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Abstract

We study the origins of labor productivity growth and its differences across

sectors. In our model, sectors employ workers of different occupations and vari-

ous forms of capital, none of which are perfect substitutes, and technology evolves

at the sector-factor cell level. Using the model we infer technologies from US data

over 1960-2017. We find sector-specific routine labor augmenting technological

change to be crucial. It is the most important driver of sectoral differences, and

has a large and increasing contribution to aggregate labor productivity growth.

Neither capital accumulation nor the occupational employment structure within

sectors explains much of the sectoral differences.
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Non-technical summary 

 

The fact that labor productivity growth is different across sectors is well known. Average 

annual labor productivity growth between 1960 and 2017 in the US, for instance, was 

2.49% in the goods sector, much higher than the 1.53% in low-skilled and the 0.72% in 

high-skilled services. However, there is no consensus on the origins of these differences. 

In this paper we study the drivers of sectoral labor productivity growth in a production-

side framework. We consider various types of occupational labor as distinct factors in the 

sectoral production faction, allow for technological change to be sector-and-factor specific, 

and infer the evolution of the sector-and-factor specific technologies over time directly 

from the data drawing on the model’s optimality conditions. 

Our results show that technological change has been very far from neutral. That we do 

not impose that sectoral technological change is factor-neutral, nor that factor-specific 

technological change is uniform across sectors, turns out to be crucial. Technologies have 

evolved at very differential rates, both across factors within each sector and across sectors 

for a given occupation or type of capital. In particular, amongst the labor-augmenting 

technologies those augmenting routine occupations have been growing the fastest in all 

sectors, but at very different rates: at 5.59% per year in goods, at 2.92% in low-skilled 

services and at 1.32% in high-skilled services. 

Through a series of counterfactual simulations, we study the role of inputs and of 

technological change in labor productivity growth. We find that the single most important 

driver of sectoral labor productivity growth differences are the sector-specific growth rates 

of routine labor augmenting technologies. Without sector-specific routine labor 

augmenting technological change, labor productivity growth would have been almost 

equalized across sectors. This type of technological change explains at least 59 percent of 

labor productivity growth in low-skilled services, 74 percent in goods and 21 percent in 

high-skilled services. Moreover, in terms of labor productivity growth in the aggregate, 

we show that the contribution of routine labor augmenting technological change is large 

and increasing over time. In its absence aggregate growth would have been lower by about 

a third between 1960-1990, and there would have been hardly any growth over 1990-2017. 

These counterfactuals also allow us to evaluate the role of various other channels 

proposed in the literature for sectoral productivity growth differences, such as differential 

capital intensities and capital accumulation, or differential sectoral intensities in 

occupational employment and technological change specific to occupations. We show that 

while capital accumulation contributes to labor productivity growth (without it growth 

would have been 39 percent lower on average), it does not generate the sectoral differences 

observed in the data. Similarly we find that in terms of occupational employment 

structure, differences across sectors as well as changes over time within sectors hardly 

matter for sectoral labor productivity differences. 



1 Introduction

The fact that labor productivity growth is different across sectors is well known. Av-

erage annual labor productivity growth between 1960 and 2017 in the US, for in-

stance, was 2.49% in the goods sector, much higher than the 1.53% in low-skilled

and the 0.72% in high-skilled services. However, there is no consensus on the ori-

gins of these differences. We study the drivers of sectoral labor productivity growth

in a production-side framework. What sets our framework apart from the literature is

that (i) we consider various types of occupational labor as distinct production factors,

(ii) technological change is sector-and-factor specific, and (iii) we infer the evolution of

the sector-and-factor specific technologies over time directly from the data. Our results

show that technological change has been very far from neutral. That we do not impose

that sectoral technological change is factor-neutral, nor that factor-specific technologi-

cal change is uniform across sectors, turns out to be crucial. Technologies have evolved

at very differential rates, both across factors within each sector and across sectors for a

given occupation or type of capital. In particular, amongst the labor-augmenting tech-

nologies those augmenting routine occupations have been growing the fastest in all

sectors, but at very different rates: at 5.59% per year in goods, at 2.92% in low-skilled

services and at 1.32% in high-skilled services.

Through a series of counterfactual simulations, we study the role of inputs and of

technological change in labor productivity growth. We find that the single most im-

portant driver of sectoral labor productivity growth differences are the sector-specific

growth rates of routine labor augmenting technologies. Without sector-specific rou-

tine labor augmenting technological change, labor productivity growth would have

been almost equalized across sectors. Specifically, this type of technological change

explains at least 59 percent of labor productivity growth in low-skilled services, 74

percent in goods and 21 percent in high-skilled services. Our result that sectoral dif-

ferences in technological change are crucial therefore lends support to the mechanism

of Ngai and Pissarides (2007). Moreover, in terms of labor productivity growth in the

aggregate, we show that the contribution of routine labor augmenting technological

change is large and increasing over time. In its absence aggregate growth would have
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been lower by about a third between 1960-1990, and there would have been hardly

any growth over 1990-2017.

These counterfactuals also allow us to evaluate the role of various other chan-

nels proposed in the literature for sectoral productivity growth differences, such as

differential capital intensities and capital accumulation (e.g. Acemoglu and Guerrieri

(2008)), or differential sectoral intensities in occupational employment and technolog-

ical change specific to occupations (Duernecker and Herrendorf (2016), Lee and Shin

(2017)). We show that while capital accumulation contributes to labor productivity

growth (without it growth would have been 39 percent lower on average), it does not

generate the sectoral differences observed in the data. Similarly we find that in terms

of occupational employment structure, differences across sectors as well as changes

over time within sectors hardly matter for sectoral labor productivity differences.

In the public debate there is a growing concern about the effects of routinization

and of new technologies on the labor market, and in particular on wage inequality

and unemployment. To mitigate these – potentially detrimental – effects, active la-

bor market policies, such as training programs targeted at workers of specific occu-

pations, and policies aiming at maintaining certain industries have been advocated.

However, a better understanding of the nature of technological change is required

to inform this debate and to evaluate such policies. Our framework is useful in this

context, as it identifies the differential paths of the various sector-and-factor specific

technologies. We believe this is a necessary first step in understanding the drivers

of labor demand for workers in various occupations and sectors. Our finding that

occupation-augmenting technological change varies across sectors suggests that poli-

cies that target specific occupations or specific industries might be less suitable than

sector-occupation specific policies.

In our model we consider different occupations as distinct labor inputs for a vari-

ety of reasons. First, given that occupations entail very different tasks, they are most

likely not perfect substitutes. This implies that using the simple summation of hours

worked within a sector might not capture labor’s true contribution to a sector’s out-

put. The second reason is that occupations are likely to use different technologies,

which might grow at different rates. This implies that differences in the occupational
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composition of sectors – a feature of the data which we show in section 2 – might af-

fect average sectoral labor productivity growth (Duernecker and Herrendorf (2016),

Lee and Shin (2017)). Third, the effects of new technologies and of the accumulation

of (different types of) capital on the various occupations might depend on the tasks

performed by that occupation, in particular on their routine content and cognitive re-

quirements. As routine tasks are repetitive and easy to computerize, improvements

in ICT knowledge or capital are likely to substitute for routine workers (Autor, Levy,

and Murnane (2003)). This so-called routinization hypothesis is the main explanation

for employment polarization, the shift out of routine occupations into manual (non-

routine non-cognitive) and abstract (non-routine cognitive) jobs.1 In our analysis we

therefore differentiate between manual, routine and abstract labor inputs.

Our model also features capital inputs, as the accumulation of capital potentially

is another important driver of labor productivity growth. If capital intensities dif-

fer across sectors, capital deepening induces structural transformation,2 as argued by

Acemoglu and Guerrieri (2008), and results in sectoral differences in the growth of la-

bor productivity. As our model features capital inputs, we are able to evaluate the role

of this channel. Similarly to Aum, Lee, and Shin (2018) and Eden and Gaggl (2018),

we distinguish between ICT and non-ICT capital, and allow for them to have different

degrees of substitutability with the various types of labor.

While observing factor inputs and output allows the computation of a neutral pro-

ductivity,3 it is not possible to infer factor-augmenting technologies without making

assumptions about the structure of production. Assuming a nested CES production

function in all sectors and perfect competition, we infer from firm optimality condi-

tions the sector-specific factor-augmenting technology parameters in each period. The

share of income going to each factor of production and factor prices pin down rel-

1In fact, Acemoglu and Autor (2011) argue that labor market polarization warrants to move beyond
models that distinguish only between skilled and unskilled workers. In Bárány and Siegel (2018) we
documented that labor market polarization in the United States started as early as 1950/1960.

2That differential sectoral intensities in production factors complementary with labor, coupled with
aggregate growth in these factors, could lead to structural transformation was first proposed by Caselli
and Coleman (2001) in the context of human capital.

3This is how total factor productivity (for instance at the sectoral level) is extracted; note that
changes in measured TFP might actually be driven by technological change augmenting only one indi-
vidual factor of production.
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ative technologies within each sector. The evolution of real value added by sector

pins down the within sector changes in technology over time. To implement this, we

combine data from the U.S. Bureau of Economic Analysis (BEA) and EU KLEMS 2017

to get sectoral value added and its components, sectoral prices, sectoral employment

and capital (by type). Importantly, we need information on the occupations of workers

within each sector, which is not available from the BEA or EU KLEMS. For this we use

the US Census and American Community Survey (ACS) data between 1960 and 2017.

Similarly to us, Aum et al. (2018) also model sectoral production as a function of

occupational labor and ICT and non-ICT capital, but the focus of their paper and their

modeling choices are quite different to ours. They find in their calibrated model that

computerization and routinization are distinct and important drivers of the recent pro-

ductivity slowdown, but that sectoral TFP differences have only a limited role. We

rely on factor income shares (among other observables) from the data to infer tech-

nologies, and while we also find a distinct role for improvements in routine-labor and

ICT capital augmenting technologies, our results highlight that sectoral differences in

factor-augmenting technological change are important.

Our results have implications for the supply side drivers of structural transforma-

tion. We do not find evidence for capital accumulation to be important, the mechanism

suggested in Acemoglu and Guerrieri (2008). Similar to Herrendorf, Herrington, and

Valentinyi (2015), our findings suggest that differences in technological progress across

sectors are key, as proposed in Ngai and Pissarides (2007). According to Herrendorf

et al. (2015) it is the differences in labor-augmenting technological progress across sec-

tors that are crucial. As the composition of occupational employment varies across

sectors, these sectoral differences potentially could be due to technological change bi-

ased only across occupations. However, in our framework we show that this is not

the case and that there are substantial sectoral differences in occupation-augmenting

technological change.

Similarly to Katz and Murphy (1992) and Krusell, Ohanian, Rı́os-Rull, and Violante

(2000) we assume a (nested) CES production function with different types of labor

inputs. Both these papers focus on skilled and unskilled labor and impose a specific

process for factor-biased technological change – this is what allows them to estimate

5



the elasticity of substitution. In contrast, we consider occupational labor inputs and

we do not impose any restrictions on technological change. Similar in methodology

to Caselli (2005) and Caselli and Coleman (2006), we extract factor productivities from

the data taking values for the elasticities from the literature. Our methodology is also

close to Buera, Kaboski, and Rogerson (2015) in relying on optimality conditions to

infer technological change from the data. We find that technological change is very far

from neutral, echoing the general conclusions of Caselli (2016).4

Our paper relates to the recent literature that connects the phenomena of struc-

tural change and polarization across occupations. Duernecker and Herrendorf (2016)

show in a two-sector two-occupation model that unbalanced occupational productiv-

ity growth by itself provides dynamics consistent with structural change and with the

trends in occupational employment. Lee and Shin (2017) allow for occupation-specific

productivity growth and find that their calibrated model can quantitatively account

for polarization as well as for structural change, and in an extension find a limited

role for sector-specific technological change. In Bárány and Siegel (2018) we show that

forces behind structural change, i.e. differences in productivity growth across sectors,

lead to polarization of wages and employment at the sectoral level, which in turn im-

ply polarization in occupational outcomes. Relative to these papers, the key difference

is that we do not a priori restrict technological change to be biased in a particular way,

and we find that technological change has been biased both across occupations and

across sectors.

Several papers have emphasized the role of sectoral productivity differences for ag-

gregate productivity (e.g. Duarte and Restuccia (2010), Duernecker, Herrendorf, and

Valentinyi (2017), and Duarte and Restuccia (2019)). We add to this literature in two

ways. First, we analyze the driving forces behind sectoral labor productivity growth.

Second, we study the role of sectoral inputs and technologies in aggregate labor pro-

ductivity growth. We find that also in the aggregate, technological change is much

more important than input use for labor productivity growth. Moreover, we show

that the contribution of labor-augmenting – and in particular sector-specific routine-

4While Caselli investigates technological biases across labor and capital, and across workers of dif-
ferent education or experience, we consider biases across different factors of production (including
occupations and different types of capital).
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augmenting – technological change has increased over time.

The paper proceeds as follows: section 2 shows the facts about sectoral production

on which we base our analysis. Section 3 introduces the production-side framework

used to infer technologies and explains its implementation. In section 4 we analyze the

role of inputs and technologies in labor productivity growth through counterfactuals.

In section 5 we demonstrate that our results are robust to alternative values for the

elasticities of substitution and when controlling for workers’ human capital. The final

section concludes.

2 Factor use and factor income shares by sector

We combine data from the U.S. Bureau of Economic Analysis (BEA) on sectoral value

added and its components, on sectoral prices, on sectoral employment, and on fixed

assets, with data on the allocation of capital across sectors from EU KLEMS 2017.

To get more detailed information on the occupations of workers within each sector,

we use US Census and American Community Survey (ACS) data between 1960 and

2017 from IPUMS, provided by Ruggles, Alexander, Genadek, Goeken, Schroeder, and

Sobek (2010). Since we draw on various data sources which are based on different in-

dustry classification systems, we map the fine industries of each system into our broad

sector categories, as explained in detail in Table A1 in the appendix.

We use annual data on nominal value added, real value added and prices by in-

dustry from the BEA.5 We group all non-service industries into the goods sector, and

similarly to much of the recent literature on structural transformation, we break ser-

vices into two, based on the skill or education level of workers in the industry.6 It

is common to split services, as already in 1947 the service industries as a whole con-

stituted around 60 percent of total value added. We aggregate real value added and

price data on fine industry categories into our three broad sectors – low-skilled ser-

5The industry categories in this dataset are based on the North American Industry Classification
System (NAICS)).

6Services are split based on whether they are high- or low-skilled in Buera and Kaboski (2012),
whether they are low- or high-productivity growth in Duernecker et al. (2017), or whether they are
traditional/modern services in Duarte and Restuccia (2019). While these splits are based on different
criteria, in practice the overlap between such classifications is substantial.
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vices, goods, and high-skilled services – using the cyclical expansion procedure, as for

example in Herrendorf, Rogerson, and Valentinyi (2013). The left panel of Figure 1
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Figure 1: Nominal value added, real value added and prices
Notes: Authors’ own calculations based on Value Added by Industry data from the BEA for the years
1947-2017.

shows the evolution of value added shares, and it is clear that while the share of value

added produced in high-skilled services increased steadily from the 1940s, the share

produced in goods steeply declined, and in low-skilled services it also declined albeit

at a lower rate. In terms of real value added, depicted in the middle panel, low-skilled

services grew the fastest, and goods the slowest. This divergence between the path of

nominal and real quantities can be understood from the steep increase in the price of

high-skilled services relative to the other two sectors and from the near constancy of

the relative price of low-skilled services to goods, as shown in the right panel.

We next investigate the use of various factor inputs and their income shares in each

sector. As a first step, we calculate the share of sectoral income paid to capital (ΘJ ) and

to labor (1−ΘJ ), using data on the Components of Value Added by Industry from the

BEA. We calculate the labor income share as:7

1−ΘJ =
Compensation of employees in sector J

Gross value added in sector J
.

The difficulty is that for the period before 1987 this data is only available based on

the Standard Industrial Classification (SIC), whereas for the period post 1997 it is only

7This definition of the labor income share excludes proprietors’ income. We choose to do this for
two reasons. First, Elsby, Hobijn, and Şahin (2013) call this the unambiguous part of the labor income
share. Second, we take data on workers from the Census and the ACS, and there we only include
employees, which makes this definition of labor income share consistent with our approach there.
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Figure 2: Labor income share by sector
Notes: Compensation of employees relative to gross value added in a sector calculated from Compo-
nents of Value Added by Industry data provided by the BEA for 1947-2017.

available based on the NAICS classification of industries. Therefore we have to com-

bine these two data sources based on different industry classification systems. While

the individual industries are not the same in these two classifications, when we ag-

gregate them up to our three broad sectors, the two give similar results for the period

of the overlap. As the NAICS data was introduced in 1997, we use the (native) SIC

data until 1997, and the NAICS data from that point onwards.8 Figure 2 plots the evo-

lution of the labor income share by sector as well as for the aggregate economy. The

labor income share in the economy as a whole increased until the early 1970s, which

was followed by a virtually equal reduction thereafter.9 There are two important ob-

servations. First, there are substantial sectoral differences in the labor income share.

For most of the period between 1947 and 2017 the goods sector had the highest labor

income share, while high-skilled services had the lowest labor income share. The sec-

ond thing to note is that these labor income shares are far from constant: following a

common increasing trend until the 1970s, the labor income share declined steeply in

8Herrendorf et al. (2015) also combine data on the labor income and employment shares across
different industries based on the SIC and the NAICS classification.

9When comparing this series with the widely noted decline in the labor income share (Elsby et al.
(2013) and Karabarbounis, Loukas and Neiman, Brent (2014) for example), it is important to bear in
mind that we exclude proprietors’ income from labor income. Since proprietors’ income has been falling
throughout this period, and especially until the 1970s, it roughly offsets the increase in the aggregate
labor income share until the 1970s, and makes the subsequent decline slightly more pronounced.
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the goods sector, declined slightly in low-skilled services, whereas it stayed roughly

constant in high-skilled services. Thus to be able to replicate these patterns, we need

sectoral production functions which allow the labor income share to change over time,

e.g. not of the Cobb-Douglas form.

We next analyze the use of capital. In our analysis we distinguish between two

types of capital, ICT and non-ICT, as discussed in the introduction. The BEA Fixed

Asset Accounts contains annual data on the nominal stock and on chain-type quantity

indices of various types of capital for the entire period of our analysis. When con-

structing computer capital from the BEA we include Information processing equipment

and Software, while traditional capital comprises of all other non-residential capital.10

Starting from data on these finer categories of capital we calculate quantity and price

indices for our two aggregates using the cyclical expansion procedure. Figure 3 in the

left and middle panel shows the evolution of the real quantity and price of ICT and

non-ICT capital in the US economy between 1960 and 2017. The left panel shows that

ICT capital grew much faster over this period than traditional capital. The huge im-

provement in ICT technology is reflected in the steep fall of ICT prices from the 1980s

and the steep increase in ICT capital from the 1990s onwards.
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Figure 3: Real quantity and price of ICT and traditional capital, and allocation of ICT
capital across sectors
Notes: The left and middle panels are computed based on data from the BEA Fixed Asset Accounts,
while the data for the right panel is calculated from EU KLEMS.

In order to measure the allocation of computer capital across sectors we use data

from EU KLEMS 2017. The EU KLEMS 2017 release contains annual data on various
10Traditional capital consist of Industrial equipment, Transportation equipment, Other equipment, Nonres-

idential structures, Research and development and Entertainment, literary, and artistic originals, as well as all
non-residential government fixed assets except for Software, which is included in ICT capital.
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types of capital by industry (based on the International Standard Industrial Classifi-

cation of All Economic Activities (ISIC)) from 1970 onwards. When constructing the

allocation of computer capital across sectors from the EU KLEMS data we include the

following categories: Computing equipment, Communications equipment, and Computer

software and databases. The right panel in Figure 3 shows the fraction of nominal com-

puter capital stock in each sector, and shows that most of the computer capital stock is

in the high-skilled service sector, with a roughly equal quantity in low-skilled services

and goods. Note that data on the allocation of computer capital across sectors is only

available between 1970 and 2015. To infer technologies from the data, as detailed in

the next section, we impute values for this allocation in 1960 and in 2017. Since the al-

location across sectors seems quite flat between 1970 and 1978 and between 2010 and

2015, we impose the 1970 values for 1960, and the 2015 values for 2017.

Finally, we break down employment and labor income within each sector by oc-

cupation. As discussed in the introduction, we believe that in order to understand

what is driving sectoral labor productivity growth it is crucial to differentiate between

occupations. Since the national accounts do not contain any information on the oc-

cupation of workers within industries, we turn to the decennial US Census and ACS

data between 1960 and 2017 from IPUMS, provided by Ruggles et al. (2010), which

contains information on the occupation of workers. We follow the classification of oc-

cupations into three categories by Acemoglu and Autor (2011): manual (non-routine

non-cognitive), routine (both cognitive and non-cognitive) and abstract (non-routine

cognitive). We implement this classification by relying on a harmonized and balanced

panel of occupational codes as in Autor and Dorn (2013) and Bárány and Siegel (2018).

We then classify each worker into one of these three broad occupations and into one

of the three sectors defined earlier.11 Given this classification we can calculate the

share of hours worked by occupation o workers within a sector J . We measure sec-

toral employment shares and overall employment growth using Full Time Equivalent

(FTE) employees by industry provided by the BEA.12 To get the employment share of

a sector-occupation cell, loJ , we multiply the within-sector hours share of occupation

11See Appendix A.1 for more details on the classification of occupations and Table A1 for industries.
12As for the data on the components of value added, we again have to combine data based on two

different industry classification systems (SIC until 1998, NAICS afterwards).

11



o (from the Census/ACS) by the employment share of sector J in the economy (from

the BEA). We also calculate the labor income share of occupation o in sector J as:

θoJ ≡
earnings of occupation o workers in sector J

earnings of sector J workers
. (1)

Relative average occupational wages within sectors can then be calculated as

wo
wr

=
θoJ
θrJ

lrJ
loJ
.
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Figure 4: Sector-occupation income shares, hours shares, and relative wages
Notes: Sectoral employment shares are based on BEA data on full time equivalent workers. The data
on occupational employment, income and wages is taken from IPUMS US Census data for 1960, 1970,
1980, 1990, 2000 and the American Community Survey (ACS) for 2010 and 2017. For three broad sectors
(low-skilled services, goods, high-skilled services) and three occupational categories (manual, routine,
abstract), this figure plots in the top row the evolution of employment shares in sector-occupation cells,
as well as in sectors (dark gray dotted lines), in the middle row each occupation’s share in sectoral labor
income, and in the bottom row the ratio of manual to routine wages and of abstract to routine wages
within the given sector.
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Figure 4 shows the employment share of each sector (lJ ) and of each sector-occupation

cell (loJ , in the top row), as well as within each sector the labor income share of each

occupation (θoJ , in the middle row) and the average wage of abstract and manual rel-

ative to routine occupations (waJ/wrJ and wmJ/wrJ in the bottom row).13

Clearly, the share of labor income earned by routine workers declined in each sector

(as seen in the middle row). This is driven by the falling employment share of routine

workers (plotted in the top row), and by their wages which tend to fall relative to the

other occupations (bottom row). Note that the relative average hourly wages are not

equalized across sectors.

The top row of Figure 4 demonstrates that all of the three sectors employ workers

in each of the three occupations, but at different intensities. It is therefore a possibility

that the observed sectoral differences in labor productivity growth are due to differ-

ences in occupational labor input use. Note that the goods sector is the most intensive

in routine workers, while high-skilled services is the most intensive in abstract work-

ers. Now suppose that technological change increased routine workers’ productivity

the most, but equally across sectors. It is then conceivable that the differences in oc-

cupational intensities generate the sectoral differences in measured labor productivity

growth (in terms of all workers), especially the high growth in goods. Moreover, the

observed slowdown in aggregate productivity growth could be driven by the contrac-

tion of routine employment in all sectors. We evaluate the role of these mechanisms in

section 4.

3 A production side framework

In order to study the role of changing factor inputs and changing factor-augmenting

technologies, we specify a production side framework. We assume a relatively flexi-

ble CES functional form for sectoral production, which allows matching the data we

documented in the previous section. Note that with CES production functions rela-

13In section 5.3 we consider a variant of this framework where we control for observable character-
istics of workers (as one might be concerned that these are confounding the patterns of average wages).
Note, the income shares we show here are informative even if there is heterogeneity amongst workers
in terms of their human capital.
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tive factor prices in equilibrium depend both on relative supplies and on relative pro-

ductivities. This means the framework does not hard-wire where changes in relative

wages are stemming from. Another advantage of the CES framework is that it is rel-

atively simple and does not require too many parameters (as argued in Krusell et al.

(2000)). We back out the path of factor-augmenting technologies from each sector’s

optimality conditions, conditional on values for the various elasticities of substitution,

using data on sectoral growth rates, value added, quantities and prices of factor in-

puts. It is important to note that we conduct this exercise making assumptions about

the production side of the economy only. We do not need to take a stance on where the

demand for goods and services stem from, since observing the sectoral value added

is sufficient. Similarly, observing the quantities and prices of factors employed in pro-

duction is sufficient and we do not need to model capital accumulation or labor supply

choices. The method in this exercise is similar to Buera et al. (2015), but with a very

different focus. We allow for heterogeneity in labor across occupations and want to

identify the drivers of sectoral labor productivity growth.

3.1 Sectoral production

There are three sectors in the economy which respectively produce low-skilled ser-

vices (L), goods (G), and high-skilled services (H). Firms in each sector combine occu-

pational labor (manual, routine and abstract), computer capital and traditional capital

as inputs according to the following CES production function:

YJ,t =

(∑
o=m,a

(αoJ,tloJ,t)
ρ−1
ρ +

[
(αrJ,tlrJ,t)

σc−1
σc + (αcJ,tcJ,t)

σc−1
σc

]σc(ρ−1)
(σc−1)ρ

) ρ(σ−1)
(ρ−1)σ

+ (αkJ,tkJ,t)
σ−1
σ


σ
σ−1

for J ∈ {L,G,H}. (2)

In this formulation loJ,t is occupation o ∈ {m, r, a} labor, cJ,t is computer capital and kJ,t

is traditional capital used in sector J , and αfJ,t > 0 is a sector-specific factor-augmenting

technology term for each production factor, all in period t. The production function

is of a nested CES form, where the most inner level is the combination of routine la-
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bor and computer capital with an elasticity of substitution σc. Next the different types

of labor, including the most inner routine aggregate, are aggregated according to an

elasticity of substitution ρ, and the outer-most layer combines aggregate labor and

traditional capital with a substitution elasticity σ. Each CES-layer of the production

function allows for factor income shares (at the sectoral level) to change over time

which is one of the salient features we have documented in the data in the previous

section. The aggregator of occupational labor inputs is based on the notion that work-

ers in different occupations perform different tasks and are thus imperfect substitutes

in production, as for instance emphasized in a task-based model of the labor market

(see Acemoglu and Autor (2011)). In line with Autor and Dorn (2013), the most inner

nest is such that the use of ICT capital most directly affects routine workers, whereas

according to the middle nest it would complement workers in the other occupations

when 0 < ρ < 1.14

It is worth to note that the initial value of technology αfJ,0 reflects the initial pro-

ductivity as well as the intensity at which sector J uses input f , whereas any sub-

sequent change over time, αfJ,t/αfJ,0, reflects sector-factor augmenting technological

change.15 This formulation of the production function is very flexible and does not

impose any restrictions on the nature of technological change. In particular, it does

not require taking a stance on whether labor-augmenting technological change is spe-

cific to sectors or occupations.16 It also allows for systematic co-movements and can

14Since there is no hard evidence on elasticities of substitution between occupational labor inputs,
for simplicity we assume that they are combined in the CES aggregator in this ‘symmetric’ way with a
common elasticity.

15An alternative, isomorphic way of writing the production function in (2) is

YJ,t =

( ∑
o=m,a

xoJ(AoJ,tloJ,t)
ρ−1
ρ +

[
xrj(ArJ,tlrJ,t)

σc−1
σc + xcJ(AcJ,tcJ,t)

σc−1
σc

]σc(ρ−1)
(σc−1)ρ

) ρ(σ−1)
(ρ−1)σ

+ xkJ(AkJ,tkJ,t)
σ−1
σ


σ
σ−1

where xfJ are constant weights and AfJ,t are sector-factor technologies that can change over time.

The two formulations are equivalent since one can rewrite αfJ,t = x
η
η−1

fJ AfJ,t (where η is the relevant
elasticity depending on the layer of the CES nest). In this sense the αfJ,t terms comprise of a fixed
weight and a changing sector-specific factor augmenting technology. We are interested in changes in
technology over time, which – due to the weights being constant – are equal in the two formulations,
∆ logαfJ,t = ∆ logAfJ,t.

16It is easy to conceive that some technologies improve a given occupation’s productivity in a similar
way regardless of the sector of work. For example an accountant’s productivity has increased by the
advent of computers, though potentially more so in sectors characterized by larger firms. There are
also occupations which – though similar – perform different tasks depending on the sector of work.
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capture general purpose technologies, sector-specific innovations, occupation-biased

technological change, or changes specific to the sector-factor cell.

3.2 Inferring factor-augmenting technologies

The assumptions about the production side of the economy allow us to infer factor-

augmenting technologies (the αfJ,ts) from observables. In addition to the sectoral pro-

duction functions, we assume that there is perfect competition in all markets, such that

firms take prices as given.

Here we describe in detail how we can back out the factor-augmenting technolo-

gies from the data. First, using optimality conditions for production in each sector we

express relative factor-augmenting technologies within a sector and period. Second,

we derive how the growth of sectoral value added pins down the evolution of tech-

nologies within each sector over time.17 In what follows, where possible, we omit the

time t subscripts to simplify the notation.

In line with the data we have shown in Figure 4, we assume that wages are sector-

occupation specific, we denote these by woJ . Assuming further that the rental rates

of computer (Rc) and traditional capital (Rk) are equalized across sectors, the profit

maximization problem of firms in each sector is

max
{loJ},cJ ,kJ

pJYJ −
∑
o

woJ loJ −RccJ −RkkJ ,

subject to (2), where pJ denotes the price of sector J output. Optimal input use in each

Ford’s Model T is a good example: by introducing the moving assembly line in production, rather
than the then usual hand crafting, the productivity of workers directly producing the car increased,
later leading to a spillover to workers in other car producers. This did not have a concurrent effect on
other production workers. In this sense the introduction of assembly lines in car manufacturing can be
regarded as a sector-occupation-specific productivity change.

17The derivations can be found in appendix A.3.
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sector has to satisfy the following first order conditions:

∂πJ
∂loJ

= pJY
1
σ
J (LA)

ρ
ρ−1

σ−1
σ
−1 α

ρ−1
ρ

oJ l
− 1
ρ

oJ − woJ = 0 for o ∈ {m, a}, (3)

∂πJ
∂lrJ

= pJY
1
σ
J (LA)

ρ
ρ−1

σ−1
σ
−1 [RA]

σc
σc−1

ρ−1
ρ
−1 α

σc−1
σc

rJ l
− 1
σc

rJ − wrJ = 0, (4)

∂πJ
∂cJ

= pJY
1
σ
J (LA)

ρ
ρ−1

σ−1
σ
−1 [RA]

σc
σc−1

ρ−1
ρ
−1 α

σc−1
σc

cJ c
− 1
σc

J −Rc = 0, (5)

∂πJ
∂kJ

= pJY
1
σ
J α

σ−1
σ

kJ k
− 1
σ

J −Rk = 0, (6)

where we define the routine aggregate as RA = (αrJ lrJ)
σc−1
σc + (αcJcJ)

σc−1
σc and the labor

aggregate as LA = (αmJ lmJ)
ρ−1
ρ + (αaJ laJ)

ρ−1
ρ + [RA]

σc
σc−1

ρ−1
ρ .

Inferring technologies within sectors. We can express the relative optimal demand

for factor inputs from the first order conditions as a function of relative factor prices

and relative technologies. We invert these to express relative technologies in terms of

relative wages, rental rates and relative factor incomes within sectors.

The first order conditions on manual and abstract labor, (3), pin down the optimal

relative labor use as:

laJ
lmJ

=

(
wmJ
waJ

)ρ(
αaJ
αmJ

)ρ−1

. (7)

It is optimal to use more abstract relative to manual labor in sector J if the relative

manual wage, wmJ/waJ , is higher. Additionally, if the term (αaJ/αmJ)ρ−1 is larger it

is optimal to use relatively more abstract labor in that sector. Multiply the above by

waJ/wmJ and re-arrange to get:

αmJ
αaJ

=
wmJ
waJ

(
wmJ lmJ
waJ laJ

) 1
ρ−1

=
wmJ
waJ

(
θmJ
θaJ

) 1
ρ−1

, (8)

where θmJ = (wmJ lmJ)/(
∑

owoJ loJ) is the share of labor income in sector J that is

going to manual workers. Equation (8) shows that conditional on ρ, observing the

relative wage and the relative income share of manual and abstract workers within

a sector, both shown in Figure 4, allows us to infer relative occupation-augmenting

technologies in that sector.
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Similarly, from the first order conditions on routine labor and computer capital, (4)

and (5), we can express the relative demand for these factors, and consequently their

relative α as well:

αcJ
αrJ

=
Rc

wrJ

(
ΘcJ

(1−ΘJ)θrJ

) 1
σc−1

, (9)

where ΘcJ = (RccJ)/(pJYJ) is the share of income in sector J paid to computer capital,

and ΘJ = (RccJ + rkkJ)/(pJYJ) is the share of income in sector J paid to both types

of capital. This expression is very similar to the one in (8), except that it is a different

elasticity of substitution that is relevant.

Expressing the remaining two relative technology levels within sectors, αrJ/αmJ

and αkJ/αmJ , follows a similar principle, but is slightly more convoluted, and we

delegate the details of these derivations to appendix A.3. Here we only explain the

intuition. First, from the optimal use of routine labor relative to ICT capital, we ex-

press RA, the routine aggregate, in terms of routine labor only. This then allows us

to express the optimal use of manual relative to routine labor within a sector, which,

multiplied by wrJ/wmJ , gives us the relative technologies as:

αmJ
αrJ

=
wmJ
wrJ

(
θmJ
θrJ

) 1
ρ−1
[
1 +

ΘcJ

(1−ΘJ)θrJ

] ρ−σc
(σc−1)(ρ−1)

. (10)

Next we express LA, the labor aggregate, in terms of manual labor only, which

again allows us to express the optimal use of manual labor relative to traditional capi-

tal. Multiplying this by relative factor prices and re-arranging we get:

αkJ
αmJ

=
Rk

wmJ

(
1

θmJ

) 1
ρ−1
(

ΘJ −ΘcJ

1−ΘJ

) 1
σ−1
(

1 +
ΘcJ

1−ΘJ

) σ−ρ
(ρ−1)(σ−1)

. (11)

Thus, we showed how to infer all relative technologies within a sector and a period

from observables, conditional on the elasticities ρ, σc and σ. Taking for example αkJ as

the base technology, all other factor-augmenting technologies in sector J are propor-

tional to αkJ , where the proportionality depends on observables in the data, and on

the values of the three substitution elasticities.
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Inferring technologies over time. The last step is to pin down the evolution of the αs

over time in each sector, as well as the initial values of the technologies. Until now we

did not index any variable by time, as we explained how to infer the relative αs within

a period. Plugging all the optimal relative input use expressions in (2) sectoral output

can be expressed as:

YJ,t = αkJ,tkJ,t

(
1

ΘJ,t −ΘcJ,t

) σ
σ−1

.

The evolution of the αkJ,t over time is then given by:

αkJ,t
αkJ,0

= γJ,t
kJ,0
kJ,t

(
ΘJ,t −ΘcJ,t

ΘJ,0 −ΘcJ,0

) σ
σ−1

, (12)

where γJ,t denotes the growth of sectoral real value added between the initial and pe-

riod t in the data. Again in equation (12) all right-hand side variables can be observed

in the data, and hence, conditional on σ, this equation gives us the growth rate of αkJ,t

over time.

Finally, we need to pin down the initial level of αs. It is important to note that

these have no impact on our conclusions regarding the drivers of sectoral labor pro-

ductivity growth; they only matter for the growth rate of labor productivity in the

aggregate economy.18 We infer these initial αs from initial sectoral prices. Using the

above expression for sectoral output in the first order condition on traditional capital

we get:

αkJ,0 =
Rk,0

pJ,0
(ΘJ,0 −ΘcJ,0)

1
σ−1 . (13)

Equations (8), (9), (10), (11), (12) and (13) describe how to infer factor-augmenting

technologies in each sector and in all periods. Note that equations (8) to (12) are im-

plied by firms’ cost minimization and therefore would still hold if there were imperfect

competition in product markets. As such, our conclusions about the drivers of sectoral

labor productivity growth would also hold if firms were charging – potentially time-

varying – mark-ups.

18Even for this, only the relative initial αs matter, i.e. we could normalize one of the sectors’ αkJ,0
without loss of generality.
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3.3 Implementation

To infer the sector-specific factor-augmenting technologies from the data using equa-

tions (8) to (13), we need the value of three elasticities. First, we need the elasticity

of substitution between non-ICT capital and the labor aggregate, σ. The overwhelm-

ing majority of studies which estimate the elasticity of substitution between capital

and labor from aggregate data finds values below one, see Table 1 in León-Ledesma,

McAdam, and Willman (2010) for a recent summary.19 Lawrence (2015) obtains esti-

mates ranging from 0.27 to 0.96 for this elasticity in the (total) manufacturing sector.

Oberfield and Raval (2014) follow a more micro approach, and estimate the elasticity

of substitution between capital and labor in the US manufacturing sector by aggre-

gating the actions of individual plants, and find a value around 0.7. Closest to our

setup with sectoral CES production functions is Herrendorf et al. (2015), though we

differentiate between various types of occupational labor. While they find differences

across sectors, they report for the aggregate economy an elasticity of 0.84. We take this

value for our baseline parametrization, but in the robustness checks of section 5.2 we

also explore model variants with sector-specific elasticities.

Second, we need the elasticity of substitution between computer capital and rou-

tine labor, σc. While the literature has argued that routine labor and computer capital

are very good substitutes, there are surprisingly few estimates of this elasticity. Eden

and Gaggl (2018) estimate a CES production function differently nested to ours, where

the elasticity of substitution between computer capital and routine labor is not con-

stant, but it ranges between 2.14 and 3.27. Aum et al. (2018) calibrate industry specific

elasticities between ICT capital and all types of occupational labor and find values be-

tween 1.21 and 1.84. As our baseline we set σc = 2, in the mid-range of these estimates.

Third, we need the elasticity of substitution between the different occupations and

the routine aggregate, ρ. Goos, Manning, and Salomons (2014) estimate an elasticity

of substitution of 0.9 between 21 occupations, Lee and Shin (2017) calibrate ρ = 0.70

and Aum et al. (2018) calibrate 0.81 both among 10 occupations, and Duernecker and

19These studies estimate jointly the elasticity of substitution and a constant growth rate of (either
Hicks-neutral or factor-augmenting) technological change. As discussed in the introduction, since we
do not impose any restrictions on how technologies evolve over time we cannot identify both technolo-
gies and elasticities from the data.
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Herrendorf (2016) calibrate an elasticity of 0.56 between 2 occupations. It is likely that

the more coarse the occupation categories are, the lower is the elasticity of substitution.

In our model with three occupational categories we therefore set ρ = 0.6. While we use

these values for the three elasticities as our baseline, we conduct in section 5 extensive

robustness checks, also with respect to these elasticities.

To infer the evolution of technologies over time we need the following measures

from the data for every period: sector-occupation specific wage rates (woJ,t), rental

rates for traditional and computer capital (Rk,t and Rc,t), the income share of occupa-

tions within sectors (θoJ,t), the share of sectoral value added paid to computer capital

(ΘcJ,t), and to both types of capital together (ΘJ,t), the quantity of traditional capital by

sector (kJ,t), the per worker growth rate of sectoral value added (γJ,t), as well as sectoral

prices in the initial period (pJ,0). In Section 2 we showed θoJ,t, ΘJ,t, pJ,t, and γJ,t, calcu-

lated as the growth rate of real value added in sector J (shown in Figure 1) divided by

the growth rate of full time equivalent workers from the BEA. Note that without loss

of generality we normalize all our quantity measures by the FTE workforce, i.e. we

use employment shares, the stocks of ICT and traditional capital per worker, growth

of real value added in each sector per worker, and nominal value added per worker.

In the quantitative analysis rather than using workers’ self-reported income from the

Census/ACS, we use the following accounting identity to obtain sector-occupation

wage rates, woJ,t:

woJ,tloJ,t = Y nom
t · V AJ,t(1−ΘJ,t)θoJ,t,

where Y nom
t is nominal GDP per worker in year t and V AJ,t is the share of value added

produced in sector J (shown in Figure 1). This accounting identity ensures that the

sum of all income paid to workers of different occupations within a sector is equal to

the nominal labor income in that sector. Note that relative occupational wages within

a sector are the same as those calculated from the micro data (see equation (16) and

the discussion that follows in appendix A.2). Using similar accounting identities and

a no arbitrage condition, we obtain Rk,t, Rc,t and ΘcJ,t from the data shown in Figure

2 and 3 as explained in appendix A.2. These accounting identities ensure that the sum

of all factor incomes is equal to nominal value added.
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4 The role of changing input use and technologies

Table 1 shows the average annual growth rate of sector-factor augmenting technolo-

gies between 1960 and 2017, as well as for two sub-periods, 1960-1990 and 1990-2017.

Technological change has been uneven, within each sector across factors, as well as

for a given factor across sectors. Nonetheless some patterns can be discerned. Look-

ing at the average growth rates over the entire period, it is obvious that among all

occupations routine labor had the highest productivity growth in all sectors, between

1.32 and 5.59 percent annually. Technological change augmenting manual labor was

much more modest and less dispersed across sectors, with rates between 0.25 and 0.67

percent. Finally, technological change augmenting abstract labor varied across sec-

tors, with negative growth rates in L and in H . These negative growth rates might

be explained by a compositional change within abstract occupations in these sectors,

towards more time-consuming tasks. In terms of capital-augmenting technologies we

find that those related to ICT increased rapidly in L and in G and fell in H , while

those augmenting traditional capital increased at a lower rate in L and in H and they

fell in G. While these negative growth rates might be surprising, they are in line with

what previous literature has found.20 In terms of sectoral patterns, the growth rates

of all factor-augmenting technologies were the highest in G, followed by L, except for

manual labor and traditional capital, which had the highest growth in H . Thus be-

yond the factor-specific patterns, there also seem to be sector-specific components to

technological progress.

Our results highlight that routine workers became more productive over and be-

yond what is embodied in ICT capital. Technologies augmenting routine workers in-

creased the most in all sectors, even after accounting for the increase in ICT capital (cJ )

and in its productivity (αcJ ), suggesting that there is routinization beyond computeri-

zation, in line with what Aum et al. (2018) find.

Comparing the earlier to the more recent period shows that technological change

augmenting each type of labor accelerated over time (for all occupations in all sectors

but for αmL, the growth rate of which remained virtually constant), while technological

20Both Antràs (2004) and Herrendorf et al. (2015) find negative capital-augmenting technological
change at the aggregate level, and respectively in the manufacturing and service sectors.

22



Table 1: Average annual growth rate of αs for various periods between 1960 and 2017

occupations capital
manual routine abstract non-ICT ICT

1960-2017
L 1.0025 1.0292 0.9933 1.0085 1.0200
G 1.0058 1.0559 1.0100 0.9839 1.0439
H 1.0067 1.0132 0.9763 1.0178 0.9803
1960-1990
L 1.0032 1.0108 0.9849 1.0286 1.0338
G 0.9760 1.0369 0.9827 1.0063 1.0497
H 0.9921 0.9882 0.9587 1.0394 0.9653
1990-2017
L 1.0017 1.0500 1.0027 0.9867 1.0049
G 1.0398 1.0775 1.0413 0.9596 1.0376
H 1.0231 1.0417 0.9962 0.9942 0.9974

change augmenting either type of capital decelerated (except for ICT-augmenting cap-

ital in H). This suggests that the relative importance of capital- vs labor-augmenting

technologies for labor productivity growth has changed over the last decades.

To the extent that positive labor productivity growth in the data has stemmed from

improvements in technologies, Table 1 implies that this was most likely due to im-

provements in routine labor-augmenting technologies. It is worth to note that the

ratios of the growth rates of routine-augmenting technologies across sectors are very

similar to those of measured labor productivity (1.53% in L, 2.49% in G and 0.72% in

H). How the growth rate of individual factor-augmenting technologies affects sec-

toral labor productivity depends on the intensity at which the various factors are

used. As shown in Figure 4, sector G has had the highest intensity in routine work-

ers, which could have amplified the effects coming from the differential evolution of

sector-occupation cell technologies (as αrG grew the most). Thus the sectoral differ-

ences both in the growth rate of routine-augmenting technologies and in the occupa-

tional composition of employment, as well as their interaction could be behind the

sectoral differences in labor productivity growth.

In what follows we study the drivers of sectoral labor productivity growth in de-

tail, by computing average sectoral labor productivity growth rates between 1960 and

2017 for various counterfactual scenarios. First, we quantify the role of changing input
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use and of differences in occupational employment shares across sectors. To do this,

we use the αs as extracted from the data, and fix factor inputs at counterfactual lev-

els. Second, to assess the importance of technological change, we use the actual factor

inputs as measured in the data, but fix the αs at their 1960 values. Comparing these

two sets of counterfactuals to each other sheds light on whether changing inputs or

evolving technologies are more important. The comparison within a set of counterfac-

tuals where we fix just some of the inputs or just some of the technologies informs us

which particular inputs and types of technological change matter the most. Finally we

evaluate the implications of these channels for aggregate labor productivity growth.

4.1 The role of changing input use

Figure 5 shows the average annual labor productivity growth in the three sectors over

1960-2017. The first set of bars is the actual data, which is perfectly reproduced by

our baseline model, showing that the goods sector had with 2.49% the highest labor

productivity growth, whereas in low-skilled services it was 1.53% and in high-skilled

services 0.72%. The subsequent sets of bars show the results of various counterfactuals

in which we fix the inputs listed below the bars at their 1960 values, but let all other

inputs and the factor productivities (αfJ,t) vary over time as extracted from the data

(except for the last set, where we assign identical occupational employment shares

to all sectors). Comparing the implied sectoral labor productivity growth (and their

differences) to the data gives a sense of the importance of the changing use of the fixed

input(s).

In the second set of bars (‘all’) we fix all inputs at their 1960 level. Keeping all inputs

at their initial level results in much lower labor productivity growth in all sectors. This

implies that the reallocation of labor and the accumulation of capital had a positive

effect on labor productivity growth in all three sectors. While the size of this effect

varied across sectors, the ranking of sectors in terms of labor productivity growth

was not affected by changing input use. However, absent capital accumulation and

employment reallocation across sector-occupation cells, there would have been hardly

any difference between the productivity growth in goods and in low-skilled services.
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Figure 5: Average sectoral labor productivity growth with fixed factor inputs
Each set of bars shows the average annual labor productivity growth rate (in percent) over 1960-2017
for the three sectors of the economy (low-skilled services in pink solid, goods in gray striped, and high-
skilled services in yellow patterned). The first set of bars shows the growth rates in the data, and the
subsequent sets show counterfactual growth rates when holding the inputs listed below the bars at their
1960 level (or share), and with all other inputs as well as technologies evolving as in the data. In the
last set of bars we assign identical occupational employment shares to all sectors and let everything else
evolve as in the data.

This highlights that changing input use is important for the level of labor productivity

growth, as well as for its differences across sectors.

The next three counterfactuals shed light on the role of capital accumulation. With

both types of capital inputs fixed at their 1960 level (‘capital’), the growth rate in

all sectors falls short of the data, on average by 39 percent.21 This effect is the most

pronounced in high-skilled services, where absent capital accumulation there would

have been hardly any growth in labor productivity. Capital accumulation resulted

in smaller sectoral differences, but without altering the ranking of sectors in terms

of labor productivity growth. This suggests that capital deepening, which was dif-

ferential across sectors, was important for the level of labor productivity growth, but

was not the main driver of sectoral differences. In particular, if capital deepening was

21Labor productivity growth in L would have been 80% of its actual value, in G 98%, and in H 5%,
the simple average of this is 61%, i.e. 39 % lower than in the data.

25



the source of structural transformation, as argued in Acemoglu and Guerrieri (2008),

then shutting it down should result in a larger reduction in productivity growth in

the goods sector compared to services, which is not what we find. Comparing the

counterfactual where we shut down only non-ICT capital with the one where we shut

down only ICT capital accumulation shows that non-ICT capital had a larger and less

uniform effect on labor productivity growth across sectors.

In the last three counterfactuals we study the role of labor allocation across sector-

occupation cells. We first fix all labor inputs at their 1960 values (‘labor’). The resulting

productivity growth rate falls considerably short of the data in goods, in low-skilled

services only marginally, whereas in high-skilled services it is slightly higher than in

the data. Hence, absent employment reallocations, sectoral differences in labor pro-

ductivity growth are not in line with the data. Overall this highlights that changing

labor use was important for the level of growth inG and for sectoral differences. In the

last two counterfactuals we investigate whether this was driven by differences in the

occupational employment structure, either over time within sectors or across sectors.

In the penultimate set of bars, we fix the share of occupations within each sector

at initial ratios (‘occ. shares within sec.’) but let the overall employment share of each

sector (as well as all other inputs and technologies) evolve as in the data. In this case

we obtain growth rates that are lower than, but quite close to the actual data. This

shows that shifts in the occupational employment structure within sectors had only

modest positive effects on sectoral labor productivity growth, but hardly any effect on

sectoral differences.

In the last set of bars rather than fixing an input at the sectors’ initial level (or share),

we impose the same occupational structure in each sector, which we let evolve in the

same way as the occupational composition of the aggregate economy. The results of

this counterfactual hardly differ from the data. This implies that the differences in

occupational intensities across sectors did not generate, nor contribute to, the sectoral

differences in labor productivity growth observed in the data.
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4.2 The role of technological change

We now turn our attention to technological change and conduct a series of counter-

factuals in which we fix some of the factor-augmenting technologies but let all inputs

vary as in the data between 1960 and 2017. Again comparing the results implied by

the counterfactual to the actual data informs us about the importance of the techno-

logical change that we shut down. The first set of bars in Figure 6 shows the data and

the subsequent sets of bars fix the technologies (the αfJ,t) of the factors listed below

the bars at their 1960 level.
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Figure 6: Average sectoral labor productivity growth with fixed technologies
Each set of bars shows the average annual labor productivity growth rate (in percent) over 1960-2017
for the three sectors (low-skilled services in pink solid, goods in gray striped, and high-skilled services
in yellow patterned). The first set of bars shows the growth rates in the data, and the subsequent sets
show counterfactual growth rates when holding technologies augmenting the factors listed below the
bars at their 1960 level, with all inputs as well as all other technologies evolving as in the data.

Absent any change in factor-augmenting technologies, but just due to capital ac-

cumulation and employment reallocation, as the second set of bars (‘all’) shows, there

is hardly any growth in labor productivity in low-skilled services and in goods pro-

duction and only very small differences across sectors. This clearly demonstrates that

technological progress was crucial for the level of labor productivity growth as well as
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for its sectoral differences. Furthermore, comparing the results of fixed technologies

to those of fixed inputs in Figure 5 (second set of bars) highlights that evolving tech-

nologies matter much more than changing inputs, both for sectoral growth rates and

their differences. In particular evolving technologies explained at least 76% of labor

productivity growth in L, 55% in G and 33% in H .22 High-skilled services thus seem

to be somewhat of an exception; in this sector capital accumulation was crucial.

To see whether this is due to capital-augmenting technological change, we next fix

just the productivity parameters of ICT and non-ICT capital. Comparing the results

of the third set (‘capital’) to the data reveals that (sector-specific) capital-augmenting

technological change has increased labor productivity growth in low- and high-skilled

services, but lowered it in goods, thus acting to reduce sectoral differences. This

demonstrates that capital-augmenting technological change was not the driver of the

differences across sectors observed in the data. When distinguishing further between

technological change in the two types of capital, we see that these results are mainly

driven by the evolution of traditional capital’s productivity, and not by ICT capital.

In the last four counterfactuals we first fix all labor-augmenting technologies at

their 1960 level, and then in turn fix only manual, only routine or only abstract labor

augmenting technologies (within each sector). The results show that without any im-

provements in labor-augmenting technologies the magnitude of and the differences

between sectoral labor productivity growth would have been very far from the data.

This highlights that technological change augmenting labor is key. We break this up

further to study the role of technologies augmenting the various occupations. We find

that routine labor augmenting technological change was a first-order determinant of

labor productivity growth in low-skilled services and in goods, explaining at least

59 and 74 percent respectively. It explains at least 21 percent of labor productivity

growth in high-skilled services, which was mainly driven by capital accumulation as

we established in section 4.1.23 Sector-specific routine labor augmenting technological

22These numbers are the minimum of the fraction of the data predicted when fixing all inputs, and
of one minus the fraction predicted when fixing all technologies.

23To obtain these numbers we conducted an additional counterfactual, where we fixed everything at
the 1960 level except for αrJ,t which evolved as extracted from the data. We report the minimum of the
fraction of the data predicted by this additional counterfactual, and of one minus the fraction predicted
when shutting down only the change in αrJ (the ‘routine’ counterfactual of Figure 6).
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change is also the single most important driver of sectoral differences; without it labor

productivity growth would have been almost equalized across sectors. While changes

in abstract labor augmenting technologies have contributed to sectoral differences to

some extent, manual labor augmenting technologies hardly had any impact on the

level of and on the differences in sectoral labor productivity growth. This is perhaps

not surprising given the low growth rates of these technologies shown in Table 1.

To summarize our findings so far, both changing inputs and changing technolo-

gies have been important for the observed sectoral labor productivity growth, with

technologies playing a larger role. We find that both capital accumulation and capital-

augmenting technological change acted to reducing sectoral differences. When iso-

lating the effects of changing technologies by production factors, we see that labor-

augmenting technological change had the largest role, and in particular (sector-specific)

routine-augmenting technological change.

4.3 The role of sector and occupation components in labor-augmenting

technological change

As we found a key role for labor – and in particular for routine labor – augmenting

technological change we investigate this further. In light of the sector and factor pat-

terns visible in Table 1, we want to understand whether the effect of labor-augmenting

technologies can be assigned to occupation-specific or to sector-specific components.

We want to know, for example, where exactly the effects of sector-specific routine la-

bor augmenting technological change are stemming from; is it the differences across

sectors or the growth differential relative to the other occupations that is more impor-

tant?

To decompose the changes of technologies augmenting labor in all sector-occupation

cells, we set up a factor model.24 In particular we regress the change in log cell tech-

nologies between each consecutive period on a (time-varying) sector effect (γJ,t), an

24In macroeconomics factor models have been also used to study how country-level outcomes de-
pend on sector and country factors, for instance in Stockman (1988), Ghosh and Wolf (1997) and Koren
and Tenreyro (2007).
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occupation effect (δo,t), and a time effect (βt) in the following way

∆ lnαoJ,t ≡ lnαoJ,t − lnαoJ,t−1 = βt + γJ,t + δo,t + εoJ,t, (14)

where we use weights ωoJ,t to reflect the relative importance of the sector-occupation

cell.25 We restrict both the average sector effect and the average occupation effect

to be zero, which effectively implies that βt captures the average labor augmenting

technological change across all cells between period t− 1 and t.26

Based on the results of (14), we compute counterfactual series for ∆ lnαoJ,t, from (i)

the neutral component alone (β̂t), (ii) the neutral and sector-specific components (β̂t +

γ̂J,t) which we call ‘sector-only’, (iii) the neutral and occupation-specific components

(β̂t + δ̂o,t) which we call ‘occupation-only’, and (iv) from all components (everything

but ε̂oJ,t), to which we refer as the ‘full factor’ prediction. In the appendix we show

in Figure A1 the path of sector-occupation technology changes over time as extracted

from the data as well as those predicted from the various components.

To gauge how much of the variation in cell productivities the neutral, sector- and

occupation-specific components can explain jointly and separately, we calculate the

following distance measure between the extracted and the various predicted ∆ lnαoJ :

D =

∑
o,J,t ωoJ,t(∆̂ lnαoJ,t −∆ lnαoJ,t)

2∑
o,J,t ωoJ,t(∆ lnαoJ,t −∆ lnα)2

.

This measure captures the variation in the extracted productivity changes that the

various components cannot account for. It is always positive and the smaller it is, the

closer the predictions are to the data. It is worth to note that this measure is closely

related to the R2, and in certain cases, including the ‘full factor’ and the ‘neutral’ pre-

diction, it exactly equals 1−R2.27

25The weights we use are the cells’ average labor income between period t − 1 and t, ωoJ,t =
V AJ,t(1−ΘJ,t)θoJ,t+V AJ,t−1(1−ΘJ,t−1)θoJ,t−1∑
o,J (V AJ,t(1−ΘJ,t)θoJ,t+V AJ,t−1(1−ΘJ,t−1)θoJ,t−1) . The results are very robust to alternatives, such as us-

ing cell employment shares, or using year t− 1 or year t shares, rather than averages.
26To be more precise these restrictions are:

∑
o

∑
J ωoJ,tγJ,t = 0 and

∑
J

∑
o ωoJ,tδo,t = 0 for every t.

27The R2 is defined as

R2 =

∑
o,J,t ωoJ,t(∆̂ lnαoJ,t −∆ lnα)2∑
o,J,t ωoJ,t(∆ lnαoJ,t −∆ lnα)2

,
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neutral full factor sector occupation

Distance measure 0.702 0.033 0.227 0.408

The above table shows the distance measure for the alternative series. It is immediately

clear that the neutral prediction explains rather little of the variation (29.8 percent),

while the full factor prediction explains almost all of the variation (96.7 percent) in the

extracted technologies. The latter also implies that the part that is idiosyncratic to the

sector-occupation cell accounts for only 3.3% of the variation. The distance measures

of both the ‘sector-only’ and of the ‘occupation-only’ predictions are much larger than

that of the ‘full factor’ prediction, whose explanatory power hence comes from both

types of components.28

Finally, we evaluate the role of the different components of labor-augmenting tech-

nological change for sectoral labor productivity growth. For this we build counter-

factual labor-augmenting technology series by adding the predicted changes to the

initial 1960 levels of the cell-specific labor augmenting technologies. Figure 7 shows

the results for counterfactuals, in which all inputs and capital-augmenting technolo-

gies evolve as in the data, but we feed in the counterfactual technologies based on

the components listed below the bars. In this bar chart, the closer is a set of bars to

the data, the better the given component explains the growth rates of sectoral labor

productivity. Not surprisingly, labor-augmenting technological change that is neutral

across sector-occupation cells can account neither for sectoral differences, nor for the

level of labor productivity growth. The counterfactual based on the ‘full factor’ predic-

tion, on the other hand, replicates the observed labor productivity growth rates well.

This highlights that the growth of labor-augmenting technologies is well described as

the sum of neutral, sector-specific and occupation-specific components. However, the

last two counterfactuals show that neither the sector nor the occupation components

by themselves are enough to generate all aspects of the data. The occupation compo-

nent alone fails to generate the level and the differences of growth rates across sectors,

and R2 = 1 − D if the predictor is unbiased,
∑
o,J,t ωoJ,t∆̂ lnαoJ,t = ∆ lnα, and if the independent

variables are uncorrelated with the error term, corr(∆ lnα − ∆̂ lnα,∆ lnα) = 0. These conditions only
hold for the ‘full-factor’ and the ‘neutral’ series, and in these cases D = 1−R2.

28In appendix A.4 we conduct this analysis for a range of the elasticity of substitution between the
occupational labor inputs. For larger values of ρ the distance measure of the neutral, the sector and the
full factor component is larger, while for the occupation component it is smaller.
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Figure 7: Role of occupation and sector components in sectoral labor productivity
Each set of bars shows the average annual labor productivity growth rate (in percent) over 1960-2017 for
the three sectors (low-skilled services in pink solid, goods in grey striped, and high-skilled services in
yellow patterned). The first set of bars shows the growth rates in the data, and the subsequent sets show
growth rates when feeding in counterfactual labor-augmenting technologies obtained from (14) based
on the components listed below the bars, with all inputs as well as all capital augmenting technologies
evolving as in the data.

whereas the sector component alone gets closer in terms of these aspects but quantita-

tively falls short. Overall this analysis reveals that both sector and occupation compo-

nents are important drivers of labor productivity growth at the sectoral level. Despite

the marked differences in labor-augmenting technological change across occupations,

shown in Table 1, the sectoral differences within these occupation-augmenting tech-

nologies seem to be key.

4.4 Implications for aggregate labor productivity growth

We established that while capital accumulation was important for the level of labor

productivity growth, especially in sector H , technological change seems to have been

a more important determinant of both the level of and the sectoral differences in labor

productivity growth. We also showed that the key driver was sector-specific routine-

32



augmenting technological change. In what follows we study whether these findings

hold for labor productivity growth in the aggregate economy. In addition, we investi-

gate whether the importance of the various drivers changed over time. In Figure 8 we
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Figure 8: The role of inputs and technology in aggregate labor productivity growth
Each set of bars shows the average annual labor productivity growth rate of the economy (in percent)
over 1960-2017 (solid), and over two sub-periods, 1960-1990 (vertically striped) and 1990-2017 (horizon-
tally striped). The first set of bars shows the growth rates in the data, and the subsequent sets show
counterfactual growth rates when holding the inputs or the technologies augmenting the factors listed
below the bars at their initial level, and allowing all other inputs as well as all other technologies to
evolve as in the data.

show average annual labor productivity in the whole economy between 1960-2017 and

in two sub-periods, 1960-1990 and 1990-2017 in the data and for several counterfactu-

als. Note that a larger difference between data and counterfactual implies a larger role

for the component that we shut down. Comparing the ‘all inputs’ and the ‘all tech.’

counterfactual with the data, it is evident that technological change was more impor-

tant for labor productivity growth than changing input use for the entire period (with

technologies explaining at least 59%, and inputs at least 33%), as well as for both sub

periods. In terms of input use, capital accumulation (‘capital inputs’) played a larger

role than labor reallocation across sector-occupation cells (‘labor inputs’). Analyzing

the effect of different technologies for aggregate labor productivity growth it becomes
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clear that capital augmenting technologies were more important between 1960-1990,

while labor augmenting technologies played a larger role in 1990-2017.29 Finally, look-

ing at the respective role of sector-specific technologies augmenting the three occu-

pations, routine-augmenting technological change stands out as the one contributing

the most to aggregate labor productivity growth, explaining at least 54% of labor pro-

ductivity growth. Moreover, its role became substantially more pronounced over the

time period studied. Absent routine labor augmenting technological change growth

would have been about 30% lower between 1960 and 1990, while between 1990 and

2017 there would have been hardly any growth.

5 Robustness checks and extensions

In this section we show that our results are very robust to alternative values for the

substitution elasticities. We also show that the results of a model variant with sector-

specific substitution elasticity between capital and the labor aggregate are very sim-

ilar. Finally, we describe how to control for observable worker characteristics in our

framework and demonstrate that our conclusions are robust to accounting for worker

efficiency.

5.1 Alternative substitution elasticities

So far we showed results from our framework based on three elasticities, σ = 0.84,

σc = 2 and ρ = 0.6. In this subsection we briefly summarize how our results are

affected when we change these elasticities, one at a time, to alternative values. The

general conclusions are that all of our results are extremely robust. It is important to

keep in mind that our baseline framework under any parameterization matches all

data targets perfectly. As such, alternative values for these elasticities of substitution

lead to different series of the inferred technologies. In the appendix we list in Table

A2 the average annual growth rate of the various sector-specific factor-augmenting

29That in the period 1960-1990 labor productivity growth would have been higher absent labor aug-
menting technological change, and that between 1990-2017 it would have been higher without capital
augmenting technological change, reflects the numbers smaller than 1 in Table 1.

34



technologies for the different elasticities that we consider. This table shows that the

general patterns described in section 4 for Table 1 remain the same. We also show

figures analogous to Figures 6, 7 and 8 for the various elasticities.30 Since this analysis

establishes that our results are qualitatively unchanged – except for the role of sector-

vs. occupation-components – and even quantitatively very similar, here we only point

out for each elasticity the biggest differences compared to our baseline results.

Elasticity between capital and labor. As discussed in Section 3.3 the majority of

studies finds values less than one for the elasticity of substitution between capital and

labor, and our baseline of σ = 0.84 is towards the upper end of estimates. Therefore,

we discuss how our results change with lower values, 0.75 and 0.65. The most no-

ticeable difference when changing the elasticity of substitution between capital and

labor is in terms of aggregate labor productivity growth. In Figure A4 in the appendix

we see that the counterfactual growth rates when shutting down technological change

augmenting labor between 1960-1990, and augmenting capital between 1990-2017 do

not overshoot the actual ones. With lower substitution elasticity between capital and

labor, optimality requires a more similar growth in the effective capital input and the

effective labor aggregate. Given our framework this leads to a change in the technolo-

gies that we infer from the data. Table A2 shows that a lower σ requires that within

a sector the technologies of traditional capital and the labor aggregate (formed by all

occupations and ICT-capital) have to grow at a more similar rate. This explains why

with lower σ the contribution of capital- and labor-augmenting technologies are more

likely to go in the same direction.

Elasticity between occupational labor inputs. Next we vary only the elasticity of

substitution between the occupational labor inputs (incl. the routine aggregate), ρ.31

The only visible difference relative to our baseline results is in the role of sector- and

occupation-specific components of labor-augmenting technologies. As Table A3 in the

appendix shows, the larger is ρ, the larger is the distance measure both of the full

factor and of the sector-only technologies, and the smaller is the distance measure of

30We do not show the equivalent of Figure 5, as this figure looks virtually identical for all elasticities
we consider.

31Changing the value of ρ does not affect the growth rate of the αkJs at all, see Table A2 in the
appendix.
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the occupation-only technologies. This is also reflected when considering the role of

these components in observed sectoral labor productivity growth (see Figure A3 in

the appendix). For larger elasticities, the ranking of sectors in terms of labor produc-

tivity growth under ‘sector-only’ technologies is less in line with the data, and under

‘occupation-only’ technologies it is more in line with the data. Thus we find that the

respective role of sector- and occupation-components is sensitive to this elasticity, but

the observation that we need both to match the data holds for all elasticities.

Elasticity between routine labor and ICT capital. We consider two alternative

values for σc: 1.5 in the midrange of values calibrated in Aum et al. (2018), and 2.5 in

the midrange of the values implied by the estimation in Eden and Gaggl (2018). It is

important to note that the value of σc has no effect on the growth rate of technologies

except for routine labor and ICT capital, and quantitatively the effect is mostly on ICT-

augmenting technologies (see Table A2 in the appendix). Given this it is not surprising

that we see hardly any effect of σc on sectoral or aggregate labor productivity growth.

The only discernible change is quantitative: the smaller this elasticity, the larger is the

impact of technologies on aggregate labor productivity growth.

5.2 Sectoral heterogeneity in elasticities between capital and labor

We next consider a model variant where the elasticity of substitution between capi-

tal and the labor aggregate differs across sectors, as papers estimating this elasticity

have found differences across industries (e.g. Oberfield and Raval (2014), Lawrence

(2015)). Most papers focus however only on non-service industries. One exception is

Herrendorf et al. (2015) which finds 0.75 for services. As such we set σL = σH = 0.75

for both of our service sectors. Our goods sector contains both agriculture and man-

ufacturing, therefore we set a value of σG = 0.9, in between their estimates of 0.8 for

manufacturing and 1.58 for agriculture.

As we infer the technologies by sector and we just showed that our results are

robust to altering the common σ parameter, one should not expect large differences

compared to our baseline. The last set of rows in Table A2 show the growth rates of

αs, and we can see that in low- and high-skilled services these values are the same
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as when setting the common σ to 0.75. The values obtained for the goods sector are

different, but overall the table mimics the patterns of our baseline quite closely. Figure

A5 compares the effects of the various channels with those in the baseline, showing

that our results are very robust. The only noticeable difference is quantitative: the

effect of technologies is somewhat more pronounced, and in particular with sector-

specific elasticities it seems that the role of labor-augmenting technologies in aggregate

labor productivity growth is slightly larger.

5.3 Allowing for efficiency units of labor in production

In our baseline framework we measured occupational labor inputs as (shares of) hours

worked, implicitly assuming that all workers are equally efficient, both within and

across periods. A potential concern with this setup is that the evolution of workers’

human capital over time might confound the growth rates of technologies that we

inferred. To address this, we estimate each worker’s efficiency units from a Mincer

log wage regression on worker characteristics, including a polynomial in potential

experience, education, gender and race, using the IPUMS Census/ACS data. From

the estimates we construct average efficiency units of labor in each sector-occupation

cell, eoJ,t and wages per efficiency units of labor, as we explain in appendix A.5.2.32

To incorporate efficiency units of labor into the model, we assume that firms choose

noJ,t ≡ eoJ,tloJ,t in each period, instead of just hours worked (loJ,t). This implies that

we need to use wages per efficiency unit of labor in equations (8) to (13) to infer

sector-factor technologies, whereas the measurement of all other variables remains

unchanged.

Figure A6 in the appendix plots the alternative series for the relative wages within

sectors. The resulting patterns for relative occupational wages within a sector are very

similar,33 whether accounting for efficiency units or not, though their levels are some-

what different. Since we identify the within-sector ratios of occupational productiv-

32We construct this in two different ways, by including/not-including the residuals from the Mincer
wage regression in eoJ,t. Note that, even though we calculate sector-occupation wage rates from our
accounting identity (see equation (21) in the appendix) as before, the relative wages within sectors are
the same as those implied by the the Mincer wage regression.

33From 2000 onwards, in high-skilled services there is somewhat of a divergence between relative
average (‘raw’) wages and relative wages controlling for workers’ characteristics.
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ities precisely from these relative wages, the general conclusions about the inferred

technological change are very similar, as shown in Table A5. Given that the series of

the factor-augmenting technologies (by sector) in the model with efficiency units of

labor are so similar to the baseline model, and in fact for the capital inputs coincide,

the implications for sectoral labor productivity are very similar too. Figure A7 in the

appendix shows the role of individual inputs and technologies in this model variant

alongside the baseline results. While there are very small quantitative differences,

qualitatively they have the very same implications.

6 Conclusion

In this paper we analyze the drivers of sectoral labor productivity growth in the United

States over 1960–2017, combining detailed Census/ACS data with sectoral data from

the BEA and EU KLEMS. We propose and implement a novel approach to extract

sector-specific factor-augmenting technologies from observed changes in factor prices,

factor shares, value added shares and sectoral growth in real value added over time.

Key in our approach is that we distinguish between occupational labor inputs and that

we do not impose a priori assumptions about whether technological change occurs at

the sector or at the factor level. Our results clearly demonstrate that technological

change has not been neutral. The growth rates of factor-augmenting technologies dif-

fered not only across the various occupations and types of capital, but also for given

production factors across sectors. Had we not taken this very flexible approach of al-

lowing technologies to evolve at the sector-factor level, we would not have been able

to identify these patterns.

Through a range of counterfactual exercises we find that most of labor produc-

tivity growth, both at the sector level and in the aggregate, was due to technological

change. In particular we show that sector-specific routine-biased technological change

was crucial, explaining at least 54% of labor productivity growth in the aggregate.

Changing occupational employment shares within sectors and capital accumulation

both had a positive effect on the level of productivity growth, but neither contributed

to the sectoral differences observed in data. Furthermore, differences in occupational
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structure across sectors did not explain any of the sectoral patterns of labor productiv-

ity growth.

While we establish that the rate at which labor-augmenting technologies evolved

differs both across sectors and occupations, we also identify common components us-

ing a factor model. We find that occupation and sector components jointly explain 96.7

percent of labor-augmenting technological changes, and that in measured sectoral la-

bor productivity growth both components of technological change are crucial. One

implication of this finding is that the growth rate of sector-occupation technologies is

well approximated by the sum of the relevant sector- and occupation-component.

Overall, our results highlight that sector-specific routine-augmenting technological

change has been the key determinant of labor productivity growth over 1960-2017 in

the US economy, and that its contribution has accelerated in more recent decades.

Our finding that occupation-specific technological change varies across sectors is

novel. As such there are no theories for this, but we believe there are at least three

possible, complementary, explanations. First, the job of a worker is not only described

by the occupation, but also by the sector (or industry) of work. It is easy to see that the

tasks performed in a very specific occupation, e.g. a cleaner, depend on whether the

individual works in a car manufacturing plant or in the offices of a law firm. Thus an

occupation’s productivity and its evolution may very naturally depend on the sector

of work. Second, sectoral differences in firm size or organizational structure might

result in differential effects of new technologies across sectors. Finally, as we con-

sider relatively broad occupational categories, there still might be some compositional

differences across sectors left in terms of finer occupational categories. In this paper

we did not investigate the reasons for sectoral differences in occupation-augmenting

technologies, but rather evaluated their role in labor productivity growth.
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A Appendix

A.1 Classification

We classify occupations based on their routine task content and cognitive require-

ments, similarly to Acemoglu and Autor (2011), into the following three categories:

Manual (low-skilled non-routine): housekeeping, cleaning, protective service, food

preparation and service, building, grounds cleaning, maintenance, personal appear-

ance, recreation and hospitality, child care workers, personal care, service, healthcare

support;

Routine: farm workers, construction trades, extractive, machine operators, assem-

blers, inspectors, mechanics and repairers, precision production, transportation and

material moving occupations, sales, administrative support;

Abstract (skilled non-routine): managers, management related, professional specialty,

technicians and related support.

We combine four different industry classification systems, the NAICS, the SIC, the

ISIC and the IND1990. Table A1 summarizes our categorization in terms of each sys-

tem.
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A.2 Data Appendix

Capital targets. To back out all αs we need the rental rate of traditional, Rk, and of

computer capital, Rc, the share of income going to both types of capital, ΘJ , and to

computer capital alone, ΘcJ , as well as the amount of traditional capital in each sector,

kJ . As discussed in the main text, we obtain the labor income share in each sector, 1−

ΘJ , from the BEA as the compensation of employees over gross value added. Starting

from data on current-cost net stock and quantity indices for fine capital categories from

the BEA, we calculate for traditional and computer capital real quantity (qk and qc) and

price indices (pk and pc) using the cyclical expansion procedure. Due to the quantity

index normalization of the BEA, these are both normalized to be 1 in 2009. Thus, we

assume that the real quantity of traditional and computer capital in 2009 is equal to

the share of traditional and computer capital in the current-cost net stock of capital in

2009. Multiplying these 2009 values with the quantity indices (qk, qc) we get the time

series of the real quantity of traditional and computer capital. Dividing both by the

number of full-time equivalent workers we get the model equivalent of k and c. We

calculate annual depreciation rates for both types of capital δk and δc from the BEA

data by dividing the sum of current-cost depreciation of fixed assets of all non-ICT

(or ICT) capital with the sum of current cost net stock of these same fixed assets. The

depreciation rate of traditional capital is fairly stable at around 5.5 percent annually,

whereas of ICT capital the depreciation rate increases from 15.5 percent to 28 percent.

Nominal sectoral value added multiplied by the sector’s capital income share should

be equal to the value of total sectoral capital income. This results in the following ac-

counting identity:

Rkk +Rcc = Y nom ·
∑
J

V AJΘJ , (15)

where Y nom denotes nominal GDP per full-time equivalent worker, V AJ is sector J ’s

nominal value-added share, and ΘJ is sector J ’s capital income share, all obtained

from the BEA. Furthermore, we assume a no-arbitrage condition on the rate of returns

to traditional and computer capital:

Rc + (1− δc)p′c
pc

=
Rk + (1− δk)p′k

pk
,
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where p′k denotes the price of traditional capital in the next year. From these two equa-

tions we can calculate in each period the rental rates of traditional and of computer

capital, Rk and Rc.

We calculate the allocation of computer capital across sectors from EU KLEMS be-

tween 1970 and 2015, as the share of nominal capital stock in millions of national cur-

rency in each sector, c̃J , with
∑

J c̃J = 1. The amount of real computer capital (per

worker) in each sector is then obtained as cJ = c · c̃J . The share of income going to

computer capital in each sector, ΘcJ , is then pinned down by the accounting identity:

RccJ = Y nom · V AJΘcJ . The amount of traditional capital in each sector, kJ , can then

be calculated from (15).

Sector-occupation cell wages. In our quantitative model, we use workers’ self-reported

income in the Census/ACS to compute θoJ as in (1), but do not use it to calculate

hourly wages. Instead we use an accounting identity to back out wages. This is to

ensure that in the model the sum of all factor income is equal to value added, which

we get from the BEA data. Nominal sectoral value added multiplied by the sector’s

labor income share should be the value of total sectoral labor income. This income in

turn is split across the various occupations. The accounting identity therefore is that

labor income of occupation o workers in sector J satisfies

woJ loJ = Y nom · V AJ(1−ΘJ)θoJ , (16)

where Y nom, V AJ and ΘJ are as defined earlier, and θoJ denotes the share of sector J

labor income that occupation o workers earn. Note that within sectors relative wages

depend only on the relative θs and occupational employment shares, and therefore is

equal to the relative wage observed in the Census/ACS data.

A.3 Derivations

In this subsection we show how the αs can be expressed as a function of observables.

In the first step we show the derivation of αs within a period, and hence we omit the

time subscripts. In the main text we showed the derivation of αmJ/αaJ and αcJ/αrJ .

Here we show the derivation of αmJ/αrJ and αkJ/αmJ .
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In these derivations we repeatedly use that at the optimum relative effective input

use can be expressed as

αcJ lcJ
αrJcJ

=

(
wrJαcJ
RcαrJ

)σc
=

([
ΘcJ

(1−ΘJ)θrJ

] 1
σc−1

)σc

=

(
ΘcJ

(1−ΘJ)θrJ

) σc
σc−1

, (17)

where the first equality comes from multiplying the relative optimal input use with the

relative αs, and the second one comes from multiplying it with relative factor prices

(and re-arranging). Using the above expression implies that at the optimum we can

express the routine aggregate as:

RA =
[
(αrJ lrJ)

σc−1
σc + (αcJcJ)

σc−1
σc

]
= (αrJ lrJ)

σc−1
σc

[
1 +

ΘcJ

(1−ΘJ)θrJ

]
. (18)

Plugging this into the first order condition on routine labor, (4), and dividing with the

FOC on manual labor, (3), and re-arranging we get:

lrJ
lmJ

=

[
1 +

ΘcJ

(1−ΘJ)θrJ

] ρ−σc
σc−1

(
wmJ
wrJ

)ρ(
αrJ
αmJ

)ρ−1

.

Multiplying the above with wrJ/wmJ and substituting in θrJ/θmJ we obtain (10):

αmJ
αrJ

=
wmJ
wrJ

[
1 +

ΘcJ

(1−ΘJ)θrJ

] ρ−σc
(σc−1)(ρ−1)

(
θmJ
θrJ

) 1
ρ−1

.

Next we express the labor aggregate as:

LA =
∑
o=m,a

(αoJ loJ)
ρ−1
ρ +RA

σc
σc−1

ρ−1
ρ = (αmJ lmJ)

ρ−1
ρ

1

θmJ

(
1 +

ΘcJ

1−ΘJ

)
, (19)

using (18) and substituting in
(

αrJ lrJ
αmJ lmJ

) ρ−1
ρ

= θrJ
θmJ

[
1 + ΘcJ

(1−θJ )θrJ

] σc−ρ
(σc−1)ρ

and
(
αaJ laJ
αmJ lmJ

) ρ−1
ρ

=

θaJ
θmJ

(obtained similarly to (17)), and that
∑

o θoJ = 1. Plugging the expression for LA

into the FOC for manual labor, (3), and dividing by the FOC on traditional capital, (6),

and re-arranging we get:

kJ
lmJ

=

(
wmJ
Rk

)σ (
αkJ
αmJ

)σ−1 [
1

θmJ

(
1 +

ΘcJ

1−ΘJ

)] ρ−σ
ρ−1

.
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Multiplying with Rk/wmJ and re-arranging we get equation (11):

αkJ
αmJ

=
Rk

wmJ

(
1

θmJ

) 1
ρ−1
(

ΘJ −ΘcJ

1−ΘJ

) 1
σ−1
(

1 +
ΘcJ

1−ΘJ

) σ−ρ
(ρ−1)(σ−1)

.

Finally we express sectoral output as a function of observables. Using the expression

on LA (19) and substituting that
(

αkJkJ
αmJ lmJ

)σ−1
σ

= ΘJ−ΘcJ
(1−ΘJ )θmJ

[
1

θmJ

(
1 + ΘcJ

1−ΘJ

)] σ−ρ
(ρ−1)σ

(ob-

tained similarly to (17)) we can express sectoral output as:

Y
σ−1
σ

J = LA
ρ
ρ−1

σ−1
σ + (αkJkJ)

σ−1
σ = (αkJkJ)

σ−1
σ

1

ΘJ −ΘcJ

.

Raising the above to the power of σ/(σ − 1) we get the expression in the main text.

A.4 Decomposing labor-augmenting technological change
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Figure A1: Baseline and counterfactual cell productivities
The solid red line with the marker shows the decennial change in the log of sector-occupation technolo-
gies, as calculated from the data. The other lines show the counterfactual paths, based on the neutral
(gray dotted), the sector-specific (blue dashed line), the occupation-specific (yellow dashed-dotted), or
sector- and occupation-specific (green solid line) components.
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Figure A1 shows the path of sector-occupation technology changes (between each

consecutive period) as extracted from the data, as well as the different predicted pro-

ductivities based on the components derived from the factor model. The ‘full factor’

prediction (green solid line) is quite close to the data (red solid line with marker),

illustrating that the contribution of technological change idiosyncratic to the sector-

occupation cell is very small. For some cells, the ‘occupation-only’ predictions (the

yellow dashed-dotted line) gives a good account of the data, whereas for others the

‘sector-only’ predictions (the blue dashed line) are closer. The neutral predictions (gray

dotted line) give only minor changes for some cells (e.g. in the goods sector), whereas

for others it is relatively close to the data (rH cell for example).

A.5 Robustness checks and extensions

A.5.1 Alternative and heterogeneous substitution elasticities

We provide more detailed results for the robustness checks discussed in the main text,

by contrasting the results from our baseline analysis with those of the alternative elas-

ticity values. Table A2 shows in the top rows the average annual growth rates of the

factor augmenting technologies in each sector in our baseline. The subsequent seg-

ments show these growth rates for the various alternative calibrations (different σ, ρ,

σc and heterogeneous σJ across sectors). All display the same key features that we

highlighted in the discussion of Table 1.

Similarly Figures A2, A3 and A4 show in the top row the baseline, and in subse-

quent rows the results from considering two alternative values for σ, ρ and σc, respec-

tively. These figures demonstrate that all the results from the baseline are replicated

for all alternative parametrizations. Figure A5 shows the robustness of the model to

allowing for different σJ across sectors. In this figure the column on the left shows the

baseline results, and the one on the right the results with heterogeneity across sectors.

Additionally, Table A3 shows for the range of ρ values which have been consid-

ered in the literature the distance measure between the changes in sector-occupation

cell technologies inferred from the data and the predictions based on the various com-

ponents of the factor model. This table shows that the distance measures of the pre-
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dictions based on the neutral, on the sector and on the occupation components vary

quite a bit with the value of ρ. If the elasticity of substitution between different occu-

pations is low then the sector components play a larger role, while if ρ is high, then

the occupation components are more important. However, the full factor prediction

reproduces the data quite well for all values of ρ considered.

Table A2: Average annual growth rate of αs over 1960–2017 under alternative param-
eters

occupations capital
manual routine abstract non-ICT ICT

Baseline:
σ = 0.84,
ρ = 0.6,
σc = 2

L 1.0025 1.0292 0.9933 1.0085 1.0200
G 1.0058 1.0559 1.0100 0.9839 1.0439
H 1.0067 1.0132 0.9763 1.0178 0.9803

Alternative σ:

σ = 0.75
L 1.0017 1.0283 0.9925 1.0097 1.0192
G 0.9979 1.0476 1.0021 0.9945 1.0357
H 1.0121 1.0186 0.9815 1.0115 0.9856

σ = 0.65
L 1.0013 1.0279 0.9921 1.0103 1.0187
G 0.9939 1.0434 0.9981 0.9999 1.0316
H 1.0149 1.0214 0.9842 1.0083 0.9883

Alternative ρ:

ρ = 0.5
L 1.0058 1.0262 0.9979 1.0085 1.0170
G 1.0123 1.0527 1.0167 0.9839 1.0407
H 1.0039 1.0079 0.9797 1.0178 0.9752

ρ = 0.7
L 0.9970 1.0342 0.9856 1.0085 1.0250
G 0.9949 1.0614 0.9990 0.9839 1.0493
H 1.0113 1.0221 0.9706 1.0178 0.9890

Alternative σc:

σc = 1.5
L 1.0025 1.0281 0.9933 1.0085 1.0640
G 1.0058 1.0550 1.0100 0.9839 1.0900
H 1.0067 1.0095 0.9763 1.0178 0.9995

σc = 2.5
L 1.0025 1.0295 0.9933 1.0085 1.0057
G 1.0058 1.0562 1.0100 0.9839 1.0290
H 1.0067 1.0144 0.9763 1.0178 0.9740

Sector specific σ:
σL = 0.75 L 1.0017 1.0283 0.9925 1.0097 1.0192
σG = 0.9 G 1.0191 1.0699 1.0234 0.9666 1.0578
σH = 0.75 H 1.0121 1.0186 0.9815 1.0115 0.9856
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(b) σ = 0.65
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(c) σ = 0.75
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(d) ρ = 0.5
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(e) ρ = 0.7
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(f) σc = 1.5
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(g) σc = 2.5

Figure A2: Average sectoral labor productivity growth with fixed technologies
This figure shows the role of the different factor-augmenting technologies in sectoral labor productivity
growth for different elasticities. The sets of bars are exactly the same as in Figure 6, which is also
reproduced in graph (a) above.
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(d) ρ = 0.5
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(e) ρ = 0.7
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(f) σc = 1.5
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(g) σc = 2.5

Figure A3: Average sectoral labor productivity growth with alternative technologies
This figure shows the role of the various components of labor-augmenting technologies in sectoral labor
productivity growth for different elasticities. The sets of bars are exactly the same as in Figure 7, which
is also reproduced in graph (a) above.
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(b) σ = 0.65
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(c) σ = 0.75
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(d) ρ = 0.5
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(e) ρ = 0.7
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(f) σc = 1.5

-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

data all inputs capital inputs labor inputs all tech. capital tech. labor tech. manual tech. routine tech. abstract tech.

1960-2017 1960-1990 1990-2017 

(g) σc = 2.5

Figure A4: Counterfactual aggregate labor productivity growth in different periods
This figure shows the role of various inputs and technologies in aggregate labor productivity growth
between 1960-2017, 1960-1990 and 1990-2017 for different elasticities. The sets of bars are exactly the
same as in Figure 8, which is also reproduced in graph (a) above.
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(a) Role of inputs, baseline
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(b) Role of inputs, σJ
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(c) Role of technologies, baseline
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(d) Role of technologies, σJ
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(e) Role of components, baseline
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(f) Role of components, σJ
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(g) Aggregate labor prod., baseline
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(h) Aggregate labor prod., σJ

Figure A5: Baseline vs sector specific σJ

This figure shows the differences between the magnitude of the various channels when considering
sector-specific σs relative to the baseline. The values used are σL = σH = 0.75 and σG = 0.9. In the
baseline these are all set to 0.84.
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Table A3: Distance measure of the different predictions

ρ neutral full factor sector occupation
0.5 0.674 0.024 0.150 0.455
0.6 0.702 0.033 0.227 0.408
0.7 0.751 0.049 0.359 0.339
0.8 0.832 0.076 0.587 0.247
0.9 0.942 0.111 0.912 0.167

A.5.2 Allowing for efficiency units of labor

To control for workers’ skills, we employ the following Mincer wage regression

logwioJt = δoJt + β′Xit + εioJt, (20)

where δoJt are occupation-sector-time effects and Xit is a vector of worker character-

istics. From this regression we can back out both an occupation-sector wage in year

t that is not confounded by changes in composition of worker characteristics, Xit, as

well as an estimate of the average efficiency units a worker in occupation o and sector

J has in year t. In particular, we run this regression on the Census/ACS data where the

vector of worker i characteristics Xit is comprised of a third-order polynomial in po-

tential experience, interacted with a dummy for college education and with a gender

dummy, as well as a dummy for foreign-born and non-white race. Note that for our

model to match the average hourly wages by sector-occupation cell in every period

(woJ,t), we need to assign the cell-year average of the exponent of the residuals from

(20) to either the average wage per efficiency units or to the average efficiency units per

hour worked. Thus we have two options. Either we construct the sector-occupation

cell efficiency units per hour, e1
oJ,t, as the average of ê1

ioJt = exp(β′Xit) within the sector-

occupation-year cell. In this case the implied sector-occupation-year unit wages are

given as ŵ1
oJ,t = woJ,t/e

1
oJ,t. Alternatively we construct sector-occupation cell efficiency

wages per hour, ŵ2
oJ,t = exp(δoJt). The implied average sector-occupation-year effi-

ciency units per hour worked are then e2
oJ,t ≡ woJ,t/ŵ

2
oJ,t.

We use the equivalent of (16) to get sector-occupation wages per efficiency unit
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(w̃oJ,t):

w̃MoJ,tloJ,te
M
oJ,t = Y nom

t · V AJ,t(1−ΘJ,t)θoJ,t, (21)

where eMoJ,t is the average sector-occupation efficiency units per hour worked in period

t (according to method M = 1, 2). The within sector relative wages implied by the

accounting identity are:

w̃MoJ,t
w̃MrJ,t

=

θoJ,t
loJ,te

M
oJ,t

θrJ,t
lrJ,te

M
rJ,t

=

woJ,t
eMoJ,t
wrJ,t
eMrJ,t

=
ŵMoJ,t
ŵMrJ,t

,

where the last equality follows as both our methods ensure that we match each cell’s

average hourly wage. Thus in this formulation – just as in the baseline – the within-

sector relative wages per efficiency units obtained from the accounting identity are the

same as those implied by the Mincer wage regression.

Table A4: Sector-occupation efficiency units of labor 1960–2017

J o 1960 1970 1980 1990 2000 2010 2017
L m 1.685 1.642 1.498 1.548 1.598 1.622 1.626
L r 1.848 1.794 1.690 1.743 1.800 1.834 1.825
L a 2.034 1.991 1.890 1.930 2.005 2.044 2.032
G m 1.975 1.903 1.809 1.795 1.831 1.860 1.874
G r 1.878 1.840 1.756 1.820 1.874 1.939 1.930
G a 2.148 2.185 2.156 2.199 2.279 2.356 2.329
H m 1.844 1.801 1.732 1.812 1.853 1.871 1.877
H r 1.748 1.700 1.655 1.721 1.488 1.424 1.441
H a 2.125 2.121 2.069 2.139 2.200 2.243 2.248

(a) fitted efficiency units, e1

J o 1960 1970 1980 1990 2000 2010 2017
L m 1.975 1.924 1.707 1.715 1.775 1.762 1.751
L r 2.060 2.003 1.922 1.985 2.038 2.093 2.082
L a 2.450 2.360 2.249 2.270 2.332 2.380 2.383
G m 2.130 2.099 2.056 2.023 2.103 2.102 2.087
G r 2.098 2.044 1.982 2.032 2.091 2.192 2.153
G a 2.447 2.462 2.420 2.482 2.588 2.685 2.670
H m 2.009 1.984 1.928 2.017 2.075 2.105 2.113
H r 1.858 1.855 1.847 1.929 1.682 1.612 1.658
H a 2.416 2.409 2.324 2.414 2.501 2.556 2.580

(b) residual efficiency units, e2

Table A4 shows efficiency units by sector-occupation over time for the two meth-
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ods. While there is a level difference between the efficiency units directly fitted and the

ones backed out as a residual from wages, the two methods give very similar patterns

for the evolution of each sector-occupation cell’s average efficiency over time.

In the variant of the model with efficiency units of labor, firms choose noJ,t ≡

eoJ,tloJ,t in each period, instead of just hours worked (loJ,t). This implies that we need

to use wages per efficiency unit of labor in equations (8) to (13), but the measurement

of all other variables remains the same as in the baseline model. Figure A6 plots the

alternative series for the relative wages within sectors. The dotted lines show method

1 and the dashed lines show method 2 applied in (21), and the solid lines show our

baseline (of wages per hour worked from (16)). Note that all alternative lines qualita-

tively show the same patterns, some are also quantitatively very close. The only larger

difference is for manual and abstract wages relative to routine in sector H between

2000 and 2017, which can be traced back to a fall of routine workers’ efficiency units

in this sector for this period as shown in Table A4. Given that the relative wage path
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Figure A6: Comparison of relative wages
Notes: This figure plots the relative hourly wages of manual (blue with marker) and abstract (green)
compared to routine workers within each sector over time for three alternative ways to compute wages:
(i) from the baseline model without efficiency units (equation (16), solid lines), (ii) from fitted efficiency
units ((21) based on method 1, dotted lines), (iii) from fitted efficiency wages ((21) based on method 2,
dashed lines).

are similar to those in our baseline, it is not surprising that our results are robust to

controlling for skills.

Given the series of wages per efficiency unit of labor, w̃MoJ,t we constructed for the

two methods M = 1, 2, and all the other data we use in the main part of the paper, we

use again our methodology to infer the factor-augmenting technologies in each sector.

Table A5 shows the average annual change in the labor-augmenting technologies over

1960–2017. We do not report the results for the technology of ICT and of non-ICT

57



capital here, as these are exactly the same as in the baseline model because they are

independent of how labor income is split. Equations (8) to (12) imply that differences

in the measurement of wage growth over time result in differential growth rates in the

labor-augmenting technologies, but do not affect the growth rates of αcJ or αkJ .

Table A5: Average annual growth rate of αs over 1960–2017 accounting for efficiency
units of labor

occupations
manual routine abstract

L 1.0031 1.0294 0.9933
G 1.0067 1.0554 1.0086
H 1.0064 1.0166 0.9753
(a) based on fitted effiency units, e1

occupations
manual routine abstract

L 1.0046 1.0290 0.9938
G 1.0061 1.0554 1.0085
H 1.0058 1.0152 0.9752

(b) based on residual effiency units, e2

Notes: The change in the capital inputs’ technologies (the αcJs and αkJs) is exactly the same as in Table
1 and not shown here.

Comparing Table A5 to Table 1 reveals that in both variants of the model with ef-

ficiency units the resulting growth rates of labor-augmenting technologies are very

similar to the baseline model of the main text, both in terms of the ranking of growth

in αoJ but also quantitatively. This is perhaps not that surprising given that we es-

tablished in Figure A6 already that the relative occupational wages within a sector

do not change much when we control for workers’ characteristics. Since we identify

the within-sector ratios of occupational productivities precisely from this ratio, but the

across-time changes from objects that do not depend on the measurement of wages or

efficiency units, the general conclusions about inferred technological change do not

change when we measure the labor inputs in terms of hours worked times efficiency

units.

Since the series of the factor-augmenting technologies (by sector) in the model with

efficiency units of labor are so similar to the baseline model, and in fact for the capital

inputs coincide, the implications for sectoral labor productivity are very similar too.

While there are very small quantitative differences when studying the role of individ-

ual inputs or technologies, qualitatively they have the very same implications. Figure

A7 shows this for the model variant based on fitted effiency units, e1.
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(a) Role of inputs, baseline
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(b) Role of inputs, efficiency units
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(c) Role of technologies, baseline
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(d) Role of technologies, efficiency units
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(e) Role of components, baseline

-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

data neutral full factor sector occupation

Low-skilled services Goods High-skilled services

(f) Role of components, efficiency units
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(g) Aggregate labor prod., baseline
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Figure A7: Baseline vs efficiency unit model
This figure shows the differences between the magnitude of the various channels when considering the
model with efficiency units relative to the baseline.
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