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Abstract
With the recent prevalence of information networks, the topic of community detec-
tion has gained much interest among researchers. In real-world networks, node 
attribute (content information) is also available in addition to topology information. 
However, the collected topology information for networks is usually noisy when 
there are missing edges. Furthermore, the existing community detection methods 
generally focus on topology information and largely ignore the content information. 
This makes the task of community detection for incomplete networks very challeng-
ing. A new method is proposed that seeks to address this issue and help improve the 
performance of the existing community detection algorithms by considering both 
sources of information, i.e. topology and content. Empirical results demonstrate that 
our proposed method is robust and can detect more meaningful community struc-
tures within networks having incomplete information, than the conventional meth-
ods that consider only topology information.

Keywords Social networks · Community detection · Hybrid similarity · Incomplete 
information networks

1 Introduction

Real-world networks are not random networks, and they usually exhibit inhomoge-
neity and reveal a high level of order and organisation [1]. An interesting feature 
that real-world networks usually present is the community structure property, under 
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which the topology of network is organised into modules commonly called commu-
nities or clusters [2].

In many real-world network structures such as social networks and the World 
Wide Web, in addition to the link information, nodes also have their attribute values 
referred to as attribute/content information. For example, in a social network, the 
nodes’ properties could describe the roles of a person while the topological structure 
represents relationships among a group of people.

Most of the existing approaches found in the literature make use of either link 
information or attribute information analysis alone for community detection. How-
ever, in real-world networks, neither piece of information on its own is sufficient 
in determining good clusters of the network. The link information is usually sparse 
and noisy. On the other hand, relying on the attribute information alone could mis-
lead the process of community detection. For example, the process may not iden-
tify the strength of a node’s relationship with its neighbours correctly. Consequently, 
by taking into account only one source of information, the algorithm may fail to 
detect accurately the entire community memberships. Considering more than one 
source of information for community detection could produce meaningful clusters 
and improve the robustness of the network. For instance, when considering both the 
attribute information and connectivity information, if either one source of informa-
tion is noisy or missing, the other could make up for it. Therefore, the proposed 
approach will consider attribute information and structure information. The struc-
ture information consists of shared neighbours information and connectivity infor-
mation aspects of the network [3].

1.1  Research benefit and its impact

Community structure is a common and important topological characteristic of many 
real-world complex networks. Nodes belonging to a tight-knit community are more 
than likely to have other properties in common [4]. The determination of communi-
ties in the networks can provide powerful insights into the structure of networks, 
help to better understand the structural make-up of the networks and analyse com-
plex phenomena at different scales [5, 6]. Thus, the outcome of this research work 
has valuable applications in several fields such as biology, social science, physics, 
computer science and business science [5, 7].

In social networks, for example, analysis of community detection is extremely 
useful in the context of many applications, including customer segmentation, vertex 
labelling, recommendations and link inference [8]. Community structure is impor-
tant not only in social networks, but also in various other networks. For example, 
determination of community structure in the Internet can address questions such as 
how to route data as packets in an efficient way, how to reduce the time consumption 
for such traffic and what is the fast and safe path to consider to reach the destination. 
It can go further in depth, by elucidating questions like how computer viruses are 
spreading through the Internet and what mechanisms they follow to hit organisa-
tions. Also in dark networks, community structure can reveal the hidden relation-
ships between individual terrorists [9]. Similarly, in the case of the World Wide Web 
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(WWW) pages related to the same subject are typically organised into communities, 
so that the identification of these communities can help the task of seeking for iden-
tifying the category of the network as well as understanding its dynamic evolution 
and organisation [10].

Clustering is an important technique in mobile ad hoc and sensor networks [11] 
for the improvement of certain management, e.g. energy consumption and commu-
nication tasks. Yu and Chong [12] reported that the cluster structure is an effec-
tive topology that could provide many benefits in the context of wireless sensor net-
works (WSNs). It could be used to increase the system capacity by spatial reuse of 
resources. Furthermore, it improves routing performance, because of the fact that 
the set of cluster heads and cluster gateways can normally form a virtual backbone 
for inter-cluster routing, and thus, the generation and spreading of routing informa-
tion can be restricted to this set of nodes. Additionally, they stated that the cluster 
structure makes an ad hoc network appear smaller and more stable in the view of 
each mobile terminal.

1.2  Related work and scope of study

1.2.1  Related work

Community detection is an active area of network science research and over the 
years, a wide variety of community detection algorithms have been proposed to find 
the communities in the network. Community detection is also named as graph parti-
tioning, in much of the literature [13, 14]. It is tempting to suggest that community 
detection and graph partitioning are really addressing the same question, since both 
their aim is to identify groups of nodes on a network that are better connected to 
each other than to the rest of the network. However, it is very important to stress that 
the task of graph partitioning and community detection can be distinguished from 
one another based on whether the experimenter fixes the number and size of the 
groups or it is unspecified [15]. Graph partitioning is the problem of partitioning a 
graph into a predefined number and size of clusters. It has been pursued particularly 
in computer science and related fields with applications in parallel computing and 
very-large-scale integration (VLSI) design, whereas, in the community detection, 
which has been pursued by sociologists and more recently by physicists and applied 
mathematicians, with applications especially to social and biological networks, the 
number and size of clusters are unspecified. Furthermore, the goal in the former is 
usually to identify the best division of a network regardless of whether or not a good 
division existed. In case there are no good divisions existing, the least bad one will 
be identified as the solution. On the other hand, in the latter, the algorithm only 
divides the network when good divisions exist and leave the network undivided in 
case there are no good divisions existing [3, 15].

The community detection algorithms can be classified in different ways, and 
depending on the selected criteria, one algorithm can belong to more than one 
category. Among them, those based on modularity maximisation form the most 
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prominent family of community detection algorithms such as fastgreedy algorithm 
[16] and Louvain algorithm [17].

Fastgreedy algorithm is an agglomerative hierarchical clustering method pro-
posed by Newman [16]. The algorithm greedily maximises the modularity function 
Q and starts the process by assigning a different community to each node in the 
network. Then, at each stage in the process, the pair of clusters that yields greatest 
increase of modularity or smallest decrease is merged until only one cluster remains 
containing all nodes in the network. The whole procedure can be represented by a 
dendrogram (hierarchical tree) that illustrates the order of the mergers. Cuts through 
the dendrogram at different levels give different partitions into communities. The 
optimal community cluster can be found by cutting the dendrogram at the level of 
maximum Q.

Louvain algorithm is a hierarchical agglomerative optimisation method proposed 
by Blondel et al. [17] and attempts to optimise the modularity of a partition of the 
network. The optimisation is performed in two steps that are repeated iteratively. 
This algorithm starts with each node in the network belonging to its own commu-
nity. Then, in the first step and for each node in the network, the algorithm uses 
the local moving heuristic to obtain an improved community structure by moving 
each node from its own community to its neighbours’ community and evaluating the 
gain of modularity associated with the moving of the node. The node is then placed 
in the community for which the modularity change is the most positive. If none of 
these modularity changes is positive, the node stays in its original community. This 
process is applied repeatedly and sequentially for each node until all the nodes in 
the network are considered, and no further improvement can be achieved. This con-
cludes the first step. The second step of the algorithm consists of building a new 
network from the communities discovered in the first step. Therefore, the individual 
nodes in the new network are the individual communities from the first step. In this 
new network, there will be an edge between two nodes if there were edges between 
the corresponding two communities in the previous step. The weights of those new 
edges are the sum of the weights of the edges between nodes in the corresponding 
two communities. The edges between nodes of the same community in the first step 
will lead to self-loops for this community node in the new network. Once the second 
step is completed, it is possible to replay the first step and iterate again if necessary. 
The two steps repeat iteratively and stop when there is no more change in the modu-
larity gain, and consequently, a maximum modularity is obtained.

Another popular method widely used to find communities in the network is 
based on the random walk. An example includes Walktrap (WT) algorithm which 
is proposed by Pons and Latapy [18]. Walktrap algorithm is based on the principle 
that random walks on a network tend to get ‘trapped’ into densely connected parts 
defining the communities. In this method, the authors propose using a node similar-
ity measure based on short walks to capture structural similarities between nodes 
instead of modularity to identify community via hierarchical agglomeration. The 
algorithm starts by assigning each node to its own community, and the distance for 
every pair of communities is computed. Communities are merged according to the 
minimum of their distances and the process iterated. After n − 1 steps, the algorithm 
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finishes and gives a hierarchical structure of communities called a dendrogram. The 
best partition is then considered to be the one that maximises modularity.

Information theoretic algorithms are another major type of community detection 
clustering algorithms that use the concept of information theory to find community 
clusters in the network. Infomap algorithm is an example of information theoretic 
algorithms proposed by Rosvall and Bergstrom in [19].

Infomap algorithm characterises the problem of finding the optimal community 
clustering in the network as the problem of finding the most compressed (shortest) 
description length of the random walks on the network. It uses a random walk as a 
proxy for information flow in a network and minimises a map equation, which meas-
ures the description length of a random walker, over all the network clusters to reveal 
its community structure. To represent the community structure, the algorithm uses a 
two-level nomenclature based on Huffman coding: a level to distinguish communi-
ties in the network and the other to distinguish nodes in the community. In practice, 
the random walker is likely to stay longer inside communities, and therefore, in the 
process of finding a community containing few inter-community links, only the sec-
ond level is needed to describe its path, leading to a compact representation.

However, most of these algorithms are classified as global algorithms, which 
require access to the information of the entire network and make use topology infor-
mation and largely ignore the attribute information [2].

1.2.2  Background and scope of study

Another property of similar interest is transitivity or global coefficient clustering, 
which is defined as the tendency between two nodes to be connected if they share a 
mutual neighbour [20]. In terms of network topology, transitivity is defined as the 
presence of a heightened number of sets of three vertices with edges between each 
pair of nodes (triangles) in the network.

Empirical studies have found that the concept of transitivity applies in about 
70–80% of all cases across a variety of small group situations [21, 22]. Huijuan and 
Shixuan [23] proposed a graph clustering algorithm called SNGC that considers 
both connectivity between nodes and shared neighbours. Their experimental results 
show that the proposed algorithm provides promising results and could be applied to 
the analysis of social networks, computer networks, bioinformatics, etc.

Another common occurrence in networks is that similar nodes associate with 
each other more often than others (e.g. in social networks, people choose to be 
friends with people who share their beliefs). This property is known as homophily 
[24]. Traud and Kelsic [25] show that a set of nodes’ attributes can act as the pri-
mary organising principle of the communities. Several studies have been performed 
to investigate this phenomenon of homophily, which is summarised in McPherson 
et al. [24].

There have been modifications and revisions to many methods and algorithms 
already proposed. A comprehensive survey of community detection in graphs has 
been done by Fortunato in [2]. Other reviews available in the literature are by Bedi 
and Sharma in [26] and Plantié and Crampes in [27].
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Recently, there have been several studies [28–33], [34] showing that the com-
bination of attribute and link information to detect communities in a network can 
improve the clustering quality. Most of these studies propose new algorithms that 
aim to use both sources of information; however, most methods use all attributes 
the same way without considering which ones may influence the community struc-
ture more, and lack the flexibility of balancing the information coming from network 
adjacency matrix (link information) and its node attributes.

Considering more than one source of information for community detection could 
produce meaningful clusters and improve the robustness of the network. Therefore, a 
pre-processing approach that considers both the attribute information and connectiv-
ity information aspects of the network for community detection is presented in this 
work. It should be noted that this work does not attempt to introduce a new com-
munity detection algorithm and rather proposes a pre-processing step to improve 
the performance of the existing community detection algorithms and enable them to 
execute in unreliable data network environments with better results.

In this paper, a network is represented as an undirected network G = (V, E, A), 
where V is the set of nodes and E is set of edges between nodes. Each node Vi ∈ V is 
associated with an attribute vector ( Att1

i
,…Attd

i
 ), where d is the attribute dimension 

and i represents the node ID.
The main goal of this work is to find K non-overlapping communities in the 

network where the community (C) is defined as a list of non-empty node subsets: 
C = {C1 , C2,… ,Ck }, and V = ∪k

i=1
 Ci that satisfy Ci ∩ Cj = ∅ for any i ≠ j.

1.3  Contributions arising from this work

During the past decade, the problem of community detection in networks has drawn 
a great deal of attention and several algorithms have been proposed. Recently, sev-
eral studies have proposed methods that make use of both attribute and link infor-
mation to detect communities in a network. However, as mentioned in the previous 
section, most of these studies propose new algorithms that aim to use both sources 
of information, use all attributes the same way without considering which ones may 
influence the community structure more, and lack the flexibility of balancing the 
information coming from network adjacency matrix and its node attributes. Addi-
tionally, none of the studies examines the quality and the number of community 
structures that could be identified in the network when some of the links are miss-
ing, i.e. noisy network environment.

The aim of this work is to design and implement a method that seeks to improve 
the performance of the existing community detection algorithms for incomplete net-
works. Hence, to the best of our knowledge, this is the first study on the community 
structure that seeks to:

1. Design and implement a unique pre-processing approach for the state-of-the-art 
community detection algorithms by tightly integrating the attribute information, 
shared neighbours and connectivity information aspects of the network to produce 
a new matrix.
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2. Study the correlation between communities and attributes in the network and 
introduce weight detection attribute model to learn the degree of contributions of 
different attributes based on the impact of attribute on the community structure.

3. Evaluate the performance of pre-processing approach within incomplete, net-
works.

1.4  Structure of the paper

This paper is organised as follows: the experimental datasets along with the quality 
metrics for assessing the network clustering results are discussed in Sect.  2. Sec-
tion 3 investigates the correlations between attributes and community structure of 
the network. Section 4 describes the novel proposed method along with a similarity 
matrix, used to weight the links between nodes in the network. Section  5 briefly 
presents the experimentations and evaluates the results of the proposed approach 
against the benchmark algorithms. The conclusion and future work are presented in 
Sect. 6.

2  Datasets and performance metric

2.1  Datasets

In order to investigate the correlations between attributes and community structure 
and to evaluate the proposed approach, anonymised Facebook datasets as introduced 
by Traud et  al. [35] and [25] are used. The Facebook datasets are undirected and 
unweighted. The datasets were recorded on a particular day in September 2005 and 
contain Facebook networks from 100 different American university networks whose 
nodes represent users and whose links represent friendships between users. Attribute 
information about each user is also provided. Each user has seven node attributes: a 
student/faculty status flag, gender, major, second major/minor (if applicable), dormi-
tory (house), year and high school. In this work, four networks from 100 Facebook 
datasets are used. In particular, the Caltech36, Reed98, Haverford76 and Vassar85 
datasets, which contain 769, 962, 1446 and 3068 nodes and 16,656, 18,812, 59,589 
and 119,161 edges, respectively, are used.

For more information about dataset, interested readers may refer to work by 
Traud et al. in [35] and [25]. However, the proposed approach in this work is not 
limited to the social networks but can be applied to many kinds of graph structures.

2.2  Performance metrics

To quantify the performance of the proposed approach, the quality of the obtained 
community structures is evaluated based on the modularity, number and size of 
detected communities.
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Definition 1 modularity (Q) Modularity (Q) is a prominent measure for the qual-
ity of a community structure introduced by Newman and Girvan in [36], and it has 
become a widely accepted quality of measure for community detection. Modularity 
states that a good cluster should have a bigger than expected number of connections 
between the nodes within modules and a smaller than expected number of connec-
tions between nodes in different modules. The higher the value of modularity, the 
better its community strength.

Formally, modularity can be defined as [2]:

where Aij is an element of the adjacency matrix, Ki is the degree of node i. �cicj is the 
Kronecker delta symbol, which is equal to 1 if ci = cj and 0 otherwise, and ci is the 
label of the community to which node i is assigned.

3  Correlation analysis

3.1  Shared neighbours

In order to measure how likely any two nodes with a common neighbour are them-
selves connected, the clustering coefficient of each node in the network is calculated.

Definition 2 clustering coefficient CCO The node clustering coefficient Ci of a 
node i is defined as the ratio of the number of edges connecting the neighbours of i 
to the total possible number of such edges of i, and Ki is the degree of node i [10]:

where Li is the number of edges between neighbours of node i.
The clustering coefficient for the whole network is the average of the local values Ci:

where n is the number of nodes in the network [10].
Figure 1 shows the visualisation results of the cluster coefficient for each node 

in the four datasets. In this figure, colours of nodes correspond to values of their 
corresponding clustering coefficients. As can be seen, there are some nodes that 
have high clustering coefficients, which indicates strong connectivity between each 
other. In other words, they are more prone to be in the same cluster. Furthermore, 

(1)Q =
1

2|m|
∑

ij

[
Aij −

KiKj

2|m|

]
�cicj

(2)CCOi =
2Li

Ki

[
Ki − 1

]

(3)CCO =
1

n

n∑

i=1

CCOi
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the clustering coefficient for the considered networks is 0.4288, 0.3304, 0.3268 and 
0.2487 for Caltech36, Reed98, Haverford76 and Vassar85 datasets, respectively. 

It is clear from the above discussion that the shared neighbours’ information 
can be used to describe the nature of connections between nodes in the network. 
This should motivate the use of shared neighbours’ information in detecting 
community clusters in the network.

3.2  Correlation of communities and attributes

For the sake of computing the correlation between connectivity of nodes and their 
attributes, the nodes are clustered based on their attributes in which the nodes whose 
attributes are similar are grouped together to form a cluster. Also, four different 

(a)   Caltech36                                      (b) Reed98

(c)  Haverford76 (d) Vassar85

Fig. 1  Visualisation results of node clustering coefficient for subset of four datasets (colour figure online)
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community clustering algorithms, which are Fast  Modularity [37], Louvain [17], 
leading eigenvector algorithm [38], and Walktrap [39] are applied on the datasets 
to find the communities. Then, the correlations between the resulting communi-
ties from these algorithms and the attributes are measured using Jaccard similarity 
index, which was introduced by the Paul Jaccard in [40].

Figure 2 presents the Jaccard similarity index for four different community detec-
tion algorithms with each attribute over the four networks in the Facebook dataset. It 
is interesting to notice that for the same dataset, the order of the correlation strength 
across different attributes is not same and varies from one community clustering 
algorithm to another. For example, in Reed98 dataset, if the agreement with the Fast 
Modularity algorithm is considered, the most agreement is observed with the attrib-
ute ‘student faculty’. On the other hand, Louvain algorithm performs the best if the 
agreement with the ‘year’ is considered. This is due to the fact that each algorithm 
differs on how they treat the nodes and assign them to different communities with 
different size and number of communities.

Even though there exists a difference in attribute ranking across different algo-
rithms and datasets, as an overview, the most agreements are observed with student 
faculty, gender, year and dormitory attributes. However, in computing the correla-
tion between attributes and community structure, Traud and Kelsic [25] reported 
that the order of correlation strength is significantly dependent on the agreement 
index used and not consistent across different indices.

Observing the correlation between the attributes and the communities in the net-
work indicates that the attribute information is a source of data that can be used to 
perform the community clustering task. Furthermore, based on the homophily prop-
erty of a network as shown above it is clear that the linked nodes are more likely to 
share similar attributes. However, the attributes do not have the same influence as 
the community structure and some attributes weigh more than others in their influ-
ence. Thus, the impact of different attributes on communities needs to be known and 
properly weighted according to their influence on the community structure. This will 
balance the role of network information and node attributes.

4  The proposed optimisation approach

The proposed approach could be defined as a pre-processing phase for conventional 
community clustering algorithms, which takes a graph G = (V, E, A), the weight 
of attributes (W) and two more weighting factors (α and β) as inputs. α is used to 
weight the contribution between connectivity information and both attribute and 
shared neighbours’ information. β is used to weight attribute information to the 
number of common neighbours. However, these weighting factors (W, α, β) can be 
either provided as part of the input if they are known a priori or calculated from the 
dataset.

The proposed approach returns a hybrid similarity matrix. The hybrid similar-
ity matrix is a weighted combination of attribute information, shared neighbours’ 
information and connectivity information between the nodes. Once the proposed 
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Fig. 2  Agreement of different community detection algorithms with each attribute, for a subset of four 
datasets



 A. Bhih et al.

1 3

approach constructs the hybrid similarity matrix, it can be integrated with any of 
the state-of-the-art clustering algorithms proposed for weighted graph (e.g. New-
man fast greedy algorithm, Louvain algorithm, Newman algorithm based on leading 
eigenvector of a modularity matrix or Walktrap algorithm) to extract optimum com-
munity clusters.

4.1  General architecture

The general architecture of the proposed approach is shown in Fig. 3. As can be seen 
in the figure, the approach has two phases, namely the parameter learning phase 
and information aggregation phase. The aim of the first phase is to extract optimal 
parameters, whereas the second one is used to build a hybrid similarity matrix.

We formally describe the generative process of hybrid similarity matrix as the 
following:

where Hsim (i, j) : hybrid similarity matrix, A: adjacency matrix (matrix representa-
tion of exactly which nodes in the network contain edges between them), Wasim(i, j) ∶ 
the weighted attribute similarity between a pair of nodes (i, j), α: the weighting fac-
tor used for the contribution of connectivity information to the attribute informa-
tion and shared neighbours information, β: the weighting factor used for the contri-
bution of attribute information to the number of common neighbours information, 
SNsim(i, j) : shared neighbours similarity between nodes i and j, Asim(i, j) : the attrib-
ute similarity between a pair of nodes (i, j) in network G = (V, E, A), and W: a matrix 
containing the weights of each attribute of the node in the network.

Definition 3 shared neighbours Given a graph G = (V, E), for a node i ∈ V, the 
neighbours of node i are nodes that directly connect to node i and is denoted by Γ(i).

(4)Hsim(i, j) =∝ A(i, j) + (1− ∝)
[
�Wasim(i, j) + (1 − �)SNsim(i, j)

]

(5)Wasim(i, j) = WAsim(i, j)

Fig. 3  System architecture for the proposed approach
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The shared neighbours of node i and j are the nodes that both directly connect to 
nodes i and j. It is defined as:

The shared neighbours similarity between nodes i and j is calculated by dividing 
the number of shared neighbours between them by the maximum degree of i and j 
nodes. It is defined as:

where SN(i, j) : shared neighbours between nodes i and j and Ki : degree of node i
In the hybrid similarity matrix, as is defined in Eq. 4, the strength of relationship 

between nodes is determined by attribute information, connectivity information and 
shared neighbours and controlled by two weighting parameters (α and β). The α and 
β weighting parameters can be given as part of the input values by the human agent 
based on their knowledge of the data structure and their perception of the impor-
tance of each attribute. However, choosing the right weighting values of attributes 
without a priori knowledge of the network is a challenging task. Hence, the values 
of the attribute weighting factors (W) in the proposed approach need to be set care-
fully. In the following sections, the two phases of the proposed approach (the param-
eter learning phase and information aggregation phase) will be discussed in detail to 
provide guidelines on how to set these parameters.

4.2  The parameter learning phase

Since the goal of utilising details on attribute information, shared neighbours and 
connectivity information in this work is to get the best community clusters for the 
network, the attributes of the nodes should be weighted in such a way that greater 
weight is given to the more influential attributes and smaller weights for the less 
influential. Determining the influence and thus the weights of the attributes cor-
rectly will enhance the community structure algorithm and improve the detection of 
communities in the networks. The main purpose of the proposed attribute weighting 
technique is to search for small groups of nodes (initial clusters) that contain more 
internal connections (links between nodes in the group) than external connections 
(between nodes of the group and nodes in other groups) and then find the attrib-
ute similarity between nodes in the same groups to get the influence factor for each 
attribute.

To accomplish this, the parameter learning phase, as shown in Fig. 3, is subdivided 
into two stages: local clustering stage and attribute weighting stage. Local clustering 
phase is to extract dense nodes from the network to form the initial clusters. These ini-
tial clusters are local small ones, far from being the optimal result, and are only used in 
the second stage to weight the attributes of each node in the network as well as estimate 
the α and β parameter values.

(6)SN(i, j) = {Γ(i) ∩ Γ(j)}.

(7)SNsim(i, j) =
SN(i, j)

max
[
Ki,Kj

]
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In the local clustering phase, the initial clusters are obtained by applying the first 
phase of the DICCA algorithm proposed by the authors in [41], named local clustering 
phase. The basic idea of the local clustering phase in DICCA consists of picking up m 
nodes to be originators in which the m nodes are spread out across the entire region of 
the network and assigning each node to the closest originator to form a cluster.

The attribute weighting stage is then applied to find the strength of the weighting for 
each attribute based on the structures of current clustering results. During the attrib-
ute weighting stage, the set of attributes for each node are weighted according to its 
influence in the community in which the highly influential attributes are assigned with 
high strength weights; meanwhile, the less influential attributes are assigned with low 
strength weights.

In order to find the attribute weighting, it is necessary to measure the proximity 
between pairs of nodes in the initial clusters based on their attributes. To do so, the 
attribute similarity metric needs to be defined first.

4.2.1  Attribute similarity metric

The attribute similarity between nodes Vi and Vj within the same cluster is determined 
by examining each of d set of attributes on the two nodes and reflect on the strength of 
the relationship between them in terms of their attribute values.

It must be emphasised that irrespective of the similarity metric considered to find the 
weight of attributes, first, the similarity between the attribute values of each pair of nodes 
belonging to the same local cluster needs to be calculated. The procedure is as follows:

Let Xi
N.d

 be the similarity matrix for cluster i with N nodes each with d attributes, 
the local attribute weight for cluster i is obtained by adding the appropriate dimension 
attribute of each node in the cluster to form a vector of 1 × d size and expressed as:

The weighting for the entire network is then calculated by adding the corresponding 
attribute of each local attribute weight (sum of the vectors) to form another vector in 
1 × d size. It is formally defined as:

where LWi
d
 : the local attribute weight for cluster i and W: attribute weights of the 

node in the network.
It is worth mentioning that the weights assigned to the attributes in the parameter 

learning phase LW = {Lw1, Lw2 …Lwm} range between 0 and 1.
Whether or not a certain subset is optimal depends on the similarity metric 

employed. The question about what are the best similarity measures between nodes 
to choose, for different types of attribute data, is beyond the scope of this work. In 
this work, a Jaccard similarity coefficient is used to define the attribute similarity 

(8)LWi
d
=

1

N

d∑

i=1

(
Xi
N.d

)
.

(9)W =
1

m

(
m∑

i=1

LWi
d

)
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between nodes in the same cluster and to find the weight of attributes (W) during the 
parameter learning phase. For an overview of the research work on determining the 
most meaningful similarity measures in various fields and for different types of data, 
see [42, 43].

Definition 4 Jaccard similarity Given a network G = (V, E, A), for any pair of 
nodes Vi, Vj ∈ V, the Jaccard similarity between nodes Vi and Vj with respect to 
attribute is indicated as J(Ai, Aj) and is defined as the size of the intersection divided 
by the size union of the data sets, as given below [44]:

where J(Ai,Aj) returns a value between 0 and 1, with 0 denoting no similarity and 1 
denoting identical sets.

Furthermore, since in this work Jaccard similarity is used to measure attribute 
similarity between nodes, the Xi

N.d
 could be defined as the Jaccard similarity matrix 

for cluster i. The weighted attribute similarity Wasim(i, j), between any two nodes i 
and j is defined as follows:

where each node has d attributes and Att_i is the attribute vector of node i.
The pseudo-code outlining the entire procedure with Jaccard similarity is listed in 

Algorithm 1.

4.2.1.1 Effect of α and β on the quality of community structure When considering to 
select the values for the two weighting factors (α and β), the type of emphasis on one 
of the network parameters needs to be considered. For example, emphasis on the con-
nectivity information source means that the parameter α should be greater than 0.5. 
On the other hand, emphasis on attribute and shared neighbours information means 
that α should be less than 0.5. The same argument holds good for the parameter β, 
i.e. β greater than 0.5 indicates that attribute node information source has more con-
tribution than the information related to the number of common neighbours. In the 
networks, the weighted combination of attribute information, shared neighbours and 
connectivity information is not same and the values of α and β need to be selected 
carefully. However, in practice without any prior domain knowledge, it is quite dif-
ficult to scale the contribution of each source of information.

In order to determine the effects of varying α and β parameters on the quality of 
community clustering and thereby to determine the parameters’ selection range, four 
different datasets are used to track how the community clustering changes when the 

(10)J
(
Ai,Aj

)
=

|||Ai ∩ Aj
|||

|||Ai ∪ Aj
|||

(11)Wasim(i, j) =

∑d

L=1
(WL ∗

�
Att_iL ∩ Att_jL

�
)

∑d

L=1
(WL ∗

�
Att_iL ∪ Att_jL

�
)
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values of α and β are varied from 0.1 to 1 with a step size of 0.1. Also, modularity 
index is used to evaluate the quality of community detection.

Figure 4 shows how the two parameters influence the community clustering qual-
ity. The X-axis and Y-axis in the figures represent the values of α and β, respec-
tively, while the Z-axis represents the modularity score. As can be clearly seen from 

Fig. 4  a–d Modularity value achieved by four community clustering algorithm dataset using different 
value of α and β on: a Caltech36, b Reed98, c Haverford76, d Vassar85 datasets

Fig. 5  Attribute weights for four datasets
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Fig. 5a–d, the modularity is remarkably robust to the choice of parameter values. 
When α = β = 0, the modularity of community detection is ≥ 0.25 for most of the 
algorithms for all the datasets. However, it is worth mentioning that α = β = 0 indi-
cates that the information used to find the community clustering is just based on the 
number of common neighbours Hsim(i, j) = SNsim(i, j).

As an overview, with an increasing value of β, the quality of community cluster-
ing decreases for a constant value of α. On the contrary, with an increasing value of 
α, the quality of community clustering increases slightly for a constant β value. It is 
also noticed that for values of α < 0.6 the modularity is dramatically affected by var-
ying the value of β. The modularity fluctuates between 0.01 and 0.4, and it becomes 
relatively stable when α value ranges between 0.6 and 0.7. However, the modularity 
becomes almost stable for the vast majority of β values when α > 0.7.
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Experimental results also demonstrate that the connectivity information is more 
useful than the shared neighbours’ information and attribute information. Therefore, 
the value selected for α should be greater than or equal to 0.5. For the datasets con-
sidered in this work, high modularity values are obtained when α > 0.7.

With regard to these two parameters α and β, there is no straightforward way to fit 
them to datasets and different datasets may require different parameter values. How-
ever, based on the above argument, in order to better exploit the sources of infor-
mation and obtain optimum robustness in the detection of community clusters in 
the presence of noise, the value of α is set based on the weights of attributes (w) as 
follows:

In this work, to avoid a cumbersome decision process, equal importance is given 
to shared neighbours and attribute information in which β = 0.5 is set in all the fol-
lowing performed experimentations.

4.3  Information aggregation phase

The information aggregation phase aims to build a weighted matrix, named hybrid 
matrix, based on the knowledge learned from the parameter learning phase. These 
weighted attributes w, α and β values are used to build a hybrid similarity matrix as 
defined in Eq. 4. In the hybrid matrix, the edges that link nodes do not have simi-
lar attributes or do not have shared neighbours will be punished and assigned with 
low strength weights, while the edges connecting similar nodes or having shared 
neighbours will be assigned with high strength weights. Also, there are some edges 
which will be added between the nodes to represent the attribute and shared neigh-
bour similarity.

5  Experimentation and results

5.1  Experimental setup

In order to assess the effectiveness of the proposed approach to detect communities 
under an unreliable network structure, an experimentation has been conducted using 
four different Facebook dataset networks when some edges are missing, while the 
node attributes are fully available. Furthermore, for the sake of evaluation, edges are 
removed from the network at random and the number of removed links is increased 
from zero to half the number of edges in the network in steps of 5% of network 
edges.

In each experiment, the performance is computed using the results obtained 
by applying each of the four algorithms with and without applying the proposed 
approach as a pre-processing step. Each algorithm has been applied more than once 
on the data, and the experimental results presented are the average of ten simulation 
runs.

(12)� = avg(w).
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To quantify the performance of the proposed approach, the quality of the obtained 
community structures is evaluated based on the modularity, number and size of 
detected communities.

The performance of the proposed approach is evaluated in terms of repeatability 
and reproducibility when noise is introduced in the environment. This is measured 
by its ability to find the same ground truth communities detected under normal con-
ditions even when noise is introduced. The outcome of the community clustering 
solution obtained by each algorithm with the original dataset (complete dataset) is 
used as a ground truth and compared against the outcome of the clustering solutions 
when a number of edges are progressively removed from zero to half the number of 
total edges in the network.

Moreover, for simplification, in the following sections when the proposed 
approach is combined with Fast Modularity algorithm (FA) it is referred to as 
Hybrid-FA; when combined with Louvain algorithm (LA) as Hybrid-LA; when 
combined with leading eigenvector (LE) as Hybrid-LE; and Hybrid-WA when 
combined with Walktrap algorithm (WA). Additionally, to facilitate comparison of 
results in line charts, the results obtained using the proposed approach are denoted 
by dashed line style with ‘x’ marker points.

It is worth mentioning that we have attempted to define and evaluate the compu-
tational complexity of this algorithm in [45]. While the exact mathematical model 
for the computational complexity of the pre-processing algorithm is harder to for-
malise, it could be represented using the computational model as [ log (nm)

2 ], in 
which n is the total number of nodes in the network and m the number of edges.

5.2  Experimental results and discussion

In this subsection, the effectiveness and efficiency of the algorithm are assessed from 
two aspects. One is to evaluate the attribute weighted method proposed in this work 
along with the methodology used to set the parameter value. The other aspect is to 
integrate the proposed approach with well-known community clustering algorithms 
and make a comparison of the results achieved without the integration to show how 
the proposed approach can be used to improve the robustness and quality of those 
well-known community clustering algorithms.

5.2.1  Evaluation of attribute weighting method

As highlighted in Sect. 3, different attributes have different significance for assess-
ing the similarity between the nodes in the same community clusters; therefore, the 
attribute weighting method is proposed. In this section, the performance of the pro-
posed attribute weighting method is experimentally evaluated.

The evaluation is done by checking how well the weight of the attributes (W) 
obtained by the weighting method match with the actual important attributes and is 
presented in Fig. 2.

Figure 5 shows the attribute weights obtained by the weighting method for the 
four datasets under consideration. It is obvious that the attributes have different 
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weight strengths and order of importance for different datasets. However, looking at 
the attribute weights of the four data sets, it is clear that four specific attributes (stu-
dent, gender, dormitory and year attribute) have the highest weighting values across 
all four data sets. Anyway, the remaining attributes (high school and major/minor 
attribute) do not have strong influence on the community structure, hence weighted 
with a very small value in the attribute weighting stage.

Moreover, the comparison between Figs. 2 and 5 shows that the parameter learn-
ing phase achieves almost the same results in most cases, whereas the attribute 
importance order is either same or only slightly different due to small differences in 
the attribute correlation. For example in Caltech36 dataset, the order of importance 
attributes are student, gender, year and house with attribute weight values 0.4695, 
0.3102, 0.2195 and 0.2193, respectively. In comparison with Fig. 2 and for the case 
of the Fast Modularity algorithm as an example, the order is changed to student, 
gender, house and year attribute, achieving Jaccard index values of 0.2772, 0.2412, 
0.1746 and 0.1239, respectively.

Furthermore, to evaluate the performance of the proposed weighting method in 
handling noisy data, Fig. 6 shows the values of attribute weight for the four larg-
est weighted attributes obtained by the weighting method when the percentage of 
removed edges varied from 0 to 50%. From the figure, it is worth noting that the 
ordering of weights is remarkably stable and the attribute weighting method shows 
an effective performance by getting rid of the noisy datasets and correctly weights 
attributes according to their importance.

To further assess the parameters analysis phase, the number of initial clusters 
identified at local clustering stage along with the value of α against the per cent of 
removed edges, for the four datasets, is reported in Table 1.

The results in Table 1 indicate that the noise has no significant influence on the 
value of α. In other words, the method used to define α value (see Eq. 12) is some-
what stable. In addition, it is clear that local crusting tends to partition data to a 
larger number of initial clusters. Considering Reed98 dataset, for example, when the 
missing edges varied from 0 to 50%, the values of α and the number of obtained ini-
tial clusters were {0.808, 382} and {0.823, 446}, respectively.

It is also worth noting from Table 1 that the value of α is not related to the num-
ber of initial clusters found by the local clustering stage. In some cases, higher value 
of α is obtained when more initial clusters are found. For others, however, the value 
of α increases when fewer initial clusters are found. Considering Reed98 dataset, for 
instance, when the missing edges increased from 15 to 20%, both α value and the 
number of initial clusters increased from {0.814, 399} to {0.816, 405}, respectively. 
On the other hand and for the same dataset, when the missing edges increased from 
5 to 10%, the value of α increased from 0.812 to 0.813; meanwhile, the number of 
initial clusters decreased by 3. However, the value of α for the four considered data-
sets is always higher than 0.75. This value is in agreement with what was observed 
in Sect. 4.1.1.1, where the connectivity information contains more useful informa-
tion than the shared neighbours or attribute information (α ≥ 0.5) and to get high 
modularity the value of α should be higher than 0.7.
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Overall, the results clearly demonstrate that the parameter learning method has 
the ability to extract essential and informative attributes and to weight them to 
reflect the relative importance of attribute in community clustering tasks.

5.2.2  Model performance

In this subsection, using the optimal parameters determined using the parameter 
learning phase (as discussed in Sect.  4.1), the performance of the pre-processing 
approach is evaluated.

5.2.2.1 Number of community clusters Since the number of communities in the net-
works is unspecified, the algorithms try to automatically detect the most appropriate 
number of communities by maximising the modularity. The variation in number of 
community clusters when different numbers of edges are removed is shown in Fig. 7. 
It is observed that the conventional algorithms are adversely affected by noise, so fail 

Fig. 6  Robustness of weighting method to the edge removal
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to account for appropriate community structures. Moreover, most cases result in an 
increasing number of communities with an increasing 5% of missing edges. The only 
exception is the LEA algorithm, which results in almost the same number of com-
munities even without applying the pre-processing approach.

Considering Caltech36 dataset, for example, increasing proportions of edges 
are randomly removed from the network (from 0 to 50%), the number of commu-
nities detected by all conventional algorithms is changed from {10,10,12,72} to 
{39,39,10,104} for {FA, LA, LEA, WA} algorithms, respectively. Such behaviour 
can be explained by the fact that the conventional algorithms consider only topology 
information. On the other hand, the proposed approach considers attribute, shared 
neighbours and connectivity information. Since the nodes in the same community 
usually are not just highly connected but also have similar attributes and transitiv-
ity coefficient, the proposed approach uses attribute information to make up for the 
missing link information and to identify the community membership. Consequently, 
integrating the proposed approach with a conventional algorithm is more advanta-
geous for discovering the most appropriate number of community structures than 
using the conventional algorithm on its own.

Walktrap algorithm when run on the dataset on its own failed to detect the appro-
priate number of communities, and compared to the other algorithms, the number 
of communities returned by Walktrap is extremely high for all considered datasets. 
However, applying the proposed approach as a pre-processing step to build the 
hybrid similarity matrix before applying the Walktrap community detection algo-
rithm has significantly improved the performance to obtain just 8 clusters.

Furthermore, when the percentage of removed edges is increased from 0 to 
50%, the number of clusters formed using the proposed approach is more similar 
to the original partition network when there is no noise applied. For example, in the 
case of Caltech36 dataset when 50% of edges are missing, the number of obtained 

Table 1  Results for four datasets

Dataset Caltech36 Reed98 Haverford76 Vassar85

%Missing 
edges

Number 
of initial 
clusters

α Number 
of initial 
clusters

α Number 
of initial 
clusters

α Number 
of initial 
clusters

α

0 384 0.813 382 0.808 412 0.779 824 0.767
5 381 0.816 392 0.812 427 0.781 835 0.767
10 392 0.818 389 0.813 436 0.782 844 0.768
15 388 0.816 399 0.814 419 0.782 873 0.769
20 392 0.816 405 0.816 443 0.783 898 0.771
25 391 0.816 397 0.815 463 0.783 921 0.771
30 390 0.816 409 0.817 467 0.784 927 0.772
35 394 0.817 402 0.818 476 0.783 948 0.773
40 398 0.815 418 0.819 489 0.786 953 0.774
45 390 0.817 432 0.824 487 0.788 1003 0.776
50 387 0.811 446 0.823 514 0.788 1036 0.778
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communities is {4,8,8,4} for {Hybrid-FA, Hybrid-LA, Hybrid LEA, Hybrid-WA} 
algorithms, respectively. This demonstrates that the proposed approach has the capa-
bility to extract relevant information from highly noisy datasets and make these 
algorithms quite robust to edge removal.

5.2.2.2 Size of  community clusters To take a closer look at the sensitivity of the 
obtained communities to the noise, the average size of the obtained communities, 
when percentage of removed edges is increased from 0 to 50%, is investigated and 
shown in Fig. 8.

Considering Vassar85 dataset, for example, increasing the proportion of edges 
that are randomly removed from network (from 0 to 50%), the average community 
size detected by all conventional algorithms dropped from {614, 511, 438, 51} to 
{94, 95, 583,28} for {FA, LA, LEA, WA} algorithms, respectively. In contrast, 
combining the proposed pre-processing approach with the community clustering 
algorithms considered in this work results in community clusters with almost con-
stant average size. This effect comes from the fact that since the conventional com-
munity identification is based only on the adjacency matrix, the number of commu-
nity clusters obtained is heavily dependent on the number of links in the network, so 
as the percentage of missing edges increases, the clustering algorithm becomes less 
stable and the clusters become smaller. In contrast, this is not the case for the hybrid 
similarity matrix, which is based on different considerations (attribute information, 
shared neighbours information and connectivity between nodes in the network).

Fig. 7  Number of community clusters for: a Caltech36 university dataset, b Reed98 university dataset, c 
Haverford76 university dataset, d Vassar85 dataset
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5.2.2.3 Modularity Regarding the quality of community clusters, the modularity 
metric is used as a scoring function to assess the quality of detected community clus-
ters with and without applying the proposed pre-processing phase. Figure 9 shows the 
averaged Q values, plotted for each community detection algorithm. As shown in this 
figure, in most cases using the proposed pre-processing approach has resulted in a 
slightly lower modularity than the conventional community detection methods. How-
ever, the difference is negligible and the results suggest that the proposed approach 
is a promising and powerful tool to assist in the fine tuning of different sources of 
information in community clustering area.

Moreover, the comparison between Figs. 7, 8 and 9 shows that while the approach 
achieves a good modularity quality that is comparable with the conventional meth-
ods, the approach is significantly more effective in terms of both number and size of 
communities detected where the network structure is found to have some unreliable 
or missing information.

Table 2 shows the overall performance results of the proposed method using dif-
ferent types of source information.

Fig. 8  Average community size for: a Caltech36 university dataset, b Reed98 university dataset, c Haver-
ford76 university dataset, d Vassar85 dataset
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6  Conclusion and future work

In this paper, an optimisation tool for the existing community detection algorithms 
is proposed. This tool could be used as a pre-processing stage that makes use of 
attribute information, shared neighbours and connectivity information aspects of the 
network to build a hybrid similarity matrix. Because the attributes in a network usu-
ally do not play equally important roles in clustering tasks, the proposed approach 
assigns a weighting value to each attribute during the process of building hybrid 
similarity matrix to reflect the relative importance of each attribute.

Besides the attribute weighting parameter, the approach required the specification 
of two more parameters α and β; these control the degree of contribution of con-
nectivity information, attribute similarity and shared neighbours information for a 
good balance between them. The sensitivity of the pre-processing approach to α and 
β parameters is analysed. In addition, a simple but effective model for determining 
attribute weighting value and α and β values of the approach to achieve an optimal 
result is provided.

Fig. 9  Modularity index vs missing edges for: a Caltech36 university dataset, b Reed98 university data-
set, c Haverford76 university dataset, d Vassar85 dataset
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A Jaccard similarity coefficient is used to denote attribute similarity between 
nodes and combined with adjacency matrix (links information). The approach is 
tested in conjunction with three traditional algorithms (Newman greedy algorithm, 
Louvain greedy algorithm and Neman spectral optimisation) popular in the litera-
ture by applying to three real-life Facebook data networks. Experimental results 
demonstrate that this approach yields better effectiveness and robustness than the 
state-of-the-art algorithms over noisy networks.

The proposed approach utilises a similarity function for comparing attributes. In 
a wide range of real-life applications, data contain a mixed type of attributes (e.g. 
numerical, categorical). Therefore, it is important to use appropriate similarity met-
rics to correctly measure the attribute proximity between two nodes in the network. 
However, the appropriate choice of the similarity measure depends on the attribute 
type of network to study. An interesting guideline to extend this research work is to 
use a more sophisticated approach that supports datasets with mixed attribute types. 
Furthermore, we have already developed a set of ‘decentralised algorithms’ for com-
munity clustering. We will be evaluating these algorithms with the pre-processing 
scheme proposed in this paper. We will also explore using the smartphone datasets 
(3.3 TB) collected by the University of Cambridge using Device Analyzer.
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