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ABSTRACT
This work tackles the Pixel Privacy task put forth byMediaEval 2019.
Our goal is to decrease the accuracy of a classification algorithm
while preserving the original image quality. We use the fast gradient
sign method, which normally has a corrupting influence on image
appeal, and devise two methods to minimize the damage. The first
approach uses a map that is a combination of salient and flat areas.
Perturbations are more noticeable in these locations, and so are
directed away from them. The second approach adds the gradient of
an aesthetic algorithm to the gradient of the attacking algorithm to
guide the perturbations towards a direction that preserves appeal.
We make our code available at: https://git.io/JesXr.

1 INTRODUCTION
The Pixel Privacy task, introduced by MediaEval [11], aims at de-
veloping methods for manipulating images in a way that fools
automatic scene classifiers. As an added constraint, the images
should not exhibit a decrease in aesthetic quality; it is even encour-
aged that their appeal increases. The organizers made available the
Places365-Standard data set [10] along with a pre-trained scene
threat model following the ResNet [3] for the task. In this work,
the classification model will be referred to as “threat model.”

The contribution of image enhancement techniques in privacy
protection has been previously explored [1], showing that even
popular filters used in social media have a cloaking effect against
geo-location algorithms. A more recent work by Liu et al. [6] pro-
posed a perturbation-based approach (white-box) and a transfer
style approach (black-box). Similar to the first module in that work,
we propose two perturbation-based approaches and explore ways to
localize the perturbations in a manner that does not reduce appeal.

2 APPROACH
We developed two approaches, both of which utilize the FGSM
adversarial attack [2]. This method uses the gradient of the threat
model and changes the pixel values by nudging them towards the di-
rection that maximizes the loss. The magnitude of this perturbation
is represented by the value ϵ , which is essentially the strength of
the attack. Note that we used the threat model’s gradients, making
this a white-box setting.

To mitigate the corrupting effect the FGSM attack has on the
image, our first approach uses a combination of saliency maps
and Sobel filters. The goal is to localize the perturbations in areas
that are less obvious to observers. Our second approach constrains
the attack towards a direction that is more aesthetically pleasing,
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(a) Original Image (b) Sobel Map

(c) Reverse Saliency Map (d) Final Map

Figure 1: Maps used to constrain perturbations on less obvious ar-
eas. The reverse saliencymap alongwith the Sobelmap produce the
final map.

by using also the gradient of the aesthetics assessment algorithm
(NIMA).

2.1 Salient Defence
We combine two maps: one is a measure of saliency and the other a
measure of flatness. Salient areas are the ones that are more likely
to attract the eye of an observer. We use a deep neural network that
predicts saliency from images to detect these areas. In particular, we
use a SalBCE [5] trained on the SALICON dataset [4]. Furthermore,
perturbations become more obvious when they are located in flat
areas. For this reason, we also used a Sobel filter [8], which detects
areas where edges are more prevalent and Gaussian blurring ( σ=10)
to spread the detected edges, forming a map. The saliency map is
reversed so that the pixels corresponding to salient areas are zeroed
out. Then, pixels where the mean value is below average on the
Sobel map (hence more likely to be a flat area) are also zeroed out.
The resulting map is then multiplied by ϵ as well as the gradient of
the network and added to the original image, completing the attack.
Figure 1 illustrates an example of map generation.

Additionally, we used a popular filter for image manipulation,
namely tilt-shift to inspect how it affects the efficacy of our ap-
proach. Tilt-shift essentially blurs parts of the background while
intensifying foreground. In our case we used the saliency maps as
an estimate of the foreground to be intensified, blurring the rest.
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Figure 2: Threat model accuracy under differing values of ϵ .

2.2 Coupled Optimization
The second approach exploits the gradients of both the threat model
and the aesthetics evaluation algorithm. The aesthetics evaluation
in our case is the NIMA algorithm [9]. Since the networks differ
significantly, the gradients need to be normalized to unit length in
order to be brought to the same scale. Afterwards, NIMA’s gradient
is subtracted from ResNet’s and as a result we get the sign of the
total gradient and multiply that by ϵ .

3 RESULTS AND ANALYSIS
In our initial experiments, we used a variety of ϵ values to investi-
gate how it affects the accuracy of the threat model (Figure 2). Com-
pared with the default FGSM attack, our approach is constrained
on non-flat, non-salient areas, which naturally reduces the strength
of the algorithm as less pixels are perturbed. We also note that
additional manipulations on the image (tilt-shift filter in this case)
further reduce the efficacy of those perturbations. The coupled op-
timization approach, on the other hand, has a higher impact on the
accuracy of the threat model, as it manipulates all the pixels of the
image. Note that we obtained these results using the original full
size of each image from Places365.

On the other hand, images evaluated by the MediaEval team
(Table 1) were first downsampled to 256 × 256 and the algorithms
were applied afterwards. Note that this set includes only images that
ResNet predicts successfully, therefore the initial accuracy (ϵ = 0)
is 100%. In that case it seems that the tilt-shift effect actually adds
to the efficacy of the perturbations, bringing the accuracy of the
threat model down.

To test NIMA’s sensitivity to perturbations, we attempted a
vanilla FGSM attack with a very high ϵ = 0.15 on a small sub-
set (100) of the validation images. This type of attack effectively
ruins the visual appeal; however, the NIMA score drops by only

(a) Vanilla FGSM epsilon=0.05 (b) Salient Defence epsilon=0.05

(c) S. D. & tshift epsilon=0.01 (d) Coupled Opt. epsilon=0.05

Figure 3: The most promising configurations contrasted with the
original FGSM.

Methods ϵ Top-1 Acc.↓ NIMA Score↑

S. Defence 0.01 0.937 4.63
0.05 0.735 4.58

S. Defence & tilt-shift 0.01 0.868 4.75

C. Optimization 0.01 0.917 4.63
0.05 0.458 4.54

Original Test Set - 1.0 4.64

Table 1: Results on MediaEval test set. Top-1 accuracy refers to the
the prediction accuracy of the threat model (ResNet50 trained on
Places365-standard data set). TheNIMAScore column represents the
average of the aesthetics scores.

a small amount (from 4.26 to 3.98). This indicates that NIMA has
low-sensitivity to adversarial perturbations. NIMA was trained
on AVA [7], a dataset collected by photographers. The model is,
therefore, sensitive high-level concepts of aesthetic appeal, such as
the rule of thirds, but has not been trained to be sensitive to the
low-level corrupting influence of perturbations.

4 DISCUSSION AND OUTLOOK
Our qualitative analysis showed that these perturbations, even
when hidden, become more obvious on a high-resolution image.
This stems from a rather obvious shortcoming of our salient defence
algorithm: that saliency is subject to change after manipulations
to the image. We believe that future effort should be targeted to-
wards reducing the saliency of these perturbations. Furthermore,
our coupled optimization approach effectively fools NIMA without
truly preserving appeal. We believe that aesthetic algorithms that
take into consideration low-level cues such as perturbations could
improve the efficacy of this approach.
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