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Abstract: We present progress towards developing a multimodality imaging instrument,
optical coherence tomography (OCT)/ photo-acoustic microscopy (PAM). By utilizing su-
percontinuum optical sources, that deliver wide spectral bandwidths and high energy densi-
ties, we devised a real-time imaging instrument which can be employed to image biological
tissues. The OCT channel was devised to operate around 1300 nm. A custom built spec-
trometer ensures a constant axial resolution of 6 µm over an axial range of up to 1.5 mm.
The PAM operates within the therapeutic window providing an axial resolution of 30 µm.
The lateral resolution in both channels is 6 µm. © 2019 The Author(s)
OCIS codes: 170.4500, 110.5120, 070.1060.
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1. Introduction

Multi-modality imaging instruments can provide diverse contrast and supplementary, structural and functional
information about the biological tissues. Optical coherence tomography (OCT) relies on the scattering properties
of the tissues while Photo-acoustic microscopy (PAM) relies on the absorption of the optical energy from specific
tissue chromophores, such as haemoglobin, lipids, melanin, water, etc

Optical Coherence Tomography is a high acquisition speed, non invasive, high resolution imaging modality,
capable of producing cross-sectional and also volumetric high sensitivity images of biological tissues [1]. Op-
tical Coherence Tomography instruments are capable to deliver axial resolutions down to 2 microns and depth
penetration of a few millimeters in the biological tissue. Thus, during the past decade, OCT systems have been
employed in various biomedical applications for in-vivo, and ex-vivo imaging. On the other hand, PAM is an
emerging imaging technique able to provide both high resolution, high optical absorption contrast, high depth
penetration and functional information such as oxygen saturation, blood flow and melanin concentration [2], vital
information for cancer angiogenesis and monitoring cancer treatment response [3]. Here we report the capabilities
of an OCT-PAM hybrid multimodal imaging instrument powered by supercontinuum sources.

2. Experimental setup

The dual imaging instrument is presented in Fig.1. In the PAM channel, a commercially available, supercontin-
uum laser (SuperK Compact, NKT Photonics) delivering pulses of 2 ns bandwidth. To make use of the VIS/NIR
channel (400-800 nm) light is coupled into a filter (SuperK VARIA, NKT Photonics) which provide a flexible
way to swiftly change the central wavelength and the spectral bandwidth. For the OCT channel, to ensure a better
sensitivity of the images, a second supercontinuum laser (SuperK EXTREME EXR9, NKT Photonics), coupled
into another tunable filter (SuperK Gauss, NKT Photonics) is employed. This uses the IR channel (1310 nm).
The VIS and the IR beam are combined by a dichroic mirror and directed towards the galvanometric scanner
head (GXY) (6220H, Cambridge Technology), then conveyed through a custom made objective to the sample.
IR light back-scattered by the sample returns into the 50/50 directional coupler DC being directioned towards the
spectrometer. The spectrometer consists of a custom made collimator, a transmission diffraction grating (Wasatch
Photonics), a doublet pair as a focusing lens and a line camera (LC, Goodrich, model SU1014-LDHI) equipped
with 1024 pixels with a 25 µm pitch. Camera is typically operated at 20 kHz but in principle can be operate at
reading speeds of up to 47 kHz. Data is digitised using a camera link board (National Instruments, model IMAQ
1429).

The PA waves are detected by a PMN-PT needle transducer (NT) of 60 MHz bandwidth. The electrical signal
hence produced is then amplified and digitized. The digitization is performed in sync with the pulse repetition rate



of the SuperK Compact which is around 20 kHz by using a fast digitizer (National Instruments, model PCI 5124).
The display of B-scan OCT and PAM images is done in real-time. The generation of the PAM A-scans does not
involve complex mathematical operations (only a Hilbert transform is applied to each acquired temporal signal)
hence the real-time display of the images is straightforward. The OCT channel is powered by the Master-Slave
method which allows for fast generation of B-scans without need of calibration and dispersion compensation
procedures [4, 5].

3. Results and Discussion

The spectrometer is designed in such a way that a very wide spectral bandwidth of the optical source is employed.
In addition, the spectrometer was designed to use the less noisy spectral range so a very high sensitivity was
achieved, whilst mitigating the optical aberrations and obtaining a sufficiently small spot size on the linear camera.
Thus, a spatially constant, isometric resolution of 6 µm is achieved in the OCT channel over an axial range of
1.5 mm (resolutions measured in air). The acquisition synchronization architecture makes possible for a B-scan of
500 A-scans to be obtained and displayed, in both channels a frame rate of 20 Hz. For both OCT and PAM, both
volumetric, cross-sectional and en-face images can easily be produced. As an illustration, some images produced
by our instrument are presented in Fig. 1(top). Further details and data about the capabilities of the instrument will
be presented at the conference.

Fig. 1. Schematic of working principle of the OCT/PAM system and images obtained : (a) 3D OCT
image of a fingertip. (b) OCT B-scan of the fingertip, (c) En-face PAM image of a USAF target, (d)
PAM z-projection of a human hair.

4. Acknowledgments

G.N. acknowledges the University of Kent for the financial support. A.B. and A.P. acknowledge EPSRC (RE-
BOT grant, EP/N019229/1). A.P. also acknowledges NIHR Biomed. Research Centre at Moorfields Eye Hospital
NHS Foundation Trust, the UCL Institute of Ophthalmology, University College London, and the Royal Society
Wolfson research merit award.

References

1. Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., et al, Optical
coherence tomography, Science 254, 1178–1181 (1991).

2. Song, W.; Wei, Q.; Liu, W.; Liu, T.; Yi, J.; Sheibani, N.; Fawzi, A.A.; Linsenmeier, R.A.; Jiao, S.; Zhang,
H.F., ”A combined method to quantify the retinal metabolic rate of oxygen using PA ophthalmoscopy and
OCT.” Sci. Rep. 2014, 4, 6525.

3. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J., Tumor angiogenesis and metastasis–correlation
in invasive breast carcinoma, N. Engl. J. Med. 324(1), 18 (1991).

4. Bradu, A., Israelsen, N.M., Maria, M., Marques, M.J., Rivet, S., Feuchter, T., Bang, O., and Podoleanu, A.,
”Recovering distance information in spectral domain interferometry,” Scientific Reports 8, 15445 (2018).

5. Bradu, A., Maria, M., and Podoleanu, A., ”Demonstration of tolerance to dispersion of Master/Slave Inter-
ferometry,” Opt. Express, 23(11) 14148-14161 (2015).


