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Abstract. Discussion and mathematical proof on nec-
essary and sufficient conditions for the application of
the p-q theory for compensating the harmonic currents
consumed by non-linear load using a shunt active filter
are presented. These conditions over instantaneous ac-
tive and reactive powers were not addressed before and
must be considered on the design of new control strate-
gies based on p-q theory. Theoretical demonstration is
proposed and an application example with simulations
results is used to validate the theoretical results.
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1. Introduction

Since late the 1960s, with the appearance of power elec-
tronic devices, the use of non-linear loads was increased
significantly. In many cases, this kind of load repre-
sents a high percentage of the total load connected to
the electric system [1], [2] and [3].

Non-linear loads consume high harmonic currents
which must be supplied by the power source and trans-
ported by the transmission line increasing power losses
due to parasitic resistance [4], [5] and [6]. Besides gen-
erating undesirable losses in the transmission line, the
consumption of currents with high harmonics content is
currently penalized by the power system operators [7]

or affects the useful life of electrical machines [8].
For these reasons, eliminating harmonic components of
the load current implies cost reduction in the system
operation.

IS

IC

IL

Lf

Source Transmission
line

Non Linear
Load

Control

Shunt
Active Filter Converter

Fig. 1: Power System with shunt active filter.

One way of eliminating harmonic currents consumed
from the power source by the load, even for unbal-
anced and/or distorted source voltages (V ), is using
a shunt active filter [9], [10], [11] and [12]. Shunt ac-
tive filters are based on the injection of compensation
currents (IC) for canceling undesirable harmonics com-
ponents of the current consumed from the source (IS).
Figure 1 shows a block diagram for the power system
with a shunt active filter. Shunt active filters are com-
posed by an electronic power converter, a passive fil-
ter (Lf ) and a controller [4], [13] and [14]. Several
control strategies have been proposed for shunt ac-
tive filters based on the Instantaneous Active-Reactive
Power theory [15], [16], [17] and [18], or simply the p-q
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theory [19], [20]. Control based on this theory is in-
tended to eliminate undesirable fundamental and har-
monic current components from the source (harmonics
elimination and reactive power compensation) while al-
lowing the active and reactive power defined by control
strategy to go through [21] and [22].

In the design of control strategies used to get sinu-
soidal currents from the source is assumed that the os-
cillating components of both real and imaginary pow-
ers, must be zero. In [4], several control strategies for
Shunt Active Filters based in pq theory are proposed.
In these strategies, the control objective is to cancel
the oscillating components of the power; however,
it is not mathematically proved that both power com-
ponents, real and imaginary, must be null instead of
only one of them to achieve sinusoidal current con-
sumed from the power source.

This work proves mathematically that both oscillat-
ing power components must be zero in order for the
control objective to be fulfilled. It also offers an exam-
ple where only one of the power components is which
shows clearly that this condition is not enough to fulfill
the control objective.

The work is organized as follows: Sec. 2. describes
the control of sinusoidal current using the p-q theory
with a detail of the calculations for the compensation
power. Section 3. contains an application example
in which it can be clearly observed the necessity of
annulling both power components in order to achieve
the control objective. Finally, conclusions are given in
Sec. 4. .

2. Control Strategy

The main goal of the control strategy is to compensate
the load current (IL) harmonic components so as to get
a sinusoidal balanced current from power source (IS)
on a three wire unbalanced system where line voltages
may have harmonic components.

This control objective can be described as:

IS = I+1
S ,

(I−1S = I±nS = 0, n = 2, 3, . . . ,∞),
(1)

where I±nS is the positive (+) or negative (−) sequence
component corresponding to the nth harmonic com-
ponent, whose frequency is n times the fundamental
system frequency, ω [23].

2.1. Power Calculation

On balanced 3-wire systems with harmonic compo-
nents, line voltages can be described on αβ coordi-
nates [24] as:

vα = +
√

3

∞∑
m=1

V +m sin(mωt+ φ+m) + . . .

+
√

3

∞∑
m=1

V −m sin(mωt+ φ−m),

vβ = −
√

3

∞∑
m=1

V +m cos(mωt+ φ+m) + . . .

+
√

3

∞∑
m=1

V −m cos(mωt+ φ−m),

(2)

wherem ismth harmonic component of the line voltage
and φ±m is the phase angle of this component.

By considering the same degree of freedom as for
the line voltages, line currents can be described as:

iα = +
√

3

∞∑
n=1

I+n sin(nωt+ δ+n) + . . .

+
√

3

∞∑
n=1

I−n sin(nωt+ δ−n),

iβ = −
√

3

∞∑
n=1

I+n cos(nωt+ δ+n) + . . .

+
√

3

∞∑
n=1

I−n cos(nωt+ δ−n),

(3)

where n is used to name the nth harmonic component
of the current and δ±n is thecorresponding phase angle.

Real and imaginary instantaneous powers (p and q)
can be defined as [19]:[

p
q

]
=

[
vα vβ
vβ −vα

]
·
[
iα
iβ

]
. (4)

These real and imaginary instantaneous powers can
be separated into two components:

p = p̄+ p̃,
q = q̄ + q̃,

(5)

where p̄ is defined as the constant real power, p̃ is de-
fined as the oscillating real power, q̄ is defined as the
constant imaginary power, and q̃ is defined as the os-
cillating imaginary power. By replacing Eq. (2) and
Eq. (3) in Eq. (4), p̄, q̄, p̃ and q̃ can be expressed as
in Eq. (6), Eq. (7), Eq. (8) and Eq. (9), respectively
(next page).
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p̄ = 3

∞∑
n=1

V +nI+n cos(φ+n − δ+n) + 3

∞∑
n=1

V −nI−n cos(φ−n − δ−n), (6)

q̄ = 3

∞∑
n=1

V +nI+n sin(φ+n − δ+n)− 3

∞∑
n=1

V −nI−n sin(φ−n − δ−n), (7)

p̃ = 3

∞∑
m=1,m 6=n

∞∑
n=1

V +mI+n cos((m− n)ωt+ φ+m − δ+n) + . . .

+3

∞∑
m=1,m 6=n

∞∑
n=1

V −mI−n cos((m− n)ωt+ φ−m − δ−n) + . . .

−3

∞∑
m=1

∞∑
n=1

V +mI−n cos((m+ n)ωt+ φ+m + δ−n) + . . .

−3

∞∑
m=1

∞∑
n=1

V −mI+n cos((m+ n)ωt+ φ−m + δ+n),

(8)

q̃ = 3

∞∑
m=1,m 6=n

∞∑
n=1

V +mI+n sin((m− n)ωt+ φ+m − δ+n) + . . .

−3

∞∑
m=1,m 6=n

∞∑
n=1

V −mI−n sin((m− n)ωt+ φ−m − δ−n) + . . .

−3

∞∑
m=1

∞∑
n=1

V +mI−n sin((m+ n)ωt+ φ+m + δ−n) + . . .

+3

∞∑
m=1

∞∑
n=1

V −mI+n sin((m+ n)ωt+ φ−m + δ+n).

(9)

Considering only the positive sequence of the source
voltage to fulfill the objective described in Eq. (1)
the following powers are obtained:

p̄+1 = 3V +1I+1 cos(φ+1 − δ+1), (10)

q̄ +1 = 3V +1I+1 sin(φ+1 − δ+1), (11)

p̃+1 = +3V +1
∞∑
n=2

I+n cos((1− n)ωt+ φ+1 − δ+n)+

−3V +1
∞∑
n=1

I−n cos((1 + n)ωt+ φ+1 + δ−n),

(12)

q̃+1 = +3V +1
∞∑
n=2

I+n sin((1− n)ωt+ φ+1 − δ+n)+

−3V +1
∞∑
n=1

I−n sin((1 + n)ωt+ φ+1 + δ−n).

(13)
where the superscript +1 is used to indicate that
the power is calculated using the positive-sequence
fundamental-frequency line voltage component V +1

and ±n is used to indicate that the power is calculated
using V +1 with another, positive or negative-sequence,
current component.

To obtain sinusoidal balanced source currents (IS),
Eq. (1) must be satisfied. From the point of view of

real and imaginary powers, this control objective can
be defined as:

I−1S = I±nS = 0 ⇒ p̃+1
S = 0, (14)

and also:

I−1S = I±nS = 0 ⇒ q̃+1
S = 0, (15)

where S subindex is used to indicate that the power is
delivered by the power source.

Reciprocal of Eq. (14) or Eq. (15) are not necessar-
ily true. However, if equations Eq. (14) and Eq. (15)
are satisfied simultaneously, then sinusoidal balanced
source currents can be guaranteed. This can be writ-
ten as:

I−1S = I ±nS = 0 ⇔ p̃+1
S = q̃+1

S = 0 . (16)

To demonstrate that both powers (p̃+1
S and q̃+1

S )
must be canceled to accomplish with Eq. (1), a detailed
analysis of Eq. (12) and Eq. (13) must be performed.

Without loss of generality and to simplify the cal-
culations, it is possible to assume that φ+1 = 0.
Then, by expanding Eq. (12) and Eq. (13) to n = 7
and regrouping terms of the same frequency, it is pos-
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sible to write:

p̃+1 = [+I+2 cos(ωt+ δ+2) + I+3 cos(2ωt+ δ+3)+

−I−1 cos(2ωt+ δ−1) + I+4 cos(3ωt+ δ+4)+

−I−2 cos(3ωt+ δ−2) + I+5 cos(4ωt+ δ+5)+

−I−3 cos(4ωt+ δ−3) + I+6 cos(5ωt+ δ+6)+

−I−4 cos(5ωt+ δ−4) + I+7 cos(6ωt+ δ+7)+

−I−5 cos(6ωt+ δ−5) + . . .] 3V +1,
(17)

q̃+1 = [−I+2 sin(ωt+ δ+2)− I+3 sin(2ωt+ δ+3)+

−I−1 sin(2ωt+ δ−1)− I+4 sin(3ωt+ δ+4)+

−I−2 sin(3ωt+ δ−2)− I+5 sin(4ωt+ δ+5)+

−I−3 sin(4ωt+ δ−3)− I+6 sin(5ωt+ δ+6)+

−I−4 sin(5ωt+ δ−4)− I+7 sin(6ωt+ δ+7)+

−I−5 sin(6ωt+ δ−5)− . . .] 3V +1.
(18)

On Eq. (17) and Eq. (18), it can be seen that
the first term containing I+2 can be canceled by
canceling either real or imaginary oscillating power
(p̃+1 = 0 or q̃+1 = 0), since it is the only term
with frequency ω. However, for the remaining terms of
the series, this does not happens.

As an example, it can be seen on the last row of
Eq. (17) that if I+7 = I−5 and δ+7 = δ−5 then:

+ I+7 cos(6ωt+ δ+7)− I−5 cos(6ωt+ δ−5) = 0, (19)

but from Eq. (18), it can be seen that:

− I+7 sin(6ωt+ δ+7)− I−5 sin(6ωt+ δ−5) 6= 0. (20)

Then, if the line currents contain these harmonic
components, the oscillating real power will be iden-
tically null (p̃+1 = 0) even when the line current is
not sinusoidal (I+7 = I−5 6= 0). However, in this
case, the oscillating imaginary power will not be null
(q̃+1 6= 0).

To prove that there is not harmonic components
combination that fulfills simultaneously that p̃+1 = 0
and q̃+1 = 0, a generic expression for each pair of terms
of the same frequency of this powers can be written as:

+I+(u+2) cos((u+ 1)ωt+ δ+(u+2)) + . . .
−I−u cos((u+ 1)ωt+ δ−u) = 0,

(21)

and

−I+(u+2) sin((u+ 1)ωt+ δ+(u+2)) + . . .
−I−u sin((u+ 1)ωt+ δ−u) = 0,

(22)

where u = 1, 2, . . . ,∞; (I+2 is not considered in these
expressions).

The system formed by Eq. (21) and Eq. (22) can be
written in matrix terms:

Ax = 0, (23)

with:

A=[
cos((u+ 1)ωt+ δ+(u+2)) − cos((u+ 1)ωt+ δ−u)

− sin((u+ 1)ωt+ δ+(u+2)) − sin((u+ 1)ωt+ δ−u)

]
,

(24)

x =

[
I+(u+2)

I−u

]
, 0 =

[
0
0

]
. (25)

This algebraic system Eq. (23) has a unique solution
(x = 0) if matrix A is not singular (det(A) 6= 0 ∀ t),
then:

det(A) = sin(2(u+ 1)ωt+ δ+(u+2) + δ−u) 6= 0, ∀ t,
(26)

or:

2(u+ 1)ωt+ δ+(u+2) + δ−u = kπ, k = 1, 2, . . . ,∞.
(27)

Since there is no combination of u, δ+(u+2) and δ−u
which gives the trivial solution of Eq. (23), it is neces-
sary that:

I+(u+2) = I−u = 0 ⇔ p̃+1
S = q̃+1

S = 0. (28)

Then, the relationship stated in equation Eq. (16) is
demonstrated.

2.2. Sinusoidal Current Control
Strategy

The main goal of the proposed control strategy
(IS = I+1

S ) can be achieved using the control strategy
proposed in [25], where sinusoidal and balanced source
current is obtained if:

I−1S = I±nS = 0 ⇔ p̃+1
S = q̃+1

S = 0. (29)

Besides, since no constant reactive power should be
consumed from the source to minimize transmission
line power losses, then:

q̄+1
S = 0. (30)

With these restrictions, balanced and sinusoidal line
current can be consumed from the source using an ac-
tive shunt filter, where the power transferred by the
filter (p∗C y q∗C) can be defined as:

p∗C = p̃+1
L ,

q∗C = q̄+1
L + q̃+1

L = q+1
L ,

(31)

where subindex L is used to indicate that powers are
calculated using load line currents (IL).
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Compensating current references for the converter
(i∗Cα, i

∗
Cβ) can be obtained (using p-q theory) as:[

i∗Cα
i∗Cβ

]
=

1

(v+1
α )2 + (v+1

β )2

[
v+1
α v+1

β

v+1
β −v+1

α

] [
p∗C
q∗C

]
.

(32)

On Fig. 2, a block diagram of the proposed control
strategy is shown. This control strategy uses a positive
sequence detector (DSOGI-FLL) [26], [27], [28] and [29]
to obtain the fundamental positive-sequence compo-
nent of the line voltage (V +1) which is used in
real and imaginary power calculations (p+1

L and q+1
L ).

Figure 3 shows the block diagram of the DSOGI-FLL
extracted from [28].
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Fig. 2: Block diagram of the proposed strategy.
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Fig. 3: Block diagram of the DSOGI-FLL extracted from [28].

3. Application Example

An application example is shown in this section
where a particular case is analyzed. In this exam-
ple, a sinusoidal balanced line voltage is considered
(V +1 = 1 p.u.) but the line current is formed by
a fundamental component in phase with the line volt-
age (I+1

L = 1 p.u., and δ+1 = 0), a 5th negative-
sequence harmonic component and a 7th positive-
sequence harmonic component with the same ampli-
tude (0.1 p.u.) and phases δ−5 = δ+7 = 0:

I+1
L = 1, I−5L = I+7

L = 0.1,

δ+1 = δ−5 = δ+7 = 0.
(33)

Then, the line voltages can be defined as in Eq. (2):

vα = +
√

3 sin(ωt),

vβ = −
√

3 cos(ωt),
(34)

and the load line current will be:

iLα = +
√

3 [sin(ωt) + 0.1 sin(5ωt) + 0.1 sin(7ωt)] ,

iLβ = −
√

3 [cos(ωt)− 0.1 cos(5ωt) + 0.1 cos(7ωt)] .
(35)

Then, the oscillating real power can be calculated
using Eq. (12) as:

p̃+1 = −0.3 cos(6ωt) + 0.3 cos(6ωt) ≡ 0, (36)

while the oscillating imaginary power is obtained from
Eq. (13) as:

q̃+1 = −0.3 sin(6ωt)− 0.3 sin(6ωt), (37)

then:
q̃+1 = 0.6 sin(6ωt). (38)

The line currents (ISabc) and the imaginary and real
power provided by the power source (p+1 and q+1)
for the system without compensation are shown in
Fig. 4(a) and Fig. 4(b). In Fig. 4(b) it can be seen that
the oscillating real power is null since only constant
real power is provided by the source (p̄+1 = 1 p.u. and
p̃+1 = 0). However, the imaginary oscillating power is
not null (q̃+1 6= 0), as was determined by Eq. (38).

0 0.02 0.04 0.06 0.08 0.1

-1.0

0

1.0

.
.

(a)

0 0.02 0.04 0.06 0.08 0.1
-0.5

0

0.5

1

1.5

.
.

.
.

(b)

Fig. 4: System with no compensation.

If, for this example, only the oscillating real
power p̃+1 is compensated, the source currents (ISabc)
will still be nonsinusoidal, as shown in Fig. 5(a).
Figure 5(b) shows the imaginary and real power pro-
vided by the power source (p+1 and q+1) for this case.
From these results, it is possible to see that compen-
sating only the oscillating part of the real or imaginary
power does not guarantee that the line current satisfies
Eq. (1).
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Fig. 5: System with compensation p̃+1 = 0.
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Fig. 6: System with compensation p̃+1 = 0 and q̃+1 = 0.

Finally, Fig. 6(a) and Fig. 6(b) show the line currents
(ISabc) and the imaginary and real power supplied by
the power source (p+1 and q+1) with the control strat-
egy compensating p̃+1 = 0 and q̃+1 = 0. As it can
be appreciated, only when both oscillating powers are
compensated, the control objective is achieved, obtain-
ing sinusoidal balanced source current. In Fig. 6(b) can
be seen that the oscillating real and imaginary pow-
ers are null, while only constant real power is supplied
(p̄+1 = 1 p.u. and p̃+1 = q̃+1 = 0).

From all these results, it can be seen that the os-
cillating power p̃+1 is null in all cases, even when the

source current is nonsinusoidal. However, the oscillat-
ing imaginary power is zero only when both oscillating
powers are compensated, which gives sinusoidal bal-
anced source currents.

Similar simulation can be performed using an appro-
priate selection of amplitudes an phases to show that
compensating only q̃+1 a sinusoidal balanced source
current cannot be guaranteed.

4. Conclusions

A detailed discussion and mathematical proof on spe-
cific topics of p-q theory were performed in this work.
From the power definitions and a generalized analysis,
necessary conditions for current compensation using
a shunt active filter were stated. Such conditions were
not addressed in previous works, but they must be con-
sidered in the design stage of this kind of control strate-
gies. Simulation results that validate the theoretical
analysis are included.
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