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Abstract

This paper introduces a version of the interdependent value model of Milgrom and Weber

(1982), where the signals are given by an index gathering signal shifters observed by the

econometrician and private ones specific to each bidders. The model primitives are shown

to be nonparametrically identified from first-price auction bids under a testable mild rank

condition. Identification holds for all possible signal values. This allows to consider a wide

range of counterfactuals where this is important, as expected revenue in second-price auction.

An estimation procedure is briefly discussed.

JEL: C57, C14
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1 Introduction

Most nonparametric identification results or empirical studies for first-price auctions con-

sider the private value case. See for instance the review papers of Athey and Haile (2007)

or Hendricks and Porter (2007). This is probably due to the non identification result of

Laffont and Vuong (1996), which states that bids generated by interdependent values are

also rationalized by private values. This negative result has not prevented empirical work

for the interdependent case. In particular, Hendricks, Porter and Wilson (1994) consider an

asymmetric common value model for drainage tracts, where an informed bidder bids for a

neighbor tract and competes with non neighbor buyers. Hendricks, Pinkse and Porter (2003)

have used ex post values observed after the auction to test rational bidding in a common

value framework. They consider an application to wild cat leases, where bidders can com-

mission seismic studies to evaluate the quantity of petrol or gas in the tracts. Shneyerov

(2006) has shown that the seller expected revenue in a first or second price auction can still

be identified. His results are applied to municipal bonds, which values are determined after

the auction, when sold to some final investors. Paarsch (1992), Haile, Hong and Shum (2003)

and Compiani, Haile and Sant’Anna (2018) propose to test whether bids are generated by

a common or a private value model. Hong and Shum (2002) restore identification using

a parametric common value model. Aradillas-López, Gandhi and Quint (2013) use a set

identification approach in the more restrictive framework of correlated private values.

These papers fall in the interdependent value framework, where each bidder has a possibly

unknown value Vi and observes a univariate private signal Xi, i = 1, . . . , n. The parameters

of interest are the joint signal distribution and the valuation or value functions

Φi (X1, . . . , Xn) = E [Vi |X1, . . . , Xn ] (1.1)

which are sufficient to compute most counterfactuals. In the private value case, the valu-

ation only depends upon the bidder’s signal. By contrast, in the interdependent case, the

value of a given bidder can depend upon the signals of other bidders, creating so a net-

work of interactions which is difficult to identify from first-price auction bids without further
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restrictions.

In the symmetric case, Laffont and Vuong (1996) show that the bids only identify

V i (x, x) = E

[
Vi

∣∣∣∣Xi = x, max
1≤j 6=i≤n

Xj = x

]
.

In particular, the “pseudo” private values V i = V i (Xi, Xi) generate equilibrium bids which

are observationally equivalent to the initial ones. As the private values V i are independent

and identically distributed (i.i.d) when the signals Xi’s are, it would be tempting to ex-

pect that revenue equivalence results valid under the symmetric independent private value

paradigm extends to symmetric interdependent values. This is however misusing the ob-

servational equivalence results of Laffont and Vuong (1996) by ignoring bidder valuation

dependence. In particular, it is known that ascending auctions, during which bidders can

learn about their opponent’s signals, generates a higher expected seller revenue than first-

price auction. The optimal reserve price computed from the distribution of the pseudo

private values V i is also unlikely to be identical with the one taking into account bidder’s

interdependence. As the valuation functions are typically positively correlated, so will be the

bidder’s participation decisions, suggesting the seller faces a higher risk of non participation

under interdependent value than for independent private ones. Recovering the function Φi(·)
in (1.1) and the signal distribution is therefore important from an auction design perspective.

Functional restrictions have been used to restore identification within a symmetric frame-

work. Hong and Shum (2002) have shown that a Gaussian Wilson model is identified. Li,

Perrigne and Vuong (2000) consider an extension of the Wilson model where Vi = V for all

i, the signals satisfy Xi = V εi. They assume that, for some unknown parameter (θ0, θ1),

V i (x, x) = θ0x
θ1 for identification and estimation purposes. Février (2008) relaxes the latter

assumption and shows identification when the conditional support of Xi given the common

value depends upon V . He (2015) considers Φi(x1, . . . , xn) = x̄ for all i.

Alternatively, observable asymmetries generated by bidder specific variables can be used

to obtain identification with such restrictions on Φi(·) or V i(·). Somaini (2018) considers a

valuation exclusion restriction, under which bidder i valuation only depends upon a bidder

specific shifter Zi, which is observed by all bidders and the econometrician. This is sufficient

4



to obtain identification for additive valuation function. The present paper explores another

route, focusing on the signal, which is now supposed to be partly observable by all bidders

and the econometrician. More specifically, all the signals Xj appearing in (1.1) can be

decomposed into a D dimensional common knowledge “signal shifter” Zj and a private

vector component γij(Aj), where Aj is normalized to have a uniform distribution. These

two components are combined using a linear index structure, Xj = Z ′
jγij(Aj).

1 In the latter

expression, γij(·) is a common knowledge slope function which may depend upon the identity

of the considered bidder. If so, γij(·) incorporates a specific bidder i fixed effect, or can be

viewed as bidder i belief about the slope γjj(·) of bidder j.
The common knowledge variable Z can indicate better information or a higher value.2

For instance, Somaini (2018) considers the bidder distance to the place where works of

the auctioned contract has to be performed, which inverse can be both an indicator of

increasing information or lower cost. Bidder capacity constraints can also affect the value

of an auctioned contract. Length of common tract borders can be used as a measure of

information strength in the application of Hendricks et al. (1994.) The cost paid by bidders to

acquire information on a gas or oil contents on an auctioned lease, as described in Hendricks,

Pinske and Porter (2003), can also be used if common knowledge. Bidder reputation and

experience, measured for instance by time spent in activities related with the auctioned good

can again indicate a better information or a higher ability to process it for resale.

The variations of the continuous Zj’s are used to identify the function Φi(·) in (1.1) and

the slope functions γij (·), j = 1, . . . , n, from the bids observed in a first-price auction. The

joint distribution of the private signals is also identified assuming that a low signal does

1 The index structure is general enough to include sieve approximation of a signal function xij (zj , Aj),

provided Zj = [b1(zj), . . . , bD(zj)] for a sieve {bd(·)}∞d=1 and D growing with the sample size. Such extension

is however out of the scope of the present paper.
2Variation of the common knowledge slope functions γij(·) across i can also indicate a stronger bidder

due to an unobserved variable which stay constant across the sample, or a fixed effect. For instance, each

bidder collection of γij(·), j = 1, . . . , n may take the two distinct values γ
i
(·) ≤ γj(·), j = 1, . . . , n indicating

a weak or a strong bidder.
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not prevent bidding and that bids increase with signal. Hence this interdependent value

model is fully identified and can be used for most usual counterfactual exercises. As our

nonparametric identification result uses local variation at given small value of the Zj’s, the

model is overidentified and can therefore be tested.

Athey and Haile (2002) have similarly considered good covariate variations for ascending

auctions with dependent private values. The nonparametric identification result stated in

Athey and Haile (2002, Theorem 5) relies on order statistic properties that are not relevant

here. The harder parameters to identify are the slope functions γij (·). In the two bidder

case, identification is obtained by differentiating with respect to the signal Ai and to the

covariate Zj. This gives a system of differential equations with a unique solution, identifying

so the slope functions. Similar identification procedure, based on uniqueness of the solution

of a differential equation, can be traced back to Elbers and Ridder (1982) in the context of

duration models, see also Abbring and van der Berg (2003). The case where three bidders or

more attend the auction is more involved but proceeds similarly: differentiating with respect

to the signal and covariate gives an integro-differential system, but it is shown that it also

identifies the slope functions.

The rest of the paper is organized as follows. The next section introduces our interdepen-

dent value models and three illustrative examples. Section 3 presents our main nonparametric

identification results. Section 4 discusses a possible two stage estimation procedure. Section

5 concludes the paper and proofs are grouped in Section 6.

2 Model, examples and assumptions

A single and indivisible object is sold to a known number n ≥ 2 of buyers using a first-price

auction. There is no reserve price and the seller accepts all nonnegative bids. The observa-

tions consist on the bidder identities, bids Bj and the signal shifters Zj, j = 1, . . . , n where n

is the total number of buyers. The next Section describes the model and bidding strategies,

and gives our key identification assumptions. The framework focuses on a particular bidder,
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say bidder i, which valuation function, or value, is a parameter of interest together with the

joint signal distribution introduced below.

2.1 Valuation function and examples

Buyers asymmetry is common knowledge and driven by individual D dimensional variables

Zj. Prior bidding, each buyers receive a private signal Ai. The joint distribution of the

signals A = (A1, . . . , An) given Z = (Z1, . . . , Zn) is known to the buyers but not to the

analyst. The marginal distribution of each Ai is normalized to be uniform over [0, 1]. The

valuation function of buyer i is

Vi (A;Z) = Φi [Z
′
1γi1 (A1) , . . . , Z

′
nγin (An)] = Φi [Z,Γi (A)] , (2.2)

i = 1, . . . , n, where Φi (·) and Γi (A) = (γi1 (A1) , . . . , γin (An)) are unknown parameters

of interest.3 In this specification, the index Z ′
jγij (Aj) can be viewed as a mixed signal

combining observable and unobservable components, and replaces the signal Xi from (1.1).

The function Φi combines these signals and reveals the interactions of the other bidders with

i, in terms of value. Examples are as follows, for which Γi (·) = Γ (·) is common to buyers.

• Additive valuation model. Bidder j observes a component Z ′
jγj (Ai) of the total

valuation of the auctioned good, which is weighted with a weight πij by bidder i in her

value function

Vi (A;Z) =

n∑

j=1

πijZ
′
jγj (Aj) with πij ≥ 0

in which case Φi (x1, . . . , xn) =
∑n

j=1 πijxi. He (2015) obtains identification in the

symmetric case Vi (A;Z) =
∑n

j=1 γ (Aj) /n, but asymmetric specifications can be more

relevant for applications. For instance the auctioned good can be a piece of land ex-

pected to contain some resources, as in mineral rights auctions. In this type of auction,

3This specification can easily be extended to allow for an auction specific variable Z0, ie Vi (A;Z,Z0) =

Φi [Z
′
1γi1 (A1|Z0) , . . . , Z

′
nγin (An|Z0)|Z0], by conditioning on Z0. Identification of this model follows from

applications, for each value of Z0, of Theorems 3 and 4 below.
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bidders exploit similar lots which can be adjacent or have similar characteristics to the

auctioned one, a observable information that can be recorded in Z. The signal Ai is

private to bidder i, being for instance the outcomes of her lot. A πij set to 0 may indi-

cate that bidders i and j would use the lot for different purposes, so that information

of i is not relevant for j and vice versa.

• A simplified auction with resale. Suppose each bidder is tied with a final buyer

to whom he can sell for sure the good at a price πiiZ
′
iγi (Ai) if she wins the auction.

After the auction, the winner can sell the good to the other final buyers at a price

πijZ
′
jγj (Aj). This gives the value functions

Vi (A;Z) = max
i=1,...,n

{
πijZ

′
jγj (Aj)

}

in which case Φi (x1, . . . , xn) = maxi=1,...,n {πijxi}.

• A non-Gaussian and asymmetric Wilson model. Suppose the value V of the

good is not observed by the buyers, who receive instead a noisy signal which accuracy

is bidder specific and common knowledge. A possible parameter of interest is the

quantile function γ0 (·) of V . Hence for a uniform A0, V = γ0 (A0), which can also be

written as

V = γ0 (F (ν))

where ν is a standard normal and F (·) its cdf. In the standard Wilson model, the value

is normal, ie V = ν up to a scale parameter, and assuming that the distribution of

V is unknown introduces additional complications. The signal structure resembles the

standard Wilson model, the signal of bidder i with observed accuracy σi for ν being

νi = ν + σiεi

with independent ν, ε1, . . . , εn drawn from the standard normal distribution. Note

that the information carried by the signal νi is equivalent to the uniform signal

Ai = F

(
νi√
1 + σ2

i

)
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It follows that the distribution of ν given A1, . . . , An is

N
( ∑n

i=1
νi
σ2

i

1 +
∑n

i=1
1
σ2

i

,
1

1 +
∑n

i=1
1
σ2

i

)
= N



∑n

i=1

√
1+σ2

i

σ2

i

F−1(Ai)

1 +
∑n

i=1
1
σ2

i

,
1

1 +
∑n

i=1
1
σ2

i




Set Zi =

√
1+σ2

i

σ2

i

, which gives 1
σ2

i

=
(
Z2

i +
1
4

)1/2 − 1
2
, so that a large Zi means a small

signal variance σ2
i . The value function V (A;Z) = E [V |A,Z ] is identical across buyers

and satisfies, for Σ2(Z) = 1 +
∑n

i=1
1
σ2

i

,

V (A;Z) =
1√
2π

∫
γ0

(∑n
i=1 ZiF

−1(Ai)

Σ2(Z)
+ Σ(Z)t

)
exp

(
−t

2

2

)
dt

= Ψ

(
n∑

i=1

ZiF
−1 (Ai) ,Σ(Z)

)

which, conditionally on Σ(Z), falls in the considered framework. Note that, for Zj = ∞,

the variance σj vanishes so that bidder j knows the value V . Little algebra then gives

that

lim
Zi→+∞

V (A;Z) = γ0 (Ai) , for any i = 1, . . . , n, (2.3)

showing that the quantile function γ0(·) is identified from the value function under a

large support assumption for the bidder covariate.

As detailed below, the revisited Wilson model is easier to identify than the other Exam-

ples, due to the possibility of perfect information. We now detail our main Assumptions for

the value specification. In the sequel, we shall focus on the identification of buyer i valuation

function. Let I be the set of active signals, that is the signal affecting the valuation of bidder

i, or in other words, the smallest subset of {1, . . . , n} such that

Φi (x1, . . . , xn) = Φi [xj , j ∈ I] . (2.4)

Assumption Z. The variable Z = (Z1, . . . , Zn) has support R
D
+∗ × · · · × R

D
+∗ = Z.
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Assumption A. The buyer signal Aj is uniform over [0, 1] given Z, j = 1, . . . , n.

The joint p.d.f c (·|Z) of A = (A1, . . . , An) given Z is strictly positive and continuously

differentiable with respect to the signal and the covariate.

Assumption G. The slope γij (·) are continuously differentiable over [0, 1] with non-

negative and nondecreasing entries, at least one being strictly increasing. In addition, one

of the following terminal and initial conditions holds:(i) γij(1) 6= 0 for all j in I or (ii)

γij(0) 6= 0 for all j in I

Assumption P. The set I is not empty. The function Φi (x1, . . . , xn) maps R
n
+ into

R+∗ and is twice continuously differentiable with partial derivatives ∂Φi(·)
∂xj

> 0 over R
n
+ for

all j in I.

Assumption Z imposes signal shifter linear independence and rules out discrete entries

to allow differentiation. Constant entries are also ruled out as it can cause identification loss

as in Laffont and Vuong (1996). That the entries of Z can be unbounded is a simplifying

assumption that can be weakened, but allows here to identifies Φ1(·) over its unbounded

definition domain. That the vector Z can go to 0 is used to identify the initial or terminal

values of the γij(·)’s later on.
Assumption A includes a standard normalization of the conditional signal distribution,

which are assumed to be uniform. This permits the use of the quantile approach of Gimenes

and Guerre (2019), see Lemma 1 below. Note however that the signal vector (A1, . . . , An)

can depend upon Z.

Assumption G imposes smooth and bounded mixed signals Z ′
jγij (·).4 The terminal slope

condition G-(i) will be used when n = 2, while the initial one G-(ii), which implies G-(i)

when the slope entries are strictly increasing, is used for n = 3. Assumption P requests

a valuation function which is strictly increasing with respect to its argument and smooth.

4Assumption G rules out the revisited Wilson model example, for which γji (·) is infinite at 0 or 1. But

Assumption G is only needed to identify the unknown γji (·), and therefore not for this example since its

γij (·) are known.
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Assumptions G and P together imply that the value function Vi (A;Z) increases with each

private signal Aj , as assumed in Milgrom and Weber (1982). In the sequel, we shall focus

on the identification of buyer i valuation function, or equivalently of the pair [Φi (·) ,Γi (·)]
up to a scaling normalization, as [Φi (·/λ) , λΓi (·)] gives the same valuation function for all

λ > 0. A convenient normalization used in the proofs of the main results is

∂Φi (0, . . . , 0)

∂xj
= 1 for all j in I. (2.5)

2.2 Bidding strategies

Our identification results are based on high level bidding assumptions inspired by the

Bayesian Nash Equilibrium framework. It is assumed that bids depend upon Z and bid-

der private signals

Bj = sj (Aj;Z) > 0, j = 1, . . . , n, Z ∈ Z.

In what follows, ϕ(1)(·; z) is the partial derivative ϕ(1)(α; z) = ∂
∂α
ϕ(α; z) with respect to the

quantile level.

Assumption S. For each Z in Z (i) the bidding strategy si (·;Z) satisfies the best

response condition

si (α;Z) ∈ argmax
b>0

E

[
(Vi (A;Z)− b) I

{
b ≥ max

1≤j 6=i≤n
Bj

}
|Ai = α, Z

]
. (2.6)

(ii) The initial condition s1 (0;Z) = · · · = sn (0;Z) holds. (iii) The terminal condition

s1 (1;Z) = · · · = sn (1;Z) holds. (iv) For each j = 1, . . . , n, sj (·;Z) is twice continuously

differentiable with s
(1)
j (·;Z) > 0 over [0, 1].

As in the preceding section, the focus is on identification of the valuation function of

bidder i, so that the best response condition (2.6) in Assumption S-(i) only concerns this

specific bidder: the other bidders do not need to use a best response bidding strategy. Note

however that, apart the initial condition of S-(ii), most of Assumption S is inspired by the

Bayesian Nash Equilibrium framework where all the bidders use a best response bidding

strategy.
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Assumption S-(iv) is used in particular for the joint signal distribution, see Lemma 1, to-

gether with S-(ii,iii) to get its identification over the whole support [0, 1]n. The monotonicity

condition in S-(iv) is standard in the Econometrics of auctions when assuming bids from the

Bayesian Nash Equilibrium. For affiliated signal and valuation functions Vi (A;Z) increasing

with respect to each signals, Reny and Zamir (2004) have established existence, but not

uniqueness, of a Bayesian Nash equilibrium with increasing bidding strategies. In the two

bidder case, Lizzeri and Persico (2000, Appendix) have studied uniqueness, strict monotonic-

ity and smoothness of the optimal bidding strategies as in S-(iv). But these assumptions

may not hold for bids not generated by a Bayesian Nash equilibrium. Discontinuities in the

strategy sj(·|Z) should generate flat parts in the cumulative distribution function of Bj or

discontinuities for its pdf. A non monotonic but differentiable sj(·|Z) can lead to a diverging

pdf, so that both are in principle testable.

The common terminal condition in Assumption S-(iii) is from Lizzeri and Persico (2000),

who established it in the two bidder case under the Bayesian Nash Equilibrium framework.

Intuitively, if a group of bidders have a common terminal bid larger than their opponents,

they can increase their profit by slightly decreasing their terminal bids and still be sure

to win the auction. Hence all the bidders should have the same sj(1;Z) as assumed in S-

(iii). This condition can be tested in principle, because if S-(iii) does not hold for a given

Z, there is a dominated bidder, say i0, with bid support upper bound b0(Z) such that

P
(
Bi0 ≤ b0(Z)

∣∣Z
)
= 1 and P

(
max1≤i≤nBi > b0(Z)

∣∣Z
)
> 0 .

The initial condition in Assumption S-(ii) does not necessarily hold in the Bayesian

Nash Equilibrium framework, especially with asymmetric bidders. It ensures that there is

no bidder who would lose the auction with probability 1 given a too low signal value. As a

consequence, the best-response characterization (2.6) of the bidding strategy implies the first

order condition (3.4) in Lemma 2 below, which is key for identification. Another important

econometric role of the initial condition S-(ii) together with the terminal one S-(iii) is to allow

for identification of the slope functions γij(·) over the whole quantile interval [0, 1], therefore
avoiding censoring. As Assumption S-(iii), Assumption S-(ii) is in principle testable.
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Strategy common initial condition and Bayesian Nash equilibrium. For bids

from Bayesian Nash equilibrium, additional restrictions may be needed to ensure that the

common initial condition S-(ii) holds, as discussed now. Assumption S-(ii) typically fails

when the initial valuations Vi(0;Z) differ across bidders. If the Vi(0;Z) are identical, say

equal to V (0;Z), it must hold for all i si(0;Z) = V (0;Z) under Assumption S-(iv).5 Hence

Assumption S-(ii) holds if

V (0;Z) = Φ1 (Z
′
1γ11(0), . . . , Z

′
nγ1n(0)) = · · · = Φn (Z

′
1γn1(0), . . . , Z

′
nγnn(0)) . (2.7)

Assuming, for the sake of simplicity, that the set I of all bidders is {1, . . . , n} and the

normalization (2.5), (2.7) holds when γj1(0) = · · · = γjn(0) for all j and, if these slope

do not vanish, Φ1(·) = · · · = Φn(·). So a sufficient condition for Assumption S-(ii) is the

following:

Condition BNE. One of the two restrictions holds:

(i). Common initial value: Φ1(0, . . . , 0) = · · · = Φn(0, . . . , 0) and γij(0) = 0 for all i, j =

1, . . . , n;

(ii). Common Φi(·) and initial slope: Φi(x1, . . . , xn) = Φ(x1, . . . , xn) and (γi1(0), . . . , γin(0)) =

(γ1(0), . . . , γn(0)) for all i.

5To see this, let αi(Z) = inf {α ∈ [0, 1];P (si(Ai;Z) wins and Ai ≥ α|Z) > 0} be the signal threshold

above which bidder i has a non trivial probability to win the auction. Under Assumption S-(iv), it must

hold that s1(α1(Z);Z) = · · · = sn(αn(Z);Z). Arguing as for (3.5), (3.6) and (3.4) give

sj(αj(Z);Z) = Φj [Z
′
1γj1(α1(Z)), . . . , Z ′

nγjn(αn(Z))]

which is strictly larger than the common V (0;Z) if one of the αi(Z) is strictly larger than 0 by Assumptions

G and P. Suppose now that one of αi(Z) is strictly larger than 0, say α1(Z) > 0 assuming it is the unique

one for the sake of brevity. It follows that bidder i = 2 expected profit given A2 = α is equivalent to, when

α goes to 0

Cαn−1

∫ α
1

0

{Φ2 [Z
′
1γ21(α), Z

′
2γ22(0), . . . , Z

′
nγ2n(0)]− Φ2 [Z

′
1γ21(α1(Z))Z ′

2γ22(0), . . . , Z
′
nγ2n(0)]} dα < 0

which is not possible as bidder 2 would achieve a non negative expected profit making a bid close to V (0;Z)

when A2 goes to 0. Hence it must hold that α1(Z) = 0.
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Condition BNE-(i) allows for more asymmetry, with a set I that can vary across bidders.

The common initial condition holds with Φi(0) = 0 in the three examples considered earlier.

By contrast, the common Φi(·) condition of BNE-(ii) is more demanding: it holds in the

Wilson model examples but requests, in the two first examples, that the weights do not

depend upon bidder identity, πij = πj. More generally, Condition BNE-(ii) forces the set I
of active bidders to be identical across bidders. Because the slope γij(·) can be very small,

this may nevertheless be flexible enough to mimic any set I of active signals.

2.3 Rank condition

Our main identification condition is a rank condition stated in Assumption I below. Let

Gj (b|Z) = P (Bj ≤ b|Z)

be the c.d.f of Bj given Z, Bj (α|Z) = G−1
j (α|Z) be the associated conditional quantile

function and set

GjBi (α|Z) = Gj [Bi (α|Z) |Z] .

An important consequence of Assumption S-(ii,iii) and Lemma 1-(ii) below, which states

that si(·|Z) = Bi(·|Z), is that GjBi (0|Z) = 0 and GjBi (1|Z) = 1 for all j. Recall that I
is the smallest subset satisfying Φi (x1, . . . , xn) = Φi [xj , j ∈ I]. Recall Z ′

k = (Z1k, . . . , ZDk)
′

and let ∂Zk
GjBi (α|Z) be the gradient column vector

∂Zk
GjBi (α|Z) =

[
∂GjBi (α|Z)

∂Z1k

, . . . ,
∂GjBi (α|Z)

∂ZDk

]′
.

Assumption I. Let I be as in (2.4) and suppose I 6= {i}. For all j in I \ {i},
GjBi (α|Z) is twice continuously differentiable with respect to (α, Z) in [0, 1] × Z. For all

(α, Z) of [0, 1)× Z, the (Card(I)− 1)× (Card(I)− 1) matrix with typical entries

Z ′
k∂Zk

GjBi (α|Z)
α(1− α)

, j, k ∈ I \ {i}

is full rank.
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Assumption I is not binding in the private value case due to the condition I 6= {i}. Ob-

serve also that, for α = 0 and α = 1 respectively, ∂Zk
GjBi (α|Z) /α and ∂Zk

GjBi (α|Z) /(1−
α) stands for the limit ∂Zk

gjbi (α|Z). Note that a stronger rank condition than in Assump-

tion I is in principle testable using the whole set of bidders {1, . . . , n} instead of the unknown

I, as Z ′
k∂Zk

GjBi (α|Z) can be consistently estimated.

The important role played by GjBi (α|Z) is better illustrated looking at Lemma 1 below,

which shows in particular that the increasing strategy si (·|Z) is identical to the bid quantile

function Bi (·|Z). If the other bidders j use strictly increasing and continuous strategies

sj (·|Z), then
GjBi (α|Z) = s−1

j [si (α|Z)]

which is an indicator of asymmetric bidding. The rank condition in Assumption I fails in

particular if GjBi (α|Z) = α for all j, which means that the buyers bid using the same

symmetric strategy s (α|Z). In such case, the variable Z plays a role similar to a charac-

teristic of the auctioned good. If the bids are drawn from a Bayesian Nash equilibrium,

the non-identification argument of Laffont and Vuong (1996) holds, showing that there is a

private information value model which is observationally equivalent to the one at hand. The

rank condition does not hold if GjBi (α|Z) = Cji (α) is independent of Z, which gives that

sj (α|Z) = si
[
C−1

ji (α) |Z
]
for all j 6= i in I.

3 Main identification results

This section considers first identification of the signal distribution. Section 3.2 then derives

the identification implications for the valuation function of the best response condition (2.6)

in Assumption S-(i). In particular, the revisited Wilson model is shown to be identified.

However, other valuation function models may not be identified for all signal values. As

shown in Section 3.3, the mixed signal value function is identified in full generality, which

ensures that this specification can be used for counterfactuals that requests to know value

functions for all possible signals. The latter includes in particular the computation of an
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expected revenue, which involves integration over all possible signals.

3.1 Bidding strategy and signal distribution

The next lemma directly follows from the increasing strategy assumption. Lemma 1-(ii)

shows that the bid quantile function is the bid strategy function, while identification of the

distribution of the signal vector A given Z follows from (i). Lemma 1-(iii) will be used for

identifying the valuation function later on.

Lemma 1 Suppose Assumptions A and S-(ii,iii,iv) hold. Then

(i). [Signal identification] For each j = 1, . . . , n, the signals Aj satisfy

Aj = Gj (Bj |Z) .

and are therefore identified, as the conditional signal distribution.

(ii). [Signal bid function identification] For each j = 1, . . . , n, the signal bid function

satisfies

sj (α;Z) = Bj (α|Z) .

(iii). [Winning probability identification] Suppose bidder i bid is si (a;Z) while her

signal Ai is equal to α. Then the probability ωi (a|α, Z) that bidder i wins the auction

given Ai = α and Z is identified and is equal to

ωi (a|α, Z) = P

[
Bi (a|Z) > max

1≤j 6=i≤n
Bj

∣∣∣∣Ai = α, Z

]

Proof of Lemma 1: see Appendix.

3.2 A preliminary identification result for the valuation function

The next Lemma is an asymmetric version of first-order condition that determines the bid-

ding strategy in Milgrom and Weber (1982), see also Laffont and Vuong (1996), Guerre,
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Perrigne and Vuong (2000) and Haile et al. (2003) for econometric applications. A distinc-

tive feature of the quantile approach developed here comes from Lemma 1-(ii), which shows

that the bidding strategy si (·;Z) is equal to the bid quantile Bi (·|Z) because si (·;Z) is

strictly increasing and continuous by Assumption S-(iv). It follows that the best response

condition (2.6) is equivalent to

α = arg max
a∈[0,1]

E

[
(Vi (A;Z)− Bi (a|Z)) I

{
Bi (a|Z) ≥ max

1≤j 6=i≤n
Bj

}
|Ai = α, Z

]
(3.1)

for all α in [0, 1] under Assumption S. Define

V i (a|α, Z) = E

[
Vi (A;Z) I

{
Bi (a|Z) ≥ max

1≤j 6=i≤n
Bj

}
|Ai = α, Z

]
. (3.2)

Observe that the expected payoff in (3.1) is equal to

V i (a|α, Z)− Bi (a|Z)ωi (a|α, Z)

and that {
Bi (a|Z) ≥ max

1≤j 6=i≤n
Bj

}
=

⋃

1≤j 6=i≤n

{Aj ≤ Gj [Bi (a|Z)|Z]} .

Since Bi (·|Z) = si (·|Z), Gj (·|Z) = s−1
j (·|Z) and because the p.d.f c (·|Z) are continuously

differentiable by Assumptions S-(iv) and A respectively, so are V i (·|α, Z) and ωi (·|α, Z).
The first-order condition associated with (3.1) therefore implies

∂V i (a|α, Z)
∂a

∣∣∣∣
a=α

− Bi (α;Z)
∂ωi (a|α, Z)

∂a

∣∣∣∣
a=α

− B
(1)
i (α;Z)ωi (α|α, Z) = 0. (3.3)

Define

Ωi (α|Z) =
ωi (α|α, Z)
∂ωi(a|α,Z)

∂a

∣∣∣
a=α

, Ui (α|Z) =
∂V i(a|α,Z)

∂a

∣∣∣
a=α

∂ωi(a|α,Z)
∂a

∣∣∣
a=α

.

Rearranging (3.3) gives the next Lemma.

Lemma 2 Under Assumptions A and S, it holds for each Z of Z and all α in [0, 1]

Ui (α|Z) = Bi (α|Z) +B
(1)
i (α|Z)Ωi (α|Z) (3.4)

and Ui (·|·) is identified.
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As Ωi (·|Z) is identified by Lemma 1-(iii), Equation (3.4) in Lemma 2 shows that Ui (·|Z) is
identified. The merits and limitations of this identification result are now discussed for the

two and three bidders general case and for the revisited Wilson model.

3.2.1 Two bidders general case

It is assumed here that the bidder covariate are of dimension 1 and that Vi (A;Z) is a general

valuation function. Suppose without loss of generality that i = 1. Observe that the p.d.f

of A2 given A1 = α and Z is c (α, ·|Z) as A1 has a uniform distribution over [0, 1] given

Z. Recall that G2B1 (a|Z) = G2 [B1 (a|Z) |Z] has a positive derivative g2b1 (a|Z) by Lemma

1-(ii) and Assumption S-(iii). This gives for V 1 (a|α, Z) as in (3.2) and ω1 (a|α, Z) as in

Lemma 1-(iii)

V 1 (a|α, Z) =
∫ 1

0

V1 (α, t;Z) I [B1 (a|Z) ≥ B2 (t|Z)] c (α, t|Z)dt

=

∫ G2B1(a|Z)

0

V1 (α, t;Z) c (α, t|Z) dt,

ω1 (a|α, Z) =
∫ 1

0

I [B1 (a|Z) ≥ B2 (t|Z) dt] c (α, t|Z) dt =
∫ G2B1(a|Z)

0

c (α, t|Z) dt

so that

∂V 1 (a|α, Z)
∂a

= g2b1 (a|Z) V1 (α,G2B1 (a|Z) ;Z) c (α,G2B1 (a|Z) |Z)
∂ω1 (a|α, Z)

∂a
= g2b1 (a|Z) c (α,G2B1 (a|Z) |Z) .

Hence

U1 (α|Z) =
∂V 1(a|α,Z)

∂a

∣∣∣
a=α

∂ω1(a|α,Z)
∂a

∣∣∣
a=α

= V1 (α,G2B1 (α|Z) ;Z) . (3.5)

It follows from Lemma 2 that, for each Z, V1 (α1, α2;Z) is nonparametrically identified

over the curve

{(α1, α2) ;α2 = G2B1 (α1|Z) , α1 ∈ [0, 1]} .

This is insufficient to identify V1 (·) over [0, 1]2×Z nonparametrically. However identification

may hold under further restrictions of the valuation function as detailed here.
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• Bidder covariate exclusion restriction. Somaini (2018) considers the exclusion

restriction V1 (α1, α2;Z) = V1 (α1, α2;Z1), which, for a given Z1, ensures identification

of the latter for any α1 in [0, 1] and α2 in [minZ2
G2B1 (α1|Z) ,maxZ2

G2B1 (α1|Z)] by
a proper choice of Z2.

• Separability restriction. Consider the additive specification

V1 (α1, α2;Z) = v1 (α1, α2) + v0 (Z)

with the normalization v1 (0, 0) = 0.6 As G2B1 (0|Z) = 0 under Assumption S-(ii),

v2 (Z) = U1 (0|Z) is identified and so is v1 (α1, G2B1 (α1|Z)) = U1 (α1|Z) − U1 (0|Z).
It then follows that the valuation function of bidder 1 is identified for any α1 in [0, 1]

and α2 in [minZ G2B1 (α1|Z) ,maxZ G2B1 (α1|Z)], which may differ from [0, 1]. This

restriction on α2 can be removed under an additional additive assumption. Suppose

now v1(α1, α2) = v11(α1) + v12(α2) with v11(0) = v12(0) = 0. Then U1(·|Z) identifies

u1(α|Z) = v11(α) + v12 (G2B1 (α|Z)) .

As ∂Zu1(α|Z) = v
(1)
12 (G2B1 (α1|Z)) ∂ZG2B1 (α|Z), it follows that v

(1)
12 (·) is identified

over [0, 1] if, for each α in [0, 1], there exists a Z such that ∂ZG2B1 (α|Z) 6= 0. Hence

the initial condition v12(0) = 0 yields that v12(·) is identified, and then v11(·) is also

identified, both over the whole [0, 1].

• Signal exclusion restriction. The value function is identified in the private value

case V1 (α1, α2;Z) = V1 (α1;Z). The signal exclusion restriction V1 (α1, α2;Z) =

V1 (α2;Z) yields, for each Z, identification for all α2 between minα1∈[0,1]G2B1 (α1|Z)
6As discussed for the mixed signal specification, the common initial strategy condition of Assumption

S-(ii) holds for Bayesian Nash equilibrium bids if all bidders have the same v0(Z). Assuming an exclusion

restriction v0i(Z) = v0i(Zi) as in Somaini (2018) is also possible, using for identification purpose values Z

satisfying v01(Z1) = · · · v0n(Zn), which are identified by the participation of all bidders. It is also desirable

to assume that A and Z are independent as identifying the conditional distribution of A given Z is difficult

when S-(ii) does not hold.
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and maxα1∈[0,1]G2B1 (α1|Z), i.e. in [0, 1] under Assumption S-(ii) and the conditions

in Lizerri and Persico (2000).

Hence identification may not hold for all signals, possibly preventing to implement some

counterfactuals such as computation of an optimal reserve price. As seen from Theorems 3

and 4 below, this contrasts with the mixed signal value functions considered here.

3.2.2 Three bidder general case

The case of a larger number n of bidders is more difficult because the identified expected

value is a multiple integral of order n − 2. To see this, suppose that n = 3 and that the

valuation of interest is the one of the first bidder. The p.d.f of (A2, A3) given A1 = α and Z

is c (α, ·, ·|Z) and V 1 (a|α, Z), ω1 (a|α, Z) are now given by

V 1 (a|α, Z) =
∫
V1 (α, t2, t3;Z) I [B1 (a|Z) ≥ max {B2 (t3|Z) , B2 (t3|Z)}] c (α, t2, t3|Z) dt2dt3

=

∫ G3B1(a|Z)

0

[∫ G2B1(a|Z)

0

V1 (α, t2, t3;Z) c (α, t2, t3|Z) dt2
]
dt3,

ω1 (a|α, Z) =
∫ G3B1(a|Z)

0

[∫ G2B1(a|Z)

0

c (α, t2, t3|Z) dt2
]
dt3.

Hence

∂ω1 (a|α, Z)
∂a

∣∣∣∣
a=α

× U1 (α|Z)

= g3b1 (α|Z)
∫ G2B1(α|Z)

0

V1 (α, t2, G3B1 (α|Z) ;Z) c (α, t2, G3B1 (α|Z) |Z) dt2

+ g2b1 (α|Z)
∫ G3B1(α|Z)

0

V1 (α,G2B1 (α|Z) , t3;Z) c (α,G2B1 (α|Z) , t3|Z) dt3, (3.6)

∂ω1 (a|α, Z)
∂a

∣∣∣∣
a=α

= g3b1 (α|Z)
∫ G2B1(α|Z)

0

c (α, t2, G3B1 (α|Z) |Z) dt2

+ g2b1 (α|Z)
∫ G3B1(α|Z)

0

c (α,G2B1 (α|Z) , t3|Z) dt3.

Lemma 2 therefore establishes nonparametric identification of an integral function of the val-

uation function over a set of signal variables (α1, α2, α3) = (α1, G2B1 (α1|Z) , G3B1 (α1|Z)).
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As for the two bidder case, this may not be useful for most applications without further re-

striction on the valuation function. Somaini (2018) derives some identification results under

covariate exclusion.

3.2.3 Revisited Wilson model

On the other hand, the revisited Wilson model is an example of specification that can be

easily identified from Lemma 2. Indeed (2.3) and the expressions of U1 (α|Z) derived above

imply

lim
Z1→+∞

U1 (α|Z) = γ0 (α)

because Z1 = +∞ means that bidder 1 is perfectly informed about the value of the good.

This is sufficient to recover identification of this specification.

3.3 Identification of the mixed signal valuation function

The mixed signal valuation specification (2.2) can be identified using a three step procedure.

First an initial or terminal value for the slope functions γij(·) is identified. Second, the func-
tion Φi (·) is identified. Third, thanks to the rank condition I, the slope functions are then

determined as solving a differential, or an integro-differential, equation. Identification of the

slope functions holds over the full set [0, 1]n of signals, as suitable for many counterfactual

applications. However the identification procedure implementation importantly differs de-

pending whether there are two bidders or more, especially in the first step and in the choice

of identifying an initial or a terminal value for the slope functions.

3.3.1 Two bidder case

Suppose n = 2 and let bidder 1 Φ1(·) and (γ11(·), γ12(·)) be the parameters of interest. Hence

Lemma 2 and (3.5) show that

U1 (α|Z) = Φ1 [Z
′
1γ11 (α) , Z

′
2γ12 [G2B1 (α|Z)]] (3.7)

is identified. The considered next step is the identification of a terminal value for (γ11(·), γ12(·)).
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Step 1: identification of I and (γ11(1), γ12(1)). As G2B1 (1|Z) = 1 for all Z by the

terminal condition of Assumption S-(ii) and Lemma 1-(ii), setting α = 1 in (3.7) yields the

identity

U1 (1|Z) = Φ1 (Z
′
1γ11 (1) , Z

′
2γ12 (1))

and Φ1 (Z
′
1γ11 (1) , Z

′
2γ12 (1)) is therefore identified. As all γ1j(1) are not 0 under Assumption

G-(ii), Assumption P ensures that j does not belong to I if and only if

∂Zk
[U1 (1|Z)] =

∂Φ1 (Z
′
1γ11 (1) , Z

′
2γ12 (1))

∂xj
γ1j (1) = 0 for all Z in Z.

This implies that I =
{
j; ∂Φ1(·,·)

∂xj
6= 0
}
is identified. As

lim
Z→0

∂Zj
U1 (1|Z) =

∂Φ1 (0, 0)

∂xj
γ1j (1)

for a smooth Φ1(·) satisfying Assumption P, using the normalization (2.5) shows that γ1j(1)

is identified for all j in I.

Step 2: identification of Φ1(·). Consider x = (x1, x3) in R
2
+∗. For k in the identified I,

there is a Zk in R
D
+∗ such that xk = Z ′

kγ1k(1), recalling that γ1k(1) has been identified in the

preceding step. When k does not belong to I, choose an arbitrary Zk in R
D
+∗. It then holds

for such choice of Z1 and Z2

Φ1(x1, x2) = Φ1 (Z
′
1γ11(1), Z

′
2γ12(1))

so that Φ1(·) is identified over R
2
+∗. Under Assumption P, continuity of Φ1(·) ensures it is

identified over R2
+.

Step 3: identification of (γ11(·), γ12(·)). Suppose first the private value case I = {1},
ie Φ1(x1, x2) = Φ1(x1). Then monotonicity in Assumption P and (3.7) show that Z ′

1γ1(·) =
Φ−1

1 [U(·|Z1, Z2)] for any (Z1, Z2) in Z. If I = {2}, ie bidder 1 is uninformed, γ2 [G2B1(α|Z)]
is similarly identified, which ensures that γ2(·) as the identified G2B1(·|Z) is one to one by

Lemma 1-(ii) under Assumption S-(iv).
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Consider now the case where I = {1, 2}. Observe that, since g2b1 (·|Z) > 0 by Assumption

S-(iv) and Lemma 1-(ii),

∂Z2
{γ12 [G2B1 (α|Z)]} = γ

(1)
12 [G2B1 (α|Z)] ∂Z2

G2B1 (α|Z)

= γ
(1)
12 [G2B1 (α|Z)] g2b1 (α|Z)

∂Z2
G2B1 (α|Z)
g2b1 (α|Z)

=
∂ {γ12 [G2B1 (α|Z)]}

∂α

∂Z2
G2B1 (α|Z)
g2b1 (α|Z)

. (3.8)

Differentiating U1 (α|Z) with respect to α and Z2 then gives

∂Φ1

∂x1
[γ11 (α)Z1, γ12 [G2B1 (α|Z)]Z2]Z1

dγ11 (α)

dα

+
∂Φ1

∂x2
[γ11 (α)Z1, γ12 [G2B1 (α|Z)]Z2]Z2

∂ {γ12 [G2B1 (α|Z)]}
∂α

=
∂U1 (α|Z)

∂α
,

∂Φ1

∂x2
[γ11 (α)Z1, γ12 [G2B1 (α|Z)]Z2] γ12 [G2B1 (α|Z)]

+
∂Φ1

∂x2
[γ11 (α)Z1, γ12 [G2B1 (α|Z)]Z2]Z2

∂Z2
G2B1 (α|Z)
g2b1 (α|Z)

∂ {γ12 [G2B1 (α|Z)]}
∂α

= ∂Z2
U1 (α|Z)

which shows that Γ1 (α|Z) = [γ11 (α) , γ12 [G2B1 (α|Z)]]′ are the solution of a 2 × 2 system

of differential equations with the terminal condition Γ1 (1|Z) = [1, 1]′. Standard unique-

ness of the solution of such differential systems would then ensure that Γ1 (·|Z), and then

[γ11(·), γ12(·)], is identified. Unfortunately, this argument cannot be applied here because

the item ∂Z2
G2B1 (α|Z), which appears in front of γ

(1)
11 (·) in the differential system, vanishes

when α = 1, 0 due to the terminal and initial bidding strategy conditions in Assumption

S-(ii,iii) and Lemma 1, which identifies strategy and bid quantile functions. This issue is

addressed in the proof of the next Theorem in the Appendix.7 Theorem 3 summarizes the

identification result.
7 As noted by a Referee, taking Z2 and Z1 equal to 0 would give, respectively

Z ′
1γ11(α) = Φ

−1|x1

1 [U1(α|Z1, 0), 0] ,

Z ′
2γ12(α) = Φ

−1|x2

1 [0, U1((G2B1(α|0, Z2))|0, Z2)] ,

where Φ
−1|x1

1 (y, ·) is the inverse of x2 7→ Φ1(y, x2) and Φ
−1|x2

1 (·, y) is similarly defined. Hence γ11(·) and

γ12(·) would be identified. This may be however difficult to implement for Bayesian Nash Equilibrium bids.
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Theorem 3 Suppose Assumptions A, I, G with the terminal condition G-(i), P and Z hold

and that n = 2. Then, up to a normalization of Φi(·, ·) and (γ11(·), γ12(·)) as (2.5):

(i). The set I of active signals defined in (2.4) is identified;

(ii). The function Φi (x1, x2) is identified over R
2
+;

(iii). The slope functions γij (·) are identified for all j in I.

Proof of Theorem 3: see Appendix.

Note that identification of the slope makes use of values of Z in the vicinity of 0, plus an

arbitrary non vanishing Z, so that the slopes are overidentified. This identification procedure

also works when bidder i makes dominated bids below a threshold αi(Z), which is identified

by the probability of observing such bids, as it is sufficient to solve the differential system

over [αi(Z), 1]. Identification of the slope would then hold over [infZ αi(Z), 1].

In the two bidder case, identification is based upon the terminal strategy condition S-

(iii), which is quite satisfactory here as it is based on a well established result of Lizzeri

and Persico (2000) when bids are drawn from a Bayesian Nash Equilibrium with valuation

functions from the mixed signal specification. It implies that the initial slope values are

unconstrained by Assumption G. Hence both conditions BNE-(i) and (ii) can be used to

ensure that the initial strategy condition S-(ii) holds with Bayesian Nash Equilibrium bids.

3.3.2 More than two bidders

We first explain why using, as in the two bidder case, the terminal value of U1(·|Z) for

identification purpose becomes difficult when the number of bidders is larger. For the sake

of discussion brevity, assume n = 3, the case of a higher number of bidders being similar,

For instance, in the private value case with bidder 2 value Z ′
2γ22(A2), the bidding strategies B1(·|Z) and

B2(·|Z) may have degenerate limits, if any, when Z2 goes to 0, because the fact that bidder 2 value goes

to 0 is also known to bidder 1. As shown by (3.7), it follows that establishing the existence of U1(α|Z1, 0),

U1((G2B1(α|0, Z2))|0, Z2), or even limZ1↓0 U1(α|Z), limZ2↓0 U1((G2B1(α|Z))|Z), may be difficult.
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and take i = 1. Let W1 (α|Z) = ∂V 1(a|α,Z)
∂a

∣∣∣
a=α

be the function in (3.6), so that U1(α|Z) =
W1 (α|Z) /

(
∂ω1(a|α,Z)

∂a

∣∣∣
a=α

)
. For α = 1, it holds under the terminal strategy condition in

Assumption S-(ii)

W1 (1|Z) =g3b1 (1|Z)
∫ 1

0

Φ1 (Z
′
1γ11(1), Z

′
2γ12 (t2) , Z

′
3γ13(1)) c (t2|A1 = 1, A3 = 1, Z) dt2

+ g2b1 (1|Z)
∫ 1

0

Φ1 (Z
′
1γ11(1), Z

′
2γ12(1), Z

′
3γ13(t3)) c (t3|A1 = 1, A2 = 1, Z) dt3.

Hence W1(1|Z) now depends upon the whole slope functions γ12(·) and γ13(·), while only

the slope terminal values were involved in the two bidder case. Using the terminal value

of U1(·|Z) for identification purpose does not seem feasible and we use instead the common

initial strategy condition of Assumption S-(ii).8

It is first shown in the proof of Theorem 4 that

Ui (0|Z) = Φi [Z
′
1γi1 (0) , . . . , Z

′
nγin (0)] , (3.9)

which is identified by Equation (3.4) in Lemma 2. When all the γij(0), j in I, differ from 0

as assumed in Assumption G-(ii), arguing as in the Step 1 of the two bidder case permits to

identify I and those γij(0). Repeating Step 2 of the two bidder case then yields that Φi(·)
is identified.

Identifying the slope functions γij(·) is slightly more complicated than in Step 3 of the

two bidder case. Differentiating the identified Ui(α|Z) with respect to the signal shifters Zj,

j 6= i now gives an integro-differential system. The proof of Theorem 4, which summarizes

our identification result for n ≥ 3, establishes uniqueness of its solution.

Theorem 4 Suppose Assumptions A, I, G with the initial condition G-(ii), P and Z hold.

Then, up to a normalization of Φi(·, · · · , ·) and (γ11(·), . . . , γ1n(·)) as (2.5):

8Letting Z goes to 0 allows to identify (limZ↓0 g3b1 (1|Z))
∫ 1

0
γ12(t)c (t|A1 = 1, A3 = 1, 0)dt +

(limZ↓0 g2b1 (1|Z)) γ12(1) and a similar functional of γ13(·), which can be used instead of the first order

condition. We did not attempt to implement this approach, which is not straightforward, due to the fact

that the limits of gjb1(1|z), j = 2, 3, when Z goes to 0 may not be well defined as discussed in footnote 7

for the limits of GjB1(1|z).
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(i). The set I of active signals defined in (2.4) is identified;

(ii). The function Φi (x1, . . . , xn) is identified over R
n
+;

(iii). The slope functions γij (·) are identified for all j in I.

Proof of Theorem 4: see Appendix.

Theorem 4 also applies to the two bidder case, but relies more importantly on the initial

strategy condition in Assumption S-(ii), which is less natural than the terminal one S-(iii)

derived in Lizzeri and Persico (2000). Because identification relies on the initial value Ui(0|Z)
instead of Ui(1|Z) used for the two bidder case, Theorem 4 makes use of the initial slope

Assumption G-(ii), which imposes that γij(0) must differ from 0 for all j of I. This has

important consequences for Bayesian Nash Equilibrium bids as only the common Φi(·) and
initial slope restrictions of Condition BNE-(ii) can be used.9 This reduces the degrees of

bidder asymmetry permitted by the mixed signal specification, as the only possible cause of

asymmetry is now given by distinct slopes γij(α) for α > 0. As many studies assume that

Φi(x1, . . . , xn) = x1+ · · ·+xn as in Somaini (2018) and because the slopes γij(·) can be very

small, this may nevertheless be flexible enough for many applications.

4 Estimation strategy

The identification proof is constructive and can be directly used for estimation, although

more suitable procedures can be proposed, as a procedure similar to the one introduced by

9 A conjecture that would allow to use Condition BNE-(i), which allows for more asymmetric functions

Φi(·), is that under Assumption G-(i) which states that γij(0) = 0 for all i, j, all the strategies si(τiα|Z/α)
converge when α goes to 0 because the corresponding valuation functions satisfy

lim
α↓0

Φi

(
Z ′
1γi1(τ1α)

α
, . . . ,

Z ′
nγin(τnα)

α

)
= Φi

(
Z ′
1γ

(1)
i1 (0)τ1, . . . , Z

′
nγ

(1)
in (0)τn

)
.

Setting the τi to 1 will then allows to identify Φi(·) as the γ
(1)
i1 (0) do not vanish and can be identified using

Z → 0 and (2.5). Establishing this conjecture is however out of the scope of the present paper.
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Botosaru (2019) for a duration model with unobserved heterogeneity. Consider for the sake

of brevity the two bidder case. The first stage consists in an estimation of U1 (α|Z) based
on (3.4) in Lemma 2

Û1 (α|Z) = B̂1 (α|Z) + B̂
(1)
1 (α|Z) Ω̂1 (α|Z)

where the quantile derivative estimator can be obtained using Gimenes and Guerre (2019).

Recall now that U1 (α|Z) = Φ1 [γ11 (α)Z1, γ12 [G2B1 (α|Z)]Z2] by (3.7), which could be esti-

mated using

Φ1

[
γ11 (α)Z1, γ12

[
Ĝ2B̂1 (α|Z)

]
Z2

]
.

The second stage of the procedure matches the above with Û1 (α|Z) to produce an estimator

of Φ1 (·), γ11 (·) and γ12 (·)
[
Φ̂1 (·) , γ̂11 (·) , γ̂12 (·)

]

= arg min
Φ,γ1,γ2

∫ {∫ 1

0

(
Û1 (α|Z)− Φ

[
γ1 (α)Z1, γ2

[
Ĝ2B̂1 (α|Z)

]
Z2

])2
dα

}
dZ

where the minimization is performed over a sieve for γ1(·), γ2(·) and Φ(·), or over a simpler

set of functions Φ(·), such as the additive of maximum functions of the two first examples.

Up to the estimation Ĝ2B̂1 (·|·), these estimators can be studied as in Botosaru (2019).

Practical computation of these estimators can be done in the following iterative way

Φ̂1,k+1 (·) = argmin
Φ1

∫ {∫ 1

0

(
Û1 (α|Z)− Φ1

[
γ̂11,k (α)Z1, γ̂12,k

[
Ĝ2B̂1 (α|Z)

]
Z2

])2
dα

}
dZ,

[γ̂11,k+1 (·) , γ̂12,k+1 (·)]

= arg min
,γ1,γ2

∫ {∫ 1

0

(
Û1 (α|Z)− Φ̂1,k+1

[
γ1 (α)Z1, γ2

[
Ĝ2B̂1 (α|Z)

]
Z2

])2
dα

}
dZ. (4.1)

Alternatively to (4.1), γ̂11,k+1 (·) and γ̂12,k+1 (·) can be obtained by solving the differential

system in Section 3.3.1 using Φ̂1,k+1 (·) in place of Φ1 (·). The stopping criterion must take

into account that Φ1 (x1, x2) may depend only upon x1 or x2. For instance, in the private

value case Φ1 (x1, x2) = Φ1 (x1), the valuation function is Φ1 [γ11 (α)Z1] and γ12 (·) is not
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identified. If this holds, γ̂12,k (·) may not converge when k grows. This can be addressed

by dropping out of the minimization the corresponding slope when the sieve coefficients of

Φ̂1,k (x1, x2) shows that this function may not depend upon x1 or x2.

5 Conclusion

The present paper considers a nonparametric interdependent value model which is shown to

be identified from first-price auction best response bids. The model is derived from Milgrom

and Weber (1982) and assumes that the bidder signal depends upon some observed bidder

characteristics, which variations are key to obtain identification. Compared to other ap-

proaches of the literature, this specification does not rely on functional restrictions difficult

to maintain or to test and delivers valuation functions that can be computed for all possi-

ble signal values. The latter allows to implement various counterfactuals, such as expected

revenue computation for alternative auction scenarii. Most of the conditions ensuring iden-

tification are testable. The considered interdependent value model is overidentified, so that

specification testing is possible.

While the proposed approach assumes that the bidder private signal and information

shifter are combined using a linear index structure, we believe that the identification proce-

dure is general enough to tackle various other functional forms. The linear index may also

be viewed as a nonparametric approximation of a function combining private signals and

information shifter. Unobserved bidder heterogeneity would also deserve further research,

investigating for instance implementations of nonparametric deconvolution techniques as in

Li et al. (2000) or Krasnokutskaya (2011), the approach of Compiani et al. (2018) and Haile

and Kitamura (2018), or parametric specifications.
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Appendix: Proofs of the results

A.1 Proof of Lemma 1

As Bj = sj(Aj ;Z) where sj (·;Z) is strictly increasing under Assumption S-(ii) and because

Aj is a U[0,1] random variable, it holds for all b in [sj(0;Z), sj(1;Z)]

Gj (b|Z) = P (Bj ≤ b|Z) = P [sj(Aj;Z) ≤ b|Z] = P
[
Aj ≤ s−1

j (b;Z)|Z
]

= s−1
j (b;Z).

Hence Gj (Bj |Z) = s−1
j [sj(Aj ;Z);Z] = Aj and Bj (·|Z) = G−1

j (·|Z) = sj (·;Z), which

establish (i) and (ii). (iii) follows from

ω (a|α, Z) = P

[
si (a;Z) > max

1≤j 6=i≤n
Bj

∣∣∣∣Ai = α, Z

]

and si (·;Z) = Bi (·|Z). �

A.2 Proof of Theorems 3 and 4

In this proof, we assume i = 1 without loss of generality and remove the corresponding index

for the sake of brevity. In what follows |·| stands for the Euclidean norm of a vector or the

absolute value of a real number. C denotes a constant that may vary from line to line.

A.2.1 The two bidder case: proof of Theorem 3

We detail here the proof of Step 3 in Section 3.3.1. Recall it was shown in Section 3.3.1 that

Φ(·) is identified over R2
+ from

U (α|Z) = Φ [Z ′
1γ1 (α) , Z

′
2γ2 (G2B1 (α|Z))]
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which is also identified, as γ1(1) and γ2(1). We now show that γ1(·) and γ2(·) are identified.

Differentiating U(α|Z) with respect to α gives

∂Φ

∂x1
[Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)]]

d {Z ′
1γ1 (α)}
dα

+
∂Φ

∂x2
[Z ′

1γ1 (α) , Z2γ2 [G2B1 (α|Z)]]
∂ {Z ′

2γ2 [G2B1 (α|Z)]}
∂α

=
∂U (α|Z)

∂α
.

Differentiating with respect to the entry Z2d gives, by (3.8),

∂Φ

∂x2
[Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)]Z2]× γ2d [G2B1 (α|Z)]

+
∂Φ

∂x2
[Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)]]

∂G2B1(α|Z)
∂Z2d

g2b1 (α|Z)
∂ {Z ′

2γ2 [G2B1 (α|Z)]}
∂α

=
∂U (α|Z)
∂Z2d

which implies, for the column Gradient vector ∂Z2
U (α|Z) =

[
∂U(α|Z)
∂Z2d

]′
d=1,...,D

,

∂Φ

∂x2
[Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)]Z2]× Z ′

2γ2 [G2B1 (α|Z)]

+
∂Φ

∂x2
[Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)]]

Z ′
2∂Z2

G2B1 (α|Z)
g2b1 (α|Z)

∂ {Z ′
2γ2 [G2B1 (α|Z)]}

∂α
= Z ′

2∂Z2
U (α|Z)

Define now

Γ (α|Z) =
[
Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)]′

]′

and for
∂Φ

∂xj
[Γ] (α|Z) = ∂Φ

∂xj
[Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)]]

consider the 2× 2 matrices

D [Φ,Γ] (α|Z) =




∂Φ
∂x1

[Γ] (α|Z) 0

0 ∂Φ
∂x2

[Γ] (α|Z)


 ,

G2 (α|Z) =


 1 1

0
Z′

2
∂Z2

G2B1(α|Z)

g2b1(α|Z)


 =


 1 0

0 α(1−α)
g2b1(α|Z)


×


 1 1

0
Z′

2
∂Z2

G2B1(α|Z)

α(1−α)




so that Assumptions I and S-(iv) with Lemma 1-(ii) ensure that G2 (α|Z) has an inverse

when α belongs to (0, 1) with

G−1
2 (α|Z) =


 1 − g2b1(α|Z)

Z′

2
∂Z2

G2B1(α|Z)

0 g2b1(α|Z)
Z′

2
∂Z2

G2B1(α|Z)


 =


 1 − α(1−α)

Z′

2
∂Z2

G2B1(α|Z)

0 α(1−α)
Z′

2
∂Z2

G2B1(α|Z)


×


 1 0

0 g2b1(α|Z)
α(1−α)


 .
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Observe that D [Φ,Γ] (α|Z) has an inverse for all (α, Z) by Assumption P, while Assumption

I gives that G2 (α|Z) diverges with the order 1/(1 − α) when α goes to 1. Define also the

vector

Ψ [Φ,Γ] (α|Z) =


 ∂Z2

U (α|Z)
g2b1 (α|Z)

{
Z ′

2∂Z2
U (α|Z)− ∂Φ

∂x2

[Γ] (α|Z)Z ′
2γ2 [G2B1 (α|Z)]

}


 .

Then the differential system above writesG2 (α|Z)D [Φ,Γ] (α|Z) Γ(1) (α|Z) = Ψ [Φ,Γ] (α|Z),
so that Γ (·|Z) must solve

Γ(1) (α|Z) = {G2 (α|Z)D [Φ,Γ] (α|Z)}−1
Ψ [Φ,Γ] (α|Z) (A.1)

over (0, 1). As the LHS is continuous over [0, 1], so must be the RHS. Hence the differential

system (A.1) holds over [0, 1] with a known terminal value Γ (1|Z) by Assumption S-(iii).

Suppose now that a continuously differentiable Γ̃ (α|Z) =
[
Z ′

1γ̃1 (α) , Z
′
2γ̃2 [G2B1 (α|Z)]′

]′

also solves the differential system (A.1) with the terminal condition Γ̃ (1|Z) = Γ (1|Z). Then
(A.1) gives

Γ̃(1)(α|Z)− Γ(1)(α|Z) =
{
G2 (α|Z)D

[
Φ, Γ̃

]
(α|Z)

}−1

Ψ
[
Φ, Γ̃

]
(α|Z)

−{G2 (α|Z)D [Φ,Γ] (α|Z)}−1
Ψ [Φ,Γ] (α|Z) . (A.2)

Let |·| be the Euclidean norm and set, for a fixed Z, ∆(α) = Γ̃(α|Z) − Γ(α|Z). Note that

∆(·) is continuously differentiable with ∆(1) = 0, so that there exists a λ > 0 such that for

all α

|∆(α)| ≤ λ(1− α).

Since the partial derivatives of Φ(·) are Lipshitz by Assumption P, the expression ofG−1
2 (α|Z)

and Assumption I imply by (A.2), for all α in [0, 1],

∣∣∆(1)(α)
∣∣ ≤ C

1− α
|∆(α)| .

Hence for all ǫ > 0 small enough, (A.2) gives

∣∣∆(1)(α)
∣∣ ≤ I (α ≤ 1− ǫ)

C

ǫ
|∆(α)|+ I (1− ǫ < α ≤ 1) λ. (A.3)
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It follows from (A.3) that

∣∣∆(1)(α)
∣∣ ≤ I (α ≤ 1− ǫ) λ

C

ǫ
(1− α) + I (1− ǫ < α ≤ 1)λ

and then, since ∆(1) = 0,

|∆(α)| =

∣∣∣∣
∫ 1

α

∆(1)(t)dt

∣∣∣∣ ≤ I (α ≤ 1− ǫ) λ
C

ǫ

(1− α)2

2
+ I (1− ǫ < α ≤ 1) λ(1− α)

≤ I (α ≤ 1− ǫ) λ
C

ǫ

(1− α)2

2
+ I (1− ǫ < α ≤ 1)λǫ.

Substituting in (A.3) shows that

∣∣∆(1)(α)
∣∣ ≤ I (α ≤ 1− ǫ) λ

(
C

ǫ

)2
(1− α)2

2
+ I (1− ǫ < α ≤ 1) λ.

An additional iteration shows that

|∆(α)| ≤ I (α ≤ 1− ǫ) λ

(
C

ǫ

)2
(1− α)3

3!
+ I (1− ǫ < α ≤ 1) λǫ,

∣∣∆(1)(α)
∣∣ ≤ I (α ≤ 1− ǫ) λ

(
C

ǫ

)3
(1− α)3

3!
+ I (1− ǫ < α ≤ 1) λ.

Iterating then gives, for any integer number p ≥ 2, any ǫ > 0 small enough and all α of [0, 1],

|∆(α)| ≤ I (α ≤ 1− ǫ) λ
ǫ

C

(
C

ǫ

)p
(1− α)p

p!
+ I (1− ǫ < α ≤ 1) λǫ

As limp↑∞

(
C
ǫ

)p (1−α)p

p!
= 0, it follows that for all α in [0, 1], |∆(α)| ≤ λǫ for all ǫ > 0, which

implies ∆(·) = 0 over [0, 1]. Then Assumption S and Lemma 1-(ii) imply that γ̃1(·) = γ1(·)
and γ̃2(·) = γ2(·). Hence the slope [γ1(·), γ2(·)] is identified. This ends the proof of the

Theorem. �

A.2.2 More than two bidders: proof of Theorem 4

For the sake of notation, assume n = 3, the case of a larger number of bidders being similar,

and set i = 1.
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Identification of Φ(·) and γj(0), j in I. Let

W (α|Z) = ∂V 1 (a|α, Z)
∂a

∣∣∣∣
a=α

be the function in (3.6), which is

W (α|Z) = g3b1 (α|Z)
∫ G2B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 (t2) , Z

′
3γ3 [G3B1 (α|Z)]] c (t2|α, Z) dt2

+ g2b1 (α|Z)
∫ G3B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 (t3)] c (t3|α, Z) dt3

setting c (ti|α, Z) = c (ti|A1 = α,Aj = GjB1 (α|Z) , Z) where (i, j) is (2, 3) or (3, 2). With

this notation

∂ω (a|α, Z)
∂a

∣∣∣∣
a=α

= g3b1 (α|Z)
∫ G2B1(α|Z)

0

c (t2|α, Z) dt2

+ g2b1 (α|Z)
∫ G3B1(α|Z)

0

c (t3|α, Z) dt3,

U1 (α|Z) =
W (α|Z)

∂ω(a|α,Z)
∂a

∣∣∣
a=α

.

This implies by the initial bid condition in Assumption S-(ii) and by S-(iv),

U1 (0|Z) = lim
α↓0

W (α|Z)
∂ω(a|α,Z)

∂a

∣∣∣
a=α

= Φ [Z ′
1γ1 (0) , Z

′
2γ2 (0) , Z

′
3γ3 (0)] .

This identifies the set I of active signals and the corresponding γj (0) through the partial

derivatives ∂Zj
U1(0|Z), Assumption G-(ii), Assumption P and using the normalization con-

dition ∂
∂xj

Φ(0, 0, 0) = 1. Assumptions Z and G-(ii) ensures it is possible to find Z1, Z2 and

Z3 such that (Z ′
1γ1 (0) , Z

′
2γ2 (0) , Z

′
3γ3 (0)) = (x1, x2, x3) for any (x1, x2, x3) in R

3
+∗. This

shows that U1 (0|Z) identifies Φ (·) over R3
+ by continuity.

Identification of γj(·), j in I. Suppose all the signals are active, I = {1, 2, 3}, the other

cases being similar. As for the two bidder case, the proof proceeds by finding an integro-

differential system which unique solution is (γ1 (·) , γ2 (·) , γ3 (·)). Set

Γ (α|Z) = [γ1 (α) , γ2 [G2B1 (α|Z)] , γ3 [G3B1 (α|Z)]]′ .

36



Differentiating W (α|Z) with respect to α gives

D1 [Φ,Γ] (α|Z)
d {Z ′

1γ1 (α)}
dα

+ g2b1 (α|Z)D2 [Φ,Γ] (α|Z)
∂ {Z ′

2γ2 [G2B1 (α|Z)]}
∂α

+ g3b1 (α|Z)D3 [Φ,Γ] (α|Z)
∂ {Z ′

3γ3 [G3B1 (α|Z)]}
∂α

= Ψ1 [Φ,Γ] (α|Z)

where

D1 [Φ,Γ] (α|Z) = g3b1 (α|Z)
∫ G2B1(α|Z)

0

∂Φ

∂x1
[Z ′

1γ1 (α) , Z
′
2γ2 (t2) , Z

′
3γ3 [G3B1 (α|Z)]] c (t2|α, Z) dt2

+ g2b1 (α|Z)
∫ G3B1(α|Z)

0

∂Φ

∂x1
[Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 (t3)] c (t3|α, Z) dt3,

D2 [Φ,Γ] (α|Z) =
∫ G3B1(α|Z)

0

∂Φ

∂x2
[Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 (t3)] c (t3|α, Z)dt3,

D3 [Φ,Γ] (α|Z) =
∫ G2B1(α|Z)

0

∂Φ

∂x3
[Z ′

1γ1 (α) , Z
′
2γ2 (t2) , Z

′
3γ3 [G3B1 (α|Z)]] c (t2|α, Z) ,

and where Ψ1 [Φ,Γ] (α|Z) is equal to

∂W (α|Z)
∂α

− ∂g2b1 (α|Z)
∂α

∫ G3B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 (t3)] c (t3|α, Z) dt3

− ∂g3b1 (α|Z)
∂α

∫ G2B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 (t2) , Z

′
3γ3 [G3B1 (α|Z)]] c (t2|α, Z)dt2

− 2g2b1 (α|Z) g3b1 (α|Z) c [G2B1 (α|Z) , G3B1 (α|Z) |α, Z]

× Φ [Z ′
1γ1 (α) , Z

′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 [G3B1 (α|Z)]]

− g2b1 (α|Z)
∫ G3B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 (t3)]
∂c (t3|α, Z)

∂α
dt3

− g3b1 (α|Z)
∫ G2B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 (t2) , Z

′
3γ3 [G3B1 (α|Z)]]

∂c (t2|α, Z)
∂α

dt2.

Differentiating W (α|Z) with respect to Z2d gives, by (3.8)

D2 [Φ,Γ] (α|Z)
1

g2b1 (α|Z)
∂G2B1 (α|Z)

∂Z2d

∂ {Z ′
2γ2 [G2B1 (α|Z)]}

∂α

+D3 [Φ,Γ] (α|Z)
1

g3b1 (α|Z)
∂G3B1 (α|Z)

∂Z2d

∂ {Z ′
3γ3 [G3B1 (α|Z)]}

∂α
= ψ2d [Φ,Γ] (α|Z)
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where

ψ2d [Φ,Γ] (α|Z) =
∂W (α|Z)
∂Z2d

− g2b1 (α|Z) γ2d [G2B1 (α|Z)]
∫ G3B1(α|Z)

0

Φx2
[Z ′

1γ1 (α) , Z
′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 (t3)] c (t3|α, Z)dt3

− ∂g2b1 (α|Z)
∂Z2d

∫ G3B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 (t3)] c (t3|α, Z)dt3

− ∂g3b1 (α|Z)
∂Z2d

∫ G2B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 (t2) , Z

′
3γ3 [G3B1 (α|Z)]] c (t2|α, Z)dt2

−
(
g2b1 (α|Z)

∂G3B1 (α|Z)
∂Z2d

+ g3b1 (α|Z)
∂G2B1 (α|Z)

∂Z2d

)

× Φ [Z ′
1γ1 (α) , Z

′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 [G3B1 (α|Z)]] c [G2B1 (α|Z) , G3B1 (α|Z) |α]

− g2b1 (α|Z)
∫ G3B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 [G2B1 (α|Z)] , Z ′

3γ3 (t3)]
∂c (t3|α, Z)

∂Z2d

dt3

− g3b1 (α|Z)
∫ G2B1(α|Z)

0

Φ [Z ′
1γ1 (α) , Z

′
2γ2 (t2) , Z

′
3γ3 [G3B1 (α|Z)]]

∂c (t2|α, Z)
∂Z2d

dt2.

Multiplying by Z2d and summing then gives, for Ψ2 [Φ,Γ] (α|Z) =
∑D

d=1 Z2dψ2d [Φ,Γ] (α|Z),

D2 [Φ,Γ] (α|Z)
Z ′

2∂Z2
G2B1 (α|Z)

g2b1 (α|Z)
∂ {Z ′

2γ2 [G2B1 (α|Z)]}
∂α

+

D3 [Φ,Γ] (α|Z)
Z ′

2∂Z2
G3B1 (α|Z)

g3b1 (α|Z)
∂ {Z ′

3γ3 [G3B1 (α|Z)]}
∂α

= Ψ2 [Φ,Γ] (α|Z)

A similar equation holds for Z3. Let D [Φ,Γ] (α|Z) be the 3×3 diagonal matrix with entries

Dk [Φ,Γ] (α|Z) and Ψ [Φ,Γ] (α|Z) be the 3×1 vector with entries Ψk [Φ,Γ] (α|Z), k = 1, 2, 3.

Define

G (α|Z) =




1 g2b1 (α|Z) g3b1 (α|Z)
0

Z′

2
∂Z2

G2B1(α|Z)

g2b1(α|Z)

Z′

2
∂Z2

G3B1(α|Z)

g3b1(α|Z)

0
Z′

3
∂Z3

G2B1(α|Z)

g2b1(α|Z)

Z′

3
∂Z3

G3B1(α|Z)

g3b1(α|Z)




=




1 g2b1 (α|Z) g3b1 (α|Z)
0

Z′

2
∂Z2

G2B1(α|Z)

α(1−α)

Z′

2
∂Z2

G3B1(α|Z)

α(1−α)

0
Z′

3
∂Z3

G2B1(α|Z)

α(1−α)

Z′

3
∂Z3

G3B1(α|Z)

α(1−α)


×




1 0 0

0 α(1−α)
g2b1(α|Z)

0

0 0 α(1−α)
g3b1(α|Z)


 .

As in the two bidder case, Assumptions I and S-(iv) with Lemma 1-(ii) ensure that G (α|Z)
has an inverse when α belongs to (0, 1) with G−1 (α|Z) of order 1/α when α goes to 0.

38



Observe as well that D [Φ,Γ] (α|z) has an inverse for all α under Assumption I. G (α|Z)
also has an inverse for α in (0, 1) but not if α = 0 or α = 1. Stacking the equations above

together shows that

G (α|Z)D [Φ,Γ] (α|Z) d

dα
Γ (α|z) = Ψ [Φ,Γ] (α|Z)

for all α in [0, 1]. This also gives for all α in [0, 1]

d

dα
Γ (α|Z) = {G (α|Z)D [Φ,Γ] (α|Z)}−1

Ψ [Φ,Γ] (α|Z)

passing at the limit in the RHS for α = 0 or 1.

As above, identification of the slope functions holds provided two continuously differen-

tiable solutions of (A.2.2), Γ (·|Z) and Γ̃ (·|Z) with Γ̃ (0|Z) = Γ (0|Z), must be equal. Now

it holds

d

dα
Γ (α|Z)− d

dα
Γ̃ (α|Z) = {G (α|Z)D [Φ,Γ] (α|Z)}−1

Ψ [Φ,Γ] (α|Z)

−
{
G (α|Z)D

[
Φ, Γ̃

]
(α|Z)

}−1

Ψ
[
Φ, Γ̃

]
(α|Z)

with
∣∣∣D [Φ,Γ] (α|Z)−D

[
Φ, Γ̃

]
(α|Z)

∣∣∣ ≤ Cα and
∣∣∣Ψ [Φ,Γ] (α|Z)−Ψ

[
Φ, Γ̃

]
(α|Z)

∣∣∣ ≤ Cα

for all α. Set, for a fixed Z, ∆(α) = Γ̃(α|Z) − Γ(α|Z). Note that ∆(·) is continuously

differentiable with ∆(0) = 0, ∆(α) =
∫ α

0
∆(1)(t)dt and that there exists a λ > 0 such that

for all α

|∆(α)| ≤ λα.

It also holds for all α in [0, 1]
∣∣∆(1)(α)

∣∣ ≤ C

α
|∆(α)| .

Hence for all ǫ > 0 small enough, (A.2) gives

∣∣∆(1)(α)
∣∣ ≤ I (α ≤ ǫ) λ+ I (ǫ < α ≤ 1)

C

ǫ
|∆(α)| .

Arguing as in the two bidder case gives that ∆(·) = 0, which establishes identification of the

γj(·), j ∈ I. This ends the proof of the Theorem. �
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