
The Changing Role of the Software Engineer 

Edward Meade1, Emma O’Keeffe1, Niall Lyons1, Dean Lynch1, Murat Yilmaz2, Ulas 
Gulec3, Rory V. O’Connor1,4 [0000-0001-9253-0313], Paul M. Clarke1,4 [0000-0002-4487-627X] 

1 School of Computing, Dublin City University, Glasnevin, Dublin, Ireland 
{edward.meade5,emma.okeeffe7,niall.lyons4,dean.lynch49} 

@mail.dcu.ie 
2 Department of Computer Engineering, Cankaya University, Turkey 

myilmaz@cankaya.edu.tr 
3 Hasan Kalyoncu University, Turkey 

ulas.gulec@hku.edu.tr 
4 Lero, the Irish Software Engineering Research Center 
{rory.oconnor,paul.m.clarke}@dcu.ie 

Abstract. In this paper we will discuss the changing role of a software engineer. 
We will examine this from four major standpoints, the software development 
lifecycle, the influence of open source software, testing and deployment and the 
emergence of new technologies. We will first analyze what the role of a software 
engineer was in the past. We will examine limitations associated with software 
development life cycle models, and software failures that catalyzed increased im-
portance for quality assurance. We then outline the current role of a software 
engineer. We discuss the impact of agile software development and automation 
on the software development cycle, the influence of open source software and 
how new technologies such as Function-as-a-Service and machine learning may 
impacted the role. Based on our research, we analyze why the software engineer 
role has changed and postulate prospective changes to the role of software engi-
neer, and in particular how new responsibilities may affect the day to day work 
of future software engineers. We ultimately find that the role of a “software en-
gineer” is nowadays widely varied and very broad, and it only generally indicates 
the type of work that the software engineer may undertake.  
 

Keywords: Software Engineer, Agile, Open Source Software, Continuous Soft-
ware Engineering. 

1 Introduction 

Software Engineering is defined by the IEEE as “The application of a systematic, dis-
ciplined, quantifiable approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software” [1]. Thus, the role of a software 
engineer could be defined as a person or team who apply systematic, disciplined, and 
quantifiable approaches to the development, operation, and maintenance of software. 
When analysing a software engineers’ role, how they approach developing software 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/237018183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

must be discussed, as well as investigating the external technological factors influenced 
by the improvement of such technology. 
 When researching this topic, a multivocal approach was adopted, meaning that both 
peer reviewed and non-peer-reviewed artefacts were included. This gives a wide range 
of perspectives and was considered important especially as much of the practice com-
munity may not be heavily engaged with the peer-review/academic community. Exam-
ining the role of a software engineer is a broad undertaking that ultimately required the 
identification of specific search terms. An initial review of the literature found that there 
were relatively few published works dealing directly with the topic “the changing role 
of the software engineer”. Therefore, specific search strings were employed so as to 
permit an examination of what were considered by the researchers to be among the 
more significant perspectives on the software engineering role over time. Inevitably, 
this selection decision introduces a limitation in this work which is discussed in further 
detail in the Section 4 Research Limitations. 
 To evaluate the future of a software engineer’s role, we suggest that the past must 
be considered. Specifically, the influence of former software failures in changing the 
role of a software engineer. Along with this, in more recent years the introduction of 
free open source software has increased the need for flexibility in a software engineer’s 
role. With changes to practice, new techniques can incur push back, as well as teething 
problems, especially if introduced at a rapid pace, and developers must be open minded 
to minimize these issues [2].  
 The role has also not only changed but branched out to more specific roles such as 
software tester. Testing is very much still a part of a software engineer’s role; however, 
it has become its own distinguished role that requires experience in automation and vast 
testing knowledge. In the early years the role was not highly acclaimed but recently due 
to software failures, the desire for well-educated software testers has increased [3]. 
From identifying this separation of roles in the past, predictions can be proposed in 
relation to future role specialisation. 
 Automation will be discussed not only from a testing viewpoint but how increasing 
automation in the software development process has an impact on a software engineer’s 
daily tasks as well as the delivery time of projects. With the introduction of Platform-
as-a-Service and Function-as-a-Service in software deployment in recent years, soft-
ware engineers have had to acquire knowledge to support these services. 

The title software engineer is a broad term which can encompass a vast variety of 
responsibilities that depends on many factors including companies own definition, tech-
nology trends and the progression of development methodologies. The role has ad-
vanced and evolved over the years and will continue as technology continues to change. 
Due to the frequent changing in tools, methods and technology the constant factor of a 
software engineers’ role is to be flexible and open to consistent learning. Section 2 
outlines the literature review methodology, Section 3 presents an analysis of the se-
lected literature, while Section 4 identifies acknowledged research limitations. Sections 
5 and 6 present future work and conclusions.  



3 

2 Literature Review Methodology 

The basis of this research was conducted in the context of a final year B.Sc. in Computer 
Applications assignment in Dublin City University, Ireland. The assignment involved 
four team members who were allocated a research paper title: “The Changing Role of 
the Software Engineer”. This topic was considered relevant to their studies as many 
would soon become professional software engineers and an examination of the role and 
its possible future direction is of central importance not just to their studies, but also to 
their impending careers. 

Structuring the literature review involved breaking down the overall task into sev-
eral smaller steps so as to enable the team to explore the literature to systematically 
extract relevant information. Firstly, key search strings were utilised: ‘Changing Role 
of Software Engineer’, ‘Future of software engineer’, ‘software industry change’, ‘Au-
tomation in software engineering’ and ‘Evolution of Software Engineer’ so as to iden-
tify a baseline set of find a key set of aretfacts (i.e. research papers and other non peer-
reviewed sources). Google, Google Scholar and digital libraries of publications includ-
ing, ScienceDirect, ACM, IEEE and Wiley were used to find these publications. A short 
list of forty works was derived for each of the search strings employed. This shortlisting 
was achieved by jointly evaluating the relevance of each work and its citation count 
(where available). 

Following the completion of the initial phase of literature review, the shortlists for 
each search term were further evaluated. ISI Software Engineering journal impact was 
also used as a broad filtering mechanism: high impact factor journals were considered 
more important as sources. The relevance of publications was examined by reading 
each abstract and conclusion. Each publication was sorted due to the number of cita-
tions it had and the year it was published. The next step of the process involved reading 
the publications in detail and making further evaluations in relation to relevance. All 
publications deemed to have substantial relevance to the topic were added to a set, with 
the number of citations used as a proxy to determine the overall popularity of the work. 
Some limitations in this approach are acknowledged in Section 4 of this paper, but 
overall the result of this systematic exercise was a listing of 30 sources that the research 
team set to work on reviewing in detail for key information relevant to producing a 
research paper that broadly examined the role of the software engineering, how it has 
changed to date, how it is performed at present, and how it may evolve into the future. 
The results of the analysis of this material are present in Section 3.   

3 Analysis 

3.1 Role of a Software Engineer in the Past 

Evaluating the role of a software engineer means looking to the past and identifying 
what influences the job specification. As technology began to emerge, the technology 
industry concentrated mainly on meeting institutional needs, which led to research in 
development methodologies to produce planned and scheduled software [4]. Software 
development tends to be a group activity with communication being a vital part of a 
software engineers’ role. However, before the implementation of methodologies 



4 

projects often suffered due to lack of communication between other developers and 
users [5].  

The evolution of software development life cycle models has directly impacted the 
software engineer’s role. Though it is worth reflecting on the fact that principles for-
malised in a lifecycle model or methodology might predate the formal arrival of the 
model [6], for example, agile software development concepts such as test driven devel-
opment existed prior to the introduction of agile methods. Further into the 1990’s, soft-
ware engineers saw the introduction of documentation as a standard in their role to 
ensure quality assurance [7]. This was at least partly because of software failures such 
as Therac-25 which led to not only serious injury to humans but also deaths [7]. Therac-
25 was also an example of why software engineers working as individuals and not as a 
team can lead to adverse outcomes for users. Testing may have come to be perceived 
as more important during this era, but this might be difficult to definitely prove in ret-
rospect as the volumes of software being produced were also increasing and therefore, 
the need for larger scale software system may have warranted more structured devel-
opment processes. Whatever the case, software engineers were might expect in certain 
cases to work in large teams with implications for their roles and responsibilities.   

Although it was becoming normal for organisations to employ software testing pro-
fessionals, this did mean that software engineers were no longer required to test, espe-
cially in smaller companies [8]. With the role of software tester perceived as “consola-
tion prizes for those not considered good enough to hire as software engineers”, the 
idea that the job is not highly respected and that there may be no career growth often 
deters new graduates who may believe it to be lesser job [3]. This could in turn cause 
the misconception that a software engineer never has to do any testing as it is below 
them. Indeed, prior to the introduction of unit testing frameworks, it may have been the 
case in some settings those writing software code were mostly removed from the testing 
concern.  

In 2000, Microsoft declared that “the role of a software engineer … deals with file 
transfer and management, troubleshooting/bug fixing, improving methods and consul-
tancy” [9]. In a 2011 article, Microsoft employees discuss code ownership within the 
company, this time with software engineers being fully responsible for their own code, 
including testing [10]. It seems therefore that as time progressed, software engineers 
may have ultimately had to become more involved in quality assurance for their own 
work products. 

In a 2008 article, (sometimes) free open source software was growing in popularity, 
thus increasing the need for software engineers to understand and integrate software 
not developed within their own company [11]. This is an example of a demand on soft-
ware engineers to continuously keep up to date on emerging concepts and facilities, 
something we suggest from our literature review to be a regular requirement on soft-
ware engineers.  

3.2 Current Role of a Software Engineer 

As software development has evolved, it seems from our research that the role of a 
software engineer has become broader and more heterogeneous in nature. There are 
now many aspects to software engineering. Even as early as 2002, a software engineer 
could include being a developer, a tester, a maintenance analyst, a reviewer and a 



5 

designer [12], and indeed was sometimes referred to as a software development engi-
neer. In the present time, software engineers can no longer solely rely on their program-
ming expertise alone. They must also have a keen understanding of the strategic impact 
of technology decisions on the business, while building a relationship with business 
peers and understanding the real-life application of what they are doing [13]. A focus 
on the efficacy of real-world application of their code may not have been so continually 
prevalent in the classical software engineer’s remit. We have also witnessed significant 
change in the delivery of software, even in the utilisation of open source software. The 
altering of open source software has provided the flexibility to software engineers to no 
longer wait until a project is feature complete to ship; improvements are made incre-
mentally and driven internally and externally as feedback is gathered [14].  
 While automation of individual programming tasks (compilation, testing, documen-
tation, etc.) has been part and parcel of software engineering for many years, we are 
currently witnessing an automation intensification across many aspects of the software 
development process [15]. Automation permits software feature delivery at rates, which 
just a few short years ago may have been unachievable when constrained by manual 
intervention. In a recent study it was seen that a software engineer increases their 
productivity, while simplifying the deployment stages through an automated pipeline, 
with the percentage of software engineering teams that do not automate deployment 
shrinking from 26% in 2016 to 11% in 2017 [16]. Through the use of automation, soft-
ware engineers use continuous integration, a development practice where engineers in-
tegrate code into a shared repository many times a day. Each integration is created 
through automated building scripts and verified with automated tests, delivering the 
benefit of more rapid error detection and improved error source identification [17]. 
Continuous integration, coupled with advances in version control, has improved the 
capacity of software engineers to compare different versions of the code, to find errors 
and to minimise downtime [18].  

Agile based development is by design capable of reducing communication related 
delays and increasing discussion between software engineers, but it can also reduce the 
amount of documentation produced [19]. When working in geographically distributed 
teams, this may introduce challenges in communication since some remote communi-
cation, we suggest, may in fact benefit from documented artefacts. We therefore see 
that the evolution towards agile software development may have introduced new chal-
lenges for software engineers working on distributed teams.   

Platform-as-a-Service (PaaS) and the still emerging Function-as-a-Service (FaaS) 
are third party computing services that software engineers are using for deployments 
[20]. With both of these advances, software can run on hardware that is largely or fully 
managed by third party providers but to do so, developers may need to acquire new 
skills such as microservices based systems development [40]. Such development para-
digms are largely classifiable as distributed systems and may require that the software 
engineer to take on new design principles which they have not previously experienced.  
 As technology advances the roles of software engineers and the needs of companies 
are changing. Google have introduced a new software engineering role called site reli-
ability engineering [21], building engineering teams to develop tools and systems re-
ducing toil and repetitive work, while monitoring large distributed systems. The build-
ing of resilient architectures and thinking about scalability from the very beginning are 
key aspects to the role. As referred to above, the automation of as much as possible 



6 

such as deployments, maintenances, tests and scaling is also core to this role [21]. 
 Large distributed software systems must be designed and built for change, scalability 
and efficiency. A niche area of artificial intelligence (AI) and machine learning (ML) 
engineering practices are evolving a traditional software engineers’ role. Large soft-
ware systems benefit from this maturing software discipline as in time, the thoughts of 
shifting the burden of evolution from the software engineers to the systems themselves 
and exploring what it would mean to build systems that can take responsibility for their 
own evolution [22]. As this area of software engineering is growing, the influences and 
challenges of AI and ML in large systems will, we suggest, have a significant effect on 
the role of a software engineer in the future. 

3.3 Why the Role of a Software Engineer Changed 

Our research suggests that the transition from traditional lifecycle models to agile soft-
ware development is one of the major reasons for evolution in the software engineer’s 
role. A waterfall model is a sequential process, where each phase of the process relies 
on the previous phases being completed. All requirements are believed to be well de-
fined at project outset, and largely unchanging thereafter [23]. An agile model can be 
described as “an iterative and incremental (evolutionary) approach to software devel-
opment which is performed in a highly collaborative manner by self-organizing teams 
within an effective governance framework with “just enough” ceremony that produces 
high quality software in a cost effective and timely manner which meets the changing 
needs of its stakeholders” [24]. Agile assumes there will be change in the requirements 
and is an iterative process. With agile software development software engineers no 
longer have a clear set of requirements at the outset (indeed a key component is that 
regular feedback will refine requirements to meet end users’ needs). This, we find, has 
profoundly affected the role of a software engineer who is now required to deal with 
constant feedback from clients (or their designate) and moreover, to engage daily with 
team members in formalised ceremonies. 

We also find that explicit new responsibilities have been created by agile software 
development within software engineering teams, where there are many different roles, 
especially on self-organizing teams. The roles that may arise include mentor, co-ordi-
nator, translator, champion, promoter, and terminator [25]. The introduction of these 
roles means that a software engineer no longer only must develop code but also must 
perform their role as a part of an agile team. It may also have implications for account-
ability for software engineers, who now face the pressure from their peers as well as 
their managers. We suggest that these changes to the social structure in agile develop-
ment teams can introduce new pressures for individual developers.   

Open source software has also has a major impact on the role of a software engineer. 
Open source software began to emerge as a viable option for companies as early as 
2006 [26]. Its emergence has created a vast community, with lots of collaboration and 
contribution to many projects. Companies use these communities to find new talent 
while some companies release their own open source software so that it can be utilised 
by many other companies and increase revenue opportunities for themselves [27], and 
with impacts for software engineers. As companies use more open source software, a 
software engineer must develop a wide range of technical skills to deal with this. They 
must ensure that the open source software is seamlessly knitted together with their own 



7 

project which is not necessarily are trivial undertaking. This change means that soft-
ware engineers must constantly look for areas where they can expand their own 
knowledge and consistently look to grow. Furthermore, working on open source pro-
jects can indirectly benefit software engineers as companies may try to recruit them 
from their portfolio of work in the open source community. 

The software industry is striving to make products cheaper, better and quicker. One 
way this has been achieved has been through “the automation of control of systems, 
consisting of hardware and a growing software part” [28]. One of the major impacts – 
though by no means a recent development - has been the use of version control. For 
some time, most software engineers have a single common code repository [29]. Ver-
sion control allows software engineers to easily track changes and who made the 
changes. It enables software engineers to have access to the most up to date version of 
the code repository. We suggest that this has led to software engineers being required 
to collaborate more, perhaps driven by the rise in the scale and complexity of software 
projects over time. With continuous software engineering [39], software engineers have 
had to change even more, now required to continually commit their code and run the 
risk of breaking other aspects of the greater build on a very frequent basis (this risk 
always existed, but was only occasionally manifested in traditional big bang ap-
proaches). Perhaps therefore, software engineers are now held more (immediately) re-
sponsible for the code they write. Related to this are the automated building and testing 
processes, which allow a software engineer to quickly identify if their code has affected 
any other parts of the project [30].  Due to this, software engineers may seek to produce 
better quality of code in the first instance. 

Our research has also highlighted the impact of DevOps on the role of the software 
engineer. According to Amazon, DevOps is “is the combination of cultural philoso-
phies, practices, and tools that increases an organization’s ability to deliver applications 
and services at high velocity: evolving and improving products at a faster pace than 
organizations using traditional software development and infrastructure management 
processes”. [30] With DevOps, there is a demand to harmonise development and oper-
ations environments, and so software engineers may need to collaborate more closely 
operations engineers to establish and sustain common environments. The general trend 
towards faster paces of feature deliver is represented in Figure 1. 

 



8 

 
Figure 1. Historical SE trends (integration and deployment frequency) 

 
A further major reason for change to the software engineer role relates to the emer-

gence of new technologies such as FaaS and Machine Learning (as previously noted). 
Software engineers may not have been trained in distributed systems development or 
in Machine Learning or AI. These emerging demands on the software engineer are not 
insignificant and represent a fundamental change to the day to day work that a software 
engineer might be required to undertake. 

4 Research Limitations 

This research was primarily conducted by a team of four final year undergraduate com-
puting degree students. This introduces a risk that the students were not equipped with 
the desirable levels of research expertise. To offset this risk, a number of steps were 
implemented. Firstly, the students were provided with a tutorial session on conducting 
literature reviews and undertaking academic research. Secondly, the students operated 
under the direction of their supervisor with whom they could avail of weekly research 
engagements over the 6 weeks of the assignment duration.  

Despite the time bounds imposed on the work (owing to the fact that it was con-
ducted as an undergraduate assignment), the methodology employed is nevertheless 
considered to be rigorous and repeatable. The search strings and databases employed 
are clearly identified (ref. Section 2). Furthermore, papers identified were systemati-
cally sorted using a combination of citation count, journal impact factor and perceived 
relevance to the topic. Using citation count and impact factor as discriminating criteria 
is also a limitation as it is not necessarily the case that high citation counts / impact 
factors guarantee better quality publications or higher relevance. However, when used 
in tandem with perceived relevance (as judged by the research team), a robust paper 
selection mechanism was designed and employed.  

A further limitation arises in the limits placed on the total number of papers to be 
examined for each of the search strings. During this research, a limit of the top forty 
results for each search string per database was applied. Additional relevant papers may 



9 

have been identified if a larger threshold had been applied, but having 40 papers per 
search string per database is considered sufficient to form a robust view of the topic. 
The further limitation to 30 sources for consideration in the ultimate core analysis effort 
also limits the scope of research but it does not diminish the research credibility and 
given the contents of this paper, we suggest that it has not inhibited the research from 
producing interesting and valuable findings. However, given the constraints applied, 
the work present herein - although academically robust - cannot be considered exhaus-
tive and no such claim is therefore made in this paper. Finally, the search strings them-
selves also necessarily limit the scope of the work. These were largely decided upon in 
consultation with the supervisor, were necessary to allow the research to advance to-
wards meaningful findings given other constraints, and are considered by the broader 
team to be areas of direct and important relevance to the overall research theme.   

5 Future Work / Directions for Future Research 

In the future we would like to expand the number of search strings used, as well as the 
limitations set during the research process. With more time, and experience, the core 
topic could be more deeply evaluated and further important perspectives would be iden-
tified. 

We would have liked to contrast the changes that have occurred inside the role of 
the software engineer with the changes that have occurred across similar professions. 
This could potentially have given a clearer picture as to why these changes happened. 
They may indicate if the root of their cause was associated with problems closely re-
lated to the software engineering role, or if they stemmed from a more ubiquitous source 
in the wider engineering industry. 

Due to the constantly changing and expanding role of a software engineer, and its 
necessity to adapt to the very latest technologies, it’s important to watch the current 
trends meticulously. In this respect, our research offers only limited coverage for re-
cently published papers on trending technologies. This made it difficult to draw any 
conclusions as to which trends will be sustained and consequently, in the future, we 
would like to revisit the current and emerging trends and analyse how they might influ-
ence the future of software engineering. Indeed, the examination and prediction of fu-
ture trends might itself be a substantively different research focus. 

We would also like to revisit our earlier research investigating personality types and 
role suitability in software engineering [31], this time in the context of the changes that 
we have identified in the role of software engineer.   

6 Conclusions 

Software development is a complex socio-technical activity [32], and in earlier work 
we have examined the complex interaction between a software development process 
and its situational context [33-35]. Part of the challenge of organising the software de-
velopment process involves deciding upon the specific roles involved in the process 
and the responsibilities of individuals fulfilling these roles. Therefore, just as the pro-
cess itself is subject to regular change [36-38], so too are the roles subject to change. 



10 

We have therefore examined the role of the software engineer and how this has changed 
over time, including how it might change into the future.   

In the early years of software development, the software engineer role may have 
been no bigger than one individual working in isolation to write small amounts of pro-
gram code to execute on dedicated hardware. However, as the volumes and importance 
of software increased over time, ever larger teams of software engineers were required 
to work together, meaning that communication and cooperation became more vital con-
siderations. This led to a refinement of methodologies such as the waterfall, and later 
agile, which directly affected the early evolution of the software engineering role. For 
a time and in certain settings, the software engineer may have been limited solely to 
writing program code for requirements presented to them and with their code quality 
being evaluated by a separate software testing function. However, at some point in the 
introduction of agile software development, there would appear to have been a shift 
towards more explicit programmer responsibility for their own code.  

Our research would suggest that at the present time, the role of a software engineer 
is widely varied and that perhaps it suffers from an absence of common agreement. A 
software engineer can now be defined as a developer, tester, maintenance analyst, re-
viewer and a designer [13]. One of the most significant changes seen at present is the 
rate at which software is shipped. Software is being continually shipped, instead of 
waiting for the project to be feature complete [14]. Automation of certain programming 
tasks and a shift to agile development and cloud based infrastructure have helped make 
this possible. With these changes, the architecture behind the development has also 
been reimagined, giving rise to Platform-as-a-Service and Function-as-a-Service offer-
ings. Artificial intelligence and machine learning advancements may also assist with 
the scalability and efficiency of these systems. However, these technologies are still in 
their early stages, and software engineers continue to examine how to use these tech-
nologies to their full potential. 

Our research indicates that the transition from traditional development approaches 
towards agile is one of the main reasons why the classical role of a software engineer 
is to some extent antiquated. Software engineers have now become more adaptive and 
have more responsibilities in the context of the broader project. One example of this is 
the growing expectation to undertake some level of code unit testing. Open source soft-
ware has also played a part in the changes over the last decade, creating a vast commu-
nity of collaborators and contributors to a wide range of projects, with many companies 
evaluating open source contributions for the purpose of recruitment as well as oppor-
tunity their own growth. 

The widespread introduction of automation, not least in version control and contin-
uous integration, has allowed greater collaboration among engineers, but also requires 
that engineers have a greater understanding and responsibility of the broader code base 
with which they are working. Automation of build processes has allowed engineers to 
spend less time worrying about compatibility and more time working on the problem 
at hand. Automation in testing at various levels from individual units, to integration to 
front end, as exemplified in DevOps has also resulted in a quicker development cycle 
[30]. 

New technologies are always emerging, such as artificial intelligence and machine 
learning, and software engineers are expected to continually keep up to date. This may 
entail - in some circumstances - learning about these new technologies outside of their 



11 

regular working hours. And while this situation might not be desirable, it is an exciting 
time to work as a software engineer, as some of these technologies have a lot of poten-
tial to change the way work is done on a day to day basis. Looking to the medium to 
long term, predicting the future role of a software engineer is not an easy task, princi-
pally because software development continues to exhibit strong levels of innovation. 
However, certain trends would appear set to be sustained into the future. Continuous 
software engineering techniques [40] will shrink the development cycle ever further. 
Perhaps in the longer term, AI itself will construct software systems (or parts of sys-
tems) through the assembly of components of known functionality and quality. Any 
such advancement might herald the demise of the software engineer, but we assert that 
there is some considerable distance to cover before any such future might emerge. 

Acknowledgement. This work was supported, in part, by Science Foundation Ireland 
grant 13/RC/2094 to Lero - the Irish Software Research Centre (www.lero.ie). 

References 

1. IEEE.: IEEE Standard Glossary of Software Engineering Terminology. pp. 70–70, (1990) 
2. Fenton, N., Pfleeger, S.,  Glass, R. Science and substance: A challenge to software engineers. 

IEEE Software,11(4), 86-95 (1994). 
3. Glass, R., Collard, R., Bertolino, A., Bach, J., & Kaner, C.: Software testing and industry 

needs. IEEE Software,23(4), 55-57 (2006). 
4. Kling R. Computerization and controversy: value conflicts and social choices. Academic 

Press, San Diego (2011). 
5. Basili V, Musa J.: The future generation of software: a management perspective. Computer 

24:90–96. doi: 10.1109/2.84903. (1991). 
6. Clarke, P., O'Connor, R.V., Yilmaz, M.: In Search of the Origins and Enduring Impact of 

Agile Software Development. ACM proceedings of the International Conference of Software 
and System Processes (ICSSP 2018), Gothenburg, Sweden. 26-27 May 2018. pp.142-146. 

7. Leveson N, Turner C.: An investigation of the Therac-25 accidents. Computer 26:18–41. doi: 
10.1109/mc.1993.274940 (1993). 

8. Rooksby, J., Rouncefield, M., & Sommerville, I.: Testing in the Wild: The Social and Or-
ganisational Dimensions of Real World Practice. Computer Supported Cooperative Work 
(CSCW),18(5-6), 559-580 (2009). 

9. Orsted M.: Software Development Engineer in Microsoft. In: Proceedings of the 2000 Inter-
national Conference on Software Engineering, 2000. IEEE / Institute of Electrical and Elec-
tronics Engineers Incorporated, pp 539–540. Limerick (2000). 

10. Bird, C., Nagappan, N., Murphy, B., Gall, H., & Devanbu, P.: Dont touch my code! Proceed-
ings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Founda-
tions of Software Engineering - SIGSOFT/FSE 11. doi:10.1145/2025113.2025119 (2011). 

11. Ebert, C.: Open Source Software in Industry. IEEE Software, vol. 25, no. 3, pp. 52–53., 
doi:10.1109/ms.2008.67 (2008). 

12. Orsted, M.: Software Development Engineer in Microsoft. A Subjective View of Soft Skills 
Required. 6 Aug., doi:10.1145/337180.337445 (2002).  

13. McColgan, C.: Business Savvy Developers to Be in High Demand in 2017. Recruitment-
buzz.co.uk, 4 Jan. 2017, recruitmentbuzz.co.uk/business-savvy-developers-high-demand-
2017/. 

14. Roumeliotis, R.: Software Engineers Must Continuously Learn and Integrate. O'Reilly, 
www.oreilly.com/ideas/software-engineer-developer-coding-architecture-mobile-open-
source. 



12 

15. Carrillo De Gea, J. M., Nicolás, J., Fernández-Alemán, J. L., & Toval, A.: Automated support 
for reuse-based requirements engineering in global software engineering. Journal of Soft-
ware: Evolution and Process,29(8). doi:10.1002/smr.1873 (2002). 

16. Visser, J.: 5 Automation Trends in Software Development, Quantified. O'Reilly, 
www.oreilly.com/ideas/5-automation-trends-in-software-development-quantified. 

17. Continuous Integration Essentials. Https://Codeship.com, codeship.com/continuous-integra-
tion-essentials. 

18. Atlassian. (n.d.). What is version control | Atlassian Git Tutorial. Retrieved from 
http://www.atlassian.com/git/tutorials/what-is-version-control.  

19. Rizvi, B., Bagheri, E., & Gasevic, D.: A systematic review of distributed Agile software 
engineering. Journal of Software: Evolution and Process,27(10), 723-762. 
doi:10.1002/smr.1718 (2015). 

20. Ghosh, P.: Serverless Computing and Serverless Architecture: An Overview of BaaS, FaaS, 
and PaaS. www.dataversity.net, 17 Jan. 2018, www.dataversity.net/serverless-computing-
serverless-architecture-overview/#. 

21. Beyer, B., Murphy, N. R., Rensin, D. K., Kawahara, K., & Thorne, S.: The site reliability 
workbook: Practical ways to implement SRE. Sebastopol, CA: OReilly Media (2018). 

22. Zhang, Du, and J.J.P Tsai.: Machine Learning and Software Engineering. IEEE, 
doi:10.1109/TAI.2002.1180784 (2002). 

23. Palmquist, S., Lapham, M. A., Garcia-Miller, S., Chick, T. A., Ozkaya, I.: Parallel Worlds: 
Agile and Waterfall Differences and Similarities. Software Engineering Institute, Oct. 2013, 
pp. 1–15. 

24. Lapham, M. A., Bandor, M., & Wrubel, E.: Agile Methods and Request for Change (RFC): 
Observations from DoD Acquisition Programs. doi:10.21236/ada609878 (2014). 

25. Hoda, R., Noble, J., & Marshall, S.: Self-Organizing Roles on Agile Software Development 
Teams. IEEE Transactions on Software Engineering,39(3), 422-444. 
doi:10.1109/tse.2012.30 (2013). 

26. Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly, vol. 30, no. 3, 
p. 587., doi:10.2307/25148740. (2006). 

27. Bradford, L.: How Open-Source Development Is Democratizing The Tech Industry. Forbes, 
Forbes Magazine, 27 Mar. 2018, www.forbes.com/sites/laurencebradford/2018/03/26/how-
open-source-development-is-democratizing-the-tech-industry/#f3ce1fd3bb6a. 

28. Vogel-Heuser, B., Diedrich, C., Fay, A., Jeschke, S., Kowalewski, S., Wollschlaeger, M., & 
Göhner, P.: Challenges for Software Engineering in Automation. Journal of Software Engi-
neering and Applications,07(05), 440-451 (2014). 

29. Łukiański, M.: Why Do We Automate Software Development? . Droptica Blog, Droptica, 24 
Jan. 2019, www.droptica.com/blog/why-do-we-automate-software-development/. 

30. What Is DevOps? - Amazon Web Services (AWS).  Amazon, Amazon, aws.ama-
zon.com/devops/what-is-devops/.  

31. Yilmaz, M., O'Connor, R.V., Clarke, P.: An exploration of individual personality types in 
software development. In: proceedings of the 21st European Conference on Systems, Soft-
ware and Services Process Improvement (EuroSPI 2014), 25-27 June 2014, Luxembourg 
(2014). 

32. Clarke, P., O'Connor, R.V., Leavy, B.: A Complexity Theory viewpoint on the Software De-
velopment Process and Situational Context. In: proceedings of the International Conference 
on Software and Systems Process (ICSSP), Co-Located with the International Conference on 
Software Engineering (ICSE), pp. 86-90, DOI:10.1145/2904354.2904369 (2016). 

33. Clarke, P., O'Connor, R.V.: The situational factors that affect the software development pro-
cess: Towards a comprehensive reference framework, Information and Software Technology, 
Vol. 54(5), May 2012, pp.433-447. 

34. Giray, G., Yilmaz, M., O'Connor, R.V., Clarke, P.: The Impact of Situational Context on 
Software Process: A Case Study of a Small-sized Company in the Online Advertising 



13 

Domain. Accepted for publication in the proceedings of the 25th European and Asian Con-
ference on Systems, Software and Services Process Improvement (EuroSPI 2018). 

35. Marks, G., O'Connor, R.V., Clarke, P.: The impact of situational context on the software 
development process - A case study of a highly innovative start-up organization. In: Proceed-
ings of the 17th International SPICE Conference (SPICE 2017), pp.455-466; 4-5 October 
2017, Palma de Mallorca, Spain. 

36. Clarke, P., O'Connor, R.V., Leavy, B., Yilmaz, M.: Exploring the Relationship between Soft-
ware Process Adaptive Capability and Organisational Performance. IEEE Transactions on 
Software Engineering, 41(12), pp.1169-1183, doi: 10.1109/TSE.2015.2467388 (2015) 

37. Clarke, P., O'Connor, R.V.: Changing situational contexts present a constant challenge to 
software developers. In: Proceedings of the 22nd European and Asian Conference on Sys-
tems, Software and Services Process Improvement (EuroSPI 2015), CCIS (Vol. 543), pp. 
100-111, 30 September - 02 October 2015, Ankara, Turkey. (2015) 

38. Clarke, P., O'Connor, R.V., Solan, D., Elger, P., Yilmaz, M., Ennis, A., Gerrity, M., McGrath, 
S., Treanor, R.: Exploring Software Process Variation Arising from Differences in Situa-
tional Context. In: Proceedings of the 24th European and Asian Conference on Systems, 
Software and Services Process Improvement (EuroSPI 2017), pp.29-42, 5-8 September 2017, 
Ostrava, Czech Republic. 

39. Clarke, P., Elger, P., O'Connor, R.V.: Technology-Enabled Continuous Software Develop-
ment. In: Proceedings of the International Conference on Software Engineering (ICSE) 
Workshop on Continuous Software Evolution and Delivery (CSED) (2016) 

40. O'Connor, R.V., Elger, P., Clarke, P.: Continuous Software Engineering - A Microservices 
Architecture Perspective. Journal of Software: Evolution and Process, 29(11), 2017, pp.1-12. 
 


