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Abstract. The main aim of this paper is to give two infinite series of exam-

ples of Lorentz space forms that can be obtained from Lorentz polyhedra by
identification of faces. These Lorentz space forms are bi-quotients of the form

Γ1\G/Γ2, where G = ˜SU(1, 1) ∼= ˜SL(2,R) is a simply connected Lie group with

the Lorentz metric given by the Killing form, Γ1 and Γ2 are discrete subgroups
of G and Γ2 is cyclic. A construction of polyhedral fundamental domains for

the action of Γ1 × Γ2 on G via (g, h) · x = gxh−1 was given in the earlier

work of the second author. In this paper we give an explicit description of the
fundamental domains obtained by this construction for two infinite series of

groups. These results are connected to singularity theory as the bi-quotients

Γ1\G/Γ2 appear as links of certain quasi-homogeneous Q-Gorenstein surface
singularities, i.e. the intersections of the singular variety with sufficiently small

spheres around the isolated singular point.

1. Introduction

In this paper we study the Lorentz space forms obtained as bi-quotients Γ1\G/Γ2,
where G is the universal cover

G = ˜SU(1, 1) ∼= ˜SL(2,R),

Γ1 and Γ2 are discrete subgroups of G of the same finite level, and Γ2 is cyclic.
The group Γ1 × Γ2 acts on G via (g, h) · x = gxh−1. The level of a subgroup Γ
of G is the index of Γ ∩ Z(G) in the centre Z(G) ∼= Z. Subgroups of G of finite
level k are those subgroups that can be obtained as pre-images of subgroups of
the k-fold covering of PSU(1, 1). We use the construction introduced in [Pra11]
of polyhedral fundamental domains for this action which generalizes the results
of [Pra07a], [BPR], [BKNRS]. This construction leads to a description of the bi-
quotients Γ1\G/Γ2 as polyhedra with faces identified according to some gluing rules
on the boundary.

Let Γ(p1, 3, 3)k be a subgroup of G of level k such that its image under the
projection to PSU(1, 1) is a triangle group Γ(p1, 3, 3), see section 2 for more details.
Subgroups of G and PSU(1, 1) act on the disc model D of the hyperbolic plane since
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Isom+(D) ∼= PSU(1, 1). Let u ∈ D be the fixed point of a generator of Γ(p1, 3, 3)
of order p1. Let (Cp2)k be a subgroup of G of level k such that its image under
the projection to PSU(1, 1) is a cyclic group of order p2 generated by an elliptic
element with fixed point u. The aim of this paper is to give explicit descriptions
of fundamental domains for two infinite series of groups Γ(k+ 3, 3, 3)k × (C3)k and
Γ(2k + 3, 3, 3)k × (C3)k, where k is a positive integer not divisible by 3.

The bi-quotients Γ1\G/Γ2 are the links of certain quasi-homogeneous Q-Gorenstein
surface singularities as explained in [Pra07b], see also [Dol83]. The motivation for
the choice of the series Γ(k + 3, 3, 3)k × (C3)k and Γ(2k + 3, 3, 3)k × (C3)k is that
they correspond to Q-Gorenstein surface singularities that are obtained as quo-
tients of certain singularities in the series E and Z according to the classification
by V.I. Arnold. We listed in the table below the normal form of the singularity as
well as the level k of Γi and the signature (p, q, r) of the image of Γ1 in PSU(1, 1),
for more details see [AGZV], [Dol74], [Dol75] and [Pra01].

level (p, q, r) type normal form

k (k + 3, 3, 3) E4k+10 x3 + y2k+6 + z2

k (2k + 3, 3, 3) Z4k+9 x3y + y2k+4 + z2

We will now outline the fundamental domain construction described in [Pra11].
Suppose that Γ1 and Γ2 are discrete subgroups of level k in G and Γ2 is cyclic. We
assume the existence of a joint fixed point u ∈ D of Γ1 and Γ2. Let pi = |(Γi)u| be
the size of the isotropy group of u in the image Γi of Γi in PSU(1, 1) for i = 1, 2.
This construction works if p = lcm(p1, p2) > k.

We think of the group G as a hypersurface embedded in the bundle L = R+×G.
The Killing form on G induces a pseudo-Riemannian metric of signature (2, 1) on G
and of signature (2, 2) on L. The hypersurface G is replaced with its piece-wise
totally geodesic polyhedral model, specially adapted to the action of Γ1 × Γ2. The
fundamental domains Fg1g2

, g1 ∈ Γ1, g2 ∈ Γ2 for the action of Γ1×Γ2 on the model
polyhedron are its faces, which are then projected onto G to obtain fundamental
domains Fg1g2 for the action of Γ1 × Γ2 on G. Similar ideas of projecting an
affine construction with half-planes onto a quadric were used in the algorithmic
construction of Voronoi diagrams for point sets in the Euclidean and hyperbolic
plane, compare [BY98].

For g ∈ G let Eg be the embedded tangent space of G at the point g, i.e. the 3-
dimensional totally geodesic submanifold of L which is tangent to G at the point g.
The hypersurface Eg divides L into two connected components. We will refer to
the closures of these connected components as half-spaces and denote them by Hg

and Ig, see section 3 for more details.

Let e be the identity in G. The interior of the fundamental domain Fe can be
described as

F ◦e = (Ee ∩ ∂Qu)◦ −
⋃

x∈Γ1(u)\{u}

Qx,
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where Γ1(u) ⊂ D is the orbit of the point u under the action of Γ1 and Qx for every
x ∈ Γ1(u) is the prism-like polyhedron

Qx =
⋂

(g1,g2)∈Γ1×Γ2
g1(u)=x

Hg1·g2
.

According to Theorem B in [Pra11], if Γ1 is co-compact we can replace the union
of Qx over all x ∈ Γ1(u)\{u} by the union over some finite subset N ⊂ Γ1(u)\{u},
which is a crucial step on the way to obtain an explicit description of the funda-
mental domain Fe. However, the proof of this fact uses a compactness argument
which in general does not provide an explicit description of such a finite subset.
The first main result of this paper is to show that for a certain family of groups
such a finite subset of Γ1(u)\{u} is given by the edge corona of Γ1 (see section 2
for the definition).

Theorem 1. Let Γ1 = Γ(p1, 3, 3)k with p1 > k+ 3 and Γ2 = (C3)k. Assume that a
generator of Γ1 of order p1 and the cyclic group Γ2 have a shared fixed point u ∈ D.
Then

F ◦e = (Ee ∩ ∂Qu)◦ −
⋃
x∈E

Qx,

where the finite set E is the edge corona of Γ1(p1, 3, 3) with respect to u.

Theorem 1 reduces the description of the fundamental domain to an intersection of
finitely many unions of finitely many half-spaces. For two infinite series of groups,

Γ(k + 3, 3, 3)k × (C3)k and Γ(2k + 3, 3, 3)k × (C3)k,

we can reduce the description further after some long but elementary computations
with systems of linear inequalities, for details see [BT]. The results are summarized
in Theorem 2. The conjectural description of these fundamental domains for k = 2
was given in [Pra11]. In this paper, following [BT], we confirm these conjectures
and extend them to two infinite series. We also describe some methods that can be
used to determine the fundamental domains for other series of groups.

To state the results we will first introduce some notation. We make use of the
following construction to describe certain elements of G: Given a base-point x ∈ D
and a real number t, let ρx(t) ∈ PSU(1, 1) denote the rotation through the angle t
about the point x. Thus we obtain a homomorphism ρx : R → PSU(1, 1), which lifts
to the unique homomorphism Rx : R → G into the universal covering group. The
element C = Ru(2π) is one of the two generators of the centre of G. The stabilisers
(Γ1)u and (Γ2)u = Γ2 generate a cyclic group with generator D = Ru(2πk/p),
where p = lcm(p1, p2).

Theorem 2. Consider the group Γ1×Γ2 = Γ(p, 3, 3)k× (C3)k. Consider a triangle
generating Γ(p, 3, 3). Let u and v be vertices of this triangle with angles π/p and π/3
respectively. Let λ = 1 if k = 1 mod 3 and λ = 2 if k = 2 mod 3.

• If p = k + 3 then

Fe = Ee ∩HD ∩HD−1 ∩
⋂
m∈Z

(Iam ∪ Ibm)
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is a fundamental domain for Γ1 × Γ2, where

a0 = Rv(8π/3) ·D2λp−1 · C
−2(λk+2)

3 ,

am = Rmu (π/p) · a0 ·R−mu (π/p) and bm = am ·D.

• If p = 2k + 3 then

Fe = Ee ∩HD ∩HD−1 ∩
⋂
m∈Z

(Iam ∪ Ibm ∪ Icm)

is a fundamental domain for Γ1 × Γ2, where

a0 = Rv(8π/3) ·D2λp−2 · C
−2(λk+2)

3 ,

am = Rmu (π/p) · a0 ·R−mu (π/p), bm = am ·D and cm = bm ·D.

The general results in Theorem 2 are illustrated by the images of fundamental
domains for Γ(k+3, 3, 3)k×(C3)k and Γ(2k+3, 3, 3)k×(C3)k for k = 2 in Figures 1
and 2 respectively. Some explanations of the figures are required. We project the
fundamental domain Fe to the Lie algebra of SU(1, 1), which is a 3-dimensional
flat Lorentz space of signature (2, 1). The result is a compact polyhedron with flat
faces and a distinguished rotational axis of symmetry. The direction of this axis
is negative definite, and the orthogonal complement is positive definite. Changing
the sign of the pseudo-metric in the direction of the rotational axis transforms
Lorentz space into a well-defined Euclidean space. The image of the fundamental
domain is then transformed into a polyhedron in Euclidean space with dihedral
symmetry. The direction of the rotational axis is vertical. The top and bottom
faces are removed to make the structure of the polyhedra clearer.

Figure 1: Fundamental domain for Γ(5, 3, 3)2 × (C3)2.

Figures 3 and 4 illustrate the identification schemes on the boundary of the poly-
hedron for the infinite series Γ(k + 3, 3, 3)k × (C3)k and Γ(2k + 3, 3, 3)k × (C3)k

respectively. The face identifications are equivariant with respect to the dihedral
symmetry of the polyhedron. The faces of the same shading/colour are identified.
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Figure 2: Fundamental domain for Γ(7, 3, 3)2 × (C3)2.

Numbers on the edges of shaded/coloured faces indicate the identified flags (face,
edge, vertex).
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Figure 3: Identifications on the boundary of Fe in the case Γ(k + 3, 3, 3)k × (C3)k.

2

3

c−1

1

2 3

1
a0

1

4

3

b0

2

3

2

c0

1

3 2

1
a1

· · ·

2

3

4

b2k+3

1

Figure 4: Identifications on the boundary of Fe in the case Γ(2k+ 3, 3, 3)k× (C3)k.

Tables 1 and 2 at the end of the paper show several fundamental domains from
each of the infinite series Γ(k+ 3, 3, 3)k× (C3)k and Γ(2k+ 3, 3, 3)k× (C3)k respec-
tively. We can see that the combinatorial structure of the fundamental domains
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and their identification schemes are similar in each of the two series, only the order
of the dihedral symmetry increases with k. For Γ(k + 3, 3, 3)k × (C3)k the fun-
damental polyhedron has the combinatorial structure of an anti-prism with two
triangular faces sharing an edge which are then rotated around the vertical axis.
For Γ(2k+3, 3, 3)k×(C3)k we see a quadrangular face to which two triangular faces
are attached and all three faces are then rotated around the vertical axis. Note that
while the combinatorics of the fundamental domains of all triangle groups in D is
the same, the combinatorics of the fundamental domains which we constructed for
Γ(k + 3, 3, 3)k × (C3)k and Γ(2k + 3, 3, 3)k × (C3)k in G is different. Hence the
combinatorics of our fundamental domains shows the structure of the groups which
is not apparent in their fundamental domains in the hyperbolic plane.

2. Triangle Groups

A triangle group of signature (p, q, r) is a group of orientation-preserving isome-
tries of the hyperbolic plane, generated by the rotations through 2π

p , 2π
q , 2π

r about

the vertices of a hyperbolic triangle with angles π
p , π

q and π
r . All such groups are

conjugate to each other and we will denote such a group Γ(p, q, r).

The following existence result for discrete subgroups of finite level in G can be
found in [Pra01] (section 2.8, Satz 38).

Proposition 3. If gcd(k, p) = gcd(k, q) = gcd(k, r) = 1 and pqr − pq − qr − rp is
divisible by k then there exists a unique subgroup of G of level k, denoted Γ(p, q, r)k,
such that its image under the projection to PSU(1, 1) is the triangle group Γ(p, q, r).
In particular the conditions for the existence of Γ(p, 3, 3)k are that k is not divisible
by 3 and p− 3 is divisible by k.

Definition. For a Fuchsian group Γ ∈ PSU(1, 1), the edge corona E with respect
to a point u ∈ D consists of all those points in Γ(u)\{u} whose Dirichlet region
shares at least an edge with the Dirichlet region of u, compare [GSh].

Figures 5 and 6 show as an example the edge coronas for the triangle groups
Γ(5, 3, 3) and Γ(7, 3, 3) respectively. The Dirichlet region with respect to the ori-
gin is red/dark grey, while the union of Dirichlet regions of the points of the edge
corona is green/lighter grey.

We have the following description of the edge corona, for details of the proof see
Propositions 41 and 42 in [Pra01]:

Proposition 4. Let Γ(p, q, r) be a triangle group generated by rotations ρu, ρv, ρw
through 2π

p , 2π
q , 2π

r around the vertices u, v, w of a hyperbolic triangle with angles
π
p , π

q , π
r respectively. Let L be the hyperbolic distance between the vertices u and v.

Recall that L is determined by the angles of the hyperbolic triangle

coshL =
cos πp cos πq + cos πr

sin π
p sin π

q

.

Then the edge corona consists of the following points of the form xm,l = (ρmu ρ
l
v)(u):

E = {x0,1, x0,q−1, x1,1, x1,q−1, · · · , xp−1,1, xp−1,q−1}.
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Figure 5: The edge corona for Γ(5, 3, 3).

Figure 6: The edge corona for Γ(7, 3, 3).

All points of the edge corona are on the circle with centre at the origin of (Euclidean)
radius

d =
sinhL sin π

q√
sinh2 L sin2 π

q + 1
.

Moreover, the largest (Euclidean) distance between subsequent points of the edge
corona on this circle is

s =
sinhL sin 2π

q

sinh2 L sin2 π
q + 1

.
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3. The Elements of the Construction

In this section we will add some notation to the setting that we sketched in the
introduction. Let us describe the embedding of G in L and the totally geodesic
subspaces Eg in L. We consider the 4-dimensional pseudo-Euclidean space E2,2

of signature (2, 2). We think of E2,2 as the real vector space C2 ∼= R4 with the
symmetric bilinear form

〈(z1, w1), (z2, w2)〉 = Re(z1z̄2 − w1w̄2).

In E2,2 we consider the quadric

Ḡ =
{
a ∈ E2,2

∣∣ 〈a, a〉 = −1
}

=
{

(z, w) ∈ E2,2
∣∣ |z|2 − |w|2 = −1

}
.

We consider the cone over Ḡ

L̄ = {λ · a
∣∣ λ > 0, a ∈ Ḡ}

=
{
a ∈ E2,2

∣∣ 〈a, a〉 < 0
}

=
{

(z, w) ∈ E2,2
∣∣ |z| < |w|} .

The bilinear form on E2,2 induces a pseudo-Riemannian metric of signature (2, 1)
on Ḡ and of signature (2, 2) on L̄.

Let π : G → Ḡ be the universal covering. Henceforth we identify the Lie group
SU(1, 1) with Ḡ via (

w̄ z
z̄ w

)
7→ (z, w),

and ˜SU(1, 1) with G. The bi-invariant metrics on Ḡ and G are proportional to the
Killing forms. The covering G→ Ḡ extends to the universal covering L→ L̄. The
covering space L inherits canonically a pseudo-Riemannian metric from L̄. There
exist canonical trivializations L̄ ∼= Ḡ× R+ and L ∼= G× R+.

For g ∈ G, consider the intersection with L̄ of the affine tangent space of Ḡ at
the point π(g)

Ēπ(g) = {a ∈ L̄
∣∣ 〈π(g), a〉 = −1}

and the intersection with L̄ of the half-space of C2 bounded by Ēπ(g) and not
containing the origin

Īπ(g) = {a ∈ L̄
∣∣ 〈π(g), a〉 6 −1}.

The sets Ēπ(g) and Īπ(g) are simply connected and even contractible, hence their
pre-images under the covering map π consist of infinitely many connected compo-
nents, one of them containing g. Let Eg and Ig be those connected components
of π−1(Ēπ(g)) and π−1(Īπ(g)) respectively that contain g. The three-dimensional
submanifold Eg divides L into two connected components, the closure of one of
which is Ig. Let Hg be the closure of the other component of the complement of Eg
in L. The boundaries of Ig and of Hg are equal to Eg.

The set π((Ee ∩ ∂Qu)◦) can be described as

π((Ee ∩ ∂Qu)◦) =

{
(z, w)

∣∣ Re(w) = 1, | Im(w)| < tan
πk

2p

}
.
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4. Approximating prisms Qx by their inscribed and subscribed
cylinders

The following estimates are obtained by approximating the prisms Qx via their
inscribed and subscribed cylinders:

Proposition 5. Let x ∈ Γ1(u)\{u} and (z, w) ∈ L̄. Then

(i) If (z, w) ∈ π(Qx) then |w|− |z| < |w|− |x| · |z| 6 |w− x̄z| 6 sec πk
2p ·
√

1− |x|2.

(ii) If |w − x̄z| 6
√

1− |x|2 then π−1(z, w) ⊂ Qx.

Proof. For the proof of (i) see Lemma 1(i) in [Pra11]. The same idea works for (ii).
Let us first consider the case x = u = 0. In this case the inequality in (ii) reduces

to |w| 6 1. Let g = (z, w) ∈ L̄ with |w| 6 1. Then we have g ∈ H̄a for all a ∈ (Γ1)u
and therefore π−1(g) ⊂ Ha for all a ∈ (Γ1)u. Thus π−1(g) ⊂ Qu.

In the general case x ∈ Γ1(u)\{u}, let g ∈ Γ1 be an element such that g(x) = u
and let π(g) = (a, b). The element (a, b) ∈ Ḡ acts on D by

(a, b) · x =
b̄x+ a

āx+ b
.

The property (a, b) · x = u = 0 implies a = −b̄x. From (a, b) ∈ Ḡ we conclude

−1 = |a|2 − |b|2 = | − b̄x|2 − |b|2 = −|b|2 · (1− |x|2)

and hence |b| = (1 − |x|2)−1/2. Let us consider (z, w) with |w − x̄z| 6
√

1− |x|2.
Let (z′, w′) = π(g) · (z, w). Then

|w′| = |āz + bw| = | − bx̄z + bw| = |w − x̄z|√
1− |x|2

6 1,

hence π−1(z′, w′) ⊂ Qu and

π−1(z, w) = π−1(π(g)−1 · (z′, w′)) = g−1 · π−1(z′, w′) ⊂ g−1 ·Qu = Qx. �

5. Reduction of the description of Fe

The interior of the fundamental domain Fe is

F ◦e = (Ee ∩ ∂Qu)◦ −
⋃

x∈Γ1(u)\{u}

Qx.

The aim of this section is to show that in the case Γ1 = Γ(p1, q, r)
k and Γ2 = (Cp2

)k

with p = lcm(p1, p2) > kq/2 it is sufficient to consider the prisms Qx with x in the
edge corona E , i.e. F ◦e = FE , where

FE = (Ee ∩ ∂Qu)◦ −
⋃
x∈E

Qx.

We will separate the set π(FE) from the sets π(Qx) for sufficiently large |x| by
enclosing them within cylinders. We will first describe a cylinder around π(FE). To
this end we are going to derive an estimate for the distance from the vertical axis
to the points in π(FE) by approximating the sets π(Qx) through their inscribed
cylinders.

Proposition 6. Let the functions `± be defined as

`±(t) =
1

tanhL
± 1

sinhL · sin π
q

·
√

1

t2
− cos2

π

q
,
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where L is the distance defined in Proposition 4. Suppose that

`−
(

sec
πk

2p

)
6 1.

Then for any (z, w) ∈ π((Ee ∩ ∂Qu)◦)

(z, w) ∈ π(FE) =⇒ |z| < |w| · `−(|w|).

Proof. Proposition 4 says that the points of the edge corona E are all on a circle.
Let x1, · · · , xm be the points of E in the anti-clockwise direction. Recall that

|xi| = d =
sinhL sin π

q√
sinh2 L sin2 π

q + 1
and max |xi − xi+1| = s =

sinhL sin 2π
q

sinh2 L sin2 π
q + 1

.

Let zi = w/x̄i and r =
√

1− d2/d. Proposition 5(ii) implies that (z, w) ∈ π(Qx)

for any z ∈ B(zi, r) with |z| < |w|. Let d̂ = |zi| = | wxi | =
|w|
d and

2ŝ = |zi − zi+1| =

∣∣∣∣wx̄i − w

x̄i+1

∣∣∣∣ = |w| ·
∣∣∣∣ x̄i+1 − x̄i
x̄ix̄i+1

∣∣∣∣ = |w| · s
d2
.

We want to show that ŝ 6 r, i.e. that the neighbouring disks B(zi, r) and B(zi+1, r)
intersect. Straightforward computation shows that

ŝ = |w| · s

2d2
= |w| ·

cos πq
sinhL sin π

q

and r =

√
1− d2

d
=

1

sinhL sin π
q

.

We know that (z, w) ∈ π((Ee ∩ ∂Qu)◦), hence Re(w) = 1 and | Im(w)| 6 tan πk
2p .

Then,

|w| =
√

Re(w)2 + Im(w)2 6

√
1 + tan2 πk

2p
= sec

πk

2p
6 sec

π

q

since πk
2p 6

π
q . Therefore

ŝ = |w| ·
cos πq

sinhL sin π
q

6
1

sinhL sin π
q

= r.
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Figure 7: Inscribed cylinders

Consider the circles of radius r with centers at zi and zi+1. The distance between
their centres is at most 2ŝ 6 2r, hence the circles intersect at two points, see
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Figure 7. The distances of these points to the origin are√
d̂2 − ŝ2 ±

√
r2 − ŝ2

=

√
|w|2
d2
− s2|w|2

4d4
±
√

1− d2

d2
− s2|w|2

4d4

= |w| ·

(√
4d2 − s2

2d2
± 1

2d2
·
√

4d2(1− d2)

t2
− s2

)

= |w| ·

(
1

tanhL
± 1

sinhL · sin π
q

·
√

1

t2
− cos2

π

q

)
= |w| · `±(|w|).

This means that any point z ∈ C with |z||w| between `−(|w|) and `+(|w|) is contained

in the union of the disks B(zi, r). Functions `− and `+ are monotone increasing

and decreasing respectively, therefore any point z with |z||w| between `−
(

sec πk
2p

)
and

`+
(

sec πk
2p

)
is contained in the union of the disks B(zi, r) and hence in

⋃
x∈E π(Qx).

It follows that |z| < |w| · `−(|w|) for any point (z, w) in π(FE). �

We have now enclosed FE within a cylinder, it remains to estimate the position
of Qx for sufficiently large |x|.

Proposition 7. Let the function f be defined as

f(s, t) =
1

s
−

sec πk
2p

t
·
√

1− s2

s
.

Let x be a point in Γ1(u)\{u} such that |x| > R > 0. Then for any (z, w) ∈
π((Ee ∩ ∂Qu)◦)

(z, w) ∈ π(Qx) =⇒ |z| > |w| · f(R, |w|).

Proof. Let (z, w) be a point in π(Qx). Proposition 5(i) implies that

|w| − |x| · |z| 6 |w − xz̄| 6 sec
πk

2p
·
√

1− |x|2,

hence

|z| > |w|
|x|
−

sec πk
2p

√
1− |x|2

|x|
= |w| · f(|x|, |w|).

Note that for s ∈ (0, 1) and t ∈
[
1, sec πk

2p

]
we have

∂f

∂s
=

sec πk2p

t −
√

1− s2

s2
√

1− s2
> 0,

hence f(·, t) is monotone increasing for t ∈
[
1, sec πk

2p

]
.

For (z, w) ∈ π((Ee ∩ ∂Qu)◦) ∩ π(Qx) we have |w| ∈
[
1, sec πk

2p

]
and therefore

f(|x|, |w|) > f(R, |w|) and

|z| > |w| · f(|x|, |w|) > |w| · f(R, |w|). �
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In Proposition 6 we found an upper bound on the distance from the vertical
axis to the points of the set π(FE). On the other hand, in proposition 7 we pro-
vide a lower bound for the distance from the vertical axis to the points of the set
π(Qx). Combining these two estimates we can show under certain conditions that
the sets π(Qx) with x 6∈ E ∪ {u} share no points with π(FE) and therefore with
π(Fe) ⊂ π(FE). That would mean π(Fe) = π(FE) and hence Fe = FE .

Theorem 8. Let R > tanhL be such that

{x ∈ Γ1(u)
∣∣ |x| < R} = E ∪ {u}

and

`−
(

sec
πk

2p

)
6

1−
√

1−R2

R
.

Then

F ◦e = FE .

Proof. Let x be a point in Γ1(u)\{u} such that |x| > R. Let (z, w) ∈ π((Ee∩∂Qu)◦).

We have `−
(

sec πk
2p

)
6 1−

√
1−R2

R 6 1. According to Proposition 6,

(z, w) ∈ π(FE) =⇒ |z| < |w| · `−(|w|).

On the other hand Proposition 7 implies that

(z, w) ∈ π(Qx) =⇒ |z| > |w| · f(R, |w|).

So to prove that π(Qx) ∩ π(FE) = ∅ for all x ∈ Γ1(u) with |x| > R, it is sufficient
to show that

f(R, t)− `−(t) > 0 for t ∈
[
1, sec

πk

2p

]
.

Expressing the function f(R, t)− `−(t) as

1

t
·

(
1

sinhL · sin π
q

·
√

1− t2 · cos2
π

q
− sec

πk

2p
·
√

1−R2

R

)
+

(
1

R
− 1

tanhL

)
we see that it is monotone decreasing on

[
1, sec π

q

]
and hence on

[
1, sec πk

2p

]
as

πk
2p 6

π
q . Therefore for all t ∈ [1, sec πk

2p ] we have

f(R, t)− `−(t) > f

(
R, sec

πk

2p

)
− `−

(
sec

πk

2p

)
=

1−
√

1−R2

R
− `−

(
sec

πk

2p

)
> 0.

Thus,we proved that

π(Qx) ∩ π(FE) = ∅

for all x ∈ Γ1(u) such that |x| > R, i.e. for all x ∈ Γ1(u)\ (E(u) ∪ {u}). Therefore,

F ◦e = FE . �
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6. Proof of Theorem 1

In this section we will apply Theorem 8 to the special case Γ1 = Γ(p1, 3, 3)k with
p1 > k+ 3 and Γ2 = (C3)k to prove Theorem 1. We have p = lcm(p1, 3) = 3p1. Let
α = π

2p1
∈
(
0, π10

)
. In the case q = r = 3 the formulas in Proposition 4 become

coshL =
1√
3
· cosα

sinα
, sinhL =

1√
3
· 1

sinα
·
√

cos(3α)

cosα
, tanhL =

1

cosα
·
√

cos(3α)

cosα
.

To use Theorem 8 in this case, we need to find R > tanhL such that

{x ∈ Γ1(u)
∣∣ |x| < R} = E ∪ {u} and `−

(
sec

πk

2p

)
6

1−
√

1−R2

R
.

A careful study of the structure of the orbit Γ1(u) (for details see Proposition 72
in [Pra01]) shows that |x| > R for every point x ∈ Γ1(u)\(E ∪ {u}), where

R =
cosα

cos(2α)
·
√

cos(3α)

cosα
.

It is easy to check that R > tanhL. We then compute

`−
(

sec
πk

2p

)
=

(
cosα− sinα ·

√
4 cos2

πk

2p
− 1

)
·
√

cosα

cos(3α)
,

1−
√

1−R2

R
=

cos(2α)− sinα

cosα
·
√

cosα

cos(3α)
,

hence the inequality `−
(

sec πk
2p

)
6 1−

√
1−R2

R is equivalent to√
4 cos2

πk

2p
− 1 >

cos2 α− cos(2α) + sinα

sinα cosα
= cot

(π
4
− α

2

)
=

√
csc2

(π
4
− α

2

)
− 1,

which is equivalent to

2 cos
πk

2p
> csc

(π
4
− α

2

)
.

We have

0 <
πk

2p
=

kπ

6p1
6

(p1 − 3)π

6p1
=
π

6
− α 6 π

4
− 3α

2
<
π

4

since k 6 p1 − 3 and α < π/6. Thus

2 cos
πk

2p
> 2 cos

(
π

4
− 3α

2

)
.

It remains to show that

2 cos
(π

4
− 3α

2

)
> csc

(π
4
− α

2

)
.

Note that

2 cos
(π

4
− 3α

2

)
sin
(π

4
− α

2

)
= cos(2α) + sinα > 1

since sinα ∈ (0, 1
2 ). Thus we have checked that the conditions of Theorem 8 are

satisfied in this case, hence F ◦e = FE .

Acknowledgements: We would like to thank the referees for their helpful com-
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k = 4

k = 5

k = 7

k = 8

Table 1. Fundamental domains for Γ(k + 3, 3, 3)k × (C3)k.
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