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Abstract 1 

Portable air cleaners are commonly used to reduce indoor air particles in China, but few studies 2 

have evaluated the treatment efficiency under real living conditions. We aimed to evaluate the 3 

efficiency of a portable air cleaner in common residences under normal living conditions. A 4 

single-blind cross-over field study was conducted in 20 urban residences in Chongqing, China. 5 

In each residence, one portable air cleaner was operated without a high-efficiency particulate 6 

air (HEPA) filter (sham filtration) for the first 48 h and with a HEPA filter (true filtration) for 7 

the next 48 h in the living room. Concentrations of PM1.0, PM2.5, respirable suspended 8 

particulate matter (RESP), PM10, and total suspended particulate matter (TSP) were measured 9 

simultaneously in indoor and ambient outdoor air. Compared to sham filtration, the average 10 

concentrations of indoor air particles were significantly lower when true filtration was used 11 

according to paired-sample t-tests (all p-values <0.05). However, indoor concentrations of 12 

PM2.5 in 16 (80%) residences were still higher than the World Health Organization’s (WHO) 13 

air quality guideline during true filtration. The removal efficiencies of the portable air cleaners 14 

with HEPA filters for these particles were about 40%. The removal efficiencies for PM1.0, PM2.5, 15 

and RESP had significant associations with the room volume, but not with the residence district, 16 

season, age of the building, floor level of the apartment, or ambient weather. Our results 17 

indicate that a portable air cleaner is effective in improving household air quality, but is not 18 

enough to ensure the air quality meeting WHO guideline in all real-world residences in polluted 19 

areas. 20 

Keywords: Indoor air quality; Air cleaner; Infiltration factor; Residences 21 
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1. Introduction 22 

Indoor environmental pollution can have a great impact on human health because many 23 

people spend approximately 90% of their time in indoors [1, 2]. Natural ventilation is a 24 

common approach to dilute indoor pollutants emitted by indoor sources in residences. 25 

Epidemiological studies have shown that an increase in the air exchange rate can significantly 26 

improve indoor air quality and reduce the risks of allergic diseases in children [3–7]. However, 27 

ventilation also allows outdoor air pollutants to enter into the indoor environment when outdoor 28 

air quality is poor. In urban China, ambient air pollution is often serious and can lead to bad air 29 

quality indoors through ventilation use and infiltration [4]. Several studies have found that 30 

indoor PM2.5 (particulate matter (PM) with aerodynamic diameters smaller than 2.5 µm) and 31 

outdoor PM2.5 had good correlations when there were no obvious PM2.5 sources in the indoor 32 

environment, and about 78% of the indoor PM2.5 came from outdoors [8, 9]. 33 

Additionally, many studies have reported that ambient pollution has significant adverse 34 

effects on human health [10–14]. A recent study found that external sources, rather than internal 35 

ones, were responsible for the presence of magnetite nanoparticles in the human brain, and 36 

these nanoparticles were probably present in the airborne particulate matter [10]. Another 37 

longitudinal cohort study analyzed the national and global burdens of diabetes attributable to 38 

ambient PM2.5 and found that a 10 μg/m³ increase of PM2.5 increased the risk of developing 39 

diabetes mellitus by 15% [11]. A nationwide study in China also indicated that a 10 μg/m³ 40 

increase of annual PM2.5 in outdoor environments had significant associations with pediatric 41 

allergic rhinitis and asthma and could increase the risk by 20% [13]. 42 

Therefore, it is important to find an effective and acceptable way to reduce indoor air 43 
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particles that have infiltrated from outdoors via ventilation and those generated indoors from 44 

smoking, cooking, and other sources. In normal residential buildings, use of a portable air 45 

cleaner is a common method for reducing these particles. Current assessments of the removal 46 

efficiency of air cleaners for particulate matter conducted in environmental chambers are 47 

insufficient for reflecting the actual efficiency under real living and use conditions. Thus, field 48 

assessments are required to evaluate the actual efficiency of portable air cleaners. Such 49 

information would be valuable for developing guidelines for the use of these cleaners in 50 

residences. Several related studies have been conducted in residential buildings [15–20]. These 51 

studies found that portable air cleaners used in residences could reduce concentrations of 52 

particles from outdoor and indoor sources by 32%–68%. For example, a randomized, 53 

consecutive 7-d, single-blind cross-over intervention study of a high-efficiency particulate air 54 

(HEPA) filter showed that the average particle-removal efficiency for PM2.5 was 40% (29 wood 55 

smoke-impacted homes: 48%; 54 traffic-impacted homes: 36%) in Vancouver, Canada [15]. A 56 

randomized controlled trial in 126 homes in Detroit, Michigan, USA, where researchers 57 

collected seven sequential 24-h samples per season, found that air contaminants in the 58 

intervention group were significantly lower than those in the control group after HEPA filter 59 

installation, and the average efficiency was 50% [16]. Another trial randomly assigned 48 wood 60 

burning homes to different filtration treatments (25 homes to true filtration; 23 homes to sham 61 

filtration), and after 48-h sampling per visit, it was found that the true filter intervention reduced 62 

in-home concentrations of PM2.5 by 66% when compared to the placebo intervention [18]. 63 

However, most previous studies on the efficiency of air cleaners have been conducted for 64 

particles from indoor sources such as smoking and wood burning in winter. Some studies have 65 
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focused on dust events [21] or on residences located close to highways [20]. To the best of our 66 

knowledge, no study has evaluated the efficiency of a portable air cleaner in real-world 67 

residences in urban cities of south China, where household natural ventilation rates are often 68 

large and outdoor air quality is often bad. To fill this knowledge gap, in this study, we conducted 69 

a randomized single-blinded cross-over trial in Chongqing, China. We aimed to evaluate the 70 

distributions and characteristics of indoor and outdoor particle concentrations for residential 71 

buildings; to determine the correlation coefficients (r) between indoor and outdoor particulate 72 

matter, and subsequently, compute the ambient contribution to indoor air particles when air 73 

cleaners were operated daily; and to evaluate the particle-removal efficiency of air cleaners 74 

under real world living conditions. 75 

2. Methods 76 

2.1 Study subjects and intervention process 77 

During the period of July 2015 to January 2016, we conducted a 4-d intervention study 78 

on the indoor air particle-removal efficiency of household portable air cleaners in residences 79 

of the urban area of Chongqing city. These residences were selected according to the following 80 

principles: 1) no one smoked in the residence; 2) no central air purifier system was installed in 81 

the residence; 3) the residence was a multi-room apartment located in a multi-story building 82 

and was most commonly located in the urban area of Chongqing city. We recruited volunteers 83 

through notices in our laboratory and on the university website. A total of 20 residences were 84 

inspected [22]. Figure 1 shows the locations of the inspected residences. Participants were aged 85 

25–40 years-old, and they generally left the residence during 9:00 am to 5:00 pm for work. 86 
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Since these residences were real dwellings and were not experimental buildings, we defined 87 

that the studied particle-removal efficiency of household portable air cleaners was in “real-88 

world” residences. 89 

These residences were randomized into two groups during the intervention. To ensure that 90 

the inspected residents have little influence on the operating behavior of air cleaners, we used 91 

a single-blind cross-over design and the inspected residents did not know the intervention status 92 

(true or sham). During the intervention, the air cleaner was operated with sham filtration during 93 

the first 48 h and subsequently operated with true filtration during the next 48 h. The air cleaner 94 

used in this study was a common portable air cleaner (Philips AC4374). The air cleaner for true 95 

filtration was equipped with a HEPA filter (Philips AC4138), while the air cleaner for sham 96 

filtration was not equipped with any filter. Except for difference in filter, the air cleaner was 97 

operated completely in the same state in true and sham intervention. Building characteristics 98 

of the inspected residences are given in Table 1. 99 

2.2 Data collection 100 

In living rooms that are less than 50 m2, one to three sampling points are recommended 101 

according to the “Indoor Environment Air Quality Monitoring Technical Specifications” 102 

(HJ/T167-2004) [23]. Herein, we set up one sampling point approximately in the middle of the 103 

living room, and we avoided as much as possible the areas where inhabitants were active. The 104 

sampling point was set 1.3–1.5 m above the ground to reflect the height range of an adult’s 105 

respiratory area. The outdoor sampling point was located 1.0–1.5 m away from an external 106 

wall. A simple bracket was used to connect the sampling instrument to a sampling tube, and 107 
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the sampling tubes spanned from indoors to outdoors where the sampling device was placed 108 

on the balcony. The air cleaner was placed away from the indoor sampling points, windows, 109 

and doors, as well as from the wall more than 0.5 m and from areas of poor ventilation (such 110 

as corners) as much as possible. In order to obtain the household particle-removal efficiency 111 

of the air cleaners under real world conditions, subjects were allowed to use windows (either 112 

open or closed) as they preferred. During the sampling period, we allowed the occupants to 113 

maintain their lifestyle habits as was normal for them. The setup for monitoring the 114 

concentrations of indoor and outdoor pollutants in each dwelling is shown in Figure 2. 115 

The target contaminant in this study was PM. Testing was conducted in two phases, 116 

namely, sham filtration (in the first 48 h) and true filtration (in the next 48 h). In both phases, 117 

the field sampling was conducted in the living room. In each residence, indoor and outdoor 118 

real-time air concentrations of PM1.0, PM2.5, RESP (respirable suspended particulate matter 119 

with aerodynamic diameters between 2.5 to 10 µm), PM10, and TSP (total suspended particulate 120 

matter with aerodynamic diameters of up to 100 µm) were measured simultaneously for 4 d 121 

(96 h). Two PM monitors (Dust Track 8534, TSI Inc, USA; detection range: 0.001 to 150 122 

mg/m3, accuracy: ±0.1%, resolution: 0.001 mg/m3) and temperature and humidity recorders 123 

(HOBO/UX100-011, USA; temperature: -20-70 ℃, ±0.21 ℃, 0.024 ℃; relative humidity: 124 

1%~95%, ±2.5%, 0.05%) were used for indoor and outdoor measurements, and the sampling 125 

interval was set at 1 min. The data display screens of these devices were masked to ensure that 126 

the inspected residents cannot see the measured data. 127 

The same type of monitoring device was used in indoor and outdoor environments. During 128 

true filtration, purification involved a combination of adsorption and filtration. According to 129 
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the product description of the HEPA filter, the clean air delivery rates (CADRs) of particulate 130 

matter and formaldehyde were 340 m3/h and 185 m3/h, respectively. According to the method 131 

for calculating the applicable area of this air cleaner described in “Air Cleaner” (GB/T 18801-132 

2015) [24], the calculated values were 23.8–40.8 m2. The largest area of the inspected living 133 

rooms was about 35 m2, which was within the scope of the purifier’s capabilities. 134 

2.3 Formulas and models 135 

An alternative to the commonly used CADR approach, the particle-removal efficiency 136 

(PRE) takes into account the effect of an air cleaner on particles of different sizes. The particle-137 

removal efficiency of the air cleaner in real-world residence can be calculated by the following 138 

formula: 139 

PRE = ((Cac - Cic)/Cac) × 100% (1) 140 

where Cac is the measured outdoor air particle concentration (PM1.0, PM2.5, RESP, PM10, and 141 

TSP), and Cic is the corresponding indoor air particle concentration. 142 

For evaluating the ambient contribution to indoor air particles, the Random Component 143 

Superposition (RCS) model was applied [25]. This model is based on the statistical 144 

interrelationships among variables obtained in field study measurements. This model assumes 145 

that indoor and outdoor PM concentrations are at steady state, and that ambient sources and 146 

non-ambient sources are independent. The model allows for sample-to-sample variation 147 

(across homes and days) in air exchange rates, particle penetration, and particle loss rates that 148 

can occur due to variations in parameters such as the house structure, air conditioner use, 149 

ventilation practice, particle size distribution, particle composition, and thermodynamic 150 
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stability of particle species. In this model, indoor air PM concentrations were separated into 151 

the following two parts: ambient contribution (Ca) and non-ambient contribution (Cna). The 152 

ambient contribution (Ca) is computed from the product of the measured outdoor air PM 153 

concentration (Cac) and infiltration factor (FINF), and it is a combined factor reflecting the 154 

penetration coefficient, air exchange rate, and indoor particle loss rate. In each residence, the 155 

infiltration factor (FINF) was estimated by the least-trimmed squared method with a linear 156 

regression model and can be calculated by the following equation [26]:    157 

                              𝐹𝐼𝑁𝐹 =
a𝑃

a+𝐾
                                    (2) 158 

where a is the air exchange rate due to infiltration; P is the particle penetration factor; and K is the 159 

particle deposition rate. 160 

The ambient contribution (Ca) was calculated with the estimated FINF and with the 161 

measured outdoor PM concentration (Cac). The proportion of the ambient contribution to 162 

indoor air PM concentrations was also calculated. During both of the periods of sham filtration 163 

and true filtration, the FINF and ambient contribution were compared by the t-test and F-test, 164 

respectively. The RCS model is as follows: 165 

Cic = Ca + Cna = FINF Cac + Cna (3) 166 

2.4 Statistical analyses 167 

All statistical analyses were performed with SPSS 22.0 for Windows (IBM Inc., USA). 168 

We converted the sampling data from minutes to hourly data and calculated the hourly and total 169 

mean value as well as the corresponding standard deviation of indoor and outdoor pollutants 170 

both during true filtration and sham filtration through pivot tables. The indoor and outdoor 171 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/exchange-rate
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particle concentrations were normally distributed in each residence according to Kolmogorov–172 

Smirnov testing. 173 

The data analysis consisted of the following three steps: 1) evaluating the influence of true 174 

filtration and sham filtration on particle concentrations in dwellings; 2) evaluating the ambient 175 

contributions to indoor air particles during the use of an air cleaner; 3) evaluating the removal 176 

efficiency of an air cleaner. In the first step, the data analysis was performed based on the 48-177 

h averaged value of measured indoor and outdoor air particle concentrations when the air 178 

cleaner was operated with sham filtration vs. true filtration in each residence. The differences 179 

between indoor and outdoor air particle concentrations during the periods with sham filtration 180 

and true filtration were estimated by comparing the mean values in independent-sample t-tests. 181 

The differences in indoor and outdoor air particle concentrations between sham filtration and 182 

true filtration were estimated by comparing the mean values in paired-sample t-tests. In the 183 

second step, we calculated the Spearman’s correlation coefficient (r) between indoor and 184 

outdoor particulate matter in each residence and in all residences. The contributions of ambient 185 

particles to indoor air particles were estimated by using general linear model regression 186 

analyses. In the third step, we calculated the removal efficiency for particles in each residence. 187 

By using a one-way analysis of variance (ANOVA) test, we also compared the reduction 188 

efficiency for particles in the residences under different conditions. Significance was set at a p-189 

value smaller than 0.05, and 95% confidence intervals (95% CI) were also calculated. 190 

3. Results 191 

The hourly changes in concentrations of PM2.5 and PM10 in indoor and outdoor air during 192 



 

12 

 

the experiments in each residence are shown in Figure 3 and Figure 4, respectively. The PM2.5 193 

and PM10 concentrations varied notably in these residences. The outdoor concentrations of 194 

PM2.5 and PM10 were generally higher than the indoor concentrations during all inspected 195 

durations. During the true filtration (from 48 h to 96 h), indoor concentrations of PM2.5 and 196 

PM10 were substantially lower than outdoor concentrations in most inspected residences. The 197 

correlation coefficient (r) between indoor and outdoor PM2.5 and PM10 concentrations ranged 198 

from 0.142 to 0.962 and from 0.114 to 0.958, respectively. Except for four residences (coded 199 

03, 05, 07, and 15), the indoor PM2.5 concentrations were still generally higher than the World 200 

Health Organization (WHO) air quality guidelines [27] under the true filtration. However, only 201 

four residences (coded 10, 11, 14, and 17) had indoor PM10 concentrations that were still 202 

generally higher than the WHO air quality guidelines under the true filtration. Similar trends 203 

were found for indoor and outdoor concentrations of PM1.0, RESP, and TSP (data not presented). 204 

Table 2 shows the mean values and standard deviations of indoor and outdoor 205 

concentrations for PM1.0, PM2.5, RESP, PM10, and TSP with sham filtration and true filtration. 206 

During sham filtration, the mean values of outdoor and indoor PM concentrations in different 207 

fractions ranged from 59.0 µg/m3 to 71.5 µg/m3 and from 48.2 µg/m3 to 57.1 µg/m3, 208 

respectively. During true filtration, the mean values of outdoor and indoor PM concentrations 209 

in different fractions ranged from 52.9 µg/m3 to 63.9 µg/m3 and from 31.2 µg/m3 to 37.3 µg/m3, 210 

respectively. The paired-sample t-tests indicated that outdoor air PM concentrations were not 211 

significantly different between the sham filtration and true filtration experiments, whereas 212 

indoor air PM concentrations during the true filtration were significantly lower than those 213 

during sham filtration (p-values are shown in Table S1). According to the independent-sample 214 
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t-tests (Table 2), indoor air PM concentrations showed no significant differences from outdoor 215 

air PM concentrations during the sham filtration, whereas all PM concentrations indoors had 216 

significant differences with outdoor air PM concentrations during the true filtration. We also 217 

observed that indoor air PM concentrations had strong correlations with outdoor air PM 218 

concentrations both during sham filtration and true filtration. All correlation coefficients 219 

between indoor PM concentrations and outdoor PM concentrations for the sham filtration were 220 

larger than those for the true filtration. 221 

Table 3 shows the infiltration factor in the RCS model obtained by linear regression. 222 

During sham filtration, the FINF for PM1.0, PM2.5, RESP, PM10, and TSP was 0.933, 0.921, 0.910, 223 

0.931, and 0.939, respectively, and all of the p-values were smaller than 0.001. During true 224 

filtration, the FINF for PM1.0, PM2.5, RESP, PM10, and TSP was 0.530, 0.535, 0.539, 0.558, and 225 

0.568, respectively, and all of the p-values were smaller than 0.001. The decrease in the 226 

infiltration factor amounted to 0.403, 0.386, 0.371, 0.373, and 0.371, respectively. Figure 5 227 

shows the linear fitting models for indoor and outdoor PM1.0, PM2.5, RESP, PM10, and TSP. 228 

These results show that there were linear relationships for both durations, and stronger linear 229 

relationships were found during sham filtration than during true filtration. The R2 values (sham 230 

filtration vs. true filtration) were 0.89 vs. 0.76, 0.88 vs. 0.59, 0.89 vs. 0.74, 0.85 vs. 0.74, and 231 

0.88 vs. 0.74 for PM1.0, PM2.5, RESP, PM10, and TSP, respectively. 232 

Figure 6 and Table S2 show the reduction efficiencies for PM1.0, PM2.5, RESP, PM10, and 233 

TSP in each inspected residence, and these efficiencies ranged from 0.02 to 0.76, 0.05 to 0.77, 234 

0.09 to 0.77, 0.11 to 0.78, and 0.12 to 0.78, respectively. The particle-removal efficiencies and 235 

their distributions were similar for all PM types in each residence. Except for residences coded 236 
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08 and 14, the particle-removal efficiencies were greater than 20%. The particle-removal 237 

efficiencies in about half of the inspected residences were >40%. Two residences (coded 03 238 

and 15) had particle-removal efficiencies of approximately 75%. The mean values of reduction 239 

efficiencies of the 20 residences for PM1.0, PM2.5, RESP, PM10, and TSP were 39%, 40%, 40%, 240 

41%, and 41%, respectively (Table 4). 241 

Table 4 shows the particle-removal efficiencies in the residences under different 242 

conditions. Compared to residences that had opened windows during the inspection, residences 243 

that kept the windows closed had significantly higher particle-removal efficiencies for TSP. 244 

The reduction efficiencies for PM1.0, PM2.5, and RESP had significant associations with the 245 

room volume, with larger room volumes showing lower reduction efficiencies. However, 246 

although values of the reduction efficiencies were different, the reduction efficiencies were not 247 

significantly associated with the residence district, study season, building age, floor level, and 248 

ambient weather. 249 

4. Discussion 250 

In this randomized cross-over field study, we found that PM2.5 and PM10 concentrations 251 

both indoors and outdoors were generally higher than the WHO air quality guidelines (25 252 

µg/m3 for PM2.5 and 50 µg/m3 for PM10) in Chongqing residences, although indoor 253 

concentrations of PM1.0, PM2.5, RESP, PM10, and TSP were significantly decreased by using a 254 

portable air cleaner with a HEPA filter. Indoor and outdoor PM concentrations showed high 255 

correlations (correlation efficient (r): 0.859–0.941) and strong linear relationships. Outdoor 256 

PM contributed to about 92% and 54% of the indoor PM during sham and true filtration, 257 
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respectively. The particle-removal efficiencies of portable air cleaners for all studied PM types 258 

varied in different residences with an average of 40%. Indoor concentrations of PM2.5 in 80% 259 

of the residences were still generally higher than the WHO air quality guideline under the true 260 

filtration. Room volume had a great effect on the particle-removal efficiencies for PM1.0, PM2.5, 261 

and RESP, and the efficiencies increased as the room volume decreased. 262 

The ambient concentrations of PM2.5 and PM10 in this study were similar to many previous 263 

studies in Chongqing and in other cities. A review for ambient PM2.5 in 45 global megacities 264 

found that Delhi, Cairo, Xi’an, Tianjin, and Chengdu were the five most polluted megacities 265 

with an annual average concentrations >89 μg/m3 in 2013 [28]. In 2005, the annual average 266 

PM2.5 concentration in Shanghai was 56 μg/m3 [29]. From March 2013 to April 2014, the 267 

satellite derived population-weighted average PM2.5 concentration in Beijing was 51.2 μg/m3 268 

[30]. In 2009, the annual average concentration of PM10 in 113 major Chinese cities was 87 269 

µg/m3 [31]. In this study, the average concentrations of ambient PM2.5 and PM10 (from July 270 

2015 to January 2016) were 62.1 and 70.0 μg/m3, respectively, which were levels notably 271 

higher than the WHO global air quality guidelines (25 µg/m3 for PM2.5 and 50 µg/m3 for PM10) 272 

[27]. These findings suggest that ambient air pollution of PM2.5 and PM10 is still a serious 273 

problem in Chongqing and other cities of China. More efforts are warranted to control these 274 

pollutants. 275 

Our findings that indoor PM concentrations had strong linear correlations (R2 = 73%–276 

89%) with outdoor PM concentrations are consistent with other similar studies [32-35]. In a 277 

study conducted in Brisbane, Australia, researchers measured indoor and outdoor airborne 278 

particles in 16 residential houses and found that the indoor/outdoor (I/O) ratio for the PM2.5 279 
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fraction ranged from 1.01 to 1.08 [32]. This study also found that instantaneous indoor particle 280 

concentrations could be predicted by outdoor particle concentrations under normal ventilation 281 

conditions (air exchange rate ≥2 h-1), since a clear positive relationship existed between indoor 282 

and outdoor particle concentrations [32]. Dai et al. [33] monitored indoor air quality in 117 283 

Chinese homes and found that the naturally ventilated homes had a median I/O ratio of around 284 

0.88–0.97 when the outdoor PM2.5 concentration was lower than 75 μg/m3. Huang et al. [34] 285 

inspected about 450 Shanghai residences in different seasons and reported that indoor and 286 

outdoor concentrations of particulate matter (PM2.5 and PM10) had strong linear correlations (r 287 

= 0.891–0.922; p-value <0.001). A study from the USA measured 48-h concentrations of indoor 288 

and outdoor PM2.5 in 374 non-smoking homes and also found that 20%–90% of indoor 289 

exposures to PM2.5 could be attributed to ambient outdoor PM2.5, which was the dominant 290 

predictor of indoor PM2.5 concentrations (R2 = 30%–70%) [35]. These findings indicate that 291 

decreasing the infiltration of ambient airborne particles into indoor environments is a useful 292 

approach for reducing indoor particle exposures in residences without major indoor sources of 293 

airborne particles.  294 

The particle-removal efficiencies (about 40%) of portable air cleaners for different PM 295 

types in this study were lower than those in many previous studies [20, 36–40]. In a study from 296 

Seoul, Korea, researchers evaluated the removal efficiencies of an air purifier (LA-R119SWF, 297 

Korea) for PM2.5 and PM10 in 10 childcare centers during summer, autumn, and winter and 298 

found that the removal efficiencies ranged from 75%–78% for PM2.5 and 72%–84% for PM10 299 

[36]. A randomized cross-over study from Denmark found that the removal efficiency of 300 

particle filtration units (PFUs) for PM2.5 was 54.5% (median-averaged) over a 2-week 301 
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intervention in 27 residences [37]. Another placebo-controlled cross-over study used a HEPA 302 

cleaner and a placebo “dummy” in homes for 4 weeks each and found that the measured PM2.5 303 

concentration was significantly reduced following HEPA filtration, and thus, it was concluded 304 

that HEPA air purification could result in a significant reduction of PM2.5 in indoor air in 305 

diverse residential settings [20]. In China, the operating behaviors and performances of 306 

portable air cleaners were evaluated in 43 residential buildings during June 2017 to December 307 

2017, and results showed that the removal efficiency for PM2.5 ranged from 42% to 88% [38]. 308 

A randomized cross-over study in Beijing residences, which was conducted by using a pre-309 

filter+HEPA+carbon-filter air cleaner, found that the average indoor PM2.5 concentration 310 

during true filtration was 8.47 μg/m3 (49.0 μg/m3 during sham filtration), which is lower than 311 

the WHO guideline level [40]. These differences in the removal efficiency for indoor airborne 312 

particles in different studies could have several explanations. First, different types of filters 313 

used in the air purifier could lead to different results. Second, the operating behavior of the air 314 

purifier could have been different in the different studies. Third, the numbers and ages of the 315 

occupants, as well as times that the occupants presented in the residences would cause 316 

disturbance in the air flow and thus might affect the efficiency. The occupants also likely 317 

contributed to particles becoming airborne (resuspension) or causing emission that contribute 318 

to indoor air concentrations of PM (e.g. cooking). In this study, the graphic concentration-time 319 

pattern in Figure 3 (e.g. 3, 6, 12, 17, 18, 19, and 20) and Figure 4 (e.g. 3, 4, 6, 12, 15, 17, 19, 320 

and 20) suggests that there may be an impact (where the indoor concentration deviates from 321 

the outdoor pattern and range). Fourthly, building characteristics (volume and ventilation 322 

condition) of the studied rooms and ambient air pollution also varied in the different studies. 323 
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Nevertheless, the removal efficiencies for indoor PM2.5 in the above studies were not smaller 324 

than 40%. Findings in these studies suggest that portable air cleaners can be an effective device 325 

for reducing exposures to indoor airborne particles, but more than one portable air cleaner 326 

should be operated in urban residences with large room volumes or during poor ambient air 327 

quality to meet the WHO guidelines for PM2.5 and PM10 in China. 328 

In this study, we found that only volume of the studied room had significant associations 329 

with the particle-removal efficiencies for PM1.0, PM2.5, and RESP, and that whether windows 330 

of the inspected rooms were closed had significant associations with the particle-removal 331 

efficiencies for TSP. This finding was inconsistent with the randomized cross-over study from 332 

Denmark [37]. In the Danish study, the floor level of the inspected room also had no significant 333 

association with the reduction efficiency of the air cleaners for indoor PM2.5 concentrations 334 

[37]. This finding is consistent with our findings in the present study (Table 4). These findings 335 

seemingly suggest that floor level is not an important factor for the particle-removal efficiency 336 

of an air cleaner. 337 

This study had some limitations. We did not consider the indoor ventilation rate and 338 

ambient traffic close to the residences, which could have significant associations with the levels 339 

of indoor airborne particles and the particle-removal efficiencies of indoor air cleaners for 340 

particles as shown in the previous studies [36–38]. The inspected residences also were 341 

restricted as non-smoking multi-room apartments that located in a multi-story building and was 342 

most commonly located in the urban area of Chongqing city, as well as were without central 343 

air purifier system. The studied particle-removal efficiency of household air cleaner might 344 

cannot generalize to other types of residences. Nevertheless, to our best knowledge, this study 345 
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is the first field study on the particle-removal efficiency of portable air cleaners conducted 346 

under actual conditions with a randomized single-blinded cross-over design in China. The 347 

primary strength of the cross-over design is that the on-site measured PM concentrations can 348 

be compared both within each residence under two different conditions and among different 349 

residences. The single-blind design also ensures that the inspected residents have little 350 

influence on the operating behavior of air cleaners (within comparisons), and thus, this 351 

increases the likelihood that the same interventions were conducted in different residences. 352 

5. Conclusions 353 

Ambient pollution of PM2.5 and PM10 remain serious health threats in different seasons in 354 

Chongqing, China. Indoor and outdoor airborne particle concentrations were found to have 355 

strong linear correlations. Use of a portable air cleaner with a HEPA filter was found to be an 356 

effective intervention method to improve indoor air quality, and air cleaners decreased by an 357 

average of 40% the indoor concentrations of PM1.0, PM2.5, RESP, PM10, and TSP in urban 358 

residences under normal conditions. The particle-removal efficiencies of portable air cleaners 359 

with the HEPA filter were primarily affected by the volume of the inspected room, but not other 360 

building characteristics. To meet the WHO guidelines for PM2.5 and PM10, more than one 361 

cleaner should be operated in urban residences with large room volumes or during poor ambient 362 

air quality in China. 363 
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Figure 1. Location of the inspected residences. 
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Figure 2. Sample site and equipment. 
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Figure 3. PM2.5 concentrations in indoor and outdoor air during the inspection. The red line represents the 

indoor PM2.5 concentration, and the blue line represents the outdoor PM2.5 concentration. The black dotted 

line (25 µg/m3) represents the WHO air quality guideline that is based on the relation between 24-h and 

annual PM2.5 levels.
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Figure 4. PM10 concentrations in indoor and outdoor air during the inspection. The red line represents the 

indoor PM10 concentration, and the blue line represents the outdoor PM10 concentration. The black dotted 

line (50 µg/m3) represents the WHO air quality guideline for PM10.
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Figure 5. The linear fitting models for indoor and outdoor PM concentrations. 
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Figure 6. The particle-removal efficiencies for different particles. 
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Table 1. Building characteristics of the residences used in the inspections. 

Residence 

code 
District 

Inspected 

season 

Building 

age 

Floor 

level 

Room 

volume 

(m3) 

Window 

opening 

Weather 

Without 

filter 

With 

filter 

(01) Shapingba Summer 2006 2 31.82 Opened Sunny Sunny 

(02) Yuzhong Summer 2013 5 75.50 Opened Sunny Sunny 

(03) Jiangbei Summer 2012 32 87.90 Closed Rainy Rainy 

(04) Yuzhong Summer 2009 20 94.53 Opened Rainy Cloudy 

(05) Jiulongpo Summer 2014 4 55.92 Opened Sunny Rainy 

(06) Yubei Summer 2005 2 99.83 Opened Sunny Sunny 

(07) Shapingba Autumn 2010 25 38.65 Opened Rainy Rainy 

(08) Shapingba Autumn 2008 23 91.45 Opened Rainy Rainy 

(09) Jiangbei Autumn 2009 13 72.12 Opened Rainy Cloudy 

(10) Jiangbei Autumn 2008 23 94.76 Opened Sunny Rainy 

(11) Jiangbei Autumn 2012 32 79.59 Opened Cloudy Rainy 

(12) Dadukou Autumn 2012 7 89.00 Opened Rainy Rainy 

(13) Shapingba Autumn 2006 3 40.85 Opened Rainy Rainy 

(14) Shapingba Autumn 2009 3 97.80 Closed Rainy Rainy 

(15) Shapingba Autumn 2012 3 66.89 Opened Rainy Cloudy 

(16) Yubei Autumn 2013 27 66.95 Closed Cloudy Rainy 

(17) Shapingba Winter 2005 26 61.45 Opened Rainy Cloudy 

(18) Shapingba Winter 2009 30 67.33 Closed Cloudy Cloudy 

(19) Shapingba Winter 1990 3 35.78 Closed Cloudy Rainy 

(20) Shapingba Winter 1995 8 32.47 Closed Rainy Rainy 
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Table 2. Comparisons of PM concentrations between indoor and outdoor air when an air cleaner was used 

without and with a HEPA filter. 

Items 
Mean ± SD 

p-value a Correlation coefficient, r (p-value) 

Outdoor Indoor 

Sham filtration    

PM1.0 59.0 ± 34.4 48.2 ± 34.1 0.323 0.941 (<0.001) 

PM2.5 62.1 ± 35.4 50.4 ± 34.7 0.300 0.940 (<0.001) 

RESP 63.2 ± 37.1 51.2 ± 35.9 0.307 0.941 (<0.001) 

PM10 70.0 ± 36.0 56.1 ± 35.8 0.227 0.936 (<0.001) 

TSP 71.5 ± 36.0 57.1 ± 36.0 0.214 0.939 (<0.001) 

True filtration    

PM1.0 52.9 ± 30.8 31.2 ± 18.7 0.011 0.870 (<0.001) 

PM2.5 55.4 ± 31.4 32.7 ± 19.3 0.009 0.867 (<0.001) 

RESP 57.7 ± 31.6 34.1 ± 19.8 0.007 0.863 (<0.001) 

PM10 62.4 ± 32.0 36.5 ± 20.8 0.004 0.859 (<0.001) 

TSP 63.9 ± 33.5 37.3 ± 21.1 0.004 0.863 (<0.001) 

a Significance for the differences in PM concentrations between indoor and outdoor air in the independent-

sample t-tests. 
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Table 3. Evaluation of infiltration factor in the RCS model by linear fitting. 

Items FINF 
a, Mean (95% CI) R2 p-value (t-test) p-value (F-test) 

PM1.0     

Sham filtration 0.933 (0.766–1.099) 0.885 <0.001 <0.001 

True filtration 0.530 (0.381–0.678) 0.758 <0.001 <0.001 

PM2.5     

Sham filtration 0.921 (0.756–1.087) 0.884 <0.001 <0.001 

True filtration 0.535 (0.383–0.687) 0.752 <0.001 <0.001 

RESP     

Sham filtration 0.910 (0.749–1.072) 0.886 <0.001 <0.001 

True filtration 0.539 (0.383–0.696) 0.745 <0.001 <0.001 

PM10     

Sham filtration 0.931 (0.758–1.104) 0.876 <0.001 <0.001 

True filtration 0.558 (0.394–0.723) 0.738 <0.001 <0.001 

TSP     

Sham filtration 0.939 (0.769–1.109) 0.882 <0.001 <0.001 

True filtration 0.568 (0.403–0.733) 0.744 <0.001 <0.001 

a FINF (infiltration factor) represents the ratio of the contribution of ambient sources to indoor air PM 

concentrations; data were calculated by linear regression and were evaluated with 95% confidence intervals. 
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Table 4. Removal efficiency for PM in the inspected residences under different conditions. 

Items Sample size, n (%) PM1.0 PM2.5 RESP PM10 TSP 

Total 20 (100) 0.39 ± 0.20 0.40 ± 0.19 0.40 ± 0.19 0.41 ± 0.18 0.41 ± 0.18 

Residence-located district      

Shapingba 9 (45.0) 0.37 ± 0.20 0.38 ± 0.19 0.39 ± 0.18 0.39 ± 0.17 0.39 ± 0.17 

Jiangbei 5 (25.0) 0.46 ± 0.27 0.46 ± 0.27 0.46 ± 0.27 0.46 ± 0.27 0.47 ± 0.27 

Others a 6 (30.0) 0.37 ± 0.14 0.36 ± 0.14 0.36 ± 0.14 0.38 ± 0.13 0.38 ± 0.10 

Inspection season      

Summer 6 (30.0) 0.44 ± 0.20 0.43 ± 0.20 0.43 ± 0.20 0.45 ± 0.19 0.45 ± 0.17 

Autumn 10 (50.0) 0.32 ± 0.21 0.33 ± 0.21 0.33 ± 0.20 0.34 ± 0.20 0.35 ± 0.19 

Winter 4 (20.0) 0.51 ± 0.10 0.51 ± 0.10 0.51 ± 0.10 0.51 ± 0.10 0.50 ± 0.10 

Building age of the residential building     

<2007 6 (30.0) 0.44 ± 0.09 0.44 ± 0.09 0.44 ± 0.09 0.45 ± 0.09 0.45 ± 0.09 

2007–2010 7 (35.0) 0.27 ± 0.20 0.28 ± 0.20 0.29 ± 0.19 0.30 ± 0.18 0.30 ± 0.17 

>2010 7 (35.0) 0.47 ± 0.22 0.47 ± 0.23 0.46 ± 0.23 0.47 ± 0.22 0.47 ± 0.21 

Floor level of the inspected room      

≤10 10 (50.0) 0.43 ± 0.20 0.43 ± 0.20 0.43 ± 0.19 0.44 ± 0.19 0.44 ± 0.17 

>10 10 (50.0) 0.36 ± 0.20 0.36 ± 0.20 0.36 ± 0.19 0.37 ± 0.18 0.37 ± 0.18 

Window opening during inspection      

Opened 14 (70.0) 0.35 ± 0.18 0.36 ± 0.18 0.36 ± 0.17 0.37 ± 0.17 0.37 ± 0.16 

Closed 6 (30.0) 0.48 ± 0.22 0.48 ± 0.22 0.48 ± 0.22 0.48 ± 0.21 0.49 ± 0.20* 

Volume of the inspected room      

<60 m3 6 (30.0) 0.48 ± 0.10 0.49 ± 0.10 0.49 ± 0.09 0.49 ± 0.08 0.48 ± 0.07 

60–80 m3 7 (35.0) 0.43 ± 0.19 0.43 ± 0.19 0.43 ± 0.20 0.43 ± 0.19 0.43 ± 0.19 

>80 m3 7 (35.0) 0.28 ± 0.23* 0.29 ± 0.23* 0.29 ± 0.22* 0.31 ± 0.21 0.32 ± 0.21 

Ambient weather during inspection      

Rainy 12 (60.0) 0.37 ± 0.21 0.38 ± 0.21 0.38 ± 0.20 0.38 ± 0.19 0.38 ± 0.18 

Cloudy/sunny 8 (40.0) 0.42 ± 0.18 0.42 ± 0.18 0.43 ± 0.18 0.44 ± 0.18 0.44 ± 0.17 

a Others category includes the Yuzhong district, Yubei district, Jiulongpo district, and Dadukou district. 

* p-value <0.05 in the one-way ANOVA tests. 


