pdf).

[12] Robert W. Floyd and Ronald L. Rivest. Expected time bounds for selection. Communica-
tions of the ACM, 18(3):165–172, 1975. doi:10.1145/360680.360691.

[13] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A
Foundation For Computer Science. Addison-Wesley, 1994.

[14] Rudolf Grübel. Hoare’s selection algorithm: A Markov chain approach. Journal of Applied
Probability, 35(01):36–45, 1998. doi:10.1239/jap/1032192549.

[15] Rudolf Grübel. On the median-of-k version of Hoare’s selection algorithm. RAIRO –
Theoretical Informatics and Applications, 33(2):177–192, 1999. doi:10.1051/ita:1999112.

[16] Rudolf Grübel and Uwe Rösler. Asymptotic distribution theory for Hoare’s selection
algorithm. Advances in Applied Probability, 28(01):252–269, 1996. URL: https://doi.org/10.
2307/1427920, doi:10.2307/1427920.

[17] C. A. R. Hoare. Algorithm 65: Find. Communications of the ACM, 4(7):321–322, 1961.

[18] Hsien-Kuei Hwang and Tsung-Hsi Tsai. Quickselect and the Dickman function. Combina-
torics, Probability and Computing, 11(04), 2002. doi:10.1017/s0963548302005138.

[19] Java Core Library Development Mailing List. Replacement of quicksort in java.util.arrays
with new dual-pivot quicksort, 2009. URL: https://www.mail-archive.com/core-libs-dev@openjdk.java.
net/msg02608.html.

[20] P. Kirschenhofer, H. Prodinger, and C. Martínez. Analysis of Hoare’s FIND algorithm
with median-of-three partition. Random Structures and Algorithms, 10(1-2):143–156, 1997.
doi:10.1002/(sici)1098-2418(199701/03)10:1/2<143::aid-rsa7>3.0.co;2-v.

http://dx.doi.org/10.1145/2963102
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1007/s00224-015-9633-5
http://dx.doi.org/10.1145/62044.62047
http://dx.doi.org/10.1016/0022-0000(84)90009-6
http://dlmf.nist.gov
http://algo.inria.fr/flajolet/Publications/book.pdf
http://dx.doi.org/10.1145/360680.360691
http://dx.doi.org/10.1239/jap/1032192549
http://dx.doi.org/10.1051/ita:1999112
https://doi.org/10.2307/1427920
https://doi.org/10.2307/1427920
http://dx.doi.org/10.2307/1427920
http://dx.doi.org/10.1017/s0963548302005138
https://www.mail-archive.com/core-libs-dev@openjdk.java.net/msg02608.html
https://www.mail-archive.com/core-libs-dev@openjdk.java.net/msg02608.html
http://dx.doi.org/10.1002/(sici)1098-2418(199701/03)10:1/2<143::aid-rsa7>3.0.co;2-v

References 33

[21] Peter Kirschenhofer and Helmut Prodinger. Comparisons in Hoare’s Find algorithm.
Combinatorics, Probability and Computing, 7(01):111–120, 1998.

[22] Krzysztof C. Kiwiel. On Floyd and Rivest’s SELECT algorithm. Theoretical Computer
Science, 347(1):214–238, 2005. doi:10.1016/j.tcs.2005.06.032.

[23] Diether Knof and Uwe Roesler. The analysis of Find and versions of it. Discrete Mathematics
& Theoretical Computer Science, 14, 2012. URL: https://dmtcs.episciences.org/581.

[24] Donald E. Knuth. Mathematical analysis of algorithms. In IFIP Congress (1), pages
19–27, 1971.

[25] Donald E. Knuth. Selected Papers on Analysis of Algorithms, volume 102 of CSLI Lecture
Notes. Center for the Study of Language and Information Publications, 2000.

[26] Daniel Krenn. An extended note on the comparison-optimal dual-pivot quickselect. In
2017 Proceedings of the Fourteenth Workshop on Analytic Algorithmics and Combinatorics
(ANALCO). Society for Industrial and Applied Mathematics, 2017. doi:10.1137/1.9781611974775.
11.

[27] Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, and J. Ian Munro. Multi-pivot
Quicksort: Theory and experiments. In Meeting on Algorithm Engineering and Experiments
(ALENEX), pages 47–60. SIAM, 2014. doi:10.1137/1.9781611973198.6.

[28] Hosam M. Mahmoud, Reza Modarres, and Robert T. Smythe. Analysis of quickselect :
an algorithm for order statistics. RAIRO – Theoretical Informatics and Applications,
29(4):255–276, 1995.

[29] Conrado Martínez, Daniel Panario, and Alfredo Viola. Adaptive sampling strategies for
quickselect. ACM Transactions on Algorithms, 6(3):1–45, 2010. doi:10.1145/1798596.1798606.

[30] Conrado Martínez and Salvador Roura. Optimal sampling strategies in Quicksort and
Quickselect. SIAM Journal on Computing, 31(3):683–705, 2001. doi:10.1137/S0097539700382108.

[31] David R. Musser. Introspective Sorting and Selection Algorithms. Software: Practice and
Experience, 27(8):983–993, 1997.

[32] Markus E. Nebel, Sebastian Wild, and Conrado Martínez. Analysis of pivot sampling in
dual-pivot Quicksort. Algorithmica, 75(4):632–683, 2016. doi:10.1007/s00453-015-0041-7.

[33] Volkert Paulsen. The moments of FIND. Journal of Applied Probability, 34(04):1079–1082,
1997. doi:10.2307/3215021.

[34] Salvador Roura. Improved master theorems for divide-and-conquer recurrences. Journal
of the ACM, 48(2):170–205, 2001.

[35] Robert Sedgewick. Implementing Quicksort programs. Communications of the ACM,
21(10):847–857, 1978.

[36] Houshang H. Sohrab. Basic Real Analysis. Springer Birkhäuser, 2nd edition, 2014.

[37] Henning Sulzbach, Ralph Neininger, and Michael Drmota. A Gaussian limit process for
optimal FIND algorithms. Electronic Journal of Probability, 19(0), 2014. doi:10.1214/ejp.
v19-2933.

http://dx.doi.org/10.1016/j.tcs.2005.06.032
https://dmtcs.episciences.org/581
http://dx.doi.org/10.1137/1.9781611974775.11
http://dx.doi.org/10.1137/1.9781611974775.11
http://dx.doi.org/10.1137/1.9781611973198.6
http://dx.doi.org/10.1145/1798596.1798606
http://dx.doi.org/10.1137/S0097539700382108
http://dx.doi.org/10.1007/s00453-015-0041-7
http://dx.doi.org/10.2307/3215021
http://dx.doi.org/10.1214/ejp.v19-2933
http://dx.doi.org/10.1214/ejp.v19-2933

34 Sesquickselect: One and a half pivots for cache-efficient selection

[38] John D. Valois. Introspective sorting and selection revisited. Software: Practice and
Experience, 30(6):617–638, 2000. doi:10.1002/(sici)1097-024x(200005)30:6<617::aid-spe311>3.0.co;2-a.

[39] Sebastian Wild. Dual-Pivot Quicksort and Beyond: Analysis of Multiway Partitioning
and Its Practical Potential. Doktorarbeit (Ph.D. thesis), Technische Universität Kaiser-
slautern, 2016. ISBN 978-3-00-054669-3. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:
hbz:386-kluedo-44682.

[40] Sebastian Wild. Dual-pivot and beyond: The potential of multiway partitioning in quicksort.
it – Information Technology, 60(3):173–177, 2018. doi:10.1515/itit-2018-0012.

[41] Sebastian Wild, Markus E. Nebel, and Hosam Mahmoud. Analysis of Quickselect under
Yaroslavskiy’s dual-pivoting algorithm. Algorithmica, 74(1):485–506, 2016. doi:10.1007/
s00453-014-9953-x.

[42] Sebastian Wild, Markus E. Nebel, and Ralph Neininger. Average case and distributional
analysis of dual pivot Quicksort. ACM Transactions on Algorithms, 11(3):22:1–22:42, 2015.
doi:10.1145/2629340.

[43] Vladimir Yaroslavskiy. Dual-Pivot Quicksort. 2009. URL: http://iaroslavski.narod.ru/quicksort/
DualPivotQuicksort.pdf.

http://dx.doi.org/10.1002/(sici)1097-024x(200005)30:6<617::aid-spe311>3.0.co;2-a
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-44682
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-44682
http://dx.doi.org/10.1515/itit-2018-0012
http://dx.doi.org/10.1007/s00453-014-9953-x
http://dx.doi.org/10.1007/s00453-014-9953-x
http://dx.doi.org/10.1145/2629340
http://iaroslavski.narod.ru/quicksort/DualPivotQuicksort.pdf
http://iaroslavski.narod.ru/quicksort/DualPivotQuicksort.pdf

	1 Introduction
	1.1 Previous Work

	2 Preliminaries
	2.1 The beta distribution and its relatives
	2.2 Hölder-Continuity
	2.3 The Distributional Master Theorem
	2.4 Adaptive Quickselect
	2.5 Cost Measures and Notation

	3 Distributional Recurrence
	4 Random ranks
	4.1 Generic Multiway Partitioning
	4.2 Discussion
	4.3 Adaptive Methods

	5 Asymptotic Approximation for Linear Ranks
	6 YBB-Select with Linear Ranks
	7 Sesquickselect
	7.1 Sesquickselect with larger samples

	8 Conclusion
	8.1 Future Work

	Appendix
	A Index of Notation
	A.1 Generic Mathematical Notation
	A.2 Stochastics-related Notation
	A.3 Notation for our Analysis

	B Proof of Hölder integration lemma
	C Proof of Local Limit Law
	D Constants for Sesquickselect
	E Optimal Threshold for Sesquickselect
	F Proof of Convergence for Linear Ranks
	F.1 Derivation of the integral equation
	F.2 Proof of convergence

	References

