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Introduction

 Maize (Zea mays L.) is the most important grain 
crop in the world and is produced nationwide 
in various environments. Maize ranks first in the 
global grain production (https://www.statista.com/
statistics/263977/world-grain-production-by-type/ 
accessed 30.11.2018). Successful maize production 
depends on the correct application of production inputs 
that will sustain the environment as well as agricultural 
production (Boote et al., 1996; Eriksson et al., 2005; 
Bocianowski et al., 2016). These inputs include adapted 
cultivars, plant population, soil tillage, fertilization, 
insect and disease control, harvesting (Pandey et 
al., 2000; Costa et al., 2002; Szulc and Bocianowski, 
2011; Szulc et al., 2011, 2013, 2018; Bocianowski et 
al., 2019b). Maize is one of the most economically 
important cultivated plants in the world and is the 
main energy source for animal feed. Yield of maize is 
determined by the genotype and environmental effects 
as well as by genotype-environment (GE) interaction 
(Bocianowski et al., 2018; Branković-Radojčić et al., 
2018; Das et al., 2019).

Analysis of GE interaction becomes indispensable 
for breeders and varietal experimentation. Each 
cultivar reacts specifically to changing climatic and soil 
conditions; some of them exhibit high GE interaction, 
while in others it is low. Quantitative and qualitative 
interactions may occur between cultivars and the 
environment (Dia et al. 2016; Larkan et al., 2016; Parent 
et al., 2017). Qualitative interaction occurs when the 
yield curves intersect and the order of cultivars in the 
yield ranking changes. Differences between cultivars 
increase significantly with quantitative interaction, but 
curves do not intersect. An assessment of the stability 
of cultivars’ yield provides valuable information about 
their behavior in specific environments (Bernardo Júnior 
et al., 2018). This information is the basic criterion for 
micro- and macro-regionalization of cultivars.

One of the primary objectives in maize breeding 
has always been to increase seed yield as a way of 
maximizing yield. Better knowledge of the genetic 
determinism of seed yield can help breeders to 
control the genetic advance for the crop. Seed yield 
is a very complex quantitative trait, whose expression 
is the result of the genotype, environment as well as 
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Abstract

The objective of this study was to assess genotype by environment interaction for seed yield in maize hybrids and 
lines growing in Western Poland using the additive main effects and multiplicative interaction model (AMMI). The 
study comprised 32 maize genotypes (13 F1 hybrids and their 19 parental lines), evaluated in four environments 
(two locations in two years). Seed yield ranged from 2.50 t/ha (S311 in Łagiewniki 2013) to 18.31 t/ha (Popis in 
Łagiewniki 2014), with an average of 8.41 t/ha. The Popis hybrid had the highest average seed yield (15.53 t/ha), 
and the S56125A line had the lowest (3.65 t/ha). The average seed yield per environments also varied from 6.60 
t/ha in Łagiewniki 2013, to 9.95 t/ha in Smolice 2013. AMMI analyses revealed significant genotype (G) and envi-
ronmental (E) effects as well as GE interaction effect with respect to seed yield. The analysis of variance explained 
14.59% of the total seed yield variation by environment, 77.41% by differences between genotypes, 6.50% by GE 
interaction, and 1.50% by error. The Blask, Brda and Bejm hybrids are recommended for further inclusion in the 
breeding program because of their stability and high averages of seed yields.
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GE interaction. The complexity of seed yield is the 
result of different genotype reactions to changing 
environmental conditions during plant development. 
GE interaction is often analyzed by the additive main 
effects and multiplicative interaction (AMMI) model 
(Zobel et al., 1988; Bocianowski et al., 2019c). The 
AMMI model combines the analysis of variance for 
the genotype and environment main effects and the 
principal component analysis (PCA) with multiplicative 
parameters in a single analysis (Zobel et al., 1988).

The objective of this study was to assess genotype by 
environment interaction for seed yield in maize (Zea 
mays L.) hybrids and lines grown in Western Poland 
using the AMMI model.

Materials and Methods 

Plant material

As plant material, 32 maize (Zea mays L.) genotypes 
(19 inbred lines and their 13 F1 hybrids) were used from 
the maize collections belonging to the Plant Breeding 
Smolice and the Plant Breeding and Acclimatization 
Institute (PBAI) – National Research Institute (NRI) 
Group. 

Field trials

Two-year (2012, 2013) field experiment with inbred lines 
and hybrids was established on 10-m2 experimental 
plots in a set of complete random block design in 
three replicates in two Polish breeding stations in Plant 
Breeding Smolice the PBAI – NRI Group: in Smolice 
(51°42’20.813’’N, 17°9’57.405’’E) and Łagiewniki 
(50°47’27’’N, 16°50’40’’E). Point sowing was used and 
each plot consisted of three rows. The row spacing was 
70 cm and the distance between plants in a row was 
18 cm; 278 plants were sown in the row; 83,400 seeds 
were sown per 1 ha. The yield of plants from the plot 
was calculated based on the yield of plants from ha in 
tonnes. Measurements of seed yield were performed 
on 20 randomly selected cobs from three replicates of 
each genotype. 

Statistical analyses

A two-way fixed effect model was fitted to determine 
the magnitude of the main variation effects and their 
interactions on seed yield. Least-squares means were 
simultaneously generated for the AMMI model. The 
model first fits additive effects for the main effects of 
genotypes and environments followed by multiplicative 
effects for GE interaction using principal component 
analysis. The AMMI model (Gauch and Zobel, 1990; 
Nowosad et al., 2016) is presented as the following 
formula: 

 

 
where yge is the mean of seed yield for genotype g in 

the environment e, μ– grand mean, αg – genotypic mean 
deviations, βe – environmental mean deviations, N – 
number of PCA axis retained in the adjusted model, 
λn – eigenvalue of the PCA axis n, γgn – genotype score 
for PCA axis n, δen – score eigenvector for PCA axis 
n, Qge – residual, including AMMI noise and pooled 
experimental error. Expected distribution of Qge is 
normal. The AMMI stability value (ASV) was used to 
compare the stability of the genotypes as described by 
Purchase et al. (2000):

 where SS – sum of squares, IPCA1 and IPCA2 – first 
and second interaction principal component axes, 
respectively. Genotype selection index (GSI), which 
incorporates both the ASV index and mean seed yield 
in single criteria (GSIi) was calculated for each genotype 
(Farshadfar and Sutka, 2003):

GSIi=RYi+RASVi,

where GSIi is genotype selection index for i-th genotype, 
RYi is the rank of mean seed yield for the i-th genotype, 
RASVi is the rank for the AMMI stability value of the i-th 
genotype. All the analyses were conducted using the 
GenStat v. 18 statistical software package.

Results

 In the analysis of variance, the sum of squares for 
genotype main effects represented 77.41% of the total 
variation, and this factor had the highest effect on seed 
yield. Differences between environments explained 
14.59% of the total seed yield variation, while the 

 

1

ge

N

n
engnnegge Qy ����������� �

�

 
� � � � ,22

2

1

2

1 IPCAIPCA
SS
SSASV
IPCA

IPCA ��
�

�
�
�

�
�

Source of 
variation

d.f.
Sum of 
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F-statistic
Variability 
explained 

(%)

Genotypes 31 4430 142.91 442.56*** 77.41

Environments 3 835 278.18 382.84*** 14.59

Interactions 93 372 4.00 12.38*** 6.50

 IPCA1 33 269 8.16 25.26*** 72.39

 IPCA2 31 87 2.80 8.68*** 23.35

 Residuals 29 16 0.55 1.69*

Error 248 80 0.32

* P<0.05; *** P<0.001; d.f. – number of degrees of freedom

Table 1 - Analysis of variance of main effects and interactions for 
seed yield of maize (Zea mays L.) genotypes 
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effects of GE interaction explained 6.50% (Table 1). 
Seed yield of the tested genotypes varied from 2.50 
t/ha (S311 in Łagiewniki 2013) to 18.31 t/ha (Popis in 
Łagiewniki 2014) in all four locations, with an average 
of 8.41 t/ha (Table 2). The Popis hybrid had the highest 
average seed yield (15.53 t/ha), and the S56125A line 
had the lowest (3.65 t/ha). The average seed yield per 
environment also varied from 6.60 t/ha in Łagiewniki 
2013 to 9.95 t/ha in Smolice 2013. The values for the 
two principal components were also highly significant 
(P<0.001). The two principal components of GE 
interaction accounted jointly for 95.74% of the total 
effect it had on seed yield variation. The first principal 
component (IPCA1) accounted for 72.39% of the 
variation caused by interaction, while IPCA2 accounted 
for 23.35% (Fig. 1, Table 1).

The AMMI1 biplot (Figure 1) shows the stability of 
genotypes and environments as well as specific GE 
interactions. Among the tested genotypes, the Popis 
hybrid had the highest IPCA1 value of 0.989, while 
the lowest IPCA1 value of -1.952 was recorded for the 
M Wilga hybrid (Figure 1, Table 2). Among the tested 
environments, the lowest IPCA1 value was observed in 
Smolice 2013 (-2.511), while the highest IPCA1 value 
was 1.354 in Smolice 2014 (Figure 1). Genotype stability 

is considered as a consistent reaction to changing 
environmental conditions, weather conditions, 
agronomic factors, biotic and abiotic stresses. The 
stability of the tested genotypes can be evaluated 
using the biplot for seed yield (Figure 2). ASV 
revealed variations in seed yield stability among the 32 
genotypes (Table 2). A variety with ASV value close 
to zero is defined as stable. Consequently, S80660A 
(ASV=0.051), S41336 (0.188), Brda (0.290) and Blask 
(0.388) genotypes were the most stable, while M Wilga 
(6.131), Popis (3.066), S64423-2 (2.985) and Co255 
(2.677) genotypes were the least stable ones (Table 
2). Genotypes at the highest point in certain sections 
of the graph have the best results in environments 
located in the same section (Figure 2). The M Wilga 
hybrid showed a specific adaptation to the conditions 
in E1 – Smolice 2013 (Figures 1 and 2). The S64423-
2 line interacted positively with 2014 – both locations. 
The S64423-2 and S68911 lines, with an average seed 
yield of 8.80 t/ha and 7.96 t/ha, respectively, close to 
the general mean of 4.41 t/ha, are distinguished on 
the biplot. The group of hybrids: Popis, Kozak, Budrys, 
Smok, Bejm, Narew and Blask had the highest averages 
of seed yield, but with different adaptations (Figures 1 
and 2). These hybrids showed a specific adaptation to 
the conditions in 2014 (Smolice and Łagiewniki). The 

Fig. 1 -Biplot for genotype by environment interaction of maize (Zea mays L.) hybrids and inbred lines in four environments, showing 
the effects of primary and secondary components, respectively (E1 – Smolice 2013, E2 – Łagiewniki 2013, E3 – Smolice 2014, E4 – 
Łagiewniki 2014)
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Blask, Brda and Bejm hybrids had the best genotype 
selection index of 11, 13 and 14, respectively (Table 2).

Discussion

GE interaction is very important in the analysis of the 
results of a series of varietal experiments in terms of 
assessing the stability and adaptability of genotypes 
(Freeman, 1985). This is a phenomenon in which 
phenotypic plant reactions to environmental changes 
vary for different genotypes. The observed differences 
between genotypes depend on the environment in 
which they are compared. It is important to identify 
genotypes that are very efficient. This means that 
they are productive and stable genotypes, i.e. those 
whose yielding is proportional to the efficiency of 
environmental conditions. Analyses of GE interaction 
may prove valuable in recommending a change of 
agricultural practice, i.e. its regionalization.

Acosta-Pech et al. (2017) developed a new 
genomic statistical model. When selecting parental 
components for interbreeding, their general and 
specific combinatorial abilities should be considered. 

The proposed model assumes the inclusion of GE 
interaction when creating a hybrid formula. This model 
is universal and can be used for different parental 
lines in any species. The latter authors evaluated the 
predictive power of two HP prediction models using a 
cross-validation approach on the extensive maize hybrid 
data. The experiment was conducted for 12 years in 58 
environments. The experiment included 2724 hybrids, 
which were created by crossing 507 dent lines and 24 
flint lines. Three traits were evaluated, and the analyses 
were performed for each year. In most, genomic models 
that included the interaction of general and specific 
combinatorial ability with environments showed a 
higher predictive ability compared to genomic models 
without interaction with environments (ranging from 12 
to 22%, depending on the trait). The authors concluded 
that GE interaction increased the accuracy of genomic 
models in predicting untested maize hybrids.

Weber and Gołębiowska (2009) analyzed in 2003-2005 
the variability of the yield of five maize varieties in 
relation to the method of weed control, locality and 
year of research. The yielding of maize hybrids was 

Table 2 - Average seed yield (t/ha) for genotypes and environments, principal component analysis values of tested maize (Zea mays L.) 
hybrids and lines, AMMI stability value (ASV) and genotype selection index (GSI) 

2013 2014

Genotype Smolice Łagiewniki Smolice Łagiewniki Mean IPCA1 IPCA2 ASV GSI

E1 E2 E3 E4

S160 3.39 3.67 5.57 5.40 4.51 -0.119 0.479 0.604 38
S41336 4.24 3.55 6.96 6.11 5.21 -0.059 0.046 0.188 30
S78510 6.57 6.27 7.96 7.26 7.02 -0.392 0.505 1.316 38
S54555 5.48 5.61 8.32 8.67 7.02 0.119 0.219 0.429 22
S245 4.92 5.91 7.35 7.31 6.37 -0.036 0.669 0.678 30
S311 5.48 2.50 6.58 6.45 5.25 -0.401 -0.467 1.328 48
S64417 3.67 3.44 7.22 7.56 5.47 0.306 -0.088 0.953 40
S41796 3.78 3.59 8.88 8.29 6.13 0.602 -0.374 1.903 49
S41789 3.45 3.41 6.74 6.82 5.11 0.206 0.069 0.641 39
S56125A 3.45 2.60 3.81 4.74 3.65 -0.467 0.412 1.505 56
S63322-3 5.12 5.35 6.55 6.70 5.93 -0.279 0.617 1.063 41
S64423-2 5.65 6.00 11.90 11.64 8.80 0.950 -0.484 2.985 42
S68911 5.55 6.90 9.62 9.78 7.96 0.421 0.385 1.361 35
S336A 3.47 3.29 4.95 5.49 4.30 -0.218 0.422 0.796 45
S41324A-2 4.62 4.17 6.23 6.61 5.41 -0.202 0.302 0.696 38
S80660A 4.70 4.09 7.45 7.13 5.84 0.015 0.024 0.051 25
S79757 7.20 6.07 8.35 8.36 7.49 -0.369 0.195 1.16 35
Co255 7.20 3.70 6.31 6.71 5.98 -0.861 -0.216 2.677 51
S61328 6.99 5.72 9.22 8.74 7.67 -0.145 -0.079 0.455 20
M Prosny 9.39 8.06 14.08 11.54 10.77 0.256 -0.530 0.954 27
O Glejt 6.40 5.07 6.82 6.62 6.23 -0.589 0.315 1.854 46
Budrys 11.09 11.22 16.12 15.69 13.53 0.606 -0.251 1.896 30
Popis 12.00 13.56 18.25 18.31 15.53 0.989 -0.063 3.066 32
M Glejt 10.22 9.53 13.30 13.93 11.75 0.218 -0.166 0.697 21
M Wilga 12.00 3.75 7.24 7.11 7.53 -1.952 -0.981 6.131 47
Narew 12.38 9.55 15.58 15.30 13.20 0.137 -0.912 1.005 23
Blask 11.33 11.60 14.12 13.36 12.61 -0.029 0.377 0.388 11
Grom 10.09 10.03 13.19 13.18 11.62 0.145 0.117 0.465 16
Brda 10.06 9.80 12.67 12.03 11.14 -0.063 0.213 0.29 13
Kozak 11.43 11.39 16.06 15.43 13.58 0.476 -0.200 1.488 25
Bejm 12.08 10.44 15.15 15.16 13.21 0.140 -0.466 0.636 14
Smok 10.87 11.43 15.93 15.38 13.40 0.597 -0.091 1.852 29
Mean 7.32 6.60 9.95 9.78 8.41
IPCAe1 -2.511 0.001 1.354 1.156
IPCAe2 -0.675 1.993 -0.862 -0.457
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compared under chemical protection conditions and 
mechanical weed destruction. It was shown that the 
yield of the analyzed varieties was highly dependent 
on the size and distribution of precipitation as well 
as the forecrop in individual towns and years of 
research. According to these authors, the high value 
of GE interaction has indicated that studies on the 
effectiveness of individual active substances should 
be an indispensable element in the registration of new 
maize hybrids.

Cygiert et al. (2003) assessed the impact of 
environmental conditions on yield stability of 10 maize 
hybrids. The experiment was established in 1999-2000 
in various locations. The authors found the interaction 
of hybrids with locations, however, no interactions 
of hybrids with years. The highest performance 
was recorded for Electra, and the interaction with 
locations was demonstrated only in its case. Electra is 
a hybrid recommended for cultivation in less favorable 
conditions. For five hybrids: SMH 1177-9910, KOC 9939, 
KOC 9943, KOCKOSZ 99301 and KOCSWS 971104 no 
interaction with years, locations and environments was 
found; the aforementioned hybrids belong to the most 
stable ones recommended for cultivation in the whole 
Poland.

Bisawas et al. (2014) investigated the yielding of 
inbred maize lines under conditions of salinity stress. 
The research was conducted in many environments 
with different soil salinity. The aim of the analyses 
was to assess the stability of maize yielding in various 
cultivation conditions. From CYMITTY in India, 13 
inbred lines were obtained that were previously 
tested and evaluated for their phenotypic traits. The 
lines were evaluated in salinity conditions and normal 
environment. The average for the environment and 
genotype mean ranged from 10.3 to 49.7 g and from 
10.9 to 52.8 g, respectively. The values of regression 
coefficients of these genotypes ranged from 0.44 
to 1.66. Genotypes P43, CZ29 and CZ33 reached 
higher grain yields and were very sensitive at different 
levels of salinity. On the other hand, considering the 
phenotypic index, regression coefficient, deviation 
from regression and AMMI biplot analysis, genotypes 
E32, P29 and P35 were characterized by almost stable 
performance under different salinity conditions. On 
the basis of phenotypic index, regression coefficient 
and deviation from regression, it is evident that all 
genotypes showed different adaptability responses 
under varied conditions, and genotypes E32, P29 and 
P35 exhibited almost constant stability under various 
salinity conditions. According to the authors, a similar 

Fig. 2 -Biplot for the principal component of interaction (IPCA1) and average maize (Zea mays L.) seed yield (t/ha). Vertical line in the 
center of the biplot is the general grand mean.
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trend in the stability of the three previous genotypes 
was obtained in the AMMI biplot analysis, which 
could be used in a breeding program to obtain a more 
efficient maize variety tolerant to salinity.

Li et al. (2018) showed that the heterosis effect value 
in hybrid forms depended on the analyzed trait and 
the environment in which they were located. It was 
found that the value of the heterosis effect was not 
constant for a given hybrid, but varied depending 
on environmental conditions. Several studies have 
documented the benefits of using genomic multi-
environmental models for assessing the performance 
of genotypes across different environmental conditions 
(Burgueño et al., 2012; Dawson et al., 2013; Jarquín 
et al., 2014). Analyses of multi-environment trials can 
include GE interactions using genomic covariance 
functions (Burgueño et al., 2012).

The AMMI model is frequently utilized in the studies 
on various species (Abakemal et al., 2016; Edwards, 
2016; Nowosad et al., 2017; Bocianowski et al., 2018). 
Genotypes best suited to precise environmental 
conditions can be detected based on AMMI analysis 
which permits estimation of the genotype interaction 
effect in each environment (Nowosad et al., 2018; 
Bocianowski et al., 2019a). Significant GE interaction of 
seed yield was demonstrated using the AMMI analysis. 
High genotype stability was related to the AMMI 
stability value. Determination of the main effect of the 
genotype, environment, and the most meaningful GE 
interactions could be assessed based on the AMMI 
results displayed on the GE biplot. AMMI models 
are able to measure the weight of environments, 
genotypes and their interactions using a value that 
measures genotype stability in all environments, taking 
into account seed yield.
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