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Abstract: The crystallization of four Y2O3-Al2O3-SiO2 (YAS) glasses were investigated 

to prepare YAS glass ceramics precipitated singly/mainly Y2Si2O7 or Y4.67(SiO4)3O 

apatite, and to explore the crystallization difference between the stoichiometric parent 

glass (SPG) and non-stoichiometric parent glass (NSPG). The DSC results revealed that 

glass locating at the higher liquidus surface temperature has lower crystallization peak 

temperature, which indicating that the corresponding glass has higher crystallization 

potential to crystallize easily. Crystallization of the NSPG samples is along surface and 

caused by phase separation, while SPG sample is the surface crystallization at the first 
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exothermic peak temperature and overall crystallization at the second exothermic peak 

temperature. Glass ceramics only containing y-Y2Si2O7 or Y4.67(SiO4)3O apatite are 

obtained successfully, and which are illustrated by fitting FTIR spectra. These results 

can provide technical guide for controlling the crystallization process and the types of 

precipitated crystals in YAS glass for different application potentials. 

Keywords: Crystallization; Y2O3; Glass ceramics; Structure 

1. Introduction 

Yttrium aluminosilicate (YAS) glass and glass ceramics have attracted much 

attention due to their numerous excellent properties [1-8]. The low thermal expansion 

coefficients (TECs) makes YAS glasses promising for application as adhesives for 

joining, especially for the non-oxide ceramics such as SiC and Si3N4 [3,4]. YAS system 

glass has interesting chemical durability [5,6], so the glass can prepare glass 

microspheres (including Yttrium-89) used to treat cancers [6,7]. YAS glasses and glass 

ceramics can accommodate high concentration of rare earth ions and have great 

potential for optical applications [8]. YAS glasses are also used in optical fibers and 

corresponding glass ceramics can be used as a matrix for storage of long-lived actinides 

[9-11]. 

Types of crystal precipitated have great influence on the properties of glass 

ceramics, thereby it is essential to explore clearly the crystallization of YAS glass. The 

YAS glass-forming zone includes Y2Si2O7, SiO2, mullite and Al2O3 phase region in the 
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Y2O3-Al2O3-SiO2 phase diagram [9, 12 ]. Najim Sadiki et al. [9] studied four 

compositions of YAS glass melted by a laboratory-scale solar furnace, they found that 

mullite, SiO2, y-Y2Si2O7 and a little β-Y2Si2O7 can be crystallized in studied glass, but 

two or three crystals were precipitated finally from each glass for these compositions. S. 

Ahmadet al. [13] found unknown phase for YAS glass ceramic during high temperature 

long heat treatments, and the chemical composition of the unknown phase is determined 

to be Y = 8.45, Si = 16.45, Al = 12.82 and O = 62.26 (at. %). Yttrium silicates, including 

Y2Si2O7, Y2SiO5 and Y4.67(SiO4)3O apatite, have many potential applications such as 

high-temperature structural ceramics, oxidation protective coatings and environmental 

barrier coatings, because of their specific mechanical, thermal, tribological and 

dielectric properties and environmental durability [14]. YAS glass ceramics are superior 

than YAS glasses in mechanical performance and oxidation resistance when they are 

used as sintering additives for preparing SiC ceramic or Si3N4 ceramic [15]. Matching 

TECs of the joined components and filler is essential for minimizing the thermal 

stresses in the joint, so that the thermal expansion coefficients of sintering additives or 

filler should be in the same range or lower than those of the ceramic materials to be 

joined [3]. As the sintering additives or filler, the TEC of YAS glass ceramics depends 

on the all components including precipitated crystal types and contents, as well as 

residual glass content and compositions. It is well known that the thermal expansion 

coefficient of Y2Si2O7 is smaller than other kind of crystals precipitated in YAS glass 
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ceramics and hence Y2Si2O7 phase would be in the best interest for YAS glass filler with 

lower TEC. Besides, apatite-type rare earth silicates have been found to have the low 

activation energy in the ionic conduction, and thus it is suitable for an 

intermediate-temperature solid oxide fuel cells (SOFC) electrolyte [16]. Recently, Liao 

T et al. [17] investigated the position preference and diffusion mechanisms of interstitial 

oxygen ions in lanthanum silicate La9.33Si6O26 using density functional theory. For the 

yttrium silicate (Y4.67(SiO4)3O apatite), it can be prepared by hydrothermal method, 

solid-state reaction method, solid-liquid reaction method and so on. However, these 

methods need tens to hundreds of hours and high cost. Glass crystallization might be 

another effective way to prepare Y4.67(SiO4)3O apatite, but until now there are no reports 

about the glass ceramics containing Y4.67(SiO4)3O apatite.  

From the above, many researchers studied the crystallization of the YAS glass 

system but Y4.67(SiO4)3O apatite has not been found and Y2Si2O7 is not as single 

crystalline phase to precipitate in the YAS glass ceramics. In this work, the 

crystallization behavior of YAS parent glasses with different chemical compositions that 

were elected according to Y2O3-Al2O3-SiO2 phase diagram have been studied in order to 

prepare YAS glass ceramics precipitated singly/mainly Y2Si2O7 or Y4.67(SiO4)3O apatite 

crystal. Besides, the crystallization behavior of stoichiometric parent glass (SPG) 

having the same stoichiometric ratio with the precipitated crystal and 

non-stoichiometric parent glass (NSPG) is also investigated and compared in details. 
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2. Experimental 

The glasses were prepared by using the following reagent grade materials, Y2O3 

(99.9 %), Al2O3 (99.9 %), SiO2 (99.0 %). Table 1 shows the chemical composition of 

the glasses. According to the Y2O3-Al2O3-SiO2 phase diagram (Fig. 1) [12], the 

chemical compositions of glasses were chosen and named after Y, Y2S, M and YMS. In 

order to make glass precipitate singly/mainly Y2Si2O7 crystal, the Y glass chemical 

composition was designed to be located in the Y2Si2O7 phase region of 

Y2O3-Al2O3-SiO2 phase diagram. The M sample is located in the mullite phase region 

and the YMS sample is located in the triple eutectic point. The Y sample is elected 

regarding as standard sample to study the influence of SPG and NSPG on crystallization 

behavior, because the Y glass ceramic was observed to have only single crystallized 

phase Y2Si2O7 by crystal analysis. Therefore, the SPG (named Y2S) was selected 

according to a certain molar ratio (Y2O3:SiO2 = 1:2) that was the same with the 

stoichiometric ratio of Y2Si2O7. The ratio is shown in red line in Fig. 1. Besides the 

certain molar ratio, the Y2S is also determined according to two other requirements. 

First, the composition can melt into glass by melting at high temperature and cooling at 

room temperature. Second, the composition should be as close to the Y sample 

composition as possible so that avoid large crystallization difference caused by 

component deviation. After multiple experiments, the chemical composition of Y2S 

sample is identified as 25Y2O3-25Al2O3-50SiO2 (mol%). 
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A mixture of the precursor oxide powders (400 g) was mixed in mortar and melted 

in platinum crucible. The raw materials according to the calculated weight were mixed 

evenly and ground uniform, then melted at 1550 °C for 3 h. The melt was cast into a 

preheated graphite mould and then annealed at glass transition temperature for 2 h to 

eliminate the residual stress in glass structure. The X-ray fluorescence was used to 

check the resulting glasses chemical composition, and the results agreed with the 

experimental error of ±3 % with the compositions of the initial batches. The amorphous 

character of samples was confirmed by X-ray diffraction. The annealed glasses are 

controlled to crystallize by two-step heat treatment. The glasses were heated firstly at 

5 °C/min to nucleation temperature, held for 1 h, and then heated again at 5 °C/min to 

crystallization temperature and held for 2.5 h, finally cooled down to room temperature 

by natural cooling. The nucleation and crystallization temperature are determined to be 

about 20 °C above glass transition temperature (Tg) and crystallization peak 

temperature (Tc). 

Tg and Tc are obtained to draw up the heat treatment schedule by the differential 

scanning calorimetry (DSC, NETZSCH DSC STA449C). 15 mg of glass powder 

(particle size of about 80 μm) in an alumina crucible was heated from room temperature 

to 1400 °C at the heating rate of 10 K/min. In order to study the crystallization of 

glasses with different chemical compositions, the glasses were cut into strips (5×5×10 

mm) then controlled to crystallize by two-step heat treatment. The crystal phases 
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precipitated were analyzed by X-ray diffractometer (Rigaku XRD Miniflex600) for 

powdered glass ceramic in 10-80 ° angle range at scanning speed of 4 °/min. In order to 

excellently study the microstructure, the glass ceramic was polished and its surface was 

corroded by 4 wt% HF for 30 s at room temperature to observe the microstructure by a 

scanning electron microscopy (FEI SEM QUANTA400), and prior to characterization 

all samples were sputtered with gold by using a sputtering machine. 

In order to study the relation of glass structure and crystallization behavior, the 

parent glass was detected by a Fourier transform infrared spectrometer (Shimadzu 

FT-IR Prestige-21) to measure the infrared absorption spectra in the wavenumber range 

of 400-4000 cm
-1

 with 2 cm
-1

 resolution, the transmission technique was applied and the 

samples were prepared as KBr pellets. The IR data were processed by normalization to 

eliminate the effect of uneven sample thickness during preparing. 

3. Results and discussion 

3.1. Thermal analysis 

Fig. 2 shows the DSC results of four samples including endothermic and 

exothermic peak at a heating rate of 10 K/min. Glass transition temperature was 

standardized by calculating the inflection point nearby endothermic peak with the 

second derivative method. The temperature at the inflection point was defined as the 

glass transition temperature. The glass transition temperature (Tg) of Y, Y2S, M and 

YMS samples are 906 °C, 905 °C, 915 °C and 913 °C respectively. Low Tg indicates 
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more non-bridging oxygens (NBOs) in the glassy structure [18,19]. Through the 

difference of Tg, it can be known that Y and Y2S glasses have more non-bridging 

oxygen than M and YMS glasses. The crystallization peak temperature (Tc) of Y, Y2S, 

M and YMS glass are 1137 °C, 1112 °C, 1191 °C and 1253 °C respectively, it can be 

also observed that Y2S glass has two crystallization peaks at 1112 °C (Tc) and 1344 °C 

(Tc2). More interesting, except Y2S glass, there is a small exothermic peak for other 

glasses (named Tx) between Tg and Tc in DSC curve. This small exothermic peak might 

be caused by the phase separation of glass during heating process, which will be 

described in next section. The Tx of Y, M and YMS glasses are 1035 °C, 999 °C and 

1015 °C, respectively. The values of Tg, Tx, Tc and Tc2 for all glasses are summarized 

in table 1, and there is an error of ±1 °C for Tg and Tc. 

By comparing glass crystallization peak temperatures (Tc: YMS>M>Y>Y2S) with 

the temperatures of the liquidus surface (Ts: Y2S>Y>M>YMS) obtained from phase 

diagram of the Y2O3-Al2O3-SiO2 system with plots of the isotherms [20], one can 

observe an interesting fact that the higher Ts of glass chemical composition locating at 

phase diagram of the Y2O3-Al2O3-SiO2 system, the lower Tc of corresponding glass. 

With the same chemical composition, the glass obtained at a slower cooling rate would 

have a lower enthalpy than that obtained using a faster cooling rate [21]. Hence, the 

faster cooling glass possesses higher enthalpy in glass structure and has better 

crystallization potential, thereby it can be more easily crystallized and consequently 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

9 

 

exhibits lower Tc. In this work, the experiment adopts identical cooling rate, so the 

chemical composition is the single factor influencing the enthalpy of glass. The glass 

chemical composition locating at higher Ts may have a higher enthalpy in glass 

structure and hence its Tc is lower, as a result, corresponding glass obtained at same 

cooling rate is crystallized more easily. 

3.2. Crystallization 

Generally, the nucleation temperature for preparing glass ceramics is above 50 °C 

glass transition temperature. In this work the nucleation temperature of all samples is set 

as 920 °C for simplicity and then the samples are heat treated at different Tx and Tc. Fig. 

3 shows XRD patterns of glasses heat treated according to the heat treatment schedule 

listed in Table 2. As shown in Fig. 3(a), XRD patterns of Y-1, M-1 and YMS-1 samples 

heat treated at 920 °C for 2 h and their Tx temperature for 2.5 h are diffuse X-ray peak, 

showing that they still keep glassy nature and there are no precipitated crystals in 

glasses after heat treated at nucleation temperature and Tx temperature. Fig. 4 gives the 

SEM photograph for the heat treated glasses. After heat treatment at 920 °C for 1 h and 

1035 °C for 2.5 h, there are some ununiform circular area in Y-1 sample as shown in Fig. 

4(a), presumably phase separation is occurred for Y-1 sample combining with no crystal 

precipitated as shown in Fig. 3(a). Similarly, the phase separation might be occurred in 

M-1 and YMS-1 samples. Thereby, it can be considered that the exothermic peak for Y, 

M and YMS glasses between glass transition temperature and crystallization peak 
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temperature could be attributed to occurrence of phase separation of glass sample during 

heat process. 

After heat treatment at 920 °C for 1 h and 1137 °C (crystallization peak 

temperature) for 2.5 h, the y-Y2Si2O7 crystal is precipitated in Y-2 sample as shown in 

Fig. 3 (b). Unfortunately, a little diffraction peaks at 25.95 °, 31.12 °, 35.37 ° and 

40.91 ° in Y-2 sample appear and are not attributable, but the precipitated crystals in Y-2 

sample are mainly the y-Y2Si2O7. Comparing the phase separation regions occurred in 

Y-1 sample (Fig. 4(a)) with the circular regions of crystal precipitated in Y-2 sample 

(Fig. 4(b)), they are similar in shape. After the same heat treatment time (2.5 h) at 

different temperature (Tx=1035 °C and Tc=1137 °C), the size of the crystal area in Y-2 

sample is somewhat larger than the size of the phase separation area in Y-1sample due 

to the crystal growth at higher temperature (1137 °C for Y-2 and 1035 °C for Y-1), and 

the phase separation area is about 7.4 μm (Fig. 4(a), line 1) and 9.6 μm for crystal area 

(Fig. 4(b), line 2) respectively. Apart from similar shape, the content of Si and Y 

elements in phase separation area is higher than that near phase separation region (as 

shown in Fig. 5), the content of Si and Y elements in phase separation area is enriched 

as formation of phase separation, the content of Si and Y elements are 25.86 and 13.10 

(At%) nearby the phase separation region, after occurrence of phase separation they are 

accumulated to 28.94 and 16.21 (At%) respectively in the phase separation area. 

Aggregation of Si and Y elements in some small areas serves nucleation and crystal 
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growth of corresponding crystal such as Y2Si2O7 crystal. Therefore, it can be concluded 

that the crystallization mechanism of Y glass heat treated at 920 °C for 1 h and 1137 °C 

for 2.5 h is caused by phase separation occurred at lower temperature, and phase 

separation provides a beneficial condition for crystallization. 

As for M and YMS samples, after heat treating at 920 °C for 1 h and their 

crystallization peak temperature (1191 °C and 1253 °C) for 2.5 h respectively, 

comparing M-1 with M-2 and YMS-1 with YMS-2 samples, it can be found that M-2 

and YMS-2 samples are crystallized at their surface, and they have identical crystal 

phases including y-Y2Si2O7, mullite and cristobalite (Fig. 3 (c)), it is reasonable to 

conclude that the phase separation occurred also in M and YMS glasses similarly which 

provides beneficial condition for crystallization of corresponding crystals, while the 

crystal growth rate for M and YMS is not the same according to their different surface 

crystalline thickness (Fig. 6 (e) and (f)), the surface crystalline thickness of M-2 glass 

ceramic is much smaller than YMS-2, suggesting the crystallization rate of YMS glass 

is much larger than M glass. YMS-3 sample annealed at 920 °C for 1 h and 1253 °C for 

0.5 h is also shown in Fig. 6 (g), to compare with YMS-2 glass ceramic obtained at 

920 °C for 1 h and 1253 °C for 2.5 h, it is really clear that crystallization of YMS is 

along sample surface and the crystal growth rate is very fast. 

Chemical composition of Y2S sample has the same stoichiometric ratio (Y2O3:SiO2 

= 1:2) with the crystal phase Y2Si2O7, it has two crystallization peaks at 1112 °C and 
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1344 °C as listed in Table1, thereby Y2S glass is heat treated at 1112 °C and 1344 °C 

respectively. Y2S-1 glass ceramic heat treated at 920 °C for 1 h and 1112 °C for 2.5 h is 

observed to crystallize only Y4.67(SiO4)3O crystal (Fig. 3(b)), Y2S-2 glass ceramic heat 

treated at 920 °C for 1h and 1344 °C for 2.5 h is observed to crystallize y-Y2Si2O7 and 

little Y4.67(SiO4)3O crystal (Fig. 3(b)), formation of the little Y4.67(SiO4)3O may be 

occurred around 1112 °C during the sample is heated to 1344 °C. Fig. 4(c) and (d) show 

the SEM images of the Y2S-1 and Y2S-2 glass ceramics respectively, their 

microstructures of crystals precipitated in glass ceramics are really different from the 

crystal microstructure in Y-2 glass ceramic. Obviously, no phase separation exothermic 

peaks in thermal analysis are found in the Y2S glass (Fig. 2), so the crystallization 

mechanism of Y2S glass is different from Y glass. Fig. 6 gives the profile photos of the 

heat treated glasses, it can be found that the Y-2 sample began to crystallize along its 

surface and then crystals grow inwards the sample (Fig. 6 (a)), and Y2S-1 sample has 

the same crystallization way with Y-2 sample (Fig. 6 (b)), however, Y2S-2 sample 

shows overall crystallization process (Fig. 6 (c)) when Y2S glass is heat treated at the 

second crystallization peak temperature (1344 °C for 2.5 h). To confirm whether the 

Y2S-2 glass ceramic belongs to surface crystallization or that the rate of crystallization 

is too fast at second crystallization peak temperature leading to complete crystallization, 

the Y2S-3 sample is annealed only at 1344 °C for 5 min without at 920 °C for 1 h, as 

shown in Fig. 6 (d), it is still overall crystallization even though such short heat 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 

 

treatment duration. Besides, comparing the profile photos of all glass ceramics (Fig.6), 

it is found that Y2S glass is the most easily crystallized which is well in agreement with 

DSC results because of the highest enthalpy of Y2S glass. Therefore, it is really 

interesting for Y2S glass how to control glass ceramics microstructure (surface or 

overall crystallization) and precipitated crystals (y-Y2Si2O7 or Y4.67(SiO4)3O crystals).  

By the DSC analysis and crystallization behavior for SPG (Y2S) and NSPG (Y, M 

and YMS) samples, there is an exothermic peak for the NSPG samples caused by phase 

separation in DSC curve, phase separation of the NSPG samples is occurred when it is 

heat treated at this temperature (Tx), which lead to the obvious crystallization of NSPG 

samples as the heat treating temperature is elevated to the crystallization peak 

temperature (Tc). In the case of SPG sample, there are two exothermic peaks in DSC 

curve, and no phase separation is observed, while Y4.67(SiO4)3O crystal is precipitated 

along the sample surface when SPG sample is heat treated at the first exothermic peak 

temperature. Main y-Y2Si2O7 and little Y4.67(SiO4)3O crystals are precipitated from the 

SPG sample when SPG sample is annealed at second exothermic peak temperature, and 

it is the overall crystallization even though very short heat treatment duration (5min) at 

the second exothermic peak temperature. 

3.3. Structure analysis 

The FT-IR spectra of the parent glasses in the wavenumber range of 400-1400 cm
-1

, 

400-650 cm
-1

 and 850-1350 cm
-1 

are showed in Fig. 7 (a), (b) and (c), respectively. The 
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band located in the range of 448-465 cm
-1

 is assigned to bending vibrations of the T-O-T 

(T=Si or Al) bonds, and another band in the range of 470-510 cm
-1

 is assigned to 

Si-O-Si bending vibration mode [5,18,22] and overlapped with the former. The 

overlapped bands at 600-750 cm
-1

 are connected with Si-O-(Si, Al) symmetric 

stretching vibrations between the tetrahedral. The absorption band centered at 685 cm
-1

 

is due to the bending Si-O-Al vibrations as well as to the stretching vibrations of the Al- 

O bond in the alumino-oxygen tetrahedral, and the shoulder at about 620 cm
-1

 definitely 

should be associated with the silicon-aluminum-oxygen ring vibrations [23-26]. The 

absorption band at about 760-800 cm
-1

 represents Si-O-Si symmetric stretching 

vibration, but a contribution to this absorption band could arise also from 

tetra-coordinated aluminium [5,27,28]. Besides, the spectral range of 500-600 cm
-1

 is 

expected to be assigned to Y-O stretching vibration [27]. It can be seen from Fig. 7 (b) 

that Y and Y2S glasses have lower absorption intensity than the samples of M and YMS 

at nearby 470 cm
-1

 band belonging to Si-O-Si bending vibration, so Y and Y2S have 

more non-bridging oxygen and weak network connectivity. Moreover, this band that 

moved toward higher wavenumber is due to the fact that Y and Y2S have more strong 

Y-O bonds resulting from high Y/Si ratio. 

The intense absorption band in the range of 850-1200 cm
-1

 is the asymmetric 

stretching vibration of Si-O-Si bonds in the SiO4 tetrahedron with different numbers of 

bridging oxygen atoms [15,29,30]. This band comprises the unit Q
n 

standing for a 
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silicon tetrahedron containing n bridging oxygen (BO), namely, Q
0
 ( 4

4SiO  monomer), 

Q
1
 ( 6

72OSi  dimmer), Q
2
 ( 2

3SiO  chain), Q
3
 ( 2

52OSi  sheet), Q
4
 ( 2SiO  

three-dimensional network) [31]. Besides, this band can be also interpreted as vibration 

in structural units associated with vibration of aluminosilicate ring formed by Si and Al 

tetrahedra [23-26]. It can be observed from Fig. 7 (c) that Y and Y2S glasses have 

higher absorption intensity at nearby 920 cm
-1

 band and lower absorption intensity at 

nearby 1080 cm
-1

 band than the samples of M and YMS. For more precise quantitative 

analysis, the absorption band attributed to the Si-O-Si asymmetric stretching vibration is 

deconvoluted by Guassian model in Origin 8, the bands positions, widths and intensities 

are independent and unconstraint variables in curve fitting procedure. The R square for 

all fitting data are more than 99.6 %, and the fitting results of four samples are given in 

Fig. 8. Table 3 gives the frequencies, areas and area% and these bands at near 900 cm
-1

, 

960 cm
-1

, 1095 cm
-1

 and 1190 cm
-1

 respectively contributed to Q
1
, Q

2
, Q

3
 and Q

4
. 

Shakeri et al. [18] and Mahdy et al. [5] reported that some little changes such as 

reduction of bands absorption intensity in CaO-MgO-Al2O3-SiO2 system or 

Li2O-Al2O3-SiO2 system by increasing of Y2O3 content illustrated the prominent role of 

Y
3+

 ions as network former in the glass. Noritaka Saito et al. [32] suggested Y
3+

 ions 

exist as network modifier in the glass according to the results of viscosity of 

Y-Al-Si-O-N glass melts and Vickers hardness of oxynitride glasses. However, the Y
3+ 

ionic radius is larger than Al
3+ 

ionic radius [33], so Y
3+

 cations have a priority to occupy 
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octahedral voids as network modifier. As the Y/Si ratio (shown in Table 1) increases, the 

bridging oxygen of glasses is decreased, and so Y
3+

 ions serve as network modifier 

existing in the studied glasses and Y2O3 provides free oxygen in yttrium aluminosilicate 

glass system.  

Our group previously calculated the average number of NBO per tetrahedron 

(NBO/tetrahedron) and average number of bridging corners per tetrahedron 

(bridges/tetrahedron) by the deconvoluted Raman spectra of high frequency region 

attributed to the Si-O stretching vibration of [SiO4] tetrahedron structural units Q
n
 with 

0-4 bridged oxygens for base and rare earth oxides doped soda-lime-silicate glasses 

[31,34-35]. The expressions are given as follows. 

i

3

1i

iT/NBO nXX 


                               

]AlSi[

)n4(Q

ontretrahedr

NBO
n







                      

]AlSi[

nQ

ontretrahedr

bridges
n





                       

where Xi is the mole fraction of SiO4 units with ni non-bridging oxygen per silicon. The 

deconvoluted infrared spectrum of Si-O-Si asymmetric stretching vibration is analyzed 

by the above calculation method to study the effect of chemical composition of YAS 

glass on structure and crystallization behavior. The fraction and content of structure 

units Q
n
, fraction of non-bridging oxygen, average number of NBO per tetrahedron and 

average number of bridging corners per tetrahedron for the investigated glasses are 
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summarized in Table 4.  It can be observed that as the Y/Si ratio increases in chemical 

composition of glass, Q
1
 and Q

2
 are increased, Q

3
 and Q

4
 are decreased, and the 

nonbridging oxygen and the bridge per tetrahedron of glasses are increased and 

decreased respectively, as a result, the whole glass structure connectivity is weakened, 

which is in agreement with the variation trend of glass transition temperature (as shown 

in table 1), indicating that increasement of Y/Si ratio in YAS glass makes more 

nonbridging oxygens in glass and glass structure more open, resulting in glass transition 

temperature decrease. And according to the report of other scholars [14], Y4.67(SiO4)3O 

unit cell is made up of Y
3+

 and silicon-oxygen tetrahedron and the y-Y2Si2O7 unit cell 

consists of Y
3+

 and [Si2O7]
6-

, [Si2O7]
6-

 is formed by a bridging oxygen connecting two 

silicon-oxygen tetrahedron. Thereby, more Q
1
 and Q

2
 content in glass structure is 

advantageous to crystallize Y4.67(SiO4)3O and y-Y2Si2O7 crystal. Consequently, the Y 

and Y2S glasses is easier to precipitate Y4.67(SiO4)3O or y-Y2Si2O7 single or main 

crystal.   

4. Conclusion 

Crystallization behavior and structure analysis of YAS glasses have been studied in 

this work. The glass chemical composition locating at the higher temperature of liquidus 

surface in YAS phase diagram has lower peak crystallization temperature due to the 

higher enthalpy in glass structure. The crystallization mechanism for NSPG glasses (Y, 

M and YMS) and the SPG glass (Y2S heat treated at the first exothermic peak 
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temperature) all belong to surface crystallization, while SPG glass (Y2S heat treated at 

the second exothermic peak temperature) belong to overall crystallization, and the 

stoichiometric parent glass having the same stoichiometric ratio with the precipitated 

crystal, is more easily crystallization than non-stoichiometric parent glass composition. 

Besides, NSPG glasses (Y, M and YMS) is observed occurrence of phase separation 

when it is annealed at the exothermic peak temperature between glass transition 

temperature and crystallization peak temperature, and their crystallization behavior at 

crystallization peak temperature is caused by the phase separation. Y-2 and Y2S-2 glass 

ceramics are observed mainly existing y-Y2Si2O7 crystal, Y2S-1 glass ceramic is 

precipitated only Y4.67(SiO4)3O apatite. Y and Y2S glasses are easier to precipitate 

Y4.67(SiO4)3O or y-Y2Si2O7 single or mainly crystal, which mainly because more Q
1
 and 

Q
2
 content in glass structure is advantageous to crystallize Y4.67(SiO4)3O and y-Y2Si2O7 

crystal in view of crystal structure point. Consequently, this work has a technical 

guiding role in controlling the crystallization process (overall and surface crystallization) 

and the types of precipitated crystals of YAS glass for different application potentials. 
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Figure captions 

Fig. 1 The Y2O3-Al2O3-SiO2 phase diagram. YAM: Y4Al2O9; YAP: YAlO3; YAG: 

Y3Al5O12; Mull: Mullite; TR: Tridymite; Y, Y2S, M and YMS are the studied glasses in 

this work. 

Fig. 2 DSC curves of glasses Y, Y2S, M and YMS. Tc is the first crystallization peak 

temperature; Tc2 the second crystallization peak temperature; Tx is the temperature 

between glass transition temperature (Tg) and the first crystallization peak temperature. 

Fig. 3 XRD patterns of the heat treated glasses 

Fig. 4 SEM micrographs (a) Y-1, (b) Y-2, (c) Y2S-1, (d) Y2S-2 

Fig. 5 EDS results of Si and Y elements in and nearby the phase separation area for Y-1 

sample 

Fig. 6 Profile photos of the annealed glasses (a)Y-2, (b) Y2S-1, (c)Y2S-2, (d)Y2S-3, (e) 

M-2, (f) YMS-2, (g) YMS-3 

Fig. 7 IR spectra of the studied parent glass (a) 400-1400 cm
-1

, (b) 400-650 cm
-1

, (c) 

850-1350 cm
-1

 

Fig. 8 Deconvoluted IR spectrum at 850-1300 cm
-1

 of YAS glasses: (a) Y, (b) Y2S, (c) 

M, (d) YMS  
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Fig. 3  
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Fig. 6  

 

 

 

Fig. 7   
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Table 1. Chemical compositions (mol %), glass transition and crystallization 

temperatures of glass samples 

Sample Y2O3 Al2O3 SiO2 Y/Si Tg(°C) Tx(°C) Tc(°C) Tc2(°C) 

Y 22 19 59 0.74 906 1035 1137 — 

Y2S 25 25 50 1.00 905 — 1112 1344 

M 11.89 23.17 64.94 0.37 915 999 1191 — 

YMS 12.62 19.21 68.17 0.37 913 1015 1253 — 

 

 

 

Table 2. Heat treatment schedules and crystallization behavior for glasses  

Sample Annealing(T, t) Observed phase 

Y-1 920 °C, 1 h 1035 °C, 2.5 h No crystallization 

Y-2 920 °C, 1 h 1137 °C, 2.5 h y-Y2Si2O7 

Y2S-1 920 °C, 1 h 1112 °C, 2.5 h Y4.67(SiO4)3O 

Y2S-2 920 °C, 1 h 1344 °C, 2.5 h y-Y2Si2O7+(little) Y4.67(SiO4)3O 

Y2S-3 920 °C, 0 h 1344 °C, 5 min y-Y2Si2O7+(little) Y4.67(SiO4)3O 

M-1 920 °C, 1 h 999 °C, 2.5 h No crystallization 

M-2 920 °C, 1 h 1191 °C, 2.5 h y-Y2Si2O7 + mullite + cristobalite 

YMS-1 920 °C, 1 h 1015 °C, 2.5 h No crystallization 

YMS-2 920 °C, 1 h 1253 °C, 2.5 h y-Y2Si2O7 + mullite + cristobalite 

YMS-3 920 °C, 1 h 1253 °C, 0.5 h y-Y2Si2O7 + mullite + cristobalite 

y-Y2Si2O7 (JCPDS-22-1103); Y4.67(SiO4)3O (JCPDS-30-1457); mullite (JCPDS-02-0431); 

cristobalite (JCPDS-03-0276). 
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Table 3 Frequencies (V/cm
-1

), areas (A) and area % (A%) of IR bands obtained from the 

deconvolution fitting 

 Y Y2S M YMS 

V1 903 907 899 893 

V2 970 978 951 939 

V3 1098 1094 1096 1094 

V4 1188 1185 1204 1210 

A1 9.41 10.14 7.42 4.74 

A2 37.32 33.96 26.62 22.65 

A3 72.98 63.37 95.50 102.25 

A4 10.48 6.61 17.78 17.65 

A1% 7.22 8.88 5.04 3.21 

A2% 28.66 29.77 18.07 15.38 

A3% 56.06 55.55 64.82 69.42 

A4% 8.05 5.79 12.07 11.98 
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Table 4 Fraction (X
n
%) and content (Q

n
/%) of structure units, average number of NBO 

per tetrahedron and average number of bridging corners per tetrahedron 

 Y Y2S M YMS 

X
1
% 8.30 10.21 5.80 3.69 

X
2
% 29.23 30.37 18.43 15.69 

X
3
% 58.30 57.77 67.41 72.20 

X
4
% 4.16 1.65 8.36 8.42 

Q
1
 8.05 10.21 6.45 3.94 

Q
2
 28.36 30.37 20.51 16.72 

Q
3
 56.55 57.77 75.02 76.95 

Q
4
 2.46 0.83 5.43 5.74 

NBO/tetrahedron 1.42 1.49 1.22 1.15 

bridges/tetrahedron 2.58 2.51 2.78 2.85 
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Figure captions 

Fig. 1 The Y2O3-Al2O3-SiO2 phase diagram. YAM: Y4Al2O9; YAP: YAlO3; YAG: 

Y3Al5O12; Mull: Mullite; TR: Tridymite; Y, Y2S, M and YMS are the studied glasses 

in this work. 

Fig. 2 DSC curves of glasses Y, Y2S, M and YMS. Tc is the first crystallization peak 

temperature; Tc2 the second crystallization peak temperature; Tx is the temperature 

between glass transition temperature (Tg) and the first crystallization peak 

temperature. 

Fig. 3 XRD patterns of the heat treated glasses 

Fig. 4 SEM micrographs (a) Y-1, (b) Y-2, (c) Y2S-1, (d) Y2S-2 

Fig. 5 EDS results of Si and Y elements in and nearby the phase separation area for 

Y-1 sample 

Fig. 6 Profile photos of the annealed glasses (a)Y-2, (b) Y2S-1, (c)Y2S-2, (d)Y2S-3, 

(e) M-2, (f) YMS-2, (g) YMS-3 

Fig. 7 IR spectra of the studied parent glass (a) 400-1400 cm
-1

, (b) 400-650 cm
-1

, (c) 

850-1350 cm
-1

 

Fig. 8 Deconvoluted IR spectrum at 850-1300 cm
-1

 of YAS glasses: (a) Y, (b) Y2S, (c) 

M, (d) YMS 
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