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We extend randomized jumplists introduced by Brönnimann, Cazals, and Du-
rand [2] to choose jump-pointer targets as median of a small sample for better search
costs, and present randomized algorithms with expected O(logn) time complexity
that maintain the probability distribution of jump pointers upon insertions and
deletions. We analyze the expected costs to search, insert and delete a random
element, and we show that omitting jump pointers in small sublists hardly affects
search costs, but significantly reduces the memory consumption.
We use a bijection between jumplists and “dangling-min BSTs”, a variant of

(fringe-balanced) binary search trees for the analysis. Despite their similarities,
some standard analysis techniques for search trees fail for dangling-min trees (and
hence for jumplists).

1. Introduction
Jumplists were introduced by Brönnimann, Cazals, and Durand [2] as a simple randomized
comparison-based dictionary implementation. They allow iteration over the stored elements
in sorted order and supports queries and updates in expected logarithmic time. The core is
a sorted (singly-) linked listed augmented with jump pointers, i.e., shortcuts that speed up
searches. Jump-pointers are required to be well-nested, i.e., they may not cross. This allows
binary-search-like navigation. Fig. 1 shows an exemplary jumplist; a detailed definition is
deferred to § 3.

If all jump pointers point to the middle of their sublist, we obtain perfect binary search, but
we need a rule that is also efficiently maintainable upon insertions and deletions. Brönnimann,
Cazals, and Durand [2] proposed a randomized solution: jump pointers invariably have a
uniform distribution over their sublist, i.e., the first jump pointer equally likely points to any
element and thereby divides the list in two parts, the next- and jump-sublists. Both follow the
same rule recursively; since pointers may not cross, they can do so independently.

In this article, we generalize jumplists to use a more balanced distribution: each jump
pointer points to the median of a small sample of k elements of its sublist. (The original
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Figure 1: A jumplist on n = 30 keys (with k = 1 and w = 2). Gray arrows are backbone links, thick red
arrows are jump pointers. Dotted green arrows delimit a node’s conceptual sublist; (they are not stored).

jumplists correspond to k = 1.) Building on the algorithms from [2] we present O(logn)
expected-time insertion and deletion algorithms for median-of-k jumplists that maintain this
more balanced distribution. Here n counts the number of keys currently stored. A larger
k balances the structure more rigidly which improves searches, but makes the cleanup after
updates more expensive. Our main contribution is an analysis of median-of-k jumplists that
precisely quantifies the influence of k on searches, insertions and deletions.

We also introduce a novel search strategy (named spine search) that reduces the number of
needed key comparisons significantly, and we suggest a further modification of jumplists: for
sublists smaller than a threshold w, we omit the jump pointers altogether. This allows to trade
space for time: elements in these small sublists do not have to store a jump pointer, but the
corresponding subfile can only be searched sequentially. We show that this saves a constant
fraction of the pointers while affecting expected search costs only by an additive constant.

Outline of the paper. In the remainder of the introduction we summarize related work. § 2
contains common notation and preliminaries used later. In § 3, we define jumplists. We present
our spine search strategy in § 4. § 5 introduces the median-of-k extension, and § 6 describes
the insertion and deletion algorithms. Our analysis is given in § 7, and we conclude the paper
with a discussion of the results (§ 8). The appendix contains a list of used notations, as well as
details on the operations and omitted parts of the analysis.

1.1. Related Work
(Unbalanced) binary search trees (BSTs) perform close to optimal on average and with high
probability when keys are inserted in random order [14, 15]. A standard approach is to enforce
the average behavior through randomization. The most direct application of this paradigm is
given by Martínez and Roura [16] who devised efficient randomized insert and delete operations
that maintain the shape distribution of random insertions. The idea also works when duplicate
keys are allowed [20].

Randomized BSTs store subtree sizes for maintaining the distribution. The treaps of Seidel
and Aragon [24] instead store a random priority with each node. Treaps remain in random
shape by enforcing a heap order w.r.t. the random priorities. Their performance characteristics
are very similar to randomized BSTs.

Unless further memory is used, BSTs do not offer O(1) time successor queries. Like jumplists,
Pugh’s skip lists [22] are augmented, sorted linked lists, so successors are found by following one
pointer. Skip lists extend the list elements by towers of pointers of different heights, where each
tower cell points to the successor among all element of at least this height. With geometrically
distributed heights, operations run in O(logn) expected time with O(n) extra pointers in
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expectation. The varying tower heights can be inconvenient; this originally motivated the
introduction of jumplists. For skip lists, there is a direct and transparent bijection to BSTs [4];
this becomes more complicated for jumplists (see § 3).

The classic alternative to randomization are deterministically balanced BSTs [1]. Munro,
Papadakis, and Sedgewick [17] transfer the height-balance rule of 2-3 trees to skip lists, and
Elmasry [6] applied the weight-balancing criterion of BB[α] trees [19] to jumplists. Note that
the latter achieves logarithmic update time only in an amortized sense.

A constant-factor speedup over BSTs is achieved with fringe-balanced BSTs. The name
originates from fringe analysis, a technique used in their analysis [21].1 In a fringe-balanced
search tree, leaves collect keys in a buffer. Once a leaf holds k keys, it is split: the median of
the k elements is used as the key of a new node; two new leaves holding the other elements form
its subtrees. Many parameters like expected path length, height and profiles of fringe-balanced
trees have been studied [5].

2. Notation and Preliminaries
We introduce some important notation here; Appendix A gives a comprehensive list. We use
Iverson’s bracket [stmt] to mean 1 if stmt is true and 0 otherwise. Falling resp. rising factorial
powers are denoted by xn and xn; for negative n holds xn = 1/(x+ 1)n resp. xn = 1/(x+ 1)n.
P[E] denotes the probability of event E and E[X] the expectation of random variable X. We
write X D= Y to denote equality in distribution.

For a self-contained presentation, we list here a few mathematical preliminaries used in the
analysis later.

Beta distribution. The beta distribution has two parameters α, β ∈ R>0 and is written as
Beta(α, β). If X D= Beta(α, β), we have X ∈ (0, 1) and X has the density

f(x) = xα−1(1− x)β−1

B(α, β) , x ∈ (0, 1),

where B(α, β) = Γ (α)Γ (β)/Γ (α+ β) is the beta function.
The following lemma is helpful for computing expectations involving such beta distributed

variables; it is a special case of [26, Lemma 2.30].

Lemma 2.1 (“Powers-to-Parameters”): Let X1 be a Beta(α1, α2) distributed random
variable and write X2 = 1 − X1. Let further m1,m2 ∈ Zd with m1,m2 > −α be given and
abbreviate A := α1 + α2 and M := m1 +m2. Then for an arbitrary (real-valued, measurable)
function f holds

E
[
Xm1

1 Xm2
2 · f(X1)

]
= αm1

1 αm2
2

AM
· E
[
f(X̃1)

]
,

where X̃1 is Beta(α1 +m1, α2 +m2) distributed. �

Beta-Binomial Distribution. The beta-binomial distribution is a discrete distribution with
parameters n ∈ N0 and α, β ∈ R>0. It is written as BetaBin(n, α, β). If I D= BetaBin(n, α, β),

1 The concept appears under a handful of other names in the (earlier) literature: locally balanced search
trees [25], diminished trees [9], and iR / SR trees [12, 13].

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf60
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we have I ∈ [0..n] and

P[I = i] =
(
n

i

)
B(α+ i, β + (n− i))

B(α, β) , i ∈ Z .

(Recall that
(n
i

)
is zero unless i ∈ [0..n].) An alternative representation of the weights for

α = t1 + 1, β = t2 + 1 ∈ N with k = t1 + t2 + 1 is(
n

i

)
B(α+ i, β + (n− i))

B(α, β) =
(i+t1
t1

)(n−i+t2
t2

)(n+k
k

) ,

which yields a combinatorial interpretation.
There is a second way to obtain beta-binomial distributed random variables: we first

draw a random probability D D= Beta(α, β) according to a beta distribution, and then use
this as the success probability of a binomial distribution, i.e., I D= Bin(n; d) conditional on
D = d. The beta-binomial distribution is thus also called a mixed binomial distribution, using
a beta-distributed mixer D; this explains its name.

Since the binomial distribution is sharply concentrated, one can use Chernoff bounds on beta
binomial variables after conditioning on the beta distributed success probability. That already
implies that BetaBin(n, α, β)/n converges to Beta(α, β) (in a specific sense). We can obtain
the stronger error bounds given in the following lemma by directly comparing the probability
density functions.

Lemma 2.2 (Local limit law [26, Lem. 2.38]): Let (I(n))n∈N be a sequence of random vari-
ables where I(n) is distributed like BetaBin(n, α, β) for α, β ∈ N≥1. Then for n→∞ we have
uniformly for z ∈ (0, 1) that

nP
[
J (n)/n ∈ (z − 1

n , z]
]

= fB(z) ± O(n−1), (1)

where fB(z) = zα−1(1 − z)β−1/B(α, β) is the density function of the beta distribution with
parameters α and β. �

Since fB is a polynomial in z, it is in particular bounded and Lipschitz continuous in the closed
domain z ∈ [0, 1]. Hence, the local limit law also holds for the random variables J (n) = I(n−d) +c
for constants c and d. Further properties of the beta-binomial distribution are collected in [26,
§ 2.4.7].

The following expectations are listed here for reference; proofs are given in Appendix D.

Lemma 2.3: Let X D= Bin(n, p) for n ∈ N0 and p ∈ (0, 1]. Then we have with q = 1− p that

E
[
X−1

]
= n−1 · p−1(1− qn+1) ,

E
[
X−2

]
≤ n−2 · p−2 .

Lemma 2.4: For D D= Beta(t+ 1, t+ 1) we have (with k = 2t+ 1)

E[lnD] = Ht −Hk,

E[D lnD] = 1
2
(
Ht+1 −Hk+1

)
.

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf66
https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf64
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Hölder continuity. A function f : I → R defined on a bounded interval I is Hölder continuous
with exponent h ∈ (0, 1] when

∃C ∀x, y ∈ I :
∣∣f(x)− f(y)

∣∣ ≤ C|x− y|h.

Hölder continuity is a notion of smoothness that is stricter than (uniform) continuity, but
slightly more liberal than Lipschitz continuity (which corresponds to h = 1). f : [0, 1] → R
with f(z) = z ln(1/z) is a stereotypical function that is Hölder continuous (for any h ∈ (0, 1)),
but not Lipschitz.

For functions defined on a bounded domain, Lipschitz continuity implies Hölder continuity
and Hölder continuity with exponent h implies Hölder continuity with exponent h′ < h. Recall
that a real-valued function is Lipschitz if its derivative is bounded.

2.1. The Distributional Master Theorem
To solve the recurrences in §7, we use the “distributional master theorem” (DMT) [26, Thm. 2.76],
reproduced below for convenience. It is based on Roura’s continuous master theorem [23],
but reformulated in terms of distributional recurrences in an attempt to give the technical
conditions and occurring constants in Roura’s original formulation a more intuitive, stochastic
interpretation. We start with a bit of motivation for the latter.

The DMT is targeted at divide-and-conquer recurrences where the recursive parts have a
random size. The average-case analyses of Quicksort and binary search trees are typical examples
that lead to such recurrences. Because of the random subproblem sizes, a traditional recurrence
for expected costs has to sum over all possible subproblem sizes, weighted appropriately. That
way, the direct correspondence between the recurrence and the algorithmic process is lost, in
particular the number of recursive applications is no longer directly visible.

An alternative that avoids this is a distributional recurrence that describes the full distribution
of costs. The distribution for larger problem sizes is described by a “toll term” (for the divide
and/or combine step) plus the contributions of recursive applications. Such a distributional
formulation requires the toll costs and subproblem sizes to be stochastically independent of the
recursive costs when conditioned on the subproblem sizes. In typical applications, this is fulfilled
when the studied algorithm guarantees that the subproblems on which it calls itself recursively
are of the same nature as the original problem. Such a form of randomness preservation is
also required for the analysis using traditional recurrences. We can thus use the distributional
language to describe costs directly mimicking the structure of our algorithms in this paper.

The DMT allows us to compute an asymptotic approximation of the expected costs directly
from the distributional recurrence. Intuitively speaking, it is applicable whenever the relative
subproblem sizes of recursive applications converge to a (non-degenerate) limit distribution as
n→∞ (in a suitable sense; see Equation (3) below). The local limit law provided by Lem. 2.2
gives exactly such a limit distribution.

Theorem 2.5 (DMT [26, Thm. 2.76]):
Let (Cn)n∈N0 be a family of random variables that satisfies the distributional recurrence

Cn
D= Tn +

s∑
r=1

A(n)
r · C

(r)
J(n)

r
, (n ≥ n0), (2)

where the families (C(1)
n )n∈N, . . . , (C(s)

n )n∈N are independent copies of (Cn)n∈N, which are
also independent of (J (n)

1 , . . . , J (n)
s ) ∈ {0, . . . , n− 1}s, (A(n)

1 , . . . , A(n)
s ) ∈ Rs≥0 and Tn. Define

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf8a
https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf8a
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Z(n)
r = J (n)

r /n, = 1, . . . , s, and assume that they fulfill uniformly for z ∈ (0, 1)

n · P
[
Z(n)
r ∈ (z − 1

n , z]
]

= fZ∗r (z) ± O(n−δ), (3)

as n→∞ for a constant δ > 0 and a Hölder-continuous function fZ∗r : [0, 1]→ R. Then fZ∗r is
the density of a random variable Z∗r and Z(n)

r
D−→ Z∗r .

Let further

E
[
A(n)
r

∣∣ Z(n)
r ∈ (z − 1

n , z]
]

= ar(z) ± O(n−δ), (4)

as n→∞ for a function ar : [0, 1]→ R and require that fZ∗r (z) · ar(z) is also Hölder continuous
on [0, 1]. Moreover, assume E[Tn] ∼ Knα logβ(n), as n → ∞, for constants K 6= 0, α ≥ 0
and β > −1. Then, with H = 1−

∑s
r=1 E[(Z∗r )αar(Z∗r )], we have the following cases.

1. If H > 0, then E[Cn] ∼ E[Tn]
H

.

2. If H = 0, then E[Cn] ∼ E[Tn] lnn
H̃

with H̃ = −(β + 1)
s∑
r=1

E[(Z∗r )αar(Z∗r ) ln(Z∗r )].

3. If H < 0, then E[Cn] = O(nc) for the c ∈ R with
s∑
r=1

E[(Z∗r )car(Z∗r )] = 1. �

3. Jumplists
We now present our (consolidated) definition of jumplists; it deviates in some details from the
original version of [2]; see Appendix B.

Jumplists consist of nodes, where each node v stores a successor pointer (v.next) and a
key (v.key). The nodes are connected using the next pointers to form a singly-linked list, the
backbone of the jumplist, so that the key fields are sorted ascendingly.2 It is convenient to add
a “dummy” header node v0 whose key field is ignored; (v0.key = −∞). If x1 < · · · < xn are
the keys stored in the jumplist, we have the n + 1 nodes v0, v1, . . . , vn with vi.key = xi and
vi−1.next = vi for i = 1, . . . , n. A jumplist on n keys will always have m = n+ 1 nodes; we use
n and m in this meaning throughout the paper.

Jump Pointers. Jump pointers always point forward in the list, and we require the following
two conditions. (1) Non-degeneracy: Any node may be the target of at most one jump pointer,
and jump pointers never point to the direct successor. (2) Well-nestedness: Let v 6= u be nodes
with v.key < u.key, and let v∗ resp. u∗ be the nodes their jump pointers point to. (Note that
v∗ 6= u∗ by the first property). Then these nodes must appear in one of the following orders in
the backbone: u . . . v . . . v∗ . . . u∗ or v . . . v∗ . . . u . . . u∗:

u v v∗ u∗ or u v v∗u∗

The second case allows v∗ = u. Visually speaking, jump pointers may not cross.

2We assume the keys stored in a jumplist are distinct. The insert procedures will prevent duplicate insertions.
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

next-sublist jump-sublist
sublist of v1

Figure 2: Illustration of the sublist definitions. The sublist of node v1 contains m(v1) = 7 nodes
and stores the 6 keys v2.key, . . . , v7.key. The sizes of the next- and jump-sublist are J1(v1) = 2 and
J2(v1) = 4, respectively.

Sublists. The sublist of node v starts at v (inclusive) and ends just before the first node
targeted by a jump pointer originating before v – or extends to the end of the list if no
overarching pointer exists. As for the overall jumplist, v acts as dummy header to its sublist:
v.key is not considered as part of v’s sublist. We write m(v) for the number of nodes in v’s
sublist. The next- and jump-sublists of v, denoted by J1 = J1(v) resp. J2 = J2(v), are the
sublists of v.next resp. v.jump. We use Jr = Jr(v) for the number of nodes in Jr(v), r ∈ {1, 2}.
Fig. 2 exemplifies the definitions. We include an imaginary “end pointer” in the figures, drawn
as dotted green line, that connects a jump node with the last node in that node’s sublist.

Node Types. Nodes in our jumplists come in two flavors: plain nodes only have next and
key fields; jump nodes additionally store a jump pointer, v.jump, and their next-sublist size,
v.nsize = J1. The node types are determined by the following rule, where w ≥ 2, the leaf size,
is a parameter: If m(v) ≤ w, then v (and all nodes in its sublist) are plain nodes. Otherwise v
is a jump node, and we apply the rule recursively to J1(v) and J2(v). Fig. 1 shows a larger
example.

Randomized Jumplists. The following probability distribution over all (legal) jump-pointer
configurations invariantly holds in randomized jumplists. It is defined recursively: v0.jump is
drawn uniformly from all m− 2 feasible targets; (v0 and v1 are not allowed). Conditional on
the choice of v0.jump, the same property is required independently for J1(v0) and J2(v0). The
probability p(J ) of a particular (legal) pointer configuration J is

p(J ) =


1, m ≤ w;

1
m− 2 · p(J1) p(J2), m > w,

which is reminiscent of the probability of a given shape for a random BST, except for the offset
−2 (see [14, ex. 6.2.2–5] or [3, Eq. (5.1)]).

3.1. Dangling-Min BSTs
There is an intimate relation between jumplists and search trees, but the slight offset above
complicates the matter.3 Indeed, (random) jumplists are isomorphic to a rather peculiar variant
of (random) BSTs (where random means “generated by insertions in random order”): the

3The complication is inherent to the feature of jumplists that every key has at most one jump pointer. Skip
lists, for example, can be transformed into BSTs directly [4].
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11

5 12

4 10

8

9

1

2

3 6

7
1 2 3 4 5 6 7 8 9 10 11 12

Figure 3: The dangling-min BST with w = 2 for the sequence 11, 2, 5, 3, 1, 4, 10, 8, 7, 9, 6, 12, and the
jumplist it corresponds to.

dangling-min BSTs (with leaf size w ≥ 2). Such a tree is defined for a sequence of (distinct) keys
x1, . . . , xn as follows. If n ≤ w− 1, it is a leaf with the keys in sorted order. Otherwise, its root
node contains two keys: the smallest key, min{x1, . . . , xn}, as its dangling min, and the first key
of the sequence after the min has been removed as root key (i.e., the root key is x1, unless x1 is
the min; then it is x2). The left resp. right subtrees of the root are the dangling-min BSTs for
the keys smaller resp. larger than the root key in the remaining sequence (without root key and
min, and preserving relative order). Dangling-min BSTs make the recursive decomposition in
jumplists explicit, which helps for both designing algorithms and analyzing their performance.

We can transform a jumplist to a dangling-min BST (and vice versa): If m ≤ w, v0 is a
plain node and the dangling-min BST is a leaf containing all m− 1 ≤ w − 1 keys; (recall that
a jumplist with m nodes stores n = m− 1 keys). Otherwise, v0 is a jump node; with x1 the
key in v0.next and xj the key in v0.jump, the root of the dangling-min BST has root key xj
and dangling min x1. Next- resp. jump-sublist are recursively transformed into left and right
subtree. Fig. 3 shows the jumplist corresponding to the given tree; Fig. 4 gives a larger example.

It is easy to see inductively that the dangling-min BST built from a randomized jumplist
has the same distribution as if directly constructed for a random permutation of {1, . . . , n}.
We can therefore focus on analyzing the latter.

4. Spine Search
Searching a key x in a jumplist is straightforward: We start at the header. We stop when the
key in the current node v is larger or equal to x. Otherwise we follow either the jump pointer –
if the key in v.jump is not larger than x – or the next-pointer. We call this strategy the classic
search in the sequel.4

However, there is an alternative search strategy not considered in [2] and [6], which performs
better! Consider searching key 8 in the jumplist from Fig.1. A classic search in this list inspects
keys 18, 1, 3, 12, 4, 6, 11, 7, 10, 8 in the given order; a total of 10 key comparisons. Every step in
the search that follows the next-pointer needs two comparisons.

Now do the search for 8 in the dangling-min BST from Fig. 4, as if it was a regular BST
(ignoring the subtree minima and stopping at the leaves). While doing so, we compare with keys
18, 3, 12, 6, 11, 10. All these steps need only one key comparison even though mostly the same
keys are visited as above. However, our search is not yet finished; the reached leaf contains
only 9, and we would (erroneously!) announce that 8 is not in the dictionary. Instead we have

4Brönnimann, Cazals, and Durand [2] also studied the symmetric alternative—compare first to v.next and
then with v.jump (if needed)—and found that it needs more comparisons on average.
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18

1 3 22

2 {} 12

4 6 15

5 {} 11

7 10 {}

8 {9 }

{}

13 {14 }

17

16 {} {}

19 21 25

20 {} {} 23 {24 }

30

26 28 {}

27 {} {29 }

Figure 4: The dangling-min BST for the jumplist from Fig. 1. Black arrows are left child pointers, red
arrows are right child pointers, and dotted yellow arrows indicate the dangling min. Gray nodes are leaves
that contain between 0 and w − 1 = 1 keys.

to return to the last node we entered through a right-child pointer and inspect all the dangling
mins along the “left spine” of the corresponding subtree. In our example, we return to 11 and
make comparisons with 7 and 8, terminating successfully. We call this search strategy spine
search. In our example, it needed 2 comparisons less than the classic search.

Spine search only compares x with the dangling-mins for nodes on the left spine above the
leaf, whereas the classic strategy does so for every node we leave through the left-child edge.
Our modification is correct because when going to the right child we know that all keys left to
v are smaller than x and thus x cannot be any of the dangling minima we skipped. Appendix C
gives detailed pseudocode.

The left spine is always a subset of the nodes where we took a left child edge, so spine
search never needs more comparisons than the classic strategy. It seems reasonable that spine
search should need roughly as many key comparisons as the search in a BST since most left
spines are short. Indeed, we prove in § 7 that the linear search along the left spine is only a
lower order term when averaging over all possible unsuccessful searches—spine search needs
∼ 2 ln(n) comparisons, compared to ∼ 3 ln(n) for the classic search strategy.

5. Median-of-k Jumplists
The search costs in BSTs can be improved by using medians of a small sample as subtree roots;
the idea is called fringe-balancing in that context (§ 1.1) and corresponds to the median-of-k
rule for Quicksort [11, 5, 28]. Applied to our trees, we obtain k-fringe-balanced dangling-min
BSTs: if n ≥ w, we choose the root key as the median of the first k keys in the sequence after
removing the min (and otherwise proceed as before). Here k = 2t+ 1 is a fixed odd integer and
we require w ≥ k + 1.

Similarly, we define a randomized median-of-k jumplist by choosing the jump target as the
median of k elements. The situation is illustrated below for k = 3 and m = 10; to have x6 as
the median of 3 elements from the sample range, we must select t = 1 further elements from
{x2, . . . , x5} and t = 1 further elements from {x7, . . . , x9}.
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-∞

1

2

3

4 5 6

7

8 9

10 11

12

13

14

15 16 17 18

19

20

21

22 23 24 25

26 27 28

29

30

21

1 14 25

2 9 19

3 7 12

4 {5,6 }

{8 } 10 {11 }

{13 }

15 {16,17,18 }

{20 }

22 {23,24 }
29

26 {27,28 }

{30 }

Figure 5: A typical median-of-three (k = 3, w = 4) jumplist on n = 30 keys and its corresponding
fringe-balanced dangling-min BST.

sampling range
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

sample
J1 J2

The number of such samples is
(J1−1

t

)(J2−1
t

)
, which we have to divide by the total number of

possible samples,
(m−2

k

)
. The probability of a (legal) jump pointer configuration J thus is

p(J ) =


1 m ≤ w;(J1−1

t

)(J2−1
t

)(m−2
k

) · p(J1) p(J2), m > w.

This puts more probability weight on balanced configurations, and hence improves the expected
search costs. Fig. 5 shows a typical median-of-3 jumplist and its fringe-balanced dangling-min
tree.5

Distribution of subproblem sizes. For our analysis, an alternative description of the dis-
tribution of the subproblem sizes is more convenient. Note that both J1 and J2 are always
at least t + 1: the sublists must contain t other sampled nodes plus their header. If we
denote by Ir = Jr − t − 1, r ∈ {1, 2}, we find that Ir has a beta-binomial distribution (§ 2),
Ir
D= BetaBin(m− 2− k, t+ 1, t+ 1). This implies that with D D= Beta(t+ 1, t+ 1), we have

the mixed distribution Ir D= Bin(m− 2− k,D) conditional on D.6

5A possible generalization could use asymmetric sampling with (t1, t2) and k = t1 + t2 + 1, where we select the
(t1 + 1)st smallest instead of the median. Then, we have

(
J1−1

t1

)
and

(
J2−1

t2

)
in Equation (5). For the present

work, we will however stick to the case t1 = t2 = t.
6The symmetry in the sublist sizes, J1

D= J2, is a major convenience of our definition of jumplists as opposed to
the original one.
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RestIns(J ) = p · v0 Reb
( )

Reb
(
vJ vn

)

+ (1− p) · v0 RestIns
( )

vj

x RestIns
( )

vj

v0 restIns
(
vj

)
if J = v0 vj

if J = x v0 vj

if J = v0 vj

Figure 6: Recursion structure of RestoreAfterInsert. With probability p, we rebalance the entire
sublist; otherwise, we recurse into one sublist, depending on the rank of the newly inserted node (shown
in red).
The recursion structure for RestoreAfterDelete is similar.

6. Insert and Delete
We briefly sketch the update operations for randomized median-of-k jumplists; Appendix C
describes them in more detail. The common theme is that we first modify the jumplist blindly
and afterwards “repair” the distribution by rebuilding one suitably chosen sublist randomly
from scratch. For example upon insertion, the new node has a certain chance to be the target
of the first jump pointer. We flip a coin to decide whether this should happen; if so, we rebuild
the entire structure and are done. Otherwise, we recursively repair a sublist.

Rebalance. As in [2], we use a procedure Rebalance(J ) that (re)assigns jump pointers from
scratch. It only uses the backbone, existing jump pointers are ignored. A careful recursive
implementation of Rebalance rebuilds a sublist of m nodes in time Θ(m).

Insert. Insertion in jumplists consists of the three phases found in many dictionaries: (unsuc-
cessful) search, local insertion, and cleanup. Unless x is already present, the search ends at the
node with the largest key (strictly) smaller than x. There we insert a new node with key x into
the backbone.

It does not have a jump pointer yet, and it is a new potential jump target for all the nodes
whose sublist contains the new node. Procedure RestoreAfterInsert rectifies this as follows.
Let m be the total number of nodes after the insertion, i.e., including the new node. If m ≤ w,
no cleanup is necessary; if m = w+ 1, we draw the jump pointer for v0 and are done. Otherwise,
we first restore the pointer distribution of v0. Due to the insertion of a new node, the sample
range now contains an additional node u. (u is not necessarily the newly inserted node; if the
new key is the first or second smallest in J , u is the former second node of J ).

If we, conceptually, drew v0.jump anew, there are two possibilities: either u is part of the
sample, namely with probability p = k

m−2 , or u is not part of it. In the first case, we rebalance
all of J . In the second case, conditional on the event that u is not in the sample, the current
jump pointer of v0 already has the correct distribution: the median of a random sample not
containing u. We thus rebalance J with probability p, where we draw the jump pointer of v0
conditional on u being part of the sample. Otherwise we continue recursively in the uniquely
determined sublist that contains the inserted node. Fig. 6 summarizes RestoreAfterInsert
graphically.
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Delete. We now sketch the procedure RestoreAfterDelete, which is similar to Restore-
AfterInsert. Let m be the number of nodes after deletion, and let u be the deleted node.
First assume that u 6= v0. Assume m > w, i.e., v0 is a jump node whose sublist contained
u. If the sample drawn to choose v0.jump did not contain u, the deletion of u does not affect
v0.jump, and we recursively clean up the sublist that formerly contained u. If u was part of the
sample, we have to rebalance J ; the probability for that is

p =


1, if u = v0.jump;
t

J1−1 , if u was in J1;
t

J2−1 , if u was in J2.

(We define 0
0 := 1 in case t = J1 − 1 = 0.) When the deleted node is u = v0, the new header v1

can inherit v0’s jump pointer and we have the same situation as if v1 had been deleted. We have
to rebalance with probability p = t

J1−1 , otherwise we continue the cleanup in the next-sublist.

Cost Measure. Insertion and deletion consist of a search and RestoreAfterInsert/-
Delete. The latter procedures retrace (a prefix of) the search path to the element and rebuild
at most one sublist using Rebalance. So apart from the search costs (which we analyze
separately), the dominating cost is the number of “rebalanced elements”: the size of the sublists
on which Rebalance is called. We will use this as our measure of costs.

7. Analysis
We now turn to the analysis of the expected behavior of median-of-k jumplists with leaf size w.
(The expectation is always over the random choices of the jump pointers.) We summarize our
results in the theorem below. Its proof is spread over the following subsections.

Theorem 7.1:
Consider randomized median-of-k jumplists with leaf size w on n keys, where k and w are fixed
constants. Abbreviate by H(k) = Hk+1 −H(k+1)/2 for Hn the harmonic numbers. Then the
following holds:

(a) The expected number of key comparisons in a spine search is asymptotic to 1/H(k) · lnn,
as n→∞, when each position is equally likely to be requested.

(b) The expected number of rebalanced elements in the cleanup after insertion is as-
ymptotic to k/H(k) · lnn, as n → ∞, when each of the n + 1 possible gaps is equally
likely.

(c) The expected number of rebalanced elements in the cleanup after deletion is asymptotic
to k/H(k) · lnn, as n→∞, when each key is equally likely to be deleted.

(d) The expected number of additional machine words per key required to store the jumplist
is asymptotically at most 1 + 2

(w+1)H(k) as n→∞.

7.1. Search Costs
Let Pn be the (random) total number of comparisons to search all numbers x ∈ {0.5, 1.5, . . . , n+
0.5} (searching each gap once) in Jn the randomized jumplist on {1, . . . , n}, using SpineSearch.
The corresponding quantity in BSTs is called external path length, and we will use this term for
Pn, as well. The quotient Pn/n describes the average costs of one call to SpineSearch when all
n+ 1 gaps are equally likely to be requested. Pn is random w.r.t. to the locations of the jump
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pointers in Jn. To set up a recurrence for Pn, the perspective of random dangling-min BSTs is
most convenient, since SpineSearch follows the tree structure. We describe recurrences here
in terms of the distributions of families of random variables.

Pn
D=


(n+ 1) + (Sn + Ln + 1) + SJ1

+ PJ1 + P ′J2 ,
n ≥ w,

(n+1)(n+2)
2 , n < w,

Sn
D=
{

1 + SJ1 , n ≥ w,
0, n < w,

Ln
D=
{
LJ1 , n ≥ w,
n, n < w,

The terms PJ1 and P ′J2
on the right-hand side denote members of independent copies of the

family of random variables (Pn)n∈N0 , which are also independent of Jr = J (n)
r , r ∈ {1, 2}.

(We omitted the superscripts above for readability.) Here Jr = Ir + t, r ∈ {1, 2}, I1
D=

BetaBin(n− 1− k; t+ 1, t+ 1) and J2 = n− 1− k − J1. (We use n here instead of m in § 5;
hence the slightly different parameters.)

The terms in the expression for Pn are the comparisons with (1) the root key, (2) the
dangling min of the root, (3) the comparisons done in the left subtree while searching the
leftmost gap (which does not exist in the subtrees any more!), and (4) the external path lengths
of the subtrees. Two additional quantities are used to express these: Ln is the number of
keys in the leftmost leaf; by definition we have 0 ≤ E[Ln] ≤ w − 1 = O(1). Sn is the number
of internal nodes on the “left spine” of the tree, an essential parameter for the linear-search
part of SpineSearch. Sn is also the depth of the internal node with the smallest root key
(ignoring dangling mins). For ordinary BSTs, Sn is essentially the number of left-to-right
minima, which is a well-understood parameter; for (fringe-balanced) dangling-min BSTs, such
a simple correspondence does not seem to hold.

We point out that the distribution of Pn has a subtle complication, namely that even
conditional on (J1, J2), the quantities Sn, SJ1 and PJ1 are not independent: all consider the
same left subtree! For example, we always have SJ1 = Sn−1 (for n ≥ w). We will only compute
the expected value here, so by linearity, these dependencies can be ignored.

We will derive an asymptotic approximation using Thm. 2.5, the distributional master
theorem (DMT).

Remark 7.1: For ordinary BSTs, the expectation of above quantities is known precisely, and
some generalizations for fringe-balanced trees are possible by solving an Euler differential
equation for the generating function. Unlike there, for dangling-min BSTs the resulting
differential equation is not an Euler equation. The case t = 0 could be solved since the
differential equation has order one [2], but there is little hope to obtain a solution for the
generating function for t ≥ 1.

Lemma 7.2: E[Sn] ∼ 1
Hk −Ht

lnn.

Proof: We apply Thm. 2.5 to the distributional recurrence Sn D= SJ1 + 1. It has the form of
(2) with (matching the notation of Thm. 2.5) Cn = Sn. We have s = 1 recursive term with size
J1 plus a “toll term” Tn = 1. The latter has the asymptotic form E[Tn] = 1 ∼ 1 · n0 lg0 n as
n→∞, i.e., K = 1, α = 0, β = 0. Moreover, there is no “coefficient” in from of the recursive
term, so A1 = 1.
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We next check the conditions. The independence assumptions are trivially fulfilled here, in
particular because Tn is a fixed constant. We next consider (3). Recall that J1

D= BetaBin(n−
1− k; t+ 1, t+ 1) + t. By Lem. 2.2 and the remark below it, Z(n)

1 = J (n)
1 /n fulfills

nP
[
Z(n)

1 ∈ (z − 1
n , z]

]
= fZ∗1 ± O(n−1),

for fZ∗1 : [0, 1]→ R with fZ∗1 (z) = zt(1− z)t/B(t+ 1, t+ 1). This function is a polynomial in z,
so it has bounded derivative (on the compact domain [0, 1]) and is hence Lipschitz continuous
(and thus Hölder continuous). So (3) is satisfied with δ = 1. The limiting relative subproblem
size Z∗1 has a Beta(t+ 1, t+ 1) distribution.

For the second condition, (4), we find that E
[
A(n)
r

∣∣Z(n)
r ∈ (z− 1

n , z]
]

= 1 since A1 is constant.
So this condition is trivially satisfied with a1(z) = 1 (which is a Hölder-continuous function).
We have now established that we can apply the DMT to our recurrence.

To obtain the asymptotic approximation for E[Sn], we consider H = 1− E[(Z∗1)0] = 0, so
Case 2 applies: E[Sn] ∼ H̃−1 · E[Tn] lnn = H̃−1 · lnn for the constant H̃ = −

∑s
r=1 E[ln(Z∗r )].

(Note that this constant only involved the limiting relative subproblem size Z∗r , not the relative
subproblem size Z(n)

1 for a fixed n.) The expectation in H̃ is exactly the first part of Lem. 2.4,
so we find H̃ = Hk −Ht. Now the claim follows by inserting above. �

Remark 7.2 (Spine lengths): Lem. 7.2 implies that the expected left spine of the root is
logarithmic – as one might expect in a random BST; indeed, the expected left spine lengths of
the root in a random BST and a dangling-min BST differ only in lower order terms. Note that
the former is exactly Hn and the proof is elementary: The left spine length in a BST is the
number of left-to-right minima in the insertion order. For dangling-min BSTs, no such simple
argument is available.

With these preparations, we can prove the main statement about search costs.

Proof of Thm. 7.1–(a): We again use the distributional master theorem (DMT); this time
on the recurrence Pn D= (n + 1) + (Sn + Ln + 1) + SJ1 + PJ1 + P ′J2

. The recurrence is more
involved than the one for Sn that we just solved, but the distribution of subproblem sizes are
the same, and we again have no coefficient in front of the recursive terms. Therefore, a large
part of the argument can be copied from the proof of Lem. 7.2.

We here have Cn = Pn, there are s = 2 recursive terms and Tn = (n+1)+(Sn+Ln+1)+SJ1 .
By Lem. 7.2, all but the first summand in E[Tn] are actually in O(logn), so from the initially
complicated toll function, only E[Tn] ∼ n remains in the leading term as n→∞. We thus have
K = 1, α = 1, β = 0.

The coefficients Ar = 1 for r ∈ {1, 2}, so (4) again holds trivially with ar(z) = 1. As in the
proof of Lem. 7.2, Z∗1

D= Z∗2
D= Beta(t+ 1, t+ 1) holds and condition (3) holds with the same

fZ∗1 . We find again H = 0 (since Z∗1 + Z∗2 = 1), so Case 2 applies. The constant H̃ this time
involves the second part of Lem. 2.4: H̃ = −

∑s
r=1 E[Dr ln(Dr)] = Hk+1 −Ht+1. So we have

E[Pn] ∼ 1
Hk+1−Ht+1

n lnn and dividing by n+ 1 yields the claim. �

7.2. Insertion Costs
The steps taken by RestoreAfterInsert depend on the position of the newly inserted
element; we denote here by R the rank of the gap the new element is inserted into. When
the current sublist has m nodes, we have R ∈ [0..m]. Similar as for searches, we consider the
average costs of insertion when all possible gaps are equally likely to be requested.

Unlike for searches, the distribution of R′ in subproblems is not uniform even when R is: a
close inspection of RestoreAfterInsert reveals that (a) recursive calls in the jump-sublist
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always have R′ ≥ 1, and (b) R = 0 and R = 1 yield R′ = 0 in the recursive call in the
next-sublist; in fact, once R = 0 holds, we get this rank in all later recursive calls. We can
therefore handle this by splitting the cases R = 0 and R ≥ 1; Also note that for the topmost
call to RestoreAfterInsert, R = 0 is not possible, since no insertion before the header
with dummy-key −∞ is possible. This means that initially R D= U [1..m] holds. Recall that a
jumplist on m nodes stores only n = m− 1 keys, so that there are only n+ 1 = m possible gaps.
We obtain the following distributional recurrence for Bins

m , the random number of rebalanced
elements during insertion into the Rth gap in a randomized median-of-k jumplist with m nodes.
(Note that unlike in the pseudocode, m is here the number of nodes in the jumplist before the
insertion.)

Bins
m

D=



F · (m+ 1)
+ (1− F )

(
1{R=1}B

ins0
J1

+ 1{2≤R≤J1+1}B
ins
J1

+ 1{R≥J1+2}B
ins
J2

)
,

m > w,

[m = w] · (m+ 1), m ≤ w,

Bins0
m

D=

F · (m+ 1) + (1− F )Bins0
J1 , m > w,

[m = w] · (m+ 1), m ≤ w,

where R
D= U [1..m], F

D= B
( k

m− 1
)
,

All Bm terms on the right-hand side denote independent copies of the family of random
variables and R and F are independent of Bm and (J1, J2). Here Jr = Ir + t+ 1, r ∈ {1, 2},
J1

D= BetaBin(m− 2− k; t+ 1, t+ 1) and J2 = m− 2− k − J1 (as in § 5).

Lemma 7.3: E[Bins0
m ] ∼ k

Hk −Ht
lnm.

Proof: We use once more the distributional master theorem. As before, Z∗1
D= Beta(t+ 1, t+ 1)

and the condition (3) is satisfied by Lem.2.2. We have E[Tn] = E[F (n+ 1)] ∼ k = Θ(1). Unlike
before, we here have a non-constant coefficient A(n)

1 = 1− F in front of the recursive term, but
since E[1− F ] = 1±O(n−1), (4) is again fulfilled with a1(z) = 1. As in the proof of Lem. 7.2,
we find H = 0 (Case 2) and with the claim follows from H̃ = −E[lnD1] = Hk−Ht (Lem.2.4).�

Proof of Thm. 7.1–(b): Towards applying the DMT on Cn = Bins
n , we compute

E[Tn] = E
[
F (n+ 1) + (1− F )1{R=1}B

ins0
n

]
= k(n+ 1)

n− 1 + n− 1− k
n− 1 · 1

n
· E[Bins0

n ]

=
Lem. 7.3

k ± O(n−1 logn).

As usual, we have Z∗r
D= Beta(t+ 1, t+ 1), r ∈ {1, 2}, and (3) is fulfilled by Lem. 2.2. For the

coefficients of the recursive terms holds

E
[
A(n)

1

∣∣∣ Z(n)
1 ∈ (z − 1

n , n]
]

= P
[
2 ≤ R ≤ J1 + 1

∣∣∣ Z(n)
1 ∈ (z − 1

n , n]
]
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= P
[
J1
n

∣∣∣ Z(n)
2 ∈ (z − 1

n , n]
]

= P
[
Z(n)

1
∣∣ Z(n)

1 ∈ (z − 1
n , n]

]
= z ± O(n−1),

and similarly
E
[
A(n)

2
∣∣ Z(n)

2 ∈ (z − 1
n , n]

]
= P

[
R ≥ J1 + 2

∣∣ Z(n)
2 ∈ (z − 1

n , n]
]

= z ± O(n−1),

so that (4) holds with a1(z) = a2(z) = z, and we can apply the DMT. Since H =
1 −

∑2
r=1 E

[
(Z∗r )0ar(Z∗r )

]
= 1 −

∑2
r=1 E[Z∗r ] = 0, we again have Case 2 and find H̃ =

−
∑2
r=1 E[Dr lnDr] = Hk+1 −Ht+1 with Lem. 2.4. This proves the claim. �

7.3. Deletion Costs
As for insertion, we analyze the size of the sublist Bdel

m that is rebuilt using Rebalance when
the rank of the deleted element is chosen uniformly. Initially, we have R D= U [2..m] since the
dummy key −∞ in the header cannot be deleted. In recursive calls, also R = 1 is possible,
and we remain in this case for good whenever we enter it once. We can thus characterize the
deletion costs using the two quantities Bdel

m and Bdel1
m . As for insertion, m is the “old” size of

the jumplist, i.e., the number of nodes before the deletion.

Bdel
m

D=



F · (m− 1)
+ (1− F )

(
1{R=2}B

del1
J1

+ 1{3≤R≤J1+1}B
del
J1

+ 1{R≥J1+3}B
del
J2

)
,

m > w,

[m = w] · 1, m ≤ w,

where R
D= U [2..m], and cond. on (R, J1, J2)

F
D=


B
(

t
J1−1

)
, R ≤ J1 + 1;

1, R = J1 + 2;
B
(

t
J2−1

)
, R ≥ J1 + 3,

Bdel1
m

D=

F1 · (m− 1) + (1− F1)Bdel1
J1 , m > w,

[m = w] · 1, m ≤ w,

where cond. on J1 F1
D= B

( t

J1 − 1
)
.

As before, the Bm terms on the right are independent copies of the family of random variables
and R and F/F1 are independent of Bm and (J1, J2). We have Jr = Ir + t + 1, r ∈ {1, 2},
J1

D= BetaBin(m− 2− k; t+ 1, t+ 1) and J2 = m− 2− k − J1. The (asymptotic) solution of
these recurrences is similar to the case of insertion, but a few more complications arise.

Lemma 7.4: For t = 0 we have E[Bdel1
m ] ≤ 1. If t ≥ 1, E[Bdel1

m ] ∼ k

Hk −Ht
lnm.
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Proof: For t = 0, we have F1 = 0 (almost surely) in each iteration, so the recurrence collapses
to its initial condition, which is at most 1. In the following, we now consider t ≥ 1. The proof
will ultimately use the DMT on Cn = Bdel1

n , but we need a few preliminary results to compute
the toll function E[Tn] = E[F1(n− 1)]. We write the a = b± d to mean b− d ≤ a ≤ b+ d here
and throughout. With that notation, we give the following elementary approximation:

∀t ∈ N≥1 ∀n ≥ 0 : t

n+ t
= tn−1 ± t(t− 1)n−2. (5)

Now, we compute the expectation of F1 conditional on I1 = J1 − t− 1.

E[F1 | I1] = t

J1 − 1 = t

I1 + t

=
(5)

t · I−1
1 ± t(t− 1) · I−2

1 .

Next, we use the stochastic representation of beta-binomials (recall § 2); we take expectations
over I1

D= Bin(η,D1) with η = m− 2− k, but conditional on D1. We write D2 = 1−D1. Then
it holds that

E[F1 |D1]

=
Lem. 2.3

t

η + 1D
−1
1 (1−Dη+1

2 ) ± t(t− 1)D−2
1 η−2.

Finally, we also compute the expectation w.r.t. D1
D= Beta(t + 1, t + 1); note that for t ≥ 2,

E[D−2
1 ] exists and has a finite value (independent of n); whereas for t = 1, the error term is

zero. So we find in both cases with Lem. 2.1:

E[F1] = t

η + 1E[D−1
1 ]− t

η + 1E[D−1
1 Dη+1

2 ] ± O(η−2)

= t

η + 1
k

t
− t

η + 1
(t+ 1)η+1

t(k + 1)η ± O(η−2)

= k

η + 1 −
(t+ 1)(t+ 2)
(η + 1)(η + 2)

(t+ 3)η−1

(k + 2)η−1︸ ︷︷ ︸
<1

±O(η−2)

= k

η + 1 ± O(η−2). (6)

With this we finally get E[Tn] = E[F1(n− 1)] = k±O(n−1). Z∗1
D= Beta(t+ 1, t+ 1) and fulfills

(3). For (4), we compute

E
[
A(n)

1
∣∣ Z(n)

1 ∈ (z − 1
n , z]

]
= E

[
1− F1

∣∣ Z(n)
1 ∈ (z − 1

n , z]
]

= 1±O(n−1).

So the DMT applies; we have H = 0, i.e., Case 2. The claim follows with H̃ = −E[lnZ∗1 ] =
Hk −Ht. �

Proof of Thm. 7.1–(c): We start with computing the conditional expectation of F , the coin
flip indicator.

E[F | J1] = J1
n− 1

t

J1 − 1 + 1
n− 11 + J2 − 1

n− 1
t

J2 − 1

= 2t+ 1
n− 1 + 1

n− 1 ·
t

J1 − 1 .
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Hence

E[F ] =
(6)

2t+ 1
n− 1 + 1

n− 1 ·
k

η + 1 ±O(n−3)

= k

n− 1 ± O(n−2).

Towards applying the DMT on Cn = Bdel
n , we compute

E[Tn] = E
[
F (n− 1) + (1− F )1{R=2}B

del1
n

]
=

Lem. 7.4
k ± O(n−1 logn).

We have Z∗r
D= Beta(t+ 1, t+ 1) and (3) is fulfilled. Similarly as in § 7.2, we find that (4) holds

with a1(z) = a2(z) = z. Once more we have H = 0 and Case 2 applies, and the claim follows
with H̃ = −

∑2
r=1 E[Dr lnDr] = Hk+1 −Ht+1. �

7.4. Memory Requirements
We assume that a pointer requires one word of storage, and so does an integer that can take
values in [0..n+ 1]. We do not count memory to store the keys since any (general-purpose) data
structure has to store them. This means that a plain node requires 1 word of (additional) storage,
and a jump node needs 3 additional words (two pointers and one integer). Let An denote the
(random) number of jump nodes, excluding the dummy header, of a random median-of-k jumplist
with leaf size w on n keys, then its additional memory requirement is 3(An + 1) + 1(n−An). It
remains to show that An is asymptotically at most 1/

(
(w + 1)(Hk+1 −Ht+1)

)
n.

An counts the internal nodes in a random fringe-balanced dangling-min BST over n keys; a
distributional recurrence is thus easy to set up:

An
D=
{

1 +AJ1 +AJ2 , n > w − 1,
0, n ≤ w − 1.

Here again Jr = Ir + t, r ∈ {1, 2}, J1
D= BetaBin(n− 1− k; t+ 1, t+ 1) and J2 = n− 1− k− J1.

For An, the DMT only gives us E[An] = O(n) (Case 3). It is easy to see that E[An] is also
Ω(n), but a precise leading-term seems very hard to obtain.

Proof of Thm. 7.1–(d): The recurrence for An is very similar to that for the number of
partitioning steps in median-of-k Quicksort with Insertionsort threshold w−1; the only difference
is that we there have I1

D= I2
D= BetaBin(n− k; t+ 1, t+ 1), i.e., with n− k instead of n− k− 1.

By monotonicity, E[An] is at most the number of partitioning steps in Quicksort since also the
subproblems sizes are smaller. The number of partitioning steps in median-of-k Quicksort with
Insertionsort threshold M is 1/

(
(M + 2)(Hk+1 −Ht+1)

)
n±O(1), see, e.g., [10, p. 327]. Setting

M = w − 1 yields the claim. �

8. Conclusion
In this article, we presented median-of-k jumplists and analyzed their efficiency in terms of the
expected number of comparisons (for searches) and rebalanced elements (for updates). The
precise analysis of insertion and deletion costs is also novel for the original version of jumplists
(k = 1).

Our analysis shows that a search profits from sampling; in particular going from k = 1 to
k = 3 entails significant savings: 12

7 lnn ≈ 1.714 lnn instead of 2 lnn comparisons on average.
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Figure 7: The k that minimizes the leading-term coefficient of total costs of insertion/deletion, if one
comparison costs ξ ∈ [0, 1] and each rebalanced element costs 1− ξ, i.e., arg mink ξ · 1

H(t) + (1− ξ) · k
H(t)

as a function of ξ.

As for median-of-k Quicksort, we see diminishing returns for much larger k. For jumplists, also
the cleanup after insertions and deletions gets more expensive; the effort grows linearly with k.
Very large k will thus be harmful.

The efficiency of insertion and deletion depends on both the time for search and the time
for cleanup, so it is natural to ask for optimal k. Since the cost units are rather different
(comparisons vs. rebalanced elements) we need a weighing factor. Depending on the relative
weight ξ ∈ [0, 1] of comparisons, we can compute optimal k, see Fig. 7. In the realistic range,
we should try k = 1, 3, or 5, unless we do many more searches than updates.

We conducted a small running time study based on a proof-of-concept implementation [27]
in Java that confirms our analytical findings: Sampling leads to some savings for searches, but
slows down insertions and deletions significantly. Comparing running times with that of Java’s
TreeMap (a red-black tree implementation) shows that our data structure is only partially
competitive: for iterating over all elements, jumplists are about 50% faster, but searches are
between 20% and 100% slower (depending on the choice for w) and for insertions/deletions
TreeMaps are 5 to 10 times faster. However, TreeMaps use 4 additional words per key (without
even storing subtree sizes needed for efficient rank-based access), whereas our jumplists never
need more than ∼ 2.3 additional words per key and less than 1.04 with w ≈ 100. For n = 106

keys, w ≈ 100 did not affect searches much (+25%) but actually sped up insertions and deletions
(roughly by a factor of 2!).

8.1. Future Work
Some interesting questions are left open. What is the optimal choice for w? Answering
this question requires second-order terms of search, insertion and deletion costs; due to the
underlying mathematical challenges it is unlikely that those can be computed exactly, but an
upper bound using analysis results on Quicksort should be possible. Other future directions are
the analysis of branch misses, in particular in the context of an asymmetric sampling strategy,
and the design of a “bulk insert” algorithm that is faster than inserting elements subsequently,
one at a time.

On modern computers the cache performance of data structures is important for their
running time efficiency. Here, a larger fanout of nodes is beneficial since it reduces the expected
number of I/Os. For jumplists this can be achieved by using more than one jump pointer in
each node. The case of two jump pointers per node has been worked out in detail [18], but the
general scheme invites further investigation.
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Appendix
A. Index of Notation
In this appendix, we collect the notations used in this work.

A.1. Generic Mathematical Notation
N, N0, Z, Q, R . . . . . . natural numbers N = {1, 2, 3, . . .}, N0 = N ∪ {0}, integers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}, rational numbers Q, real numbers R.

R>1, N≥3 etc. . . . . . . . restricted sets Xpred = {x ∈ X : x fulfills pred}.

0.3 . . . . . . . . . . . . . . . . . repeating decimal; 0.3 = 0.333 . . . = 1
3 ;

numerals under the line form the repeated part of the decimal number.

ln(n), ld(n) . . . . . . . . . natural and binary logarithm; ln(n) = loge(n), ld(n) = log2(n).

X . . . . . . . . . . . . . . . . . to emphasize that X is a random variable it is Capitalized.

[a, b) . . . . . . . . . . . . . . . real intervals, the end points with round parentheses are excluded, those with
square brackets are included.

[m..n], [n] . . . . . . . . . . integer intervals, [m..n] = {m,m+ 1, . . . , n}; [n] = [1..n].

[stmt], [x = y] . . . . . . . Iverson bracket, [stmt] = 1 if stmt is true, [stmt] = 0 otherwise.

Hn . . . . . . . . . . . . . . . .nth harmonic number; Hn =
∑n
i=1 1/i.

O(f(n)), ±O(f(n)), Ω, Θ, ∼
asymptotic notation as defined, e.g., by [7, Section A.2]; f = g ±O(h) is
equivalent to |f − g| ∈ O(|h|).

x± y . . . . . . . . . . . . . . .x with absolute error |y|; formally the interval x± y = [x− |y|, x+ |y|]; as with
O-terms, we use “one-way equalities”: z = x± y instead of z ∈ x± y.

Γ (z) . . . . . . . . . . . . . . . the gamma function, Γ (z) =
∫∞

0 tz−1e−t dt.

ψ(z) . . . . . . . . . . . . . . . the digamma function, ψ(z) = d
dz ln(Γ (z)).

B(α, β) . . . . . . . . . . . . . the beta function, B(α, β) =
∫ 1

0 z
α−1(1− z)β−1 dz

ab, ab . . . . . . . . . . . . . . factorial powers notation of Graham et al. [8]; “a to the b falling resp. rising.”

h(x) . . . . . . . . . . . . . . . the binary base-e entropy function h(x) = −x ln(x)− (1− x) ln(1− x).

A.2. Stochastics-related Notation
P[E], P[X = x] . . . . . . probability of an event E resp. probability for random variable X to attain

value x.

E[X] . . . . . . . . . . . . . . . expected value of X.

X D= Y . . . . . . . . . . . . . equality in distribution; X and Y have the same distribution.

1E , 1{X≤5} . . . . . . . . . indicator variable for event E, i.e., 1E is 1 if E occurs and 0 otherwise;
{X ≤ 5} denotes the event induced by the expression X ≤ 5.

B(p) . . . . . . . . . . . . . . .Bernoulli distributed random variable; p ∈ [0, 1].

U(a, b) . . . . . . . . . . . . . uniformly in (a, b) ⊂ R distributed random variable.

U [a..b] . . . . . . . . . . . . . .discrete uniformly in [a..b] ⊂ Z distributed random variable.
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Beta(α, β) . . . . . . . . . . beta distributed random variable with shape parameters α ∈ R>0 and
β ∈ R>0.

Bin(n, p) . . . . . . . . . . . binomial distributed random variable with n ∈ N0 trials and success
probability p ∈ [0, 1]; Bin(1, p) D= B(p). X D= Bin(n, p) is equivalent to
(X,n−X) D= Mult(n; p, 1− p).

BetaBin(n, α, β) . . . . . beta-binomial distributed random variable; n ∈ N0, α, β ∈ R>0;
X D= BetaBin(n, α, β) is equivalent to (X,n−X) D= DirMult(n;α, β).

A.3. Notation for Jumplists and Analysis
k, t . . . . . . . . . . . . . . . . sample size k = 2t+ 1, t ∈ N≥0; jump pointers are chosen as median of k

elements.

w . . . . . . . . . . . . . . . . . . leaf size; (sub)lists with n < w (equivalently: m ≤ w) do not use jump
pointers.

n . . . . . . . . . . . . . . . . . .number of keys stored; the input size.

m, m(v) . . . . . . . . . . . . the number of nodes; m = n+ 1 (the header does not store a key).

x1, . . . , xn . . . . . . . . . . the stored keys; x1 < · · · < xn.

v0, v1, . . . , vn . . . . . . . . the m = n+ 1 nodes of a jumplist on n keys, in the order of the backbone, i.e.,
vi.key = xi and vi−1.next = vi, i = 1, . . . , n.

Jn . . . . . . . . . . . . . . . . . random jumplist on n keys {1, . . . , n}; obtained from Rebalance on a list
with keys {1, . . . , n}.

sublist of node vi . . . . the sublist that starts at vi (inclusive) and extends up to (excluding) the first
node targeted by a jump pointer of a node vj with j < i or up to (including)
the end of the whole list if not such pointer exists.

J1, J1(v) . . . . . . . . . . . the next-sublist (of a given node v); the sublist of v.next; (only defined for
jump nodes).

J2, J2(v) . . . . . . . . . . . the jump-sublist (of a given node v); the sublist of v.jump. (only defined for
jump nodes).

J1, J2 . . . . . . . . . . . . . . (random) sublist sizes; Jr = Ir + t+ 1 ∈ [t+ 1..m− t− 2] is the number of
nodes in Jr, r ∈ {1, 2}; J1 + J2 = m− 1;

I1, I2 . . . . . . . . . . . . . . I1
D= I2

D= BetaBin(m− k − 2, t+ 1, t+ 1).

B. Comparison of Jumplist Definitions
Our definition of jumplists differs in some details from the original version. We list the differences
here, and discuss why we think that our modifications are appropriate.

Symmetry. In the original version of the jumplist, the jump pointer is allowed to target any
node from the sublist, except the header itself. Thus there are m− 1 possible choices. In this
setting, the size of the next-sublist can attain any value between 0 and m− 2, whereas the size
of the jump-sublist is between 1 and m− 1.

We disallow the direct successor of the head as possible target. This modification restores
symmetry between next- and jump-sublist: both must be non-empty and contain at most m− 2
nodes and their sizes have the same distribution. Moreover, forbidding the direct successor
as jump target is also a natural requirement since such a degenerate “shortcut” is useless in
searches.
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Small Sublists. The original jumplists only have one type of nodes which corresponds to
our jump node. In the case m = 1, Brönnimann, Cazals, and Durand resort to assigning an
“exceptional pointer” to the direct successor; note that this node actually lies outside (one
behind) of the current sublist. These pointers are of no use, as they are never followed during
(jump-and-walk) search.

In implementations with heap-allocated memory for each node, it is often not a problem
to have different node types (and sizes), and it potentially allows to save memory. We thus
introduced the plain node without jump pointer, used whenever the sublist has at most w nodes.
w ≥ 2 is required if we want to avoid useless jump pointers that point to the direct successor.

This also allows us enforce that every node has at most one incoming jump pointer; this is
another natural requirement from the perspective of a search starting at the header: shortcuts
with the same target are redundant. The parameter w allows us to trade space for time.

Sentinel vs. Circularly closed. The original jumplist implementation has a circularly closed
backbone, i.e., the next pointer of the last node in the list points to the overall header again,
avoiding special treatment for an empty list. Since the backbone is sorted, we can instead add a
sentinel node with key +∞ at the end of the list, so we can omit any explicit boundary checks
during searches.

C. Algorithms
In this appendix, we give the more details the insertion and deletion algorithms for randomized
median-of-k jumplists.

We describe the procedures in prose and an intuitive graphic syntax, as well as in detailed
pseudocode; see §C.4 for the latter. We also point out that our proof-of-concept implementation
in Java is available online for interested readers [27].

As a simple example to introduce the graphical syntax, here is the transformation from
jumplists to dangling-min BSTs pictorially:

minBST
(

x1 xj

)
=

J1 J2

xjx1

minBST(J1) minBST(J2)

x1 . . . xnminBST
( )

= x1, . . . , xn

(m > w)

(m ≤ w)

The first equation defines minBST on small jumplists (m ≤ w); it shows a header without
jump pointer, i.e., a plain node. The second equation defines minBST on larger jumplists.
Whenever variables appear on the left side, they are understood as formal placeholders of a
pattern to be matched against the actual input. This mimics the corresponding feature of many
functional programming languages that allows to define a function case by case in this syntax.
The parts that match the variables are then used on the right-hand side.

Graphical syntax conventions. We now proceed to the description of the insertion and deletion
procedures. We use the following conventions: The input of the algorithms, the “old” jumplist,
is drawn as rectangle (or abbreviated by J ). A sequence of (output) leaf nodes is depicted by
a rectangle with rounded corners. The position of insertion resp. deletion is marked in red. If
the algorithm makes a random choice, each outcome is multiplied with its probability, and all
outcomes are added up.
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C.1. Rebalance
Algorithm Rebalance is used if a jumplist needs to be (re)built from scratch. It only uses the
backbone of the argument, any existing jump pointers are ignored. In the base case, i.e., if the
argument contains m ≤ w nodes, a linked list of plain nodes with the same keys is returned.

Reb
(

v0 . . . vn

)
= v0 . . . vn (m ≤ w)

If J contains m > w nodes, v0 must become a jump node and we have to draw a jump target
from the sample range. Conceptually, a sample of k nodes is drawn and the median w.r.t.
the keys is chosen. The same distribution can actually be achieved without explicitly drawing
samples using a random variable J D= BetaBin(m− 2− k, t+ 1, t+ 1) + t+ 2 (see § 5). Then
the node vJ is the jump target. After the jump pointer of v0 has been initialized, the resulting
next- and jump-sublist are rebalanced recursively.

Reb
(

v0 . . . vn

)
= v0 Reb

( )
Reb

(
vJ vn

)
(m > w)

C.2. Insert
Insert in jumplists consists of three phases found in many tree-based dictionaries: (unsuccessful)
search, insertion, and cleanup. Unless x is already present, the search ends at the node with the
largest key (strictly) smaller than x. There we insert a new node with key x into the backbone.

The new node however does not have a jump pointer yet. Furthermore, the new node might
need to be considered as potential jump target of its predecessors in the backbone. Thus, for all
the nodes that have the new node in their sublist, we need to restore the pointer distribution.
This is carried out by RestoreAfterInsert.

Let m be the number of nodes after the insertion, i.e., including the new node. If m ≤ w,
the new node remains a plain node within a list of plain nodes, and no cleanup is necessary. If
m = w + 1 due to the insertion, v0, which was a plain node before, now has to become a jump
node. In this case, Rebalance is called on J and the insertion terminates.

RestIns
( )

= Reb
( )

(m ≤ w)

If m > w+ 1, we first restore the pointer distribution of v0. Due to the insertion of a new node,
the sample range now contains an additional node u. Note that u is not necessarily the newly
inserted node; if the new key is the first or second smallest in J , u is the former second node
of J .

If we, conceptually, wanted to draw pointers for J anew, there are two possibilities: either
u is part of the sample, or u is not part of the sample. The probability for the latter case is(

n− 1
k

)/(
n

k

)
= (n− 1)!k!(n− k)!

k!(n− k − 1)!n! = n− k
n

= 1− k

n
, (C.1)

since the overall number of k-samples from n items is
(n
k

)
and if we forbid, say, item n, we have(n−1

k

)
choices left.

Let us denote by p = k/n the counter probability, i.e., the probability that u is part of the
sample. In that case, we have to rebalance all of J . Conditional on the event that u is not in
the sample, the existing jump pointer of v0 has the correct distribution: it has been chosen as
the median of a random sample not containing u.
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In the algorithm, we thus rebalance J with probability p, where we draw the jump pointer of
v0 conditional on u being part of the sample. Otherwise, v0’s jump pointer can be kept, and we
continue recursively in the uniquely determined sublist that contains the inserted node—that
is, unless v0 does not have a jump pointer yet, since v0 is the newly inserted node. In that case,
we simply steal the jump pointer of its direct successor, v1, which has the correct conditional
distribution. Now v1 does not have a jump pointer, and we treat this case recursively, as if v1
was the newly inserted node.

RestIns(J ) = p · v0 Reb
( )

Reb
(
vJ vn

)

+ (1− p) · v0 RestIns
( )

vj

x RestIns
( )

vj

v0 restIns
(
vj

)
J = v0 vj

J = x v0 vj

J = v0 vj

C.3. Delete
Delete has the same three phases as Insert: first a (successful) search finds the node to be
deleted, then we actually remove it from the backbone. Finally, RestoreAfterDeletion
performs the cleanup: the pointer distribution for those nodes whose sublists contained the
deleted node has to be restored since their sample range has shrunk.

Let m be the number of nodes after deletion, and let u be the deleted node. We first assume
that u 6= v0; the case of deleting v0 will be addressed later. If m ≤ w − 1, J is a list of plain
nodes and can remain unaltered. If m = w, the size dropped from w + 1 to w due to the
deletion, so v0 has to be made a plain node.

RestDel
( )

= v0 . . . vn (m ≤ w)

Otherwise (m > w), v0 is a jump node whose sublist contained u. There are two possible cases:
either the sample drawn to choose v0.jump contained u, or not. In the latter case, the deletion
of u does not affect the choice for v0.jump at all, and we recursively cleanup the uniquely
determined sublist that formerly contained u. If u was indeed part of the sample, we have to
rebalance J .

It remains to determine the probability p that u was in the sample that led to the choice of
v0.jump. Unlike for insertion, p now depends on these two nodes. Let J1 resp. J2 be the sizes
of the next- resp. jump-sublist before deletion; recall that we store J1 in v0.nsize. Then p is
given by the following expression:

p =



1, if u = v0.jump;
t

J1 − 1 , if u was in next-sublist (where 0
0 := 1 in case t = J1 − 1 = 0);

t

J2 − 1 , if u was in jump-sublist.

(C.2)

The correctness is best seen in a case-by-case argument, which we give below. But before we do
that, we have to consider the case that the deleted node is u = v0. Then v1 has become the new
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header, but its jump pointer now has the wrong distribution since v0’s jump pointer no longer
delimits its sample range. But observe that v0’s (old) sample range was exactly v1’s new sample
range plus v2. Accordingly we only have to rebalance in case v2 was part of the sample to select
v0.jump, which happens with probability p = t

J1−1 . Otherwise, we can conceptually impose
v0’s jump pointer on v1, which is easily implemented by swapping their keys, and continue the
cleanup recursively in the next-sublist, as if v1 had been deleted.

Overall, the following situations can occur upon deletion:

1. If the jump pointer of v0 targeted the deleted node, the whole list is re-built with
probability 1.

2. If no sampling is used, i.e., k = 1, the list only needs to be reconstructed in the following
two cases:
a) If the deleted node had rank 0 and next-size 1, we cannot impose the jump pointer

of the deleted node onto v0 as the target is not valid. Thus the list is reconstructed.
b) If the deleted node had rank 1 and v0 had next-size 1, the only node in the next-

sublist has been deleted. This results in an invalid pointer configuration, therefore
the list is reconstructed.

3. If the deleted node was contained in the next-sublist of v0, i.e., r < J1 + 1, it was part of
the sample with probability t

J1−1

4. If the deleted node was contained in the jump-sublist of v0, it was part of the sample
with probability t

m−1−J1
.

To conclude, depending on the outcome of the coin flip, the algorithm either rebalances the
current sublist (with probability p) (as given above) and terminates, or it reuses the topmost
old jump pointer and continues recursively.

RestDel(J ) = p · v0 Reb
( )

Reb
(
vJ vn

)

+ (1− p) · v0 RestDel
( )

vj

v1 RestDel
( )

vj

v0 restDel
(
vj

)
J = v0 vj

J = v0 v1 vj

J = v0 vj

C.4. Pseudocode
We give full pseudocode for all basic operations on median-of-k jumplists with leaf size w in
this section.

We first list the four procedures Contains, Insert, Delete and RankSelect that
constitute the public interface of the data structure; the other procedures can be thought of as
low-level procedures typically hidden from the user of the data structure.

We assume that jumplists are represented using the following records/objects.
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Used Objects/Structs
1 JumpList(head, size)
2 PlainNode(key,next)
3 JumpNode(key,next, jump,nsize)

References/pointers to nodes can refer to a PlainNode or to a JumpNode, and we assume there
is an efficient method to check which type a particular instance has. If node is a reference to a
PlainNode, we write node.key and node.next for the key-value and next-pointer fields of the
referenced PlainNode; similarly for the other types.

Contains(jumpList, x)
// Returns whether x is present in jumpList and how many elements < x it stores.

1 (node, r) := SpineSearch(jumpList.head, x)
2 candidate := node.next
3 return

(
candidate.key == x, r

)
Insert(jumpList, x)

// Insert x into jumpList; does nothing if x is already present.
1 (node, r) := SpineSearch(jumpList.head, x)
2 if node.next.key 6= x // x not yet present
3 node.next := new PlainNode(x,node.next) // Add new node in backbone.
4 n := jumpList.size + 1; jumpList.size := n
5 jumpList.head := RestoreAfterInsert(jumpList.head, n+ 1, r + 1)
6 end if

Delete(jumpList, x)
// Removes x from jumpList; does nothing if x is not present.

1 (node, r) := SpineSearch(jumpList.head, x)
2 if node.next.key == x // x is present
3 delNode := node.next
4 node.next := delNode.next // Remove delNode from backbone.
5 n := jumpList.size − 1; jumpList.size := n
6 jumpList.head := RestoreAfterDelete(jumpList.head, n+ 1, r + 1, delNode)
7 end if

RankSelect(jumpList, rank)
// Returns the element with (zero-based) rank rank, i.e., the (rank + 1)st smallest element.

1 head := jumpList.head; r := rank + 1
2 repeat
3 if r > head.nsize
4 r := r − (head.nsize + 1); head := head.jump
5 else
6 r := r − 1; head := head.next
7 end if
8 if r == 0 then return head.key end if
9 until head is PlainNode

10 repeat
11 r := r − 1; head := head.next
12 until r == 0
13 return head
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The above methods make use of the following internal procedures. We give a spine search
implementation that is augmented to determine also the rank of the found element. Using the
rank makes the procedures to restore the distribution after insertions or deletions a bit more
convenient to state, and also avoids re-doing key comparisons there.

The given implementation of SpineSearch, Contains, Insert, and Delete assume a
sentinel node tail at the end of the linked list that has tail.key = +∞, i.e., a value larger than
any actual key value; we do however not count tail towards the m nodes of a jumplist since
tail can be shared across all instances of jumplists. The sentinel may never be the target of
any jump pointer. We could avoid the need for the sentinel at the expense of a null-check
of the next pointer, before comparing the successor’s key (line 12 in SpineSearch, line 2 in
Contains, line 2 in Insert, and line 2 in Delete). Since using the sentinel is a bit more
efficient and gives more readable code, we stick to this assumption.

SpineSearch(head, x)
// Returns last node with key < x and its zero-based rank,
// i.e., the number of nodes with key < x

1 rank := 0; steppedOver := 0; lastJumpedTo := head
2 repeat // BST-style search
3 if head.jump.key < x
4 rank := rank + head.nsize + 1 + steppedOver
5 head := head.jump
6 steppedOver := 0; lastJumpedTo := head
7 else
8 head := head.next; steppedOver := steppedOver + 1
9 end if

10 until head is PlainNode
11 head := lastJumpedTo
12 while head.next.key < x // Linear search from lastJumpedTo
13 head := head.next; rank := rank + 1
14 end while
15 return (head, rank)

Rebalance(head,m)
// Draws jump pointers in for m nodes starting with head (inclusive)
// according to the randomized jumplist distribution.
// Returns new first (possibly still head) and last node of the sublist.

1 if m ≤ w
2 Replace head and its m− 1 successors by m linked PlainNodes.
3 return (new head,new end)
4 else
5 S := random k-element subset of [2..m− 1]
6 jumpIndex := Median(S) // S(t1+1) in general
7 return SetJumpAndRebalance(head,m, jumpIndex)
8 end if
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SetJumpAndRebalance(head,m, j)
// Rebalances the sublist starting at head containing m nodes,
// where we fix the topmost jump pointer to point to the element of rank j.
// Returns new first (possibly still head) and last node of the sublist.

1 (nextStart,nextEnd) := Rebalance(head.next, j − 1)
2 (jumpStart, jumpEnd) := Rebalance(nextEnd.next,m− j)
3 nextEnd.next := jumpStart
4 return

(
new JumpNode(head.key,nextStart, jumpStart, j − 1), jumpEnd

)
RestoreAfterInsert(head,m, r)

// Restore distribution in sublist with header head and of size m after an insertion at position r.
// m is the number of nodes in the sublist, including the new element
// Returns the new head of the sublist (possibly still head).

1 if m ≤ w + 1 // Base case
2 if m == w + 1 // We need a new JumpNode, so rebalance.
3 (head, end) := Rebalance(head,m)
4 end if
5 else
6 newElementInSample := CoinFlip

(
k

m−2
)

// true with probability k
m−2

7 if newElementInSample // Rebalance conditional on new index being in sample.
8 newIndex := max{r, 2}
9 S := random (k − 1)-element subset of [2..m− 1] \ {newIndex}

10 jumpIndex := Median(newIndex ∪ S) // S(t1+1) in general
11 (head, end) := SetJumpAndRebalance(head,m, jumpIndex)
12 else // topmost jump pointer can be kept
13 if r == 0 // new node is head of sublist, so steal successor’s jump.

// Swap roles of the two nodes.
14 succ := head.next
15 Swap key and next fields of head and succ.
16 head := succ
17 end if
18 J1 := head.nsize
19 if r ≤ J1 + 1 // New element is in next-sublist.
20 J1 := J1 + 1; head.nsize := J1
21 succ := RestoreAfterInsert(head.next, J1,max{0, r − 1})
22 head.next := succ
23 else // New element is in jump-sublist.
24 J2 := m− 1− J1
25 jumpHead := RestoreAfterInsert(head.jump, J2, r − 1− J1)
26 if jumpHead 6= head.jump // Have to reconnect backbone
27 head.jump := jumpHead
28 (lastInNext, rr) := SpineSearch(head, jumpHead.key)
29 lastInNext.next := jumpHead
30 end if
31 end if
32 end if
33 end if
34 return head



Appendix 29

RestoreAfterDelete(head,m, r, delNode)
// Restore distribution in sublist with header head and size m after a deletion at position r.
// m is the number of nodes in the sublist, excluding the just deleted element delNode.
// Returns the new head of the sublist (possibly still head).

1 if m ≤ w
2 if m == w // head is a JumpNode, must become PlainNode
3 head := new PlainNode(head.key, head.next)
4 end if
5 else

6 J1 :=
{

delNode.nsize, if r == 0;
head.nsize, else.

7 p :=



1 , if r == J1 + 1; // deleted node was jump target
[J1 == 1 ∧ r ≤ 1], else if k == 1; // special case to avoid 0

0
t1

J1 − 1 , else if r < J1 + 1;

t2
m− 1− J1

, else.

8 deletedElementInSample := CoinFlip(p) // true with probability p
9 if deletedElementInSample // Rebalance sublist.

10 (head, end) := Rebalance(head,m)
11 else // Topmost jump pointer can be kept.
12 if r == 0 // Impose deleted head’s pointer onto successor.

// Swap roles of the two nodes.
13 Swap key and next fields of head and delNode.
14 Swap head and delNode.
15 end if
16 if r < J1 + 1 // Deletion in next-sublist.
17 J1 := J1 − 1; head.nsize := J1
18 succ := RestoreAfterDelete(head.next, J1,max{0, r − 1}, delNode)
19 head.next := succ
20 else // Deletion in jump-sublist.
21 J2 := m− 1− J1
22 jumpHead := RestoreAfterDelete(head.jump, J2, r − 1− J1, delNode)
23 if jumpHead 6= head.jump // Have to reconnect backbone
24 head.jump := jumpHead
25 (lastInNext, rr) := SpineSearch(head, jumpHead.key)
26 lastInNext.next := jumpHead
27 end if
28 end if
29 end if
30 end if
31 return head
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D. Omitted proofs
Proof of Lem. 2.3: For m ∈ {1, 2}, we compute

E[X−m] =
n∑
x=0

x−m ·
(
n

x

)
pxqn−x

= n−m p−m
n∑
x=0

(
n+m

x+m

)
px+mq(n+m)−(x+m)

= n−m p−m
n+m∑
x=m

(
n+m

x

)
pxq(n+m)−x

=
[binom. thm.]

n−m p−m
(

(p+ q︸ ︷︷ ︸
=1

)n+m −
m−1∑
x=0

(
n+m

x

)
pxq(n+m)−x

)
.

For the first part of the claim, we set m = 1 and find that the sum reduces to qn+1; for the
second part of the claim, we use m = 2 and note that the expression in the outer parentheses is
at most 1. �

Proof of Lem. 2.4: We use the following known integral; see [26, Eq. (2.30)]:∫ 1

0
za−1(1− z)b−1 ln(z) dz = B(a, b)

(
ψ(a)− ψ(a+ b)

)
, (a, b > 0). (D.1)

Here ψ(z) = d
dz ln(Γ (z)) is the digamma function. Then we find

E[ln(D)] =
∫ 1

0
ln(x) xt(1− x)t

B(t+ 1, t+ 1) dx

=
(D.1)

ψ(t+ 1)− ψ(k + 1)

= Ht −Hk,

and

E[D ln(D)] =
∫ 1

0
x ln(x) xt(1− x)t

B(t+ 1, t+ 1) dx

= B(t+ 2, t+ 1)
B(t+ 1, t+ 1)

∫ 1

0
ln(x) xt+1(1− x)t

B(t+ 2, t+ 1) dx

=
(D.1)

t+ 1
k + 1

(
ψ(t+ 2)− ψ(k + 2)

)
= t+ 1

2t+ 2
(
Ht+1 −Hk+1

)
= 1

2
(
Ht+1 −Hk+1

)
. �
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