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Measurement and data processing
from Internet of Things modules by
dual-core application using ESP32
board
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Abstract
The contribution describes the application of an Internet of Things device with an ESP32 microcontroller with the
dual-core implementation of data processing and wireless communication. The first leading idea of using low-end
hardware and software optimization to create software architecture in order to make the most of this hardware and
reduce the cost of more expensive hardware solutions was tested. Our goal in architectural design was achieved.
We created the basis of a general framework and defined its use scenarios, and then implemented these scenarios
using components. This article describes the progressive development of our embedded vibration measurement test-
ing system, on which we tested the individual software components for our framework. We created an application
for our components using ESP32 processor cores, which divided the responsibility of these cores for the compo-
nents of our framework.
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Introduction

In this work, we will focus on the development of appli-
cations for devices available in the marketplace. We use
an ESP32 (ESP-WROOM-32) chip from the producer
Espressif and a cheap MCU9250 accelerometer. We use
the traditional and accessible low-end modules avail-
able on the market as it is not our goal to get to the cut-
ting edge of technology, but we aim to get the most out
of modern technology to process and distribute mea-
sured data from an Internet of Things (IoT) module.
The main objective is to design an application for an
ESP32 chip that will use most of its capabilities. At the
same time, we develop a general software concept that
could be applied to any IoT device based on the ESP32
chip. The scenarios we propose are as follows:

� Enabled device configuration;
� Remote access;
� Control and diagnostics of the device;
� The maximum use of the HW capabilities of the

device;
� Enabled synchronization of multiple devices at

the same time;
� Multiplatform support for use.

These scenarios are implemented in the example of
vibration measurements generated by the Brüel & Kjær
vibration calibrator. For this vibration calibrator, we
have placed a three-axis accelerometer, a gyroscope,
and a magnetometer implemented on a single
MCU9250 chip using our three-dimensional (3D)
printed attachment. A detailed description of the com-
ponents, architecture, and solution used is available in
the following chapters.

After analyzing the scenarios of our design, we tried
to build an embedded system architecture so that it was
generic and could be reused to deploy other embedded
systems. The scenarios that we have defined in the pre-
vious paragraph show us the implementation of com-
ponents that characterize the behavior of an embedded
system. Component names uniquely characterize the
implemented scenario, provide network connectivity
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(Wi-Fi), communication with the parent control system
(Message Queuing Telemetry Transport (MQTT)),
data measurement using connected sensors and IoT
modules, system monitoring (internal web server), and
remote system reporting.

Our goal is to create architectural design patterns
and methods for embedded systems that are linguisti-
cally independent and reusable, define the sustainability
of a code, and logically help us implement any
embedded systems. When searching for and creating
patterns, we are inspired by the analogy of software
development where these architectural design patterns
are already used and serve as a universal language for
software architects. At the end of the article, we sum-
marize the architectural benefits and knowledge taken
from the implementation of our embedded system.

Related works

IoT devices today are often those devices we have been
using for years, but it had not occurred to us before
that the miniaturization, digitization, and wireless com-
munication technologies will enable us to make them
into IoT. Typically, they are areas of the smart city
equipment, smart home automation devices, i-health
components,1 wearable devices,2,3 embedded industrial
solutions, and applications in military environment.4

The IoT technology itself can be expanded with other
concepts such as the Internet of Robotic Things5 and
nowadays almost the Internet of Anything.6

The essence of the IoT device is therefore an elec-
tronic chip with the ability of wireless communication,
whether it is Wi-Fi, BLE (Bluetooth Low Energy),
LoRa, ZigBee, or other standards. At the present time,
these communication standards are integrated into the
chips of development boards without the need to con-
nect to any other communication modules or shields.
Some previous studies4,7,8 are devoted to the above-
mentioned wireless technologies such as LoRa and
ZigBee in an IoT environment, the use of standards
itself is well described already in Yao et al.9 and Lee
and Huang10 before the intense increase of using IoT
devices.

When we defined our goals, we were inspired by
publications defining the options and the course for the
development of IoT applications11 and by analyzing the
practical use of the ESP32 family of chips.12 The article
describes ESP32 and differences from the ESP8266 pre-
decessor as well as other chips and creates an applica-
tion that tests the performance capabilities of the
ESP32 chip and describes recommendations for deploy-
ability for IoT, highlighting dual core and FreeRTOS.
We have tried to follow up and describe in detail the
application and mainly architecture that uses dual core.

When designing the components and architectural
solutions of our embedded system, we explored rele-
vant articles dealing with the similar issues we faced,

such as the implementation of a web server on an
ESP32 device13 or real-time communication and system
management over the Wi-Fi network. These topics are
covered in publications dealing with the development
of IoT applications, protocols, and architecture of the
IoT.14 The article describes the IoT architecture in
terms of the capability and use of communication pro-
tocols and standards with an emphasis on CTP
(Communication Things Protocol) and IoT gateway.
The article15 devoted to the model of IoT interactions
inspired us to create scenarios and requirements for
application and generalization to embedded systems.
Vibration monitoring using low-priced microcontrol-
lers16 is described by Atmel processor and another arti-
cle17 summarizes wireless communications in networks
working with IoT modules. Related articles often deal
with network architecture, protocols, and frameworks
and describes limitations of traditional network architec-
tures,11 but the aim of our research is to develop software
architecture. For the suitable design of the architecture,
it was advisable to study some of the implemented cases
of real projects. These articles are very interesting with
similar themes and offer practical solutions for using IoT
devices, including ESP32 chips.13,18 Both works use
ESP32 chip and also implement web server, but single
core is sufficient for the described application. We also
point to the fact that web server implementation in our
application is responsive. Experience with creating our
own abstract software solution (framework) can also be
found in the publication.19

Another use and extension of IoT embedded system
capabilities is cloud computing20 as well as the Big
Data perspective in connection with the concept of
today’s Industry 4.0.21 In the case of the industrial use
of an IoT embedded system, where the number of mea-
sured data increases, it is necessary to use data analysis
techniques such as machine learning and large data
analysis to quickly analyze changes in device behavior.
Previous publications21,22 are devoted to Big Data and
Local Clouds themes. We implemented an MQTT com-
munication standard, which is also used in the IoT
application described in Masek et al.23

The IoT modules used

The basis of the system is an ESP32 chip from the
Espressif Company. ESP32 can perform as a complete
standalone system or as a slave device to a host MCU,
reducing communication stack overhead on the main
application processor.24 The chip includes an integrated
Wi-Fi, Bluetooth, and other communication interfaces
such as SPI and I2C/UART. A significant advantage
that we use is the presence of two processor cores.
Multiple vendor variants are available on the market,
including Espressif ESP32S, ESP32-Wroom, LoRa
ESP32, WeMos LOLIN32, and their clones. We have
implemented the resulting solution on multiple boards,
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as the particular type of the board is not important,
but is mainly a dual-core ESP32 chip.

We have used an MPU-9250 9DOF (nine-degree-of-
freedom) sensor module in our application. This com-
prises a three-axis gyroscope, an accelerometer, and a
magnetic field IIC implemented into a standalone chip.
For all the three measured variables, it is also possible
to switch ranges, and further properties can be seen
during specification.25

For vibration measurement testing, we have chosen
the Brüel & Kjær 4294 accelerometer calibrator, which
permits an accurate adjustment of measuring instru-
mentation at a standard acceleration level of 10m s22

(0–70 g load). In addition, a reference signal may be
used for velocity and displacement calibration, at
10mms21 and 10mm, respectively.26

The housing was designed and manufactured using
a 3D printer for the resulting embedded system that
will include a development board, a color 0.96$ organic
light-emitting diode (OLED) 1283 64 pixel display, an
SD card, and connectors in the smallest size. A boxed
version of the embedded system would include a cut-
out for the power bank power supply connector, venti-
lation grid, and built-in calibrator attachment. We also
created 3D printed holders for changing the position of
the sensor in all three axes for the purposes of measure-
ment testing. The embedded system will be remotely

configurable from a superior system that can be a
Notebook or Raspberry Pi (RPI).

The technology

To ensure that we have met the scenarios defined by
us, we have decided to use the following technologies
and apply them to ESP32 chip controllers. For the
development of the ESP32 chip microcontroller, we
have chosen the Arduino platform. The Arduino plat-
form is an open electronic platform for development
support on microcontrollers using a supplied develop-
ment environment. As the Arduino platform natively
does not support ESP32 microcontrollers, Espressif has
developed support for this platform, known as the
Arduino Core for the ESP32 Wi-Fi chip.27 After instal-
ling this extension, it is now possible to develop it for
ESP32 chip–based microcontrollers. The benefits of
using the Arduino platform lie in the simpler prototype
of software development for microcontrollers. Due to
the fact that Arduino IDE does not support some stan-
dard features for development environments such as
IntelliSense and source code administration, we have
chosen to use the Visual Studio Code from Microsoft
as a development environment28 with an installed
Visual Studio Code optional extension for Arduino.29

Figure 1 shows the Visual Studio Code environment.

Figure 1. Visual Studio Code environment with installed ESP32 chip extension.
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So far, we have been describing the definition of an
environment for an application development on an
ESP32 microcontroller. Now, let us find out what we
get for components and libraries by installing the
Arduino core for the ESP32 Wi-Fi chip. The most
important extension library is the FreeRTOS kernel
support. The FreeRTOS kernel is a real-time support
implementation for microcontrollers, and all its specifi-
cations are described at https://freertos.org/. From our
point of view, the implementation of FreeRTOS sup-
port for the ESP32 microcontroller is very important
because it provides support for multitasking of the con-
troller. We will use this support for our scenario imple-
mentation that maximizes the hardware potential of the
device. Other interesting components that we use are an
extended Wi-Fi support, SD card support, support for
communication via the SPI or I2C standard communi-
cation interface, and so on. Thanks to this framework
extension, we can use a standard third-party libraries
installation system used in the Arduino platform.
Another interesting type of technology that we use is
the support for M2M (machine to machine) communi-
cation. This type of communication is used by IoT
devices. We have chosen an MQTT communication
protocol, developed and promoted primarily by IBM.
MQTT is a simple TCP/IP (Transmission Control
Protocol/Internet Protocol) communication protocol
that allows you to transmit short messages on a pub-
lish/subscribe basis (see Figure 2).

MQTT is based on message transfer between clients
through a central broker server. It mediates the communi-
cation by receiving a message from the provider (pub-
lisher) and then passing it to one or more readers of
interest (so-called subscribers) to read it. One broker (jour-
nalist) can have many different publishers and many read-
ers (subscribers), in which case the readers were given only
the messages that each reader has subscribed to.

The transmitted messages are identified by the so-
called topic under which the message value is stored.
The message content itself is not defined and its repre-
sentation is in the text or binary data system. The most
commonly used format is JSON (Object Notation) and
BSON (Binary JSON), but we are limited in our inter-
nal memory, so we have chosen a simple text that
avoids excess formatting characters and we always have
comprehensible messages. The configuration of this
protocol is quite complex and all the options can be
found in MQTT.30

The design of the application architecture

In order to meet the scenarios defined by us, it is neces-
sary to define the components that will be implemented
for the given device. Figure 3 shows the layout and
responsibility of the individual subsystems (compo-
nents). A detailed description of component implemen-
tation is provided in section ‘‘Implementation on
ESP32.’’ This section describes the main attributes and
responsibility of the components.

The following components will be available on the
ESP32 device.

Configuration

This component is responsible for the configuration
of the required behavior of the ESP32 microcontrol-
ler. This component implements the device’s config-
uration scenario. The configuration is solved using
*.json configuration files. These files are stored on
the SD card in the desired structure. In our case,
access to the Wi-Fi network is configured with
WPA2 security and the broker is located for MQTT
communication.

Figure 2. MQTT publish/subscribe model in our application.
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An example of the configuration file for Wi-Fi pro-
file (wifi.conf) is as follows:

{
"ssid":"wifiSSID",
"password":"wifiPassword"

}
Example of configuration file for MQTT profile

(mqtt.conf)
{
"server":"IP address MQTT",
"port":1883

}

Communication

This component is responsible for communication
between the ESP32 board and the management device.
Scenarios that are implemented by this component
include the control and diagnostics of the device, the
possibility of the synchronization of many devices at
the same time, and multiplatform support for their use.
MQTT technology is used for communication; see the
chapter above. The synchronization scenario is solved
by the MQTT broker which is responsible for sending
the message to all devices; see the figure below. The fol-
lowing figure demonstrates the fact that we can control
multiple microcontrollers from one management
device. This fact is ensured by implementing a control
and device diagnostics scenario. Scenario implementa-
tion is ensured by the subscription of specific messages
for the microcontroller which triggers or diagnoses the
device. If we use multiple ESP32 microcontrollers, each
one must be identified with a unique identifier. The
name of the client is used as the identifier. This implies
that the client name is unique for each ESP32 device.
The multiplatform application support scenario is

secured by MQTT technology that is natively platform
independent.

The list of communication messages, which are pub-
lished from the ESP32 device, is as follows:

� ‘‘esp/info’’—this message provides an informa-
tion log about ESP32 microcontroller behavior;

� ‘‘esp/mpu9250’’—this message provides real-time
measured values from a particular ESP32
microcontroller.

The list of received messages of the ESP32 device is
as follows:

� ‘‘esp/setting’’—possible values of the message
s start starts measurement of the connected

sensor on a second ESP32 CPU core;
s restart restarts the ESP32 microcontroller;
s info shows information about the current

configuration on the microcontroller display.
The same information is sent via MQ then.

� ‘‘esp/setting/real-time’’—sets, whether the MQ
message will be sent during measurement
s on—real-time data are sent from the micro-

controller during the measurement;
s off—real-time data are not sent.

� ‘‘esp/setting/frequency’’—number of tics for
CPU interrupt, for which the default value is 5;

� ‘‘esp/setting/count’’—number of samples for one
measurement, for which the default value is 5000.

Remote access

The component is responsible for accessing the ESP32
device and enables the measured data to be stored on
an SD card. This is how we implement a remote access

Figure 3. Application architecture.
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scenario. Access to data is solved via the web server
interface running on the ESP32 device. For us, the
remote access scenario serves primarily as the access to
backup data measured and stored on the SD card due
to the occurrence of a real-time failure of communica-
tion during measurement. Figure 4 shows a web server
preview on an ESP32. The web server also provides dis-
play configuration information and gives real-time val-
ues such as the CPU temperature. The web server is
created using a responsive design.

For a manager device, the following components are
necessary.

Measurement loop

This component is responsible for the implementation
of the source code of the measurement loop function on
an ESP32 board. This component implements the sce-
nario of maximum hardware usage of the device. The
ESP32 microcontroller board has two cores, so one core
is dedicated to the measurement loop, while the other is
dedicated to the communication. This functionality is
possible thanks to the FreeRTOS interface support for
the ESP32 board, which enables multitasking and possi-
bility of natively running a task on a particular core.

Communication

This component is responsible for communication
between the main manager device and particular ESP32
devices (see component ‘‘communication’’). Figure 5

shows the communication of a management device with
‘‘n’’ ESP32 boards.

Measurement evaluation

This component serves for better and easier work
with ESP32 modules in a control device environment
such as a PC or another operator’s superior device
(Figure 6). We have developed for this support a
Windows-based platform software, which serves for
quick evaluation of the measured values and also for
the control of the ESP32 device (see Figure 7). The
future intent of components working on the side of a
management device is the creation of a tool that is
independent of the platform; therefore, we will achieve
the benefits of deployment variability in different
environments.

Implementation on ESP32

The implementation of the described scenarios with
the defined components is created using the Arduino
platform. For uncomplicated implementation and
reusability, we have created the following program
components:

� The Profile component—a class that is used for
getting the configuration stored on the SD card.
In our case, we gain a configuration of Wi-Fi
connections and MQTT connections.

Figure 4. Web server on a mobile device (left) and on a laptop or Raspberry Pi (right).
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� The DataWriter component—a class that puts
together the job of writing the measured data on
an SD card. The class encapsulates the API sup-
plied by the Arduino core interface for the
ESP32 Wi-Fi chip.

� The CustomDisplay component—a set of auxili-
ary functions for working with an OLED
display.

� The Esp32Sensor component—a class that
encapsulates access to integrated sensors on the
ESP32 board.

� The MPU9250 component—a class that encap-
sulates the access to the MPU9250 module via
the SPI interface. This class encapsulates access
to the gyroscope, accelerometer, magnetometer,
and temperature sensor.

Thanks to these created components, it is possible to
divide the responsibility of the individual program
activities and ensure easier debugging of the source
code. Programs for microcontrollers based on this
Arduino platform, as are customary, have two basic
functions, namely, Setup() and Loop(). The initializa-
tion of the variables and the sensor is executed in the
setup function at the startup of the program (by switch-
ing on the microcontroller supply), and the application
logic is performed in the loop function.

In our program, the most important feature of the
setup function is the initialization of the MQTT client.
This section registers the callback function ‘‘call-
back_mqtt,’’ which is responsible for processing pre-
paid MQTT messages. Another interesting initializing
function is for the web server. This function defines the

Figure 5. MQTT communication model for three ESP32 boards.

Figure 6. An independent operational system communication model.
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routing of the web server. An important fact is that the
setup function is performed on ESP32 chip core No.1
and only once when the ESP32 microcontroller is
started. The left side of Figure 8 shows the activity dia-
gram of the setup function.

The loop function is also performed on ESP32 chip
core No. 1. This feature provides the receiving algo-
rithm for message processing that comes from the
MQTT broker. If the connection to the MQTT broker
is lost, the connection will automatically be restored in

Figure 7. Windows application—temperature measurement on an ESP32 board (5000 samples).

Figure 8. Activity diagram for setup (left) and for loop (right).
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this loop. The other messages that are accepted in this
part of the code are for the web server component.
These are the standard HTTP communication mes-
sages. The loop function runs on the microcontroller
repeatedly in a loop during the running of the micro-
controller. The most interesting part of the source
code on the ESP32 microcontroller is the callback func-
tion, which processes the incoming messages from
the MQTT broker. Figure 9 shows a passing through
the callback function. This function handles only the
incoming MQTT messages.

The previous activity diagram shows the activity
which calls the measuring function. This activity runs
on the second core, which is dedicated to this activity
only. Figure 10 shows this process. In the next chapter,
we will look at the practical testing of the implemented
microcontroller.

Testing of ESP32 implementation

In the previous chapter, we focused on the design and
creation of the embedded system, and in this chapter
we will describe the testing of the system under labora-
tory conditions. Figure 11 shows the prototype of our
embedded system. As shown in the figure, the con-
nected display acts as a status indicator and shows the
readiness of the system, according to the required envi-
ronmental configuration. For complete system

readiness, it is necessary to connect the system to the
Wi-Fi network and the MQTT broker.

It can be seen from the left side of Figure 12 that the
system has joined the Wi-Fi network and has been
assigned an IP address (yellow text identification), as if
just trying to join the MQTT broker. If the system con-
nects to the broker, an MQ character appears in the sta-
tus bar (yellow text) in the top right corner (as shown in
Figure 11). If the connection timeout expires, it is neces-
sary to reconfigure the MQTT broker setup. After suc-
cessful connection, which depends mainly on the system
configuration, the system can now be managed using
MQTT messages. The right side of Figure 12 shows a
particular measurement configuration. These values are
set using MQTT messages. Subsequently, the MQTT
message is triggered by the measurement. Figure 13
shows vibration measurements on the embedded system
prototype. Once the measurement is complete, a mes-
sage is sent to the MQTT broker where the measured
data are stored. The same information as sent by the
MQTT is also displayed on the board mounted display.
After successfully testing the unboxed prototype, we
could design an encapsulating version of the entire sys-
tem into a boxed version.

Figure 13 shows a boxed variant of our embedded
system with scenario implementation of an MQTT
broker installed on an RPI. The power supply is
designed using a power bank. Figure 14 shows the
created software itself that shows the measured data
from all the sensors in clear tables; in our example,
we showed 5000 values for the 9DOF sensor + tem-
perature, thereby 50,000 values at the current MQTT
setting. We can change this setting with a common
configuration, as noted above. Figure 15 shows the
holders for all three testing dimensions for the x, y,
and z axes. These holders are created using a 3D
printer and serves for a precise comparison of the
vibration measurement results using a 9DOF sensor
for all the axes (Figure 15).

Conclusion

Our goal was to identify the possibilities of low-end IoT
devices and to get them into context with up-to-date
technology and equipment that are used in industrial
practice. As a representative of these low-end devices,
we have chosen the ESP32 microcontroller, which has
built-in Wi-Fi connectivity with support for standard
security such as WFA (Wi-Fi Alliance), WPA (Wi-Fi
Protected Access)/WPA2, and WLAN Authentication
and Privacy Infrastructure (WAPI).24 Furthermore, the
ESP32 microcontroller supports two computational
cores and therefore allows us a full parallel approach
for application design, contrary to another microcon-
troller, for example, ATMEL microcontrollers that
have only one computational core and a pseudo-
parallel task. We also created the proof of concept of
the general software architecture on the ESP32 chip.

Figure 9. Activity diagram of the MQTT callback function.
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With this architecture, we have demonstrated the sce-
narios defined by us and have tested this proof of con-
cept in a real example of vibration measurement. In the
architectural design, we focused on the possibilities of
development from the point of view of sustainability of
source code and its testability and reusability. We have
realized these architectural qualities using individual
components that have a clearly defined use

responsibility. We chose the Arduino platform as a
development environment, into which we have installed
ESP32 development support. The first release of the
ESP32 support was officially released on the Arduino
platform at the time when we finished this article. We
proceeded to design each scenario separately and then
test the functionality of the components. We linked the
scenarios into an architectonic design after debugging

Figure 10. Activity diagram of the dual-core processing of a measuring function.

Figure 11. Measurement on an unboxed prototype.
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the individual components. The biggest problems were
the implementation of the dual-core performance lay-
out and the ability to work with the SD card. After
completing the entire architectural solution on the
ESP32 chip, we performed the testing of the entire
embedded system in a laboratory environment. We
focused on the following functionalities during testing:

� Testing of a large amount of data writing (1000
to 100,000 samples) on an SD card with different
RTOS interrupt configurations. The sampling is
limited to 1 kHz, which is not the boundary
range of the vibration sensor, but is the range of
the interrupted frequencies of the RTOS system
running on the ESP32 chip. Data storage is
designed for backup in the case of communica-
tion failure.

� Testing of the remote configuration of the
ESP32 chip with different settings of the mea-
surement values (sampling frequency, expected
number of samples).

� Testing of real-time measurements while deliver-
ing the measured values through the network.
We have taken advantage of buffering the mea-
sured values in ESP32 chip memory with this

solution and optimized the amount of data trans-
mitted over the network. We have used RPI as
an IoT hub for real-time data collection. We
chose RPI due to a reduction of the costs of the
overall embedded system and control device
solutions. We have verified the reusability of
some components, such as communication, per-
sistence, and system configurability during the
development of the embedded system.

For complete verification of the generality of the
architectural design on the ESP32 chip, several tests
need to be made to equip different new ESP32 develop-
ment boards. We will focus on this aspect in the future.
The first board which we have tested is the board
TTGO TS v1.4, where the same set of sensors as in our
sample solution is used on one board. Thanks to the
dimensions of the board and the all-in-one design of
the board, this board is ready for testing as well as for
industrial environments. We want to implement sophis-
ticated diagnostics using cutting-edge computing on
RPI and evaluate them on an ESP32 chip in the near
future.

The knowledge of the general architectural design
that we obtained, and at the same time verified during

Figure 12. IP address assignment and connecting the MQTT (left) and reading configuration for the measurement (right).

Figure 13. Boxed testing embedded system with a wireless MQTT configuration from Raspberry Pi (left) and a detailed view of an
embedded system mounted on a BK calibrator (right).
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the implementation of the real example, can be evalu-
ated from several perspectives:

� We have verified the entire development cycle
for deploying a relatively new ESP32 microcon-
troller, which is gaining increasing popularity
and application in the field of IoT applications.

The fact that the ESP32 microcontroller has two
separate cores is considered to be a great advan-
tage, so our architectural design can natively
work with the idea of parallel processing. The
chip used with the ESP32 microcontroller can be
compared to the processors that are used in the
PC from the point of view of the architectural

Figure 14. Data analysis software for processing the measured values—5000 samples.

Figure 15. Testing accelerometers at the orthogonal positions for the x, y, and z axes.
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design application. This uses the FreeRTOS sys-
tem interface that gives us the ability to work in
tasks. FreeRTOS can be considered a lightweight
version of an embedded development system. On
the other hand, ESP8266 chips use one kernel
and pseudo-parallel processing occurs when
implementing FreeRTOS tasks. That is why
ESP32 gives us a big advantage in real-time pro-
cessing. The behavior of the FreeRTOS interface
that implements such processing had also been
verified on other chips like ATMEL, where the
use of one kernel cannot provide native real-time
behavior. The triggering of individual tasks is
controlled by their priority. We must consider
that the task with the highest priority should be
assigned to program execution to avoid blocking
functionality, and therefore measuring tasks
have a lower priority and can unexpectedly be
blocked. This situation does not occur with dual-
core chips, where one measuring task can be
assigned to one kernel and the execution of the
program to the other kernel, which we have used
in our architectural design solution.

� We have created a reusable architecture that can
be used to develop other embedded systems. We
can use this architecture to deploy the ESP32
chip when measuring and processing data from
different sensor types. In our sample application,
we chose a nine-axis accelerometer and tempera-
ture sensor to show data processing of ten mea-
sured variables at one time. We can integrate the
embedded system with other types of sensors for
measuring physical variables; our reusability

architecture will not change and only the mea-
sured variables will be of another type.

� The architectural design is based on the simplicity
and responsibility of the components that only
handle their own functionalities. The application
development with design patterns for desktop and
web applications works in the same way. We have
been inspired by these patterns and have tried to
convert the architectural design into an embedded
system that works with IoT technologies. One of
the biggest problems we have addressed is that the
development of embedded systems is usually based
on procedural programming, while design patterns
use an object-oriented approach. This issue needs
to be further elaborated and adapted to possible
solutions for procedural solutions. At the same
time, we are trying to bring some principles from
the point of view of SOLID principles such as, for
example, the following:
s Single Responsibility Principle: In other

words, each component should be responsi-
ble for just one thing that should be clearly
explained by its name.

s Open-Closed Principle: Components should
be opened for extending but closed for
changes. Extending the functionality of the
components should only be possible by add-
ing a new code without having to interfere
with the existing code.

s Interface Segregation Principle: More spe-
cific interfaces are better than one universal
interface. Components should depend only
on the interfaces they use. If we define only

Figure 16. Measured values from the BK vibration calibrator—measuring test for 5000 samples.
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one large interface, we lose an overview of
which parts of the interface are being used.
When changing the component interface, we
must always review and, if necessary, mod-
ify all of its use.

Other principles of SOLID architecture are difficult
to implement in the embedded world and will be dealt
with in subsequent research.

� Architecture is universal and independent. We
are independent of both the programming lan-
guage and the development platform. We can
develop the resulting applications in a variety of
ways, and often depending on advances in tech-
nology, debugging development tools, and
implementing specific header functions at the
source code compilation level. If, in some emer-
ging development platform, the performance of
library functions is tuned to resolving dependen-
cies, we can move to a different development
platform without reworking the entire philoso-
phy of the application. We can choose to develop
them under Windows or Linux, and the transi-
tion between systems will not be painful; on the
contrary, we can tailor the application to the sur-
rounding ecosystem. We can choose to change
the parent system between the PC, laptop, indus-
trial PC, a Raspberry type of computer or other
devices without changing the architecture.

� Application architecture is not supposed to be
complex in nature, its main goal is to create an
application that can be tested and is sustainable
in the long run and capable of implementing new
functionality without losing its current behavior.
That is why we have defined in our architectural
design the individual components (subsystems)
that have clearly defined their own responsibility
(remote access, communication, and configura-
tion). This implies that they are simply testable
and maintainable. Extending such designed
applications is not challenging and the applica-
tion is ready for future changes without losing its
sustainability and testability.
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26. Brüel & Kjær. Accelerometer calibrator product data
specification, 2018, https://www.bksv.com/en/products/
transducers/vibration/calibrators/4294

27. Github. Arduino core for ESP32, 2018, https://github.
com/espressif/arduino-esp32

28. Microsoft Visual Studio Code, 2018, https://code.
visualstudio.com/

29. Microsoft Visual Studio Code extension for Arduino,
2018, https://marketplace.visualstudio.com/items?item
Name=vsciot-vscode.vscode-arduino

30. MQTT. Documentation and protocol specification, 2018,
http://mqtt.org/documentation

984 Measurement and Control 52(7-8)

https://www.espressif.com/en/products/hardware/esp32/overview
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://www.bksv.com/en/products/transducers/vibration/calibrators/4294
https://github.com/espressif/arduino-esp32
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.vscode-arduino

