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ABSTRACT 1 

 Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to 2 
originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the 3 
meteorite with those of the asteroid is not straightforward because the AhS stones are diverse 4 
types. Of those studied prior to this work, 70-80% are ureilites (achondrites) and 20-30% are 5 
various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in 6 
the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. 7 
We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between 8 
ureilitic and chondritic materials and provide direct information about the structure and 9 
composition of asteroid 2008 TC3.  10 
 AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses 11 
rounded to angular clasts (<10 µm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and 12 
metal-sulfide, as well as chondrules (~130-600 µm) and chondrule fragments. The C1 material 13 
consists of fine-grained phyllosilicates (serpentine and saponite) and amorphous material, 14 
magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28-42), an unidentified Ca-rich silicate 15 
phase, Fe,Ni sulfides, and minor Ca-phosphate and ilmenite. It has similarities to CI1 but shows 16 
evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 17 
13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of 18 
several CC-like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of 19 
any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The 20 
olivine (Fo 75-88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, 21 
graphite, and some metal-sulfide are ureilitic, based on mineral compositions, textures, and 22 
oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The 23 
chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen 24 
isotope compositions. Some of the metal-sulfide clasts are derived from EC. 25 
 AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. 26 
Reflectance spectra of AhS 91A are dark (reflectance ~0.04-0.05) and relatively featureless in 27 
VNIR, and have an ~2.7 µm absorption band due to OH- in phyllosilicates. Spectral modeling, 28 
using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F-type spectrum 29 
of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A-like materials, 30 
with as much as 40-70% of the latter, and <10% of OC, EC and other meteorite types. The bulk 31 
density of AhS 91A (2.35 ± 0.05 g/cm3) is lower than bulk densities of other AhS stones, and 32 
closer to estimates for the asteroid (~1.7-2.2 g/cm3). Its porosity (36%) is near the low end of 33 
estimates for the asteroid (33-50%), suggesting significant macroporosity. 34 
 The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials 35 
intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 36 
671 could represent a volume of regolith formed when a CC-like body impacted into already 37 
well-gardened ureilitic + impactor-derived debris. AhS 91A bulk samples do not show a solar 38 
wind (SW) component, so they represent sub-surface layers. AhS 91A has a lower cosmic ray 39 
exposure (CRE) age (~5-9 Ma) than previously studied AhS stones (11-22 Ma). The spread in 40 
CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that 41 
ureilitic asteroids could have detectable ~2.7 µm absorption bands.   42 
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INTRODUCTION 43 

 Asteroid 2008 TC3 was the first near-Earth object (NEO) to be detected before it hit the Earth 44 

(Kowalski et al. 2008; Yeomans 2008; Chesley et al. 2008). It was discovered on October 6 45 

2008, and then tracked and studied for ~20 hours before it impacted in northern Sudan 46 

(Jenniskens et al. 2009; Scheirich et al. 2010; Kozubal et al. 2011). Organized search campaigns 47 

in the predicted fall area resulted in recovery of more than 700 stones, ~0.2-400 g in mass, which 48 

were collectively named the Almahata Sitta (AhS) meteorite (Shaddad et al. 2010). Almahata 49 

Sitta is the first meteorite observed to originate from a spectrally classified asteroid, and provides 50 

an unprecedented opportunity to correlate spectral, compositional, and physical properties of a 51 

meteorite with those of the asteroid from which it was derived.  52 

 Almahata Sitta is also remarkable because, unlike any previous known meteorite fall, its 53 

stones are not all the same meteorite type. The main collection of AhS is curated at the 54 

University of Khartoum (UoK), documented with find coordinates for each stone in the strewn 55 

field (Fig. 1). Eighty-five of these stones have been studied so far, as well as ~100 AhS stones 56 

from unknown find locations that were distributed by private meteorite dealers. Based on these 57 

studies, approximately 70-80% of the stones are ureilites (carbon-rich ultramafic achondrites that 58 

represent the residual mantle of a differentiated asteroid), whereas 20-30% are various types of 59 

chondrites (Zolensky et al. 2010; Horstmann and Bischoff 2014; Bischoff et al. 2015a, 2016; 60 

Fioretti et al. 2017; Goodrich et al. 2018). The ureilites span the entire range of petrologic types 61 

seen among main group ureilites, and the chondrites include all major classes (enstatite, ordinary, 62 

carbonaceous, and Rumuruti-type chondrites) and numerous groups and subgroups (Horstmann 63 

and Bischoff 2014; Goodrich et al. 2015a). AhS is classified as an anomalous polymict ureilite 64 

(Jenniskens et al. 2009). This classification implies that it is analogous (though not necessarily 65 

identical) to typical polymict ureilites, which are breccias dominated by ureilitic material but also 66 

containing chondritic and other xenolithic clasts (Prinz et al. 1986, 1987; Goodrich et al. 2004; 67 

Downes et al. 2008). However, unlike typical polymict ureilites, AhS has been disaggregated. It 68 

can be inferred that 2008 TC3 was a heterogeneous asteroidal breccia in which the clasts were so 69 

loosely bound that they separated in the atmosphere and landed on Earth as individual stones.  70 

 Pre-impact observations of 2008 TC3 support this inference. The average diameter of the 71 

asteroid was ~4 m, based on the light curve and F-type reflectance spectrum (Jenniskens et al. 72 

2009; Scheirich et al. 2010). Its bulk density was ~1.7 g/cm3, based on its size and abundances of 73 
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cosmogenic nuclides in some of the stones (Welten et al. 2010). This value is significantly lower 74 

than densities of the studied stones, particularly the typical ureilites (~3.3 g/cm3), which implies 75 

~25-50% porosity in the asteroid (Jenniskens et al. 2009; Welten et al. 2010). This suggests that 76 

the asteroid was loosely consolidated, which explains why it shattered at such a high altitude 77 

(Borovička and Charvát 2009; Jenniskens et al. 2009; Shaddad et al. 2010; Popova et al. 2011). 78 

These data also imply that most of the mass of 2008 TC3 was lost in the atmosphere, probably as 79 

dust. The total mass of fallen material was estimated to be ~40 kg (Shaddad et al. 2010), 80 

representing ≤0.1% of the estimated mass of the asteroid. Thus, the asteroid must have consisted 81 

of >99% loosely consolidated, porous material, with only the small fraction of more coherent 82 

clasts surviving as meteorite fragments (Jenniskens et al. 2009; Goodrich et al. 2015a). 83 

Nevertheless, the reflectance spectrum of the asteroid provides information on the composition 84 

and grain size of the lost material.  85 

 The reflectance spectrum of 2008 TC3 was measured in the 0.5-1 µm range (Jenniskens et al. 86 

2009, 2010), and most closely matches F-type asteroids in the Tholen taxonomy (Tholen and 87 

Barucci 1989). The average F-type albedo of 0.046 (Mainzer et al. 2011) is consistent with 88 

independent estimates of the asteroid’s size (Jenniskens et al. 2009). F-type asteroids belong to 89 

the C complex of dark asteroids commonly identified with carbonaceous chondrites (Tholen and 90 

Barucci 1989; DeMeo et al. 2009, 2015). If Almahata Sitta had not been recovered, 2008 TC3 91 

would have been assumed to be a carbonaceous chondrite. The recovery of AhS provided 92 

irrefutable evidence that not all dark asteroids are primitive, making studies of the AhS stones 93 

important for distinguishing differentiated dark asteroids from primitive dark asteroids. 94 

 However, determining the structure and composition of asteroid 2008 TC3 has been hindered 95 

so far because none of the studied AhS stones showed contacts between ureilitic and chondritic 96 

lithologies. Here we describe the first AhS stones that do. AhS 91/91A and AhS 671 are breccias 97 

consisting of C1 carbonaceous chondrite, ureilite, ordinary chondrite, and enstatite chondrite 98 

components. We report mineralogy and petrology, oxygen isotope compositions, density and 99 

porosity, reflectance spectra from visible through thermal infrared (VNIR to TIR) wavelengths, 100 

and noble gas abundances for these two AhS stones. We also measured chromium isotope 101 

compositions, which are reported elsewhere (Sanborn et al. 2017; Qin et al. 2018). We discuss 102 

implications for the structure, composition, and formation of asteroid 2008 TC3, and for remote 103 

sensing of ureilitic asteroids.  104 
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 105 
SAMPLES AND ANALYTICAL METHODS 106 

 107 
 UoK stones 91 and 91A (hereafter referred to collectively as 91A) were recovered together 108 

near the central part of the AhS strewn field (Fig. 1). They were suspected to be paired (Shaddad 109 

et al. 2010) and this is confirmed by the results of our studies. The two stones originally had a 110 

combined mass of 8.57 g, but they are extremely friable and have been progressively crumbling 111 

into smaller fragments (e.g., Fig. 2). AhS 671 (original mass 11.85 g) was recovered ~1400 m 112 

from AhS 91A (Fig. 1) and is also very friable. We were allocated ~1.5 g of each, entirely as 113 

small fragments (most <100 mg each). We used a variety of analytical techniques to study these 114 

fragments (Supplement 1) including: X-ray Computed Tomography (XRCT or CT scans); field-115 

emission scanning electron microscopy (FE-SEM); field emission electron microprobe analyses 116 

(FE-EMPA); focused ion beam (FIB) milling and transmission electron microscopy (TEM); 117 

Raman spectroscopy; visible-to-near-infrared (VNIR) and Fourier transform infrared (FTIR) 118 

reflectance spectroscopy; microscopic FTIR (µ-FTIR) reflectance spectroscopy; noble gas 119 

analysis; bulk and in-situ (SIMS) oxygen isotope analyses; chromium isotope analysis (reported 120 

elsewhere); and determination of bulk density, grain density, and porosity. All analytical 121 

methods are described in Supplement 2. 122 

 123 
RESULTS 124 

 125 
Petrography and Mineral Compositions 126 

 We studied polished sections of 20 fragments of AhS 91A and 22 fragments of AhS 671, 127 

with exposed areas ranging from ~0.05 to 10 mm2. These two AhS breccias are very similar and  128 

consist of a hydrous carbonaceous chondrite-like lithology (C1) enclosing clasts of olivine, 129 

pyroxene, plagioclase, and graphite (ranging from <10 µm to ~3 mm in size), as well as 130 

chondrules (~130-600 µm in diameter) and metal-sulfide grains (up to ~1.3 mm in size). Most of 131 

the fragments studied do not show this entire assemblage. Individual fragments consist of either: 132 

1) C1 matrix material; 2) olivine, pyroxene, plagioclase, or metal grains; 3) C1 material 133 

containing or in contact with clasts of olivine, pyroxene, plagioclase, and/or metal; or 4) C1 134 

material containing chondrules, as well as clasts of olivine, pyroxene, plagioclase and metal. 135 

 136 

 137 
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C1 Material 138 

 C1 material is the most abundant component (Fig. 3-11). It consists mostly of fine-grained 139 

phyllosilicates, with varying abundances of a Ca-rich silicate phase, carbonates, magnetite, 140 

fayalitic olivine, and Fe,Ni sulfides, plus minor Ca-phosphate and ilmenite. Its texture shows a 141 

variety of rounded clasts in a fine-grained matrix, with the clasts differing in relative proportions 142 

of phases, as well as how distinct they are from the matrix. One common type of clast (e.g., areas 143 

1 and 3 in Fig. 3a,b) is Ca-rich. It consists of phyllosilicates plus a high abundance of a patchy to 144 

fibrous Ca-rich silicate phase, as well as clusters of magnetite grains (Fig. 4). Another type of 145 

clast (e.g., area 4 in Fig. 3a,b) consists almost entirely of serpentine intergrown with one or more 146 

poorly-crystalline phyllosilicates, plus a few larger pyrrhotite grains (Fig. 5). The matrix of the 147 

C1 lithology is a fine-grained mixture of all observed phases in varying proportions (e.g., Fig. 148 

3c,d).  149 

Broad beam electron microprobe (EMP) analyses suggest that the most abundant 150 

phyllosilicates in both clasts and matrix are a mixture of serpentine with varying Mg# (=molar 151 

Mg/[Mg+Fe]) and saponite (Fig. 6; Table 1). FIB/TEM observations of area 1, a Ca-rich clast, 152 

revealed that most silicates are poorly crystalline (Fig. 7,8). Local regions of flaky phyllosilicates 153 

(Fig. 7, 8a,b) grade into moderately well crystalline spongy phyllosilicates, and then into poorly 154 

crystalline spongy material (Fig. 7, 8c,d). These morphologies are very similar to those 155 

commonly observed in CI chondrites (Barber 1981, 1985; Zolensky et al. 1993). Flaky 156 

phyllosilicates frequently surround Fe-Ni sulfide grains (Fig. 7). Phyllosilicate packets are 157 

generally <100 nm across and are not well crystalline. Interlayer lattice spacings vary from 0.95 158 

to 1.3 nm. This information and EDX spectra indicate a mixture of at least two phyllosilicate 159 

phases and Fe-Ni sulfides. The interlayer lattice fringes and approximate composition of one of 160 

these phyllosilicates is consistent with a smectite, perhaps saponite, with lattice spacings from 161 

1.1 to 1.3 nm. Approximately 1 nm d-spacings are common in smectite (saponite) in Orgueil 162 

(Klimentidis and MacKinnon 1986). Naturally-dehydrated meteoritic smectites exhibit a range of 163 

interlayer spacings from 1.1 to 1.4 nm (e.g. Nakamura 2005; Tonui et al. 2014), as observed in 164 

AhS 91A.  165 

The Ca-rich silicate phase or assemblage (~13-15 wt.% CaO; Table 1) in area 1 and similar 166 

clasts has not yet been identified. Based on EMP totals of ~94-97%, this phase contains less OH 167 

than serpentine or a smectite (such as saponite), for which totals typically range from 87-89%. 168 



7 
 

FIB/TEM analyses (Fig. 4d) showed this “phase” to consist of Ca-rich, poorly crystalline 169 

material with occasional flakes of a layered phase with a basal spacing of 0.95-0.96 nm, which 170 

we verified by recalibrating our scale bar for TEM images. This layer lattice value would be 171 

correct for completely dehydrated smectites. However the Ca content of this “phase” is far too 172 

high to be only a smectite. Therefore, we hypothesize that this Ca-rich material is an assemblage 173 

of two phases. Elsewhere in AhS 91A we observe phyllosilicates in association with Ca-bearing 174 

carbonates. After phyllosilicates begin to dehydrate, Ca carbonates calcine to CaO plus CO2 175 

(Rodriguez-Navarro et al. 2009). In permeable rocks (e.g., at or near an asteroid’s surface) the 176 

CO2 would escape, and at this low CO2 pressure calcination occurs at temperatures as low as 450 177 

°C (Grasa et al. 2014), a temperature consistent with dehydration of smectites (Nakamura 2005; 178 

Tonui et al. 2014). Thus, the Ca-rich “phase” may be a mixture of poorly-crystalline CaO and 179 

dehydrated smectite. This posibility will be further investigated with other techniques. 180 

 FIB/TEM observations of area 4 (Fig. 5) showed that the dominant fibrous phase has a basal 181 

lattice spacing of 0.770 to 0.772 nm consistent with Mg-rich serpentines (Mg# ~0.9 based on 182 

EMPA; Fig. 6). The serpentine is surrounded by poorly crystalline spongy phyllosilicates. 183 

Chrysotile serpentine is occasionally observed here with characteristic cylindrical morphology, 184 

although these sometimes do not show well-defined lattice fringes (Fig. 5d), a characteristic of 185 

heating to temperatures <300ºC (Nakamura 2005; Tonui et al. 2014).   186 

 Breunnerite is the most abundant carbonate in the C1 lithology (Fig. 9a), occurring as 187 

rounded grains, ~70-400 µm in size, with average composition Mg0.64Fe0.26Mn0.09Ca0.01CO3 in 188 

AhS 91A and Mg0.67Fe0.24Mn0.07Ca0.02CO3 in AhS 671 (Table 2). Dolomite grains of similar size 189 

were observed in AhS 91A (Fig. 9b), with average composition Mg0.43Fe0.06Mn0.03Ca0.48CO3 190 

(Table 2). Both types of carbonate have corroded outer rims with magnesite-enriched breunnerite 191 

compositions (e.g., Mg0.88Fe0.11Mn0.01Ca0.00CO3). Breunnerite similar in composition to the rims 192 

also occurs as 10-20 µm-sized irregular patches in the matrix (Fig. 3c,d; Table 2).  193 

 Magnetite occurs pervasively in the matrix as clusters of anhedral to subhedral grains with 194 

irregular rims of porous, fayalitic olivine (Fig. 10a,c,d), as clusters of radially oriented grains 195 

(Fig. 4a-c), and also as subhedral grains embedded in pyrrhotite (Fig. 10b). Abundances of minor 196 

elements in the magnetite are extremely low (Fig. 10e,f; Table 3), similar to magnetite in CI and 197 

CR chondrites (Folinsbee et al. 1967; Böstrom and Fredriksson 1966; Löhn and El Goresy 1992; 198 

Harju et al. 2014), as well as CC-like clasts in typical polymict ureilites. Fine-grained sulfides 199 
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are dispersed abundantly throughout the matrix. Some matrix areas have concentrations of 200 

fayalitic olivine (Fo 28-42), which occurs as porous tabular crystals with numerous small 201 

inclusions of other phases (Fig. 11). Such areas appear be more abundant in AhS 671 than AhS 202 

91A. 203 

 204 

Clasts of Olivine, Pyroxene, Plagioclase, Graphite and Metal 205 

 Clasts of olivine, pigeonite, orthopyroxene, plagioclase and graphite (in order of decreasing 206 

abundance) are embedded in the C1 matrix (Fig. 12-13). They are rounded to angular and up to 207 

~3 mm in size. They are completely enclosed within the C1 material and show no evidence of 208 

reaction with their surroundings (Fig. 12, 13). In a few occurrences, they are concentrated along 209 

cracks or in brecciated zones. Some of the olivine clasts appear to be polymineralic and some 210 

have small inclusions of graphite. Otherwise, no compound clasts were observed.  211 

 The olivine clasts are homogeneous except for reduced zones (Mg-enriched olivine 212 

containing numerous tiny grains of metal) along grain boundaries and around inclusions of 213 

graphite (Fig. 12a,c). Core compositions range from Fo 75 to Fo 87.5 among clasts (Table 4). At 214 

least six distinct olivine core compositions were observed. Reduced zones have higher Fo than 215 

cores, up to ~99. Several olivine clasts of Fo ~78-79 contain micron-sized symplectic lamellae of 216 

chromite + pyroxene (Fig. 12e). Figure 14 shows plots of molar Fe/Mg vs. molar Fe/Mn and 217 

wt.% Cr2O3 vs. CaO for all olivine clasts (including reduced zones), compared with olivine in 218 

other types of meteorites. The clasts plot along the Fe/Mg vs. Fe/Mn trend defined by the 219 

olivine+low-Ca pyroxene main group ureilites (Fig. 14a), and encompass most of the ureilite 220 

range. They have high CaO (~0.25-0.50 wt.%) and Cr2O3 (~0.45-1.0 wt.%) contents, which are 221 

also consistent with those in ureilite olivine (Fig. 14b). These features distinguish the olivine 222 

clasts in AhS 91A and AhS 671 from olivines in C1 and C2 carbonaceous chondrites, type 4-6 223 

ordinary and enstatite chondrites (Steele 1990; Leshin et al. 1997; Frank et al. 2014; Brearley 224 

and Jones 1998), and all major groups of olivine-rich achondrites other than ureilites.  225 

 The pyroxene clasts in AhS 91A and AhS 671 (Table 4) include pigeonite of Wo ~7-10 (Mg# 226 

78-88), orthopyroxene of ~Wo 4.5 (Mg# 88-89), and one clast of orthopyroxene of Wo 0.8 (Mg# 227 

99.5) (note that we refer to pyroxenes with Wo <5 as orthopyroxene). Each clast is 228 

homogeneous, except that some pigeonites have irregularly-shaped, porous, Mg-rich patches 229 

containing blebs of metal (Fig. 13c). At least five distinct pigeonite compositions were observed 230 
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(Table 4). Major and minor (Al2O3 and Cr2O3) element compositions of the pyroxene clasts are 231 

compared with compositions of low-Ca pyroxenes in other types of meteorites in Figure 15. The 232 

pigeonite and Wo ~4.5 orthopyroxene clasts are consistent with compositions of low-Ca 233 

pyroxenes in main group and typical polymict ureilites, and are distinguished from those of low-234 

Ca pyroxenes in most other groups of chondrites and achondrites. The one orthopyroxene clast 235 

of Wo ~0.8 has major and minor element composition consistent with orthopyroxenes in several 236 

types of chondrites (Fig. 15). 237 

 Three plagioclase clasts were observed (Fig. 13e, f). Two are Na-rich (An ~3-5, Or 3-4). The 238 

third is more calcic, with An ~35 (Table 4, columns 16-18). The analyses are stoichiometric 239 

(Table 4), suggesting that they are or once were crystalline. Graphite (identified by Raman 240 

spectroscopy, Supplement 3) occurs as inclusions in olivine clasts, and as isolated masses up to 241 

~300 µm in size in the C1 matrix (Fig. 13d). Several of the isolated graphite masses were found 242 

to contain minor diamond (Supplement 3). 243 

 Three types of metal grains (or assemblages) were observed. The first type consists of 244 

kamacite containing significant P, Cr, and Si (Table 5), and is sometimes associated with Cr-245 

bearing troilite. Metal grains of this type occur as inclusions in graphite masses (e.g. Fig. 13d). 246 

The second type consists of kamacite + taenite ± troilite (e.g., Fig. 16a), with the kamacite 247 

having very low Si, P, and Cr contents (Table 5). The third type consists of Si-rich, Cr-poor 248 

kamacite (Table 5) with abundant inclusions of enstatite and niningerite (e.g., Fig. 16c-d). One 249 

particularly large clast of this type is a 1.2 mm long lath in AhS 91A_09 (Fig. 16b). 250 

Compositions of the kamacite in the clasts are compared with compositions of kamacite in 251 

ureilites, ordinary chondrites, enstatite chondrites, and iron meteorites in Figure 17. 252 

 253 

Chondrules 254 

 A CT scan of fragment AhS 91_01 showed that it contained spherical objects that appeared 255 

to be chondrules. The fragment was mounted in epoxy and then sectioned conservatively (near 256 

its outer surface), revealing four ~140 to 600 µm-diameter chondrules (#2-5), along with several 257 

clasts of olivine, pigeonite, orthopyroxene, and plagioclase, embedded in C1 material (Fig. 18a). 258 

The chondrules are located at the edge of the fragment in this section, without connecting 259 

material, so it was not possible to determine their textural relationship to one another or to the C1 260 

material. They vary in internal texture (PO and POP types), mineral compositions (Table 6), and 261 
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degree of equilibration, and can be described within the standard classification scheme for 262 

chondrules in chondritic meteorites (e.g., Gooding and Keil 1981; Brearley and Jones 1998; 263 

Jones 2012). Chondrule #2 (Fig. 16b) consists of subhedral, normally-zoned olivine phenocrysts 264 

in a small amount of feldspathic mesostasis surrounded by a rim of subhedral to anhedral grains 265 

of orthopyroxene. Olivine and orthopyroxene cores are Fo ~95 and En ~98, respectively (Table 266 

6). It is a partially equilibrated type IAB POP. Chondrule #3 (Fig. 18c) consists dominantly of 267 

orthopyroxene phenocrysts (Mg# ~95) with overgrowths of Ca-rich pyroxene, plus subhedral to 268 

anhedral grains of FeO-rich olivine (Fo ~80). It is a partially equilibrated Type IAB. Chondrule 269 

#4 (Fig. 18d) is a Type IIAB POP consisting of anhedral olivine (Fo ~79) and orthopyroxene 270 

(Mg# ~89), with one large metal (kamacite+taenite) grain (Fig. 18e). Chondrule #5 (Fig. 18f) is 271 

an unequilibrated Type IAB POP, consisting of zoned, anhedral olivine (Fo 89-99), anhedral 272 

orthopyroxene (Mg #99), and mesostasis containing acicular olivine crystals.  273 

 The CT scan of AhS 91_01 (Fig. 19a), shows that it contains additional chondrules not yet 274 

exposed, some of which are in contact with one another and the C1 matrix. Examining these 275 

chondrules could provide information on textural relationships between the chondrules and 276 

between the chondrules and the C1 matrix. Therefore, we have begun progressively polishing 277 

down the AhS 91_01 section and examining newly-exposed features. The first new feature 278 

observed is a highly brecciated area (Fig. 19b,c), which appeared in the area formerly occupied 279 

by chondrule #5 (chondrule #3 and #4 are still present). This area shows finely comminuted 280 

material consisting of angular mineral and lithic fragments <1 to 100 µm in size. Based on their 281 

textures and mineral compositions (Fig. 19d), these fragments are an intimate mix of C1 matrix 282 

material, olivine and pyroxenes similar to the ureilitic clasts in AhS 91A, and chondrule 283 

components. The C1 material in this area occurs as distinct clasts, rather than forming a matrix 284 

around the ureilitic clasts as it does in other areas of AhS 91A and AhS 671. 285 

 286 

Oxygen Isotope Compositions 287 

 Oxygen isotope compositions for bulk samples of AhS 91A and AhS 671 (Table 7) are 288 

shown in Figure 20. The analyzed fragment of AhS 91A was separated into a main fragment that 289 

was dominated by the C1 lithology and a small chip with a “metallic” texture (based on 290 

binocular microscope observation). The main fragment (analyzed as two aliquots) had an 291 

average composition plotting on an extension of the CCAM line at δ18O = 13.53 ‰ and δ17O = 292 
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8.93 ‰, with ∆17O = ~1.8 ‰. This does not match the composition of any known chondrite, but 293 

is very similar to the composition of a CC-like clast from the Nilpena polymict ureilite (Fig. 20a: 294 

Clayton and Mayeda 1988; Brearley and Prinz 1992) and similar to compositions of three CC-295 

like clasts in other typical polymict ureilites (Patzek et al. 2018b). An aliquot of the “metallic” 296 

chip had a composition plotting on the terrestrial fractionation line (TFL) at δ18O = -1.33. SEM 297 

observations and EMPA analyses of this chip showed only hydrous iron oxides, with a texture 298 

indicative of terrestrial alteration products. The fragment of AhS 671 (two aliquots) showed a 299 

composition slightly offset from that of AhS 91A, with ∆17O = ~1.6 ‰ and slightly lower δ18O = 300 

~10.72 ‰. This composition would be consistent with a mixture of AhS 91A and a terrestrial 301 

component similar to the chip separated from AhS 91A. 302 

 Oxygen isotope compositions obtained by SIMS for various components of AhS 91_01 (Fig. 303 

18a) are given in Table 8 and shown in Figure 20. Compositions of olivine and pyroxene in 304 

chondrules #2 and #4, and pyroxene in chondrule #3 (Fig. 18), are within the range of 305 

compositions of olivine and pyroxene in chondrules in LL ordinary chondrites (Kita et al. 2010). 306 

One analysis of FeO-rich olivine (Fo ~80) in chondrule #3 has a more 16O-rich composition (Fig. 307 

20a), suggesting that it is a relict grain, i.e., a remnant of chondrule precursor material that 308 

survived the last chondrule-forming melting event (Kunihiro et al. 2004; Ushikubo et al. 2012). 309 

Analyses of olivine and pyroxene from chondrule #5 are significantly more 16O-rich (Fig. 20a) 310 

than the olivine from chondrules #2, 3, and 4, and are within the range of olivine and pyroxene in 311 

chondrules from primitive (type 3) CC (Ushikubo et al. 2012; Tenner et al. 2015). Clasts of 312 

olivine, pyroxene and plagioclase in AhS 91_01 have oxygen isotope compositions within the 313 

range of main group ureilites, ureilitic stones from AhS, and olivine, pyroxene, and plagioclase 314 

clasts in typical polymict ureilites (Fig. 20a). Five analyses from the core and zoned rim of a 315 

breunnerite grain in the C1 material (Fig. 18a) show ∆17O = ~2.3±0.2 ‰ and form a δ17O-δ18O 316 

line of slope = 0.526 (correlation coefficient 0.999) with δ18O ~20 to 35.6 ‰ (Fig. 20b).  317 

 318 

Bulk Sample Spectroscopy from 0.3 – 3.6 µm 319 

 Bulk sample spectra from 0.3 – 3.6 µm for two fragments of AhS 91A (chips and powders of 320 

each) are shown in Figure 21a (RELAB file names are given in Supplement 2). Spectra of the 321 

chips are dark (reflectance ~0.04-0.05) and relatively featureless across VNIR wavelengths. 322 

They show a strong absorption band at ~2.7 µm, indicative of water of hydration (OH-) in 323 
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phyllosilicates. Spectra of powdered samples are similar to those of the corresponding chips but 324 

having lower reflectance (~0.03-0.04). The <125 µm powder of one fragment (91A_11) exhibits 325 

a shallow absorption at ~1.05 µm, attributable to olivine. 326 

 VNIR spectra of chips and powder samples of two AhS enstatite chondrites, AhS 2012 and 327 

AhS 1002 (Goodrich et al. 2018), measured to add to the data of Hiroi et al. (2010) for spectra of 328 

AhS stones, are also shown in Figure 21b. Both chips have very red, featureless slopes, with high 329 

reflectance values (~0.27-0.28 at 0.55 µm). The powders are also red and featureless, but with 330 

lower reflectance (0.08-0.09 at 0.55 µm). The AhS 1002 samples are more affected by terrestrial 331 

weathering than AhS 2012, evident from their stronger UV and 0.5 µm absorption features.  332 

 333 

Microscopic Spectroscopy from 2.5 – 25 µm 334 

 We acquired µ-FTIR reflectance measurements on polished mounts of AhS 91A and AhS 335 

671 in the 4,000-400 cm-1 range (2.5-25 µm). Microscopic measurements enable the targeted 336 

analysis of minerals and clasts of interest as well as allowing for mapping to obtain a bulk 337 

sample spectrum that represents coarse to solid rock (non-volume scattering) surfaces. Analytical 338 

spot sizes typically varied from ~100 – 300 µm2.   339 

 A spectrum representing bulk or whole-rock 91A_1 was obtained by automated mapping of 340 

the sample at 200 µm2 spatial resolution in a 10 x 9 array. After removal of pixels that did not 341 

fall completely on the sample area, 65 spectra remained, which we averaged to obtain the bulk 342 

spectrum due to the linear nature of mixing over this spectral range. Figure 22 shows this bulk 343 

spectrum compared to similarly acquired spectra of selected carbonaceous chondrites (Hamilton 344 

2018; Hamilton et al. 2018). Like many of the CI and CM chondrites, the bulk spectrum of AhS 345 

91A_1 exhibits an OH- band at ~3686 cm-1 (~2.71 µm) indicative of the presence of serpentine 346 

group phyllosilicates. The Christiansen feature (CF), a minimum on the high wavenumber side 347 

of the silicate stretching peak, is located at ~1097 cm-1 / ~9.12 µm (at 2 cm-1 spectral sampling). 348 

This position lies between the CF positions of typical CI1 and CM meteorites, and is most 349 

consistent with petrologic type 1, 1/2, or low petrologic sub-type CM2 chondrites (Hamilton et 350 

al. 2018). The shape of the Si-O stretching region from the CF to ~695 cm-1 / ~14.4 µm is 351 

relatively broad, exhibits modest structure in the form of several small shoulders (at 944, 877, 352 

and 827 cm-1 / 10.59, 11.40, and 12.09 µm), and is not particularly well matched by any 353 

available meteorites in our collection. The broadened absorption of the bulk spectrum may 354 
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suggest the presence of an amorphous component. The smaller shoulders are attributable to a few 355 

pixels in the 91A_1 map to which pyroxene (one pixel) and fayalitic (not ureilitic) olivine 356 

contribute. Continuing across the spectrum, there is a slightly asymmetric Mg-OH absorption at 357 

~616 cm-1 (16.23 µm) whose shape and position are most similar to CM1, CM1/2, and low 358 

petrologic type CM2 meteorites. The Si-O bending fundamental is located at 443 cm-1 in AhS 359 

91A_1 and, not surprisingly, also bears strong similarities to the shape and position of the same 360 

feature in CI and CM1, CM1/2, and low petrologic type CM2 meteorites (Hamilton et al. 2018). 361 

Comparable spectra of CM 2.5-2.7 meteorites exhibit a lower wavenumber band minimum (~426 362 

cm-1 / 23.47 µm) and additional structure in this region (e.g., a small minimum at ~490 cm-1 / 363 

20.41 µm) due to the greater abundances of pyroxene and olivine they contain (e.g., Howard et 364 

al. 2015). 365 

 We also made targeted spectral measurements of areas 1 and 4 of AhS 91A_1 (Fig. 3a). Area 366 

1 has a very consistent and feature-rich spectral shape that differs considerably from that of the 367 

bulk meteorites (Fig. 23). The area 1 spectrum has no discernible OH- band and the Si-O 368 

stretching region (1120 to 625 cm-1; 8.9 to 16.0 µm) looks quite similar to the platy or lath-like, 369 

fayalitic olivine-dominated matrix materials in CV3ox meteorites (e.g., Hamilton and Connolly 370 

2012), although the Si-O bending region (<625 cm-1; >16.0 µm) resembles olivine mixed with a 371 

small amount of  phyllosilicate. These observations indicate the presence of one or more 372 

anhydrous compositions, consistent with the observed high abundance in area 1 of the Ca-rich 373 

silicate that is inferred from EMPA to be nearly anhydrous. It is also noteworthy that the 374 

minimum reflectance (values not shown in Fig. 23) of the bulk sample at the CF position is 4% 375 

whereas the reflectance of area 1 at the CF is ~16% − this overall brightening commonly occurs 376 

due to the presence of spectrally-neutral (in this region of the TIR) phases, such as metal and 377 

sulfide (Hamilton et al. 2018). This can be explained by a high abundance of sulfides seen in 378 

petrographic observations of area 1. We also collected an oversampled spectral map (100 379 

µm/pixel at 25 µm spatial sampling) of area 1 in the hopes of extracting the individual 380 

component spectra using a statistical approach (factor analysis) demonstrated successfully for 381 

laboratory and remote sensing data (e.g., Bandfield et al. 2002; Hamilton and Ruff 2012). Using 382 

this approach, we recovered the spectrum of an olivine-like (Fo 55) component, but no other 383 

components, including crystalline serpentines or phyllosilicate minerals (for phyllosilicates, we 384 

searched using a test suite of spectra for samples that have been measured at temperatures 385 
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ranging from ambient to as much as 900°C: Che et al. 2011). If a disordered phyllosilicate 386 

(serpentine or clay mineral) and/or CaO component are present in area 1, as suggested based on 387 

TEM data, we do not have the correct trial spectra to extract those components from the 388 

measured AhS spectra. If these materials are present and intergrown at very small scales (<<25 389 

µm), we also may not be able to extract their signatures with this analytical approach, which 390 

requires variability in the phase proportions between individual measurement spots/pixels. 391 

 The spectrum of AhS 91A_1, area 4 exhibits a feature at ~3687 cm-1 / 2.71 µm (at 4-cm-1 392 

sampling) that is attributable to the fundamental hydroxyl stretching vibration in serpentines 393 

(Farmer 1974; Bishop et al. 2002). At lower wavenumbers (longer wavelengths), area 4 exhibits 394 

a distinct spectral shape (Fig. 24) that is shifted relative to a terrestrial saponite and more 395 

consistent with minerals of the serpentine group, including an Mg-OH-related band at ~641 cm-1 396 

/ 15.6 µm that generally is not present in other magnesian phyllosilicate group minerals 397 

(Michalski et al. 2006). The CF minimum and silicate stretching band features of cronstedtite 398 

(Fe-bearing serpentine) are shifted (~60-70 cm-1) to lower wavenumbers than in Mg-serpentines 399 

and other features of cronstedtite are not apparent in the AhS area 4 spectrum (Fig. 24), 400 

indicating that the AhS composition is relatively magnesian, consistent with EMPA analyses 401 

from this area (Fig. 6).  402 

 Targeted spot analyses on AhS 671_2 and AhS 671_3 reveal the spectral character of 403 

carbonate (Fig. 25a,b) and mixed phyllosilicate/olivine (Fig. 25c,d). The positions of spectral 404 

peaks in spectra of carbonate are at 1506, 898, and 742 cm-1 (6.64, 11.14, and 13.48 µm); a large 405 

feature is present at the lowest wavenumbers (longest wavelengths), but the peak position is not 406 

clearly evident in our data and likely lies just beyond the 400 cm-1 / 25 µm limit of these data. 407 

The observed feature positions are consistent with a carbonate with an intermediate Mg-Fe 408 

composition (e.g., Lane and Christensen 1997) and is similar to magnesite and dolomite (we do 409 

not have a breunnerite spectrum for comparison), consistent with EMPA results (Fig. 9). To 410 

extract the individual mineral spectra from the mixed olivine/phyllosilicate analyses we 411 

employed factor analysis on data collected as an oversampled (100 µm spot size, 50 µm spatial 412 

resolution) 16 x 15 map (100 µm spot size, 50 µm spatial resolution) on a portion of AhS 413 

671_03. We successfully extracted spectra consistent with magnesian serpentines (Fig. 25e) and 414 

olivine (~Fo 30-40, consistent with EMPA results, Fig. 25f). The shape of the olivine spectra in 415 

both 91A_2 and AhS 671_3 are more akin to those in the matrices of petrologic type 3 416 
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carbonaceous chondrites, as opposed to chondrule olivines, a property that may be indicative of 417 

their tabular and porous nature, as well as composition. 418 

 419 
Noble Gas Analyses 420 

 The noble gas results are given in Tables 9-12. The isotopic compositions of all elements He-421 

Xe can be explained with a mixture of cosmogenic (cos), primordially trapped (tr), and 422 

radiogenic (rad; very minor 4He, 40Ar and 129Xe from decay of U, Th, 40K, and 129I) noble gases, 423 

as is expected for both primitive chondritic and ureilitic material (e.g., Ott 2014). In detail, 424 

cosmogenic noble gases are best visible in 21Ne. The trapped noble gases of phase Q or a related 425 

"ureilitic" component (e.g., Göbel et. al. 1978) dominate 36Ar, 38Ar, and all Kr and Xe isotopes. 426 

Trapped HL (Heavy- and Light-enriched) gases from presolar diamonds (Huss and Lewis 1994) 427 

might contribute to the He and Ne isotopic compositions. The Ne three isotope plot (Fig. 26) 428 

shows the three fragments plotting on an apparent mixing line between trapped Ne and the 429 

cosmogenic endmember. The spread of the data points illustrates the distinct mixing ratios of the 430 

trapped and cosmogenic Ne.  431 

 Using Ne with trapped and cosmogenic endmember compositions (20Ne/22Ne)tr = 10.46 ± 432 

0.05 (from fit through the data using (21Ne/22Ne)tr = 0.0294; Busemann et al. 2000) and 433 

(21Ne/22Ne)cos = 0.789 ± 0.016 for a typical (20Ne/22Ne)cos range from 0.70 to 0.93 (e.g., Wieler et 434 

al. 2002), we determined 20Netr and 21Necos concentrations for each of the AhS 91A fragments 435 

(Table 9). Using a physical model that predicts the production rates of cosmogenic nuclides as a 436 

function of chemical composition and shielding conditions (Leya and Masarik 2009), with two 437 

different estimates of bulk composition for AhS 91A (CI chondrite and ureilitic), we calculated 438 

cosmic ray exposure (CRE) ages (Table 13). The frequently used shielding indicator 439 

(22Ne/21Ne)cos is not appropriate for large bodies like 2008 TC3 (average ~4 m diameter) and the 440 

production rates were averaged over most of the expected shielding depths in the asteroid (see 441 

Riebe at al. 2017a for more details). The 3He/4He ratios are between 6 and 11 × 10-4 (Table 9), 442 

close to the trapped HL or Q range (~1.5 × 10-4, e.g., Ott 2014). Thus, 3Hecos cannot reliably be 443 

determined because most 3He is trapped and some 4He might be radiogenic. Similarly, the 444 
36Ar/38Ar ratios of >5.20 suggest only very small, if any, contributions from 38Arcos. Using 445 

(36Ar/38Ar)cos = 0.65 ± 0.02 (Wieler et al. 2002) and (36Ar/38Ar)tr in the range 5.31 to 5.36 (Q or 446 

air, Busemann et al. 2000) yields only very small concentrations of 38Arcos (Table 10) with very 447 

large errors, so we do not use 38Arcos to determine CRE ages. Similarly, significant amounts of 448 



16 
 

3He may originate from trapped He components, and some 4He might be radiogenic. This renders 449 

the determination of CRE ages based on 3He very difficult. The most reliable CRE ages, from 450 
21Ne, averaged over both estimated chemical compositions, are between 5 and 9 Ma, lower than 451 

the ages of ~11-22 Ma reported for other Almahata Sitta stones (Riebe et al. 2017a; Meier et al. 452 

2012, Welten et al. 2010).  453 

 Krypton and Xe isotope ratios (Tables 11,12) resemble purely trapped ratios as typical for 454 

phase Q Kr and Xe (Busemann et al. 2000). The element abundances and ratios in AhS 91A_12 455 

and AhS 91A_15 are very similar, whereas AhS 91A_14 shows large enrichments in Ar (~11×), 456 

Kr (~2.9×), Ne (~2.5×) and He (~1.4×) relative to the other two fragments, but essentially similar 457 

Xe concentrations. This leads to high 36Ar/132Xe (~870) and 84Kr/132Xe (~2.2) ratios in AhS 91A-458 

14, compared to these ratios in AhS 91A_12 and AhS 91A_15 (~90, ~0.8, respectively), which 459 

resemble Q gas compositions. 460 

 461 

Density and Porosity 462 

 Results of the measurements of density and porosity for AhS 91A_18 and AhS 91A_19 are 463 

given in Table 14. The bulk densities of the two samples (2.33 ± 0.06 and 2.39 ± 0.01 g/cm3, 464 

respectively) are within the range measured for twelve CM2 chondrites (1.88 to 2.54; median 465 

2.20 g/cm3) by Macke et al. (2011a), which are lower than those of any other CC except CI. In 466 

contrast, the grain density of the samples (3.69 ± 0.16 g/cm3) is higher than those of CM2 (2.74-467 

3.26 g/cm3), and similar to the highest grain densities measured for CV (3.25-3.86 g/cm3) or CO 468 

(3.17-3.78 g/cm3) chondrites (Macke et al. 2011a). The porosity of the two samples (36.2 ± 3.0 469 

%) is much higher than those of any CCs or other meteorite types except CI, the ungrouped CC 470 

Tagish Lake, or a few rare CM chondrites (Macke et al. 2011a,b; Bland et al. 2004; Hildebrand 471 

et al. 2006). 472 

 473 
DISCUSSION 474 

What Type of Meteorites are AhS 91A and AhS 671? 475 

CC Lithology 476 

 The dominant component of AhS 91A and AhS 671 is a CC matrix-like material, which we 477 

have referred to as the C1 lithology because it appears to consist mainly, or entirely, of products 478 

of aqueous alteration (Zolensky and McSween 1988). The mineral assemblages, textures, and 479 
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mineral compositions of this lithology resemble those of CI1 meteorites, which consist almost 480 

entirely of diverse lithic fragments of aqueously altered matrix material (Brearley and Jones 481 

1998; Bland et al. 2002). Like CI1s (Tomeoka and Buseck 1988), the CC lithology in AhS 91A 482 

and AhS 671 consists mostly of fine-grained Mg-rich serpentine and saponite, with abundant 483 

magnetite, sulfides, and carbonates. It is also similar in mineralogy and phyllosilicate Mg#s to 484 

CR1 matrix (Le Guillou et al. 2015), but differs from CR1 chondrites in not containing 485 

chondrules. It differs from CM matrices, in which cronstedtite is a major phase (Müller et al. 486 

1977; Barber 1981; Akai 1980; MacKinnon 1980, 1982; Akai and Kanno 1986). The areas rich 487 

in fayalitic olivine in AhS 91A and AhS 671 CC bear some resemblance to CV matrices (Green 488 

et al. 1971; Kornacki and Wood 1984; Peck 1984; Keller et al. 1994; Krot et al. 1995), but the 489 

porous, tabular morphology of the olivine (Fig. 7) differs from that in most CVs (Krot et al. 490 

1995); furthermore, other phases common in CV matrices (andradite, grossular, wollastonite, 491 

feldspathoids) are absent. Compositions of magnetite in AhS 91A and AhS 671 are like those of 492 

magnetite in CI and CR and distinct from those in CV and CK (Fig. 10). Compositions of 493 

carbonates in AhS 91A and AhS 671 (breunnerite and lesser dolomite) are most consistent with 494 

those in CI (Fig. 9), although dolomite is more abundant than breunnerite in CIs (Johnson and 495 

Prinz 1993; Endress and Bischoff 1996). They differ from carbonates in CMs, in which calcite is 496 

more abundant than dolomite (Barber 1981; Johnson and Prinz 1993; Brearley 1995) and 497 

breunnerite has not been reported (Fig. 9).  498 

 However, although this lithology appears to be most like CI1, it also shows evidence of 499 

spatially heterogeneous thermal metamorphism that resulted in dehydration, including the nearly 500 

anhydrous Ca-rich silicate phase, the absence of OH- bands in µ-FTIR spectra of some areas of 501 

AhS 91A, and the presence of significant amounts of fayalitic olivine. In particular, the unique 502 

morphology (not seen in known CC) of magnetite clusters rimmed by fayalitic olivine (e.g., Fig. 503 

10c) may be a product of reduction of magnetite during metamorphism (Zolotov et al. 2006). 504 

Evidence for post-aqueous alteration thermal metamorphism is seen in some CIs (Nakamura 505 

2005; Tonui et al. 2014), and may have been common on primitive, volatile-rich bodies. 506 

 Furthermore, bulk oxygen isotope compositions of AhS 91A and AhS 671 show that it is 507 

distinct from CI and unlike any previously known chondrite (Fig. 20a). This result is underscored 508 

by Cr isotope compositions, which show that AhS 91A and AhS 671 have unique ε54Cr values, 509 

which are the highest of any known solar system materials (Sanborn et al. 2017; Yin et al. 2018). 510 
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 The C1 lithology in AhS 91A and AhS 671 may, however, be related to some CC-like clasts 511 

in meteoritic breccias. Carbonaceous chondrite-like clasts occur as xenoliths and microxenoliths 512 

in typical polymict ureilites, HED (howardite-eucrite-diogenite) breccias, ordinary chondrite 513 

regolith breccias, and Rumuruti-type chondrites, with their apparent abundance decreasing in this 514 

order (Bischoff et al. 2006; Greshake 2014; Patzek et al. 2018a). In HED and ordinary 515 

chondrites, most CC-like clasts are mineralogically similar to CM2 or CR2 chondrites, with CI-516 

like clasts being much less common (Zolensky et al. 1996, 2018; Herrin et al. 2011; Gounelle et 517 

al. 2003; Briani et al. 2012; Patzek et al. 2018a). However, in polymict ureilites, all CC-like 518 

clasts have been reported to be CI-like. Such clasts were first identified by Prinz et al. (1987) as 519 

“black (opaque)” materials similar to carbonaceous chondrite matrix in the three polymict 520 

ureilites known at the time (Nilpena, North Haig, EET 83309). Prinz et al. (1987) noted that 521 

these clasts were “soft and friable” and consisted mostly of very fine-grained silicates with 522 

magnetite, Fe,Ni sulfides, Fe-Mn-Mg carbonates, and minor ilmenite and apatite. Brearley and 523 

Prinz (1992) conducted XRD, TEM and analytical microscopy on one such clast and found that 524 

it consisted of very fine-grained phyllosilicates, with coarser sulfide and magnetite grains. The 525 

phyllosilicates were dominated by serpentine, with lesser amounts of saponite, minor chlorite, 526 

and other fine-grained and/or amorphous materials. They also identified a darker clast within the 527 

main clast, indicating that the clast itself was a breccia. Brearley and Prinz (1992) showed that 528 

the CC-like clasts in Nilpena were mineralogically more like CI than CM. However, one dark 529 

clast from Nilpena was analyzed for bulk oxygen isotopes (Clayton and Mayeda 1988) and found 530 

to be distinct from CI, as well as all other known chondrites (Fig. 20a). Patzer et al. (2018b) 531 

recently reported three CC-like clasts in other typical polymict ureilites with similar oxygen 532 

isotope compositions. Brearley and Prinz (1992) concluded that the CC-like clasts in polymict 533 

ureilites were unique. This is supported by data for D/H ratios and S isotope ratios of a few CI-534 

like clasts in typical polymict ureilites (Patzek et al. 2017; Visser et al. 2018).  535 

 The C1 material in AhS 91A and AhS 671 is generally similar in mineralogy to the dark 536 

clasts in typical polymict ureilites described by Prinz et al. (1987) and Brearley and Prinz (1992). 537 

Furthermore, it is almost identical in oxygen isotope composition (Fig. 20a) to the dark clast 538 

from Nilpena analyzed by Clayton and Mayeda (1988) and the three clasts reported by Patzer et 539 

al. (2018b). However, studies of >130 CC-like xenoliths in 14 different polymict ureilites show 540 

substantial diversity in the abundances and compositions of their constituents (Ikeda et al. 2000, 541 
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2003; Goodrich et al. 2004; Kita et al. 2017; Patzek et al. 2018a) and, so far, only one clast that 542 

could be considered petrologically “identical” to AhS 91A or AhS 671 has been reported 543 

(Goodrich et al. 2019a). Furthermore, bulk oxygen isotopes have been analyzed for another CC-544 

like clast from a polymict ureilite, and found to have a composition very different from that of 545 

91A and 671 (Goodrich et al. 2019a). Continued petrologic and isotopic studies of CC-like clasts 546 

in typical polymict ureilites and other meteoritic breccias are needed to determine whether AhS 547 

91A and 671 are closely related to any of them. 548 

 549 

Clasts and Chondrules 550 

 The clasts of olivine, pyroxene, plagioclase, graphite, and metal in AhS 91A and AhS 671 551 

cannot be indigenous to the CC lithology. Although the matrices of C1 and C2 chondrites 552 

sometimes contain a small fraction (estimated <1 vol% in C1 by Brearley and Jones 1998) of 553 

relict olivine and orthopyroxene grains (Steele 1990; Leshin et al. 1997; Frank et al. 2014), the 554 

olivine and pyroxene clasts in AhS 91A and 671 are much larger than such grains (up to 3 mm 555 

vs. 400 µm). They also show sharp boundaries with the matrix, whereas relict grains in C1 and 556 

C2 have more diffuse edges (Steele 1990). Moreover, the olivine and pyroxene grains in AhS 557 

91A and AhS 671 are compositionally distinct from those in C1/C2 (Fig. 14, 15). Plagioclase has 558 

not been reported in CC matrices. Although CC can have carbon contents up to ~8 wt.% 559 

(Pearson et al. 2006; Kerridge 1985), the carbon does not occur as large masses of graphite like 560 

those in AhS 91A and AhS 671 (Fig. 13d), but rather as widely dispersed organic compounds or 561 

poorly-graphitized carbon (Hayes 1967; Smith and Buseck 1981; Botta and Bada 2001; 562 

Alexander et al. 2017). The metal grains in AhS 91A and AhS 671 (Fig. 16) are also unlikely to 563 

belong to the CC lithology, because Fe,Ni metal is absent or extremely rare in all CC matrix 564 

materials except reduced CVs (which do not contain magnetite and so are not analogous to AhS 565 

91A and AhS 671).  566 

 A similar argument can be made for the chondrules in AhS 91_01 (Fig. 18). Although CC 567 

with aqueously-altered matrices (C1 and C2) can contain chondrules (e.g., McSween 1979), such 568 

chondrules show various degrees of aqueous alteration (Ikeda 1983; Kojima et al. 1984; 569 

Browning et al. 1996). The chondrules in AhS 91_01 show no aqueous alteration, and therefore 570 

are not likely to be an indigenous component of the C1 material. 571 
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 If the olivine, pyroxene, plagioclase, graphite, metal, and chondrules in AhS 91A and AhS 572 

671 are not part of the C1 lithology, then they must be xenolithic. What is their provenance? The 573 

olivine and pyroxene clasts can be identified as ureilitic from their compositions and internal 574 

textural features. Olivines in main group ureilites, typical polymict ureilites, and ureilitic stones 575 

from Almahata Sitta show characteristic compositions, with Fo ranging from ~75 to 95 (among 576 

samples), a well-defined Fe/Mg-Fe/Mn trend of near-constant Mn/Mg ratio that passes through 577 

the origin, and high CaO and Cr2O3 contents (Fig. 14). These combined features distinguish 578 

ureilitic olivine from that in all other major meteorite groups (Fig. 14). The compositions of the 579 

olivine clasts in AhS 91A and AhS 671 are consistent with these characteristics and encompass 580 

most of the known ureilitic range. At least six distinct main group ureilite lithologies are 581 

represented by these clasts. Internal textures further support ureilitic provenance. The reduced 582 

zones along grain boundaries and around inclusions of graphite are a characteristic feature of 583 

ureilitic olivine, as are the graphite inclusions themselves (Wlotzka 1972; Mittlefehldt et al. 584 

1998). The micron-sized chromite+pyroxene symplectites in the Fo ~78-79 clasts (Fig. 12e) are 585 

also a feature of ureilitic olivines of Fo 75-79 (Goodrich et al. 2013a). 586 

 Pyroxenes in ureilites also show characteristic compositional features. The sole or dominant 587 

pyroxene in ~95% of main group ureilites is pigeonite with Wo ~6-14. Most meteoritic 588 

pigeonites are significantly more ferroan than the pigeonite in ureilites (Fig. 15a). Ureilites (main 589 

group ureilites, clasts in typical polymict ureilites, and ureilitic stones from AhS) represent a 590 

unique occurrence of Mg-rich (Mg# ~78-92) pigeonite, which also has higher Cr2O3 contents 591 

than low-Ca pyroxenes in most other meteorites (Fig. 15b). The pigeonite clasts in AhS 91A and 592 

AhS 671 have Wo, Mg#, and Al2O3 and Cr2O3 contents consistent with ureilitic pigeonite (Fig. 593 

15). The primary orthopyroxenes (i.e., ignoring shock-recrystallized pyroxenes) in ureilites also 594 

have distinct compositions. They occur mostly in the more magnesian ureilites, with Mg# >~87, 595 

and invariably have Wo ~4.5-4.9 (Mittlefehldt et al. 1998; Goodrich et al. 2004). Two of the 596 

three orthopyroxene clasts in AhS 91A and AhS 671 have Wo, Mg#, and Al2O3 and Cr2O3 597 

contents consistent with those of ureilitic orthopyroxene. The porous, reduced patches in some of 598 

the pigeonite clasts (Fig. 13c) further support their ureilitic provenance. Internal textures like 599 

these occur in pigeonites in some main group ureilites and many Almahata Sitta ureilites and 600 

have been attributed to pyroxene-selective impact-smelting (Bischoff et al. 2010; Zolensky et al. 601 

2010; Warren and Rubin 2011). From the number of distinct pigeonite compositions, at least five 602 
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main group ureilites are represented by these clasts. The Wo 4.5 orthopyroxene clast could be 603 

derived from the most magnesian of these, based on compositions of coexisting pigeonite and 604 

orthopyroxene in main group ureilites. Based on typical compositions of coexisting olivine and 605 

pigeonite in main group ureilites (Mittlefehldt et al. 1998; Goodrich et al. 2004), these could be 606 

the same five ureilitic lithologies that are represented by the olivine clasts in AhS 91A and AhS 607 

671. The orthopyroxene clast of Wo 0.8, Mg #99.5 (Table 4, column 15) has major and minor 608 

element compositions out of the range of ureilites and consistent with those of orthopyroxenes in 609 

several types of chondrites (Fig. 15).  610 

 The plagioclase clasts in AhS 91A and 671 could also be derived from ureilites. Main group 611 

ureilites do not contain plagioclase (Mittlefehldt et al. 1998), but typical polymict ureilites 612 

contain a few vol. % of plagioclase as mineral and lithic clasts (Jaques and Fitzgerald 1982; 613 

Prinz et al. 1987, 1988; Ikeda et al. 2000; Goodrich et al. 2004; Cohen et al. 2004; Kita et al. 614 

2004, 2006; Goodrich and Wilson 2014; Goodrich et al. 2017b). These clasts span the entire 615 

range from albite to anorthite, with two main populations, one “albitic” (An ~0-30) and the other 616 

‘labradoritic” (An ~33-70) (Ikeda et al. 2000; Cohen et al. 2004; Goodrich et al. 2017b). These 617 

two populations probably represent indigenous melt lithologies complementary to main group 618 

ureilites (Cohen et al. 2004; Goodrich et al. 2004; Kita et al. 2004). One Almahata Sitta stone, 619 

called ALM-A (Bischoff et al. 2015b), is a trachyandesite with mineral and oxygen isotope 620 

compositions resembling those of the “albitic” lithology in typical polymict ureilites. Two of the 621 

three plagioclase clasts in AhS 91A and AhS 671 have major and minor (Mg, Fe) element 622 

compositions (Table 4) consistent with the “albitic” lithology and ALM-A, and the third has 623 

major and minor element compositions consistent with the “labradoritic” lithology. 624 

 Oxygen isotope compositions of the olivine, pyroxenes, and plagioclase clasts in AhS 91_01 625 

(Fig. 18a) are within the range of compositions of main group ureilites and clasts in polymict 626 

ureilites (Fig. 20a), and thus support the ureilitic provenance of these clasts.  627 

 The provenance of the graphite masses in the C1 material cannot be determined from any in 628 

situ analyses we were able to make on the carbon. However, some of them have inclusions of 629 

metal (Fig. 13d) of characteristically ureilitic composition (see next paragraph). Furthermore, the 630 

fact that they are found with numerous other clasts derived from ureilites (which contain 631 

abundant graphite) strongly suggests ureilitic provenance. The presence of minor diamond in 632 
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some of the graphite masses (Supplement 3) further supports this interpretation (Mittlefehldt et 633 

al. 1998; Ross et al. 2011). 634 

 Based on composition, the metal grains in AhS 91A and AhS 671 are derived from three 635 

different meteorite types – ureilites, ordinary chondrites, and enstatite chondrites. Ureilitic metal 636 

is kamacite with ~1-7 wt.% Ni (Goodrich et al. 2013b). It is distinguished from kamacite in 637 

ordinary chondrites and iron meteorites by its significant Si, P, and Cr contents, and from 638 

kamacite in enstatite chondrites by higher Cr (Fig. 17). Thus, kamacite grains that occur in AhS 639 

91A and 671 without taenite, and contain significant Si, P and Cr (e.g., Table 5, column 1), are 640 

likely of ureilitic provenance. The association of Cr-bearing troilite with some of these grains 641 

further supports this interpretation, as Cr-bearing troilite is common in ureilites (Goodrich et al. 642 

2013b). The kamacite-taenite-troilite assemblages in AhS 91A and AhS 671 (e.g., Fig. 16a) are 643 

likely derived from ordinary chondrites, considering the low abundances of Cr, P and Si in their 644 

kamacite (consistent with either OC or iron meteorites; Fig. 17) in combination with their 645 

textures (similar to those of kamacite-taenite-troilite particles in OC rather than the typical 646 

Widmanstätten texture of iron meteorites: Brearley and Jones 1998). Cobalt contents of the 647 

kamacite further narrow it down to the H group (Kallemeyn et al. 1989). The grains of Si-rich 648 

kamacite in AhS 91A and 671 (e.g., Fig. 16b-d) have compositions that constrain them to being 649 

from enstatite chondrites (Fig. 17). Nickel and Si contents of these grains further narrow it down 650 

to EH type 4-6 (Weisberg and Kimura 2012). Enstatite chondrite provenance is also supported 651 

by inclusions of enstatite and niningerite in these grains (Fig. 16b-d) (Ehlers and El Goresy 1988; 652 

El Goresy et al. 1988; Weisberg and Kimura 2012; Horstmann et al. 2014).  653 

 Based on textures, mineralogy, and mineral compositions, the chondrules and chondrule 654 

fragments in AhS 91_01 are most likely derived from type 3 OC, RC, or CC (Bischoff 2000; 655 

Jones 2012; Scott and Krot 2004). Oxygen isotope compositions (Fig. 20a) of chondrules #2, #3 656 

and #4 (Fig. 18b-d) are most consistent with OC. The combined Fo of olivine and Co content of 657 

kamacite in chondrule #4 suggest H type (Kallemeyn et al. 1989). The 16O-rich composition of 658 

chondrule #5 (Fig. 20a) suggests derivation from type 3 CC.  659 

 660 

Summary and Implications 661 

 Summarizing the petrology and oxygen isotope compositions of AhS 91A and AhS 671, 662 

these stones are breccias of a type not previously known among meteorites. They are dominated 663 



23 
 

by aqueously-altered (C1) matrix material that has similarities to CI1 but also shows unique 664 

mineralogic features and oxygen and Cr isotope compositions, showing that it represents a 665 

reservoir of volatile-rich early solar system material not so far sampled by whole meteorites. The 666 

C1 matrix material encloses clasts of ureilitic olivine, pyroxene, plagioclase, graphite and metal 667 

representing at least six different ureilite lithologies, EC metal-sulfide and enstatite grains, OC 668 

metal-sulfide grains, and chondrules derived from type 3 OC and CC.  669 

 Although most of the material in AhS 91A is mineralogically similar to CI chondrites, both 670 

the bulk density and the grain density of two 91A fragments (Table 14) are higher than those of 671 

CI (Macke et al. 2011a). Two factors could account for this. First, the AhS 91A samples 672 

measured could contain ureilitic and OC type mineral clasts (no CT scans were obtained on these 673 

fragments), which would increase density relative to the phyllosilicate-dominated matrix. 674 

Second, the C1 material in AhS 91A and 671 shows indications of partial dehydration, which 675 

would also increase density. On the other hand, the porosity of AhS 91A (36%) is very similar to 676 

that of CI and similar ungrouped CC such as Tagish Lake (Macke et al. 2011a). The combination 677 

of density and porosity in AhS 91A does not match any known CC, which supports the 678 

interpretation that these stones are a previously unknown type of material.   679 

 AhS 91A and AhS 671 are the first Almahata Sitta stones to contain both ureilitic and 680 

chondritic lithologies. They contain most of the previously known AhS stone types (multiple 681 

types of ureilites, EC and OC), as well as a type of chondritic material not previously reported in 682 

AhS (C1). This suggests that AhS 91A and AhS 671 do not just give us another meteorite type to 683 

add to the inventory of Almahata Sitta stones. Rather, these stones may be giving us direct 684 

information about the structure and composition of Almahata Sitta (i.e., asteroid 2008 TC3) 685 

overall. 686 

 687 

Implications for the Structure and Composition of Asteroid 2008 TC3 688 

 Two observations suggest that AhS 91A and AhS 671 could represent a substantial fraction 689 

of the pre-atmospheric mass of 2008 TC3. First, the extreme friability of these samples suggests 690 

that materials like these could easily have disintegrated into ≤tens-of-micron-sized fragments 691 

when 2008 TC3 impacted the atmosphere and became unrecoverable as macroscopic meteorites. 692 

Thus, they are plausible candidates for the missing >99% of the mass of the asteroid (Jenniskens 693 

et al. 2009; Shaddad et al. 2010). Second, the clasts in AhS 91A and 671 are derived from the 694 
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same meteorite types as most of the AhS stones that have been studied so far and, like the other 695 

AhS stones, are predominantly ureilitic. Thus, the mineral clasts in 91A and 671 are broken-696 

down fragments of the same materials represented by the lithic clasts (the other AhS stones) in 697 

2008 TC3. Based on these considerations, a plausible model for the structure and composition of 698 

2008 TC3 is that it was a breccia with a fine-grained, friable matrix like the C1 material in AhS 699 

91A and AhS 671, which enclosed a small fraction of more coherent, few cm-sized, lithic clasts 700 

of ureilitic, OC, and EC materials, as well as smaller fragments (mineral fragments, chondrules, 701 

metal-sulfide particles) derived from comminution of similar materials. In the following 702 

subsections we consider whether such a model is consistent with the VNIR reflectance spectrum 703 

and the density and porosity of 2008 TC3. 704 

 705 

Spectral Modeling 706 

 The reflectance spectrum of 2008 TC3 was measured in the 0.55-1.00 µm range (Fig. 21c-d), 707 

and most closely matches F-type asteroids in the Tholen taxonomy (Jenniskens et al. 2009, 708 

2010). F-type asteroids belong to the C complex of dark asteroids that are commonly identified 709 

with carbonaceous chondrites (Tholen and Barucci 1989; DeMeo et al. 2009, 2015). The albedo 710 

of the asteroid was not directly measured, but the average F-type albedo of 0.046 (Mainzer et al. 711 

2011) is consistent with independent estimates of the asteroid’s size (Jenniskens et al. 2009). 712 

Albedo estimates ranging from 0.046 to 0.12 (at 0.55 µm) have been proposed from laboratory 713 

spectra of some of the ureilitic AhS stones (Jenniskens et al. 2009; Hiroi et al. 2010). 714 

 Hiroi et al. (2010) obtained reflectance spectra of chips and powders of ten AhS ureilites and 715 

one ordinary chondrite (Fig. 21b) and used least-squares modeling of linear combinations of 716 

these spectra to fit the spectrum of 2008 TC3 in order to constrain the structure and composition 717 

of the asteroid. He found that mixtures dominated by chips and coarse powders of the ureilites, 718 

with only a small component (~4-10%) of OC, reproduced the main features of the asteroid 719 

spectrum (Fig. 21c,d), suggesting that ureilitic material dominated the surface of 2008 TC3. 720 

 We extended this modeling to include the data obtained here for AhS 91A (Fig. 21a) and the 721 

enstatite chondrite (EC) stones AhS 1002 and AhS 2012 (Fig. 21b). Critical features of the 722 

asteroid spectrum are the lack of a strong spectral downturn shortward of ~0.7-0.8 µm and a 723 

shallow absorption at ~0.9 µm attributable to pyroxene. We parameterized these features as the 724 

700/550 nm, 900/550 nm, and 1000/900 nm ratios, and used these as criteria for constructing 725 
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linear mixtures of small numbers of components (4-5) that plausibly matched the spectrum of the 726 

asteroid. The asteroid spectrum used was the same 55-pt averaged spectrum that was used in 727 

Hiroi et al. (2010). Albedo was not a fixed constraint. We first focused on testing how large a 728 

component of AhS 91A would be consistent with the asteroid spectrum. Two of the best-fit 729 

mixtures from this modeling (mix 2 and mix 5) are shown in Figure 21c,d (Table 16).  730 

 These two spectra show that mixtures of AhS ureilites + 0-3% AhS OC + 70-79% AhS 91A 731 

provide fits to the asteroid spectrum that are comparable in quality to those of the ureilite + OC 732 

mixtures of Hiroi et al. (2010) within the uncertainty of the asteroid spectrum, and therefore are 733 

consistent with there being a significant component of AhS 91A-like material in the asteroid. 734 

Furthermore, adding large fractions of AhS 91A to ureilites results in lower albedo values (Fig. 735 

21d) that are within the range of those of F-type asteroids (<0.09, average 0.046; Mainzer et al. 736 

2011), whereas the ureilite + OC mixtures of Hiroi et al. (2010) are not. This is a strong 737 

argument for there being a large component of AhS 91A-like material in the asteroid, because 738 

none of the other AhS stones studied so far (by VNIR reflectance spectroscopy) have lower 739 

albedos than the ureilites.  740 

 We then tested how large a component of EC would be consistent with the asteroid spectrum 741 

by adding up to 30% EC chips or powders to one of the ureilite + OC + AhS 91A mixtures (Fig. 742 

21c). Results show that addition of 30% EC chips or powders (the percentage of EC among 743 

currently studied non-UOK AhS stones) results in a spectrum that is outside the uncertainty of 744 

the 55-pt averaged spectrum for 2008 TC3 over much of its spectral range. Addition of even 10% 745 

EC chips or powders results in a spectrum that deviates significantly from the averaged asteroid 746 

spectrum (though consistent with it within uncertainty) and therefore appears implausible.  747 

 Thus, based on currently available spectra for AhS stones, it is likely that asteroid 2008 TC3 748 

consisted dominantly of ureilitic and AhS 91A-like materials, with as much as 40-70% of the 749 

latter, and only small amounts (<10% each) of OC, EC and other meteorite types.   750 

 751 

Density and Porosity  752 

 The bulk density determined for AhS 91A (2.35 ± 0.05 g/cm3) is lower than the average bulk 753 

density (~2.8 g/cm3) of 42 AhS ureilites (Welten et al. 2010), and significantly lower than 754 

densities of other AhS stone types such as EC (e.g., 3.5 g/cm3) (Shaddad et al. 2010). It is also 755 

much closer than the ureilites to the bulk density estimates of ~1.7-2.2 g/cm3 for asteroid 2008 756 
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TC3 (Welten et al. 2010). The porosity of AhS 91A (36%) is higher than the porosities of 36 of 757 

the 42 AhS ureilites measured, and within the range of estimates of porosity (33-50%) of the 758 

asteroid (Welten et al. 2010). These physical properties of AhS 91A are consistent with the 759 

results of the spectral modeling suggesting that material like AhS 91A could have comprised a 760 

large fraction of the asteroid. If we accept the argument of Welten et al. (2010) that the lower 761 

density (e.g., ~1.7 g/cm3) and higher porosity values (e.g., 50%) determined for the asteroid are 762 

the most robust, then AhS 91A is still denser and less porous than the asteroid. This is, in fact, 763 

consistent with the observation that the bulk of the asteroid disintegrated in the atmosphere, 764 

while AhS 91A survived. The asteroid could have contained some less-dense, more-porous 765 

material that we have not sampled, or it could have consisted mainly of a less-dense, more-766 

porous version of AhS 91A. However, it is also likely that the asteroid had significant 767 

macroporosity (Consolmagno et al. 2008), which could account for the lower bulk density of the 768 

asteroid compared to AhS 91A and is consistent with its low strength and fragmentation behavior 769 

(Jenniskens et al. 2009).  770 

 771 

Implications for the Formation of Asteroid 2008 TC3 772 

 At least thirteen different parent asteroids are represented among the AhS stones (Horstmann 773 

and Bischoff 2014; Goodrich et al. 2018). Two types of model have been proposed to explain 774 

how all these materials became mixed together in asteroid 2008 TC3: 1) secondary accretion 775 

models (Bischoff et al. 2010; Gayon-Markt et al. 2012; Horstmann and Bischoff 2014; Scott et 776 

al. 2018); and 2) regolith models (Herrin et al. 2010; Hartmann et al. 2011; Goodrich et al. 777 

2015a). Both models begin with catastrophic impact disruption of the ureilite parent body (UPB), 778 

an event which has been proposed based on evidence independent of AhS (Takeda 1987; Warren 779 

and Kallemeyn 1992; Goodrich et al. 2004, 2015a; Downes et al. 2008; Herrin et al. 2010; 780 

Michel et al. 2015), and which likely occurred at ~5 Ma after CAI (Goodrich et al. 2010, 2015). 781 

Secondary accretion models for 2008 TC3 posit that at the time of the catastrophic disruption, 782 

abundant fragments of mixed chondritic debris were present around the UPB and re-accreted 783 

along with the ureilitic fragments to form mixed 2nd generation asteroids, one of which spawned 784 

2008 TC3. In contrast, regolith models for 2008 TC3 posit that in the aftermath of the 785 

catastrophic disruption, daughter bodies consisting solely of ureilitic materials formed by 786 

gravitational re-accretion of subsets of fragments from the shattered parent (Michel et al. 2001, 787 
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2015). Over an extended period of time (tens of millions to billions), these ureilitic daughter 788 

bodies then developed regoliths consisting of comminuted fragments of their host ureilitic 789 

lithologies, as well as surviving remnants of foreign impactors. Goodrich et al. (2015a) suggested 790 

that one daughter body could be the source of all ureilitic material in our collections – main 791 

group ureilites from the interior, typical polymict ureilites (from deep, consolidated regolith 792 

(“asteroidal megaregolith”), and AhS from shallower, less coherent regolith.  793 

 These two formation models make distinct predictions for the overall structure and 794 

composition of the asteroid. The secondary accretion model predicts that 2008 TC3 consisted of 795 

centimeter(s)-sized, loosely agglomerated lithic components (i.e., similar to the studied AhS 796 

stones), and broke up mainly into monolithologic fragments along their original boundaries, with 797 

some of these fragments becoming the recovered stones (Bischoff et al. 2010). This suggests that 798 

the asteroid had relatively uniform clast sizes similar to those of the fallen fragments, and no 799 

strong distinction between clasts and matrix. In contrast, the regolith model predicts large 800 

variations in clast sizes and a distinct clast-matrix structure.  801 

 The structure of the AhS 91A and AhS 671 breccias strongly suggests that they formed in a 802 

regolith environment. Regolith (fragmentary debris) is produced through multiple large and 803 

small impacts onto an asteroid’s surface over an extended period of time, leading to 804 

fragmentation, comminution, and redistribution of both indigenous asteroidal material and 805 

surviving fragments of impactors (McKay et al. 1989; Bischoff et al. 2006). The products of 806 

these combined processes include both regolith breccias (which resided on the outermost few 807 

mm of the surface for long enough to acquire solar wind implanted gases), and fragmental 808 

breccias, which formed at various depths below the surface and include materials that were not 809 

exposed to space for long enough to acquire solar gases. The observations that the clasts in AhS 810 

91A and AhS 671 are small fragments of their parent meteorite types (i.e., ureilitic mineral 811 

fragments rather than complete ureilitic assemblages, enstatite chondrite metal grains rather than 812 

a representative piece of an enstatite chondrite, OC chondrules rather than a representative piece 813 

of an OC), and that diverse types of clast are intimately mixed over short distances, are 814 

consistent with regolith processes, and inconsistent with the predictions of the secondary 815 

accretion model. In addition, the physical properties of AhS 91A (i.e., much higher porosity than 816 

seen in CC of similar density) suggest that this material has been significantly “shaken and 817 

stirred,” as would occur in a regolith environment. Based on the absence (so far) of SW gases in 818 
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AhS 91A and AhS 671, they are classified as fragmental breccias, which we argue formed 819 

dominantly in sub-surface layers of a regolith environment. 820 

 However, on what type of parent asteroid did this regolith form? If these meteorites had been 821 

discovered independent of the other AhS stones, they would probably be considered a new type 822 

of carbonaceous chondrite breccia, formed on a carbonaceous chondrite asteroid with the ureilite, 823 

ordinary chondrite, and enstatite chondrite materials being foreign. Instead, we know that they 824 

are pieces of asteroid 2008 TC3, which has been assumed to be a ureilitic asteroid based on the 825 

predominance of ureilites among the studied AhS stones (Horstmann and Bischoff 2014; 826 

Goodrich et al. 2015a). This apparent paradox can be resolved by recognizing that regolith can 827 

be extremely heterogeneous, with some regions being dominated by material from a single 828 

impactor. In fact, two other types of asteroids – Vesta (a differentiated asteroid with a basaltic 829 

crust), and Psyche (thought to be metallic) – have extensive dark areas on their surfaces that are 830 

interpreted as remnants of CC-like impactors (Reddy et al. 2012, 2017; De Sanctis et al. 2012; 831 

Turrini et al. 2014; Takir et al. 2017). Thus, we hypothesize that 2008 TC3 was a fragment of the 832 

regolith of a ureilitic asteroid, with AhS 91A and AhS 671 representing a volume of regolith that 833 

was dominated by the remnant of a CC-like body that impacted into an already well-gardened 834 

(finely comminuted) mixture of ureilitic + impactor-derived (e.g., OC and EC) fragments. Such 835 

an interpretation is supported by the dominance of ureilitic material in both AhS 91A/671 and 836 

AhS stones overall, and by comparisons between AhS and typical polymict ureilites discussed 837 

below. 838 

 839 

Noble Gases – The Apparent Absence of Solar Wind Implanted Gases 840 

 Regolith breccias in meteorite collections are defined by their brecciated nature and the 841 

presence of solar wind (SW) derived noble gases that are implanted into the grain surfaces (100s 842 

of nm) in the upper meters of the regolith while the grains are still being impact-gardened, prior 843 

to final compaction and lithification (Bischoff et al. 2006, 2018a). Typically, the gases are 844 

abundant and can easily dominate over the other noble gas components, particularly in He and 845 

Ne. Thus, the detection of SW in AhS 91A fragments would be unequivocal support for the 846 

regolith model suggested above.  847 

 The noble gas results obtained here for AhS 91A do not obviously show a Ne-SW 848 

component (Fig. 26), but they do not exclude the possibility that one is present. For example, the 849 
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trapped endmember in all three samples could be a mixture of HL and SW in constant 850 

proportions (as indicated by the nearly constant trapped 20Ne/22Ne ratio of all samples, Fig. 26). 851 

However, it is also possible that the primordially trapped Ne component has a 20Ne/22Ne ratio 852 

above the typically dominating one in CI chondrites of HL (8.5) but well below SW-Ne (12.5 - 853 

13.7, Fig. 26). This component would have a 20Ne/22Ne ratio of ~10.45, similar to what is found 854 

for carbonaceous carriers in carbonaceous chondrites (Q-gases) and the carbon-rich veins of 855 

ureilites (Göbel et al. 1978). The nearly constant trapped 20Ne/22Ne ratio of all three AhS 856 

fragments, including AhS 91A_14 with the largest trapped 20Ne concentration (2× more than in 857 

the other two, Table 9), supports this interpretation, as a significant presence of SW-Ne in AhS 858 

91A_14 would increase the trapped 20Ne/22Ne ratio considerably. Furthermore, AhS 91A_14 also 859 

contains an Ar-, Kr- and Ne-rich component (“subsolar”) that plots at the upper right end of the 860 

trend observed by Göbel et al. 1978 in their Figure 8 for several ureilites with strongly elevated 861 
36Ar/132Xe and 84Kr/132Xe ratios. All noble gas patterns taken together may suggest that AhS 862 

91A_14 simply contained more of the ureilitic, gas-rich material that is suggested to be carried in 863 

C-rich veins (Göbel et al. 1978), diamond or amorphous C (see, e.g., Wieler et al. 2006, and 864 

references therein) whereas AhS 91A_12 and AhS 91A _15 contain more of the C1 material with 865 

typical Q-like elemental compositions.  866 

 On the other hand, it is possible that the SW component is present in AhS 91A but was not 867 

detected in our analyses. It has been shown that a SW-Ne component in grain surfaces can be 868 

hidden in analyses of bulk samples (i.e., swamped by the SW-poor grain interiors), particularly 869 

for CC samples that contain high concentrations of trapped gases (e.g., CI Ivuna: Riebe et al., 870 

2017b). In such cases, minor contributions of SW can only be detected during stepwise gas-871 

extraction with a large number of steps, such as applied with the closed-system step etching 872 

technique (Riebe et al. 2017b). Thus, the presence or absence of SW gases in AhS 91A cannot be 873 

determined without further analyses. 874 

 The absence of SW gases in previously studied AhS stones (Murty et al. 2010; Ott et al. 875 

2010; Welten et al. 2010; Meier et al. 2012; Nagao et al. 2014; Riebe et al. 2017a) has been cited 876 

as an argument against a regolith origin for 2008 TC3 (Horstmann and Bischoff 2014). However, 877 

all previously analyzed AhS samples were from the interiors of well-consolidated stones, which 878 

we interpret as having been the larger clasts in 2008 TC3 (a volumetrically minor component). 879 

SW gases would not necessarily be expected in such samples, even if they were derived from a 880 
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regolith environment (see discussion in Riebe et al. 2017a). Further, even the complete absence 881 

of SW gases in AhS 91A does not preclude a regolith origin. Solar gases are only implanted in 882 

the top millimeter of an asteroidal surface (Wieler et al. 1986), and even extensive gardening 883 

may not redistribute affected grains homogeneously in sub-surface regolith layers. Solar gases in 884 

the typical polymict ureilites EET 83309 and 87720 are known to be heterogeneously distributed 885 

(Ott et al. 1990; Rai et al. 2003), showing that some bulk samples of even strictly defined 886 

(Bischoff et al. 2006) regolith breccias can be devoid of SW gases. All typical polymict ureilites 887 

are sufficiently similar petrographically that they are likely to have had a common origin 888 

(Goodrich et al. 2004; Downes et al. 2008); thus, the fact that some of them are regolith breccias 889 

(SW gas-bearing) implies that all of them (including the fragmental breccias) formed in a 890 

regolith environment. By anology, the absence of SW in AhS 91A does not rule out 2008 TC3 891 

having formed as regolith. 892 

 AhS 91A has a low CRE (~5-9 Ma) compared with the previously analyzed AhS chondrites 893 

and ureilites (~11-22 Ma: Welten et al. 2010; Meier et al. 2012; Riebe et al. 2017a). Riebe et al. 894 

(2017a) suggested that the large spread in CRE ages in the AhS samples could be due to 895 

irradiation in a regolith environment. In such an environment, different clasts will spend different 896 

lengths of time in the upper ~2 m layer where they are exposed to cosmic rays producing 897 

cosmogenic noble gases, resulting in a spread in CRE ages. The low CRE ages of AhS 91A 898 

increase the CRE age spread of the AhS samples, consistent with a regolith origin of Almahata 899 

Sitta. 900 

 901 
Comparisons with Typical Polymict Ureilites 902 

 Similarities between typical polymict ureilites and AhS have been argued to support the 903 

regolith model for formation of 2008 TC3 (Goodrich et al. 2015a). As mentioned above, typical 904 

polymict ureilites are fragmental and regolith breccias that are dominated by ureilitic materials 905 

but also contain multiple types of chondritic and non-ureilitic achondritic clasts (Prinz et al. 906 

1986, 1987; Goodrich et al. 2004, 2015c, 2016, 2017c,d; Bischoff et al. 2006; Downes et al. 907 

2008; Ross et al. 2010). They are unique among meteoritic breccias for the large diversity of 908 

their foreign clasts (Bischoff et al. 2006). What makes AhS anomalous, then, is not that it 909 

contains many different meteorite types, but that it disaggregated in the atmosphere and its clasts 910 

landed on Earth as individual stones.  911 
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 Goodrich et al. (2015a) argued that the differences between AhS and typical polymict 912 

ureilites were principally differences in structure (i.e., grain size, grain and/or clast size 913 

distribution, degree of lithification). The range of types and relative abundances of non-ureilitic 914 

materials in AhS do appear to differ from those in typical polymict ureilites, at least based on the 915 

AhS stones that have been studied to date. Enstatite chondrites and unique enstatite achondrites 916 

dominate among non-ureilitic Almahata Sitta stones (Table 15), whereas enstatite meteorite 917 

clasts are rare in typical polymict ureilites (Goodrich et al. 2015b). However, Boleaga and 918 

Goodrich (2018) found that half of observed xenolithic metal-sulfide grains in several polymict 919 

ureilites were derived from enstatite chondrites, indicating that enstatite chondrites did contribute 920 

significant material. Furthermore, our spectral modeling (Fig. 21c) showed that enstatite 921 

chondrites could not have been as abundant in 2008 TC3 as they are among currently studied 922 

AhS stones, but perhaps were concentrated relative to other stone types during the fall or 923 

recovery.  924 

Another apparent difference is that hydrous CC-like clasts are the most abundant foreign 925 

clast type (both in numbers and volume) in typical polymict ureilites (Goodrich et al. 2015b) 926 

whereas prior to the discovery of AhS 91A and AhS 671, no hydrous CCs had been found among 927 

AhS stones (Bischoff et al. 2010; Horstmann and Bischoff 2014). The C1 material in AhS 91A 928 

and AhS 671 is therefore a critical addition to the inventory of AhS meteorite types, particularly 929 

considering its mineralogic and oxygen isotope similarites to the CC-like clasts in typical 930 

polymict ureilites (Clayton and Mayeda 1988; Brearley and Prinz 1992; Patzek et al. 2018b; 931 

Goodrich et al. 2019a,b). The presence of this component in AhS greatly strengthens the analogy 932 

between AhS and typical polymict ureilites, and thus supports the interpretation that 2008 TC3 933 

(like typical polymict ureilites) is a piece of ureilitic regolith.  934 

 935 

Implications for Reflectance Spectroscopy of Asteroids 936 

 Regardless of the overall fraction of CC-dominated materials in 2008 TC3, AhS 91A and 937 

AhS 671 provide direct evidence that such regions exist in ureilitic regolith. This has important 938 

implications for asteroid spectroscopy, because such regions would have an ~2.7 µm absorption 939 

band due to the water of hydration in their phyllosilicates (Fig. 21c,d). Depending on the areal 940 

extent of these regions, the ~2.7 µm band could be detectable in disk-resolved asteroid spectra. 941 

The presence of 2.7-3.0 µm band is usually considered diagnostic of a carbonaceous chondrite 942 
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asteroid (Rivkin 2012; Rivkin et al. 2015). However, recent investigations have found that the 943 

surfaces of Vesta (a basaltic asteroid) and Psyche (thought to be a metal-rich asteroid) have dark 944 

regions that show 2.7-3 µm absorption bands that are attributed to contamination by CC 945 

impactors (Reddy et al. 2012, 2017; DeSanctis et al. 2012; Turrini et al. 2014; Takir et al. 2017). 946 

The discovery of AhS 91A and AhS 671 shows that ureilitic asteroids can also have such 947 

regions. Further, small asteroidal fragments consisting wholly of ureilitic regolith (e.g., 2008 948 

TC3?) could have CC-dominated regions that constitute a significant fraction of their mass, in 949 

which case even disk-averaged spectra might show a 2.7-3.0 µm band leading to an incorrect 950 

interpretation of asteroid type.  951 

 952 

Summary 953 

 Almahata Sitta stones 91A and 671 are the first AhS stones to contain both ureilitic and 954 

chondritic lithologies. They are friable breccias, consisting of a hydrous CC-like lithology that 955 

encloses clasts of olivine, pyroxenes, plagioclase, graphite, and metal-sulfide, as well as 956 

chondrules and chondrule fragments. The CC lithology consists mainly of fine-grained 957 

serpentine and saponite, magnetite, carbonates (breunnerite and dolomite), fayalitic olivine, an 958 

unidentified Ca-rich silicate phase, and Fe,Ni sulfides. It has mineralogic similarities to known 959 

CI, but also shows heterogeneous thermal metamorphism (dehydration). Its bulk oxygen isotope 960 

composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of known CC, but essentially 961 

identical to that of a several CC-like clasts in typical polymict ureilites. Its Cr isotope 962 

composition shows higher ε54Cr than any known meteorite. The clasts and chondrules do not 963 

belong to the CC lithology. The olivine, pyroxene, plagioclase, graphite, and some of the metal-964 

sulfide clasts are ureilitic and represent at least six main group ureilite lithologies. The 965 

chondrules are most likely derived from OC and/or type 3 CC. Some of the metal-sulfide clasts 966 

are derived from EC. 967 

 AhS 91A and AhS 671 provide direct information about the structure and composition of 968 

asteroid 2008 TC3 overall and could represent a substantial fraction of its pre-atmospheric mass. 969 

Their friability makes them plausible candidates for the bulk of the asteroid that was lost in the 970 

atmosphere. Spectral modeling using laboratory spectra of AhS stones suggest that 2008 TC3 971 

consisted dominantly of ureilitic and AhS 91A-like materials, with as much as 70% of the latter, 972 

and <10% of OC, EC and other meteorite types. Physical properties of AhS 91A are also 973 
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consistent with materials like this comprising a large fraction of the asteroid. Its bulk density 974 

(2.35 g/cm3) is lower than densities of most AhS ureilites and other stone types, and closer to 975 

estimates for the asteroid (1.7-2.2 g/cm3). Its porosity (36%) is within the range estimated for the 976 

asteroid (33-50%). Nevertheless, the fragmentation behavior of the asteroid suggests that it had 977 

significant macroporosity.  978 

 The texture of AhS 91A and AhS 671 supports the hypothesis that 2008 TC3 represents 979 

regolith developed on a ureilitic asteroid. The observations that the clasts in these fragmental 980 

breccias are small, unrepresentative fragments of their parent meteorite types, and that diverse 981 

types of clast are intimately mixed, are consistent with regolith processes. The absence of a solar 982 

wind Ne component implies formation dominantly in sub-surface layers that were not directly 983 

exposed to space for long enough to acquire solar gases. The observed spread in CRE ages 984 

among AhS stones (increased by AhS 91A) also argues for irradiation in a regolith environment 985 

where different clasts spend different amounts of time in the uppermost layers. 986 

 AhS 91A and AhS 671 provide direct evidence that CC-dominated regions exist in ureilitic 987 

regolith. Such regions would have an ~2.7 µm absorption band due to the water of hydration in 988 

their phyllosilicates, which could be detectable in disk-resolved asteroid spectra. The presence of 989 

2.7-3.0 µm band is usually considered diagnostic of a primitive, CC-like asteroid. AhS 91A and 990 

AhS 671 show that this interpretation may not always be correct. 991 
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Figure Captions 
 
Figure 1. Find coordinates for Almahata Sitta (AhS) stones in the University of Khartoum 
(UoK) collection (Shaddad et al. 2010). Classification of 85 stones from Zolensky et al. (2010) 
and Goodrich et al. (2018). The asteroid path was from NW to SE. The three carbonaceous 
chondrite (CC) stones are noted by sample number. AhS 91/91A and AhS 671 are the subject of 
this paper.  AhS #202 was briefly described in Fioretti et al. (2017) and Goodrich et al. (2018). 
 
Figure 2. (a) Fragment AhS 91A_11, showing the highly friable nature of this stone. Crumbs in 
this image were not chipped off the sample, but fell off by themselves. (b) Image from the 
interior of a CT scan of AhS 91A_11, showing large mineral clast (possibly ureilitic) embedded 
in fine-grained CC-like material. 
 
Figure 3. Back-scattered electron images (BEI) and X-ray elemental maps of fragment AhS 
91A_1. This fragment consists mostly of a C1 lithology, but contains a few small clasts of 
ureilitic minerals. (a) BEI of whole fragment. (b) Mg (red) – Al (green) – Ca (blue) map 
corresponding to [a]. (c) BEI of area 2 marked in [a,b]. sulf = (sulfide); pig = pigeonite; br = 
breunnerite. (d) Mg (red) – Si (green) – S (blue) – Ca (cyan) map corresponding to [c]. Pigeonite 
grain in [c,d] is consistent with ureilitic pigeonite compositions.  
 
Figure 4. (a) BEI of a common type of clast in the C1 lithology of AhS 91A. Such clasts consist 
of laths or patches of an unidentified Ca-rich silicate phase in a matrix of serpentine (serp) and 
other (?) phyllosilicates, with clusters of magnetite (mgt) grains. (b) BEI showing interior of clast 
in area 1 of AhS 91A_1 (Fig. 3a,b). (c) Detail from lower left corner of [b]. Rectangular box 
indicates position of FIB section made from this area and studied by TEM. [d] Bright field TEM 
image of a detail from the FIB section from [c] showing a well-crystallized phyllosilicate with a 
0.95-0.96 nm interlayer spacing, possibly dehydrated smectite with a composition between 
montmorillonite and saponite.  
 
Figure 5. (a) BEI of phyllosilicate-rich clast in area 4 of AhS 91A_1 (Fig. 3a,b). (b) Detail of 
clast in [a], showing fine-grained mixture of serpentine (serp) plus other phyllosilicates. (c) Low 
magnification bright field TEM image of the flaky serpentine with flakes exhibiting 0.7 nm basal 
lattice fringes characteristic of serpentine-type phases. (d) Detail from (c) showing a few 
serpentine flakes, but with none showing basal lattice fringes, indicating heating and 
dehydration. 
 
Figure 6. (Si+Al)–Mg–Fe atomic percent ternary diagram plotting compositions of 
phyllosilicates in AhS 91A and AhS 671 compared with those in selected carbonaceous 
chondrites (data collected in this work for CM, CI, and CR chondrites). Lines cutting through the 
ternary represent the observed stoichiometric compositions of serpentine and saponite (from 
Fleet 2003; Deer, Howie and Zussman 1962). CMs in the plot are Boriskino (96 points), 
Crescent (18), Santa Cruz (21), Cochabamba (51), and MET01070 (75). CIs are Alais (55 points) 
and Orgueil (101). The CR is Renazzo (18 points). Essebi (39) is a C2 related to CMs. Data for 
AhS 91A (area 4 − 76 points, other areas – 45 points), and AhS 671 (19 points). Data for all 
samples were obtained by line scans of analyses of matrix areas (see Supplement 2), and then 
filtered to remove analyses with high FeO (presumably including magnetite and/or fayalite 
and/or sulfides) and CaO (including Ca-rich phases), as well as those with extremely low totals.  
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Figure 7. Low magnification TEM bright field image of the FIB slice of area 1 in AhS 91A_1. 
Areas dominated by different phyllosilicate morphologies are indicated (A,B,C). Area A is 
dominated by poorly-crystalline, fibrous phyllosilicate. Area B consists mainly of coarse-grained 
phyllosilicate. Area C consists mainly of poorly-crystalline, spongy phyllosilicate. Some Fe-Ni 
sulfides are indicated. Possible organic nanoglobules, identified by typical morphology and EDS 
spectra showing carbon, are indicated. 
 
Figure 8. Higher magnification TEM bright field images of phyllosilicate morphologies in 91A. 
(a-b) views of relatively well crystalline phyllosilicates from area B in Figure 7. Interlayer lattice 
fringes (lines from upper left to lower right) measuring 1.1 to 1.3 nm are evident in (b). (c-d) 
poorly crystalline, spongy phyllosilicates from area C in Figure 7. (d) shows a few, very thin 
phyllosilicate crystallites (arrowed), with 1.1 to 1.3 nm spacings and only 2-4 sheets thick. 
 
Figure 9. BEI of large breunnerite grain (a) and large dolomite grain (b) in AhS 91A. Both 
carbonates have narrow rims of Mg-enriched breunnerite. Dolomite has inclusions of Fe,Ni 
sulfides. (c) Compositions of carbonates in AhS 91A and AhS 671 in the calcite-magnesite-
siderite ternary system, compared with carbonates in various groups of carbonaceous chondrites. 
Data sources: Fredricksson and Kerridge (1988); Endress and Bischoff (1996); DE Leuw et al. 
(2010).  
 
Figure 10. (a-d) BEI showing magnetite (mgt) in AhS 91A, which commonly occurs in clusters 
of grains having irregular rims of fayalitic olivine (fay), and less commonly in clusters with 
interstitial sulfide (sulf). (e) Plot of wt.% MgO vs. wt.% Al2O3 in magnetite in AhS 91A and 
AhS 671 compared with magnetite in various chondrite groups. (f) Plot of wt.% Cr2O3 vs. wt.% 
TiO2 in magnetite in AhS 91A and AhS 671 compared with magnetite in various chondrite 
groups. Data for CK and CV from Dunn et al. (2016) and Greenwood et al. (2010); CR from 
Harju et al. (2014); CC clasts in typical polymict ureilites from Brearley and Prinz (1992) and 
Goodrich et al. (2019a). 
 
Figure 11. BEI of area of AhS 671 with flaky, porous, fayalitic olivine (fay) of Fo 28-42 
intergrown with phyllosilicates dominated by serpentine (serp). Area of [b] is marked in [a].  
 
Figure 12. BEI showing clasts of ureilitic olivine (oliv) and pigeonite (pig) enclosed or in direct 
contact with C1 material in AhS 91A and AhS 671. Olivine clasts in (a,c,d) show reduction rims 
(Mg-enriched olivine containing tiny grains of metal), which are a characteristic feature of 
ureilite olivine. Olivine clast of Fo 78 shown in (e) contains sub-micron sized lamellar 
exsolutions of chromite (chr) + pyroxene (px), a feature that has observed in olivine of Fo 75-78 
in ureilites. Samples: (a) AhS 91A_2A; (b) AhS 91A_6A; (c) AhS 91A_2B; (d) AhS 671_4-17; 
(e) AhS 91A_2A; (f) AhS 91A_9. 
 
Figure 13. BEI showing clasts of ureilitic pigeonite (a,b,c), graphite (d), and plagioclase (e,f) in 
AhS 91A and AhS 671. (e) Optical (stereo microscope) image of albite grain in C1 material in 
AhS 91A. This grain was first observed on surface of the fragment, as shown here. It 
subsequently fell out and was mounted separately for EMPA. Pigeonite in (c) shows patches of 
impact-smelted texture, characterized by reduced composition, blebs of metal, and pores (black), 
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which is common in pigeonite in Almahata Sitta ureilites. Samples: (a) AhS 91A_9; (b) AhS 
91A_6B; (c) AhS 671_4-6; (d) AhS 91A_9; (e) AhS 91A_3; (f) AhS 91_1. Pig = pigeonite; gph 
= graphite; plag = plagioclase; Ca-px = Ca-rich pyroxene. 
 
Figure 14. Compositions of olivine clasts in AhS 91A and AhS 671 compared with olivine in 
other groups of meteorites. (a) Plot of molar Fe/Mg vs. Fe/Mn. (b) Plot of wt.% Cr2O3 vs. wt.% 
CaO. In combination, these two plots show that olivine in main group ureilites, typical polymict 
ureilites, and ureilitic stones from Almahata Sitta show a characteristic compositional range, 
which distinguishes them from olivine in other groups of achondrites and most chondrites. The 
olivine clasts in AhS 91A and AhS 671 are consistent with ureilitic compositions. Data sources 
as follows. Acapulcoites and lodranites: Nagahara (1992); Takeda et al. (1994); Papike et al. 
(1995); Mittlefehldt et al. (1996); Buroni and Folco (2008); Goodrich et al. (2011). Brachinite 
clan meteorites: Nehru et al. (1983); Warren and Kallemeyn (1989); Petaev et al. (1994); 
Delaney et al. (2000); Goodrich and Righter (2000); Mittlefehldt et al. (2003); Goodrich et al. 
(2006, 2011, 2017d); Gardner-Vandy et al. (2012, 2013); Day et al. (2015). Winonaites/IAB 
silicates: Kimura et al. (1992); Benedix et al. (1998). Main group ureilites: Goodrich et al. (1987, 
2001, 2006, 2013a, 2014); Takeda (1987, 1989); Treiman and Berkley (1994); Goodrich and 
Righter (2000); Inoue et al. (2016); Singletary and Grove (2003); Weber et al. (2003); Warren 
and Rubin (2011). Typical polymict ureilites: Downes et al. (2008). C1 chondrites: Steele 
(1990); Leshin et al. (1997); Frank et al. (2014). C2 chondrites: Brearley and Jones (1998). Type 
4-6 OC and EC: Brearley and Jones (1998). R-chondrites: Bischoff et al. (2011). 
 
Figure 15. Compositions of low-Ca pyroxene clasts in AhS 91A and AhS 671 compared with 
low-Ca pyroxenes in other groups of meteorites. (a) wt. % FeO vs. wt.% Al2O3. (b) Wo content 
(molar CaO/[CaO+FeO+Mg]) vs. wt.% Cr2O3. These two plots show that low-Ca pyroxenes in 
main group ureilites, typical polymict ureilites, and ureilitic stones from Almahata Sitta are well 
distinguished from those in other groups of meteorites. With one exception, the pigeonite and 
orthoyproxene clasts in AhS 91A and AhS 671 are consistent with the ureilite fields (the 
boundary between pigeonite and orthopyroxene is defined compositionally at Wo = 5). One 
orthopyroxene clast of very low Wo content is out of the range of ureilites and consistent with 
orthopyroxene in type 4-6 enstatite chondrites. Data sources as follows. Main group ureilites: 
Goodrich et al. (1987, 2001, 2009, 2013a, 2014); Takeda (1987, 1989); Takeda et al. (1989); 
Treiman and Berkley (1994); Weber et al. (2003); Singletary and Grove (2003); Inoue et al. 
(2016). Typical polymict ureilites: Downes et al. 2008); Acapulcoites and lodranites: 
Mittlefehldt et al. (1998); Eucrites: Mittlefehldt et al. (1998); R-chondrites: Bischoff et al. 
(2011). Other chondrites: Brearley and Jones (1998).  
 
Figure 16. (a) BEI of kamacite-troilite-metal assemblage surrounded by C1 matrix material in 
AhS 91_1 (see Fig. 18a for location). Texture and compositions (Table 5) of this assemblage are 
consistent with derivation from an ordinary chondrite. (b) Optical (stereo microscope) image of 
an elongated grain (1.2 mm long) of Si-bearing kamacite embedded in C1 material in AhS 
91A_9. The grain subsequently fell out and was mounted separately for EMPA. Its composition 
(Table 5) is consistent with derivation from an EH chondrite. (c) and (d) = BEI showing 
inclusions of enstatite and niningerite within the metal grain shown in [b]. 
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Figure 17. Compositions of kamacite grains in AhS 91A and AhS 671 compared with 
compositions of metal in ureilites, ordinary chondrites (OC), enstatite chondrites (EC), and iron 
meteorites. Three different types of metal are distinguished by composition and associated 
minerals. Data for ureilites from Goodrich et al. (2013b); ordinary chondrites from Rubin (1990), 
Zanda et al. (1994), Afiattalab and Wasson (1980); Brearley and Jones (1998), Reisener and 
Goldstein (2003); enstatite chondrites from Weisberg and Kimura (2012); Horstmann et al. 
(2014); Brearley and Jones (1998); iron meteorites from Goldstein et al. (2017), Brearley and 
Jones (1998), Rout et al. (2017).  
 
Figure 18. (a) Combined elemental X-ray map of polished section of AhS 91_1. Red = Mg, 
green = Ca, blue = Fe, magenta = S. Section shows dominantly C1 material, containing clasts of 
ureilitic minerals (olivine, pigeonite, plagioclase, orthopyroxene), a metal-sulfide globule, 
(shown in Fig. 16a), and four chondrules. (b) BEI of chondrule #2 from [a]. Type IAB POP. (c) 
BEI of chondrule #3 from [a]. Type IAB. (d) BEI of chondrule #4 from [a]. Type IIAB POP. (e) 
BEI of kamacite-metal grain in chondrule #4, area outlined by red box in [d]. (f) BEI of 
chondrule #5 from [a]. Type IAB POP. opx = orthopyroxene; ol = olivine. 
 
Figure 19. (a) Frame from XRCT scan of fragment AhS 91_1, showing several chondrules in the 
interior, not yet exposed in section. (b,c) BEI of brecciated zone in AhS 91_01, exposed by 
polishing down the section shown in Fig. 18. Lithic and mineral fragments of mixed ureilitic 
(ur), C1, and chondrule-like (ch) materials. (d) Plot of wt.% Cr2O3 vs. wt.% CaO in olivine 
grains from the areas in [b,c], showing that some of these grains could be derived from 
chondrules similar to chondrules #2-5 (Fig. 18), whereas others are ureilitic.  
 
Figure 20. (a) Three oxygen isotope plot showing bulk compositions of fragments of AhS 91A 
and AhS 671 dominated by the C1 lithology. These compositions do not match those of any 
known chondrite group, but are very similar to the composition of a CC-like clast from the 
Nilpena polymict ureilite (Brearley and Prinz 1992). A “metallic” looking chip removed from the 
AhS 91A fragment has a composition on the terrestrial fractionation line (TFL), and was found 
to consist of iron oxides/hydroxides (rust). The bulk composition obtained for AhS 671 is 
consistent with being a mix of AhS 91A and terrestrial contamination similar to the “metallic” 
chip. Also shown are oxygen isotope compositions obtained by SIMS for various components of 
AhS 91_1 (Fig. 18). Clasts of olivine, pyroxene, and plagioclase in this section have oxygen 
isotope compositions consistent with those of main group ureilites and silicate clasts in typical 
polymict ureilites. Olivine and pyroxene in chondrules #2-4 (Fig. 18b-d) have oxygen isotope 
compositions consistent with those of olivine and pyroxene in chondrules in LL3.0-3.1 
chondrites (Kita et al. 2010). One olivine grain in chondrule #3 is more 16O-rich (∆17O=-2.8‰) 
and may be a relict grain (remnant of chondrule precursors). Olivine and pyroxene in chondrule 
#5 have oxygen isotope composition out of the range of OC and consistent with olivine and 
pyroxene in primitive (type 3) CC (Ushikubo et al. 2012; Tenner et al. 2015). (b) Three oxygen 
isotope plot showing compositions obtained by SIMS from the core and zoned rim of a carbonate 
(breunnerite) grain in AhS 91_0 (Fig. 18). These data show ∆17O slightly higher than bulk AhS 
91A, and form a mass-dependent fractionation line (slope = 0.526, correlation coefficient 0.999). 
Main group ureilite data from Clayton and Mayeda (1996); clasts in typical polymict ureilites 
from Downes et al. (2008) and Kita et al. (2004, 2006). 
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Figure 21. (a) Bulk sample reflectance spectra from 0.3 to 3.6 µm for chips and powdered 
samples of AhS 91A and AhS 671. Data for CM and ungrouped C2 chondrites (Hiroi et al. 2017) 
for comparison. (b) VNIR reflectance spectra. Asteroid 2008 TC3 was measured in the 0.55 to 1 
µm range (Jenniskens et al. 2009) and is shown in light grey at the range of albedo estimates of 
Jenniskens et al. (2009) and Hiroi et al. (2010). Spectra for chips and coarse (125-500 µm) 
powders of AhS ureilites and ordinary chondrite from Hiroi et al. (2010). Spectra for chips (solid 
cyan lines) and powders (dashed cyan lines) of AhS 1002 and AhS 2012 enstatite chondrites and 
AhS 91A from this work. (c) Spectrum of asteroid 2008 TC3 (original data in light grey; 55-pt 
averaged spectrum in red with standard deviations [sd] in dark grey), normalized to 1 at 0.55 µm, 
compared with model spectra for mixtures of AhS stones from Hiroi et al. (2010) and calculated 
in this work. (d) Model spectra (black) for mixtures of AhS ureilites + AhS 91A + OC calculated 
in this work and by Hiroi et al. (2010) compared with asteroid 2008 TC3 (original data in light 
grey; 55-pt averaged spectrum in red) scaled to match the 0.55 µm reflectance of the mixtures in 
each case. Also shown in blue is the average spectrum of F-type asteroids (Tholen 1984) 
normalized to the average F-type albedo of 0.046 (Mainzer et al. 2011) at 0.55 µm. 
 
Figure 22. Whole-rock reflectance spectrum of fragment AhS 91A_1 from µ-FTIR compared to 
similarly acquired spectra of carbonaceous chondrites (Hamilton 2018; Hamilton et al. 2018). 
Spectra are normalized and offset for comparison. Vertical lines denote features described in 
text. 
 
Figure 23. Whole-rock reflectance spectrum of Almahata Sitta fragment 91A_1 from µ-FTIR 
compared to spectra isolated from areas 1 and 4 (Fig. 3a). Spectra are normalized and offset for 
comparison. Vertical line denotes position of OH- feature described in text. 
 
Figure 24. Comparison of AhS 91A_1 area 4 reflectance and phyllosilicate mineral spectra 
measured in emission. Spectra are normalized and offset for comparison. Vertical lines denote 
positions of key features in the AhS area 4 spectrum at 1116, 1015, 640, and 456 cm-1. 
 
Figure 25. (a) Backscattered electron image of carbonate grain in fragment AhS 671_2. (b) µ-
FTIR reflectance spectrum of carbonate grain in (a). (c) Backscattered electron image of 
fragment AhS 671_3 showing the outline of the area of the oversampled µ-FTIR map in yellow. 
(d) Average µ-FTIR spectrum of the area outlined in (c) exhibiting features of both phyllosilicate 
and olivine. (e) Laboratory emission spectrum of lizardite (inverted for comparison to 
reflectance) and the phyllosilicate spectrum recovered from AhS 671_3 by factor analysis. 
Features are not perfectly matched due to compositional differences between terrestrial and 
meteoritic serpentines. (f) Laboratory emission spectrum of synthetic olivine (Fo30) from Lane et 
al. (2011) and the olivine spectrum recovered from AhS 671_3 by factor analysis. 
 
Figure 26. Neon three isotope plot showing the data points for AhS 91A_12, AhS 91A_14 and 
AhS 91A_15. They appear to plot on a mixing line between a trapped component (upper left) 
and a cosmogenic Ne endmember composition (lower right). The spread along the line suggests 
varying mixing ratios of these two endmembers, with AhS 91A_14 containing by far more 
trapped Ne relative to cosmogenic Ne than the other two samples. This is consistent with the 
huge trapped 36Ar concentration detected in AhS 91A_14 relative to AhS 91A_12 and AhS 
91A_15 (see text). Extrapolation of this line to a typical trapped 21Ne/22Ne (0.0294) yields a 
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20Ne/22Ne ratio of 10.45±0.05, similar to Ne observed in phase Q and ureilites. The remarkably 
constant trapped 20Ne/22Ne ratio observed for all three samples suggests that the additional 
trapped component in AhS 91A_14 is not SW, which would shift the data point towards higher 
20Ne/22Ne. References: HL (noble gas component residing in presolar diamonds) − Huss and 
Lewis (1995); Q − Busemann et al. (2000); "ureilites" − Göbel et al. (1978) and Ott et al. (1985); 
SW (solar wind as measured by Genesis) − Heber et al. (2009); GCR (typical range for 
cosmogenic Ne) − Wieler (2002). 
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Table 1. Compositions of phases in C1 matrix of AhS 91A and AhS 671 from EMPA. 

 
phyllosilicate(s)* 

 
Ca-rich 

silicate phase  
fayalitic 

olivine** 
 AhS 91A_01 AhS 91A_01  AhS 671_03  AhS 671_03  AhS 91A_01  AhS 671_03 

 
avg. 
(23) sd 

avg. 
(47) sd  (1)  

avg. 
(5) sd   (1)  avg. (4) 

SiO2   39.7 2.4 39.3 2.1 
 

36.2 
 

37.7 3.5 
 

48.9 
 

30.4 
TiO2 bdl  0.04 0.04  0.03  bdl   bdl  0.07 
Al2O3  3.8 0.5 2.6 1.0 

 
4.7 

 
4.1 0.3 

 
4.1 

 
0.10 

Cr2O3  1.3 0.1 0.90 0.37 
 

1.1 
 

0.72 0.23 
 

0.39 
 

0.20 
FeO    11.8 0.7 13.2 2.0 

 
14.6 

 
17.9 1.3 

 
7.4 

 
50.5 

MgO    31.7 2.2 29.8 2.3 
 

30.8 
 

24.2 2.7 
 

17.7 
 

17.6 
MnO    0.14 0.02 0.16 0.03 

 
0.07 

 
0.19 0.04 

 
0.33 

 
0.23 

CaO    0.18 0.06 0.25 0.22 
 

0.04 
 

0.40 0.12 
 

15.0 
 

0.13 
Na2O   0.44 0.18 0.51 0.27 

 
0.13 

 
0.15 0.04 

 
2.7 

 
0.05 

K2O    0.07 0.05 0.07 0.03 
 

bdl 
 

0.05 0.06 
 

bdl 
 

bdl 
P2O5   0.08 0.03 0.07 0.04 

 
bdl 

 
0.56 0.20 

 
na 

 
0.73 

NiO    0.04 0.02 0.12 0.10 
 

1.3 
 

1.2 0.3 
 

0.10 
 

0.51 
Total   89.2 1.8 87.0 1.4 

 
89.0 

 
87.2 5.1 

 
96.6 

 
100.5 

FeS§ 0.05 0.05 0.26 0.31 
 

2.4 
 

0.3 0.1 
 

1.2 
 

0.50 
*Analyses of phyllosilicates are broad beam (2 µm) analyses obtained in profiles across matrix areas, and were filtered to remove 
analyses with high CaO (assumed to include the Ca-rich phase), FeO (assumed to include magnetite and/or fayalite). They appear to 
be dominantly mixtures of serpentine and saponite but may include minor phases. 
**Olivine is porous and has many tiny inclusions of unidentified phases, hence stoichiometry is not perfect for olivine.   
§S was measured as SO3; analyses were re-calculated assuming all S was in FeS and adjusting FeO accordingly. 
bdl = below detection limit; na = not analyzed. 



Table 2. Compositions of carbonates in AhS 91A and AhS 671 from EMPA. 

 
large large large 

 
 

 
breunnerite dolomite breunnerite rim on small 

 
AhS 91A AhS 91A AhS 671 breunnerite breunnerite 

 

avg.  
(111) sd 

avg.  
(49) sd 

avg. 
(87) sd 

  FeO 19.3 0.9 4.8 0.6 18.1 1.6 9.1 9.2 
MgO 27.1 1.1 18.3 1.2 28.8 1.0 40.0 39.7 
MnO 6.4 1.5 2.0 0.5 5.5 1.9 0.8 1.2 
CaO 1.0 0.3 28.4 1.6 0.9 0.5 0.22 0.19 
CO2

* 46.2 0.3 46.5 0.2 46.7 0.3 49.9 49.8 
Total 100.0 

 
100.0 

 
100.0 

 
100.0 100.0 

magnesite 0.64 0.02 0.43 0.03 0.67 0.02 0.88 0.87 
siderite 0.26 0.01 0.06 0.01 0.24 0.02 0.11 0.11 
rhodochrosite 0.09 0.02 0.03 0.01 0.07 0.03 0.01 0.02 
calcite 0.01 0.01 0.48 0.03 0.02 0.01 0.00 0.00 

*CO2 was not analyzed. Analyses were re-calculated assuming that CO2 = 100% - analytical 
total, and then checked for carbonate stoichiometry. Concentrations of Si, Al, Cr, Ti and Na were 
near or below detection limit. 



Table 3. Compositions of magnetite in AhS 91A and AhS 671 from EMPA.  

 
AhS 671_02  AhS 91A_02 

 
avg (6) sd 

 
avg (5) sd 

SiO2 0.11 0.07 
 

0.08 0.04 
TiO2 0.02 0.02 

 
0.02 0.00 

Al2O3 bdl 
  

bdl  
Cr2O3 0.08 0.06 

 
0.08 0.01 

FeO 30.9 0.2 
 

30.8 0.1 
Fe2O3 68.8 0.4 

 
68.5 0.2 

MgO 0.22 0.26 
 

0.04 0.04 
MnO 0.27 0.25 

 
0.02 0.02 

CaO bdl 
  

bdl 
 NiO 0.06 0.04 

 
0.06 0.03 

Total 100.5 
  

99.6  

Analyses re-calculated assuming molar Fe2+/Fe3+ = 2/3. 



Table 4. Representative compositions of ureilitic mineral clasts in AhS 91A and AhS 671 from EMPA 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 

ol 
core 

ol 
core 

ol 
core 

ol 
core 

ol 
core ol ol pyx pyx pyx pyx pyx pyx pyx pyx plag plag plag 

 

avg. 
(4) 

avg. 
(11) 

avg. 
(49) 

avg. 
(11) (1) 

reduc. 
rim 

reduc. 
rim 

avg. 
(12) 

avg. 
(8) 

avg. 
(7) 

avg. 
(6) 

avg. 
(27) 

avg. 
(1) 

avg. 
(5) 

avg. 
(7) 

avg. 
(7) 

avg. 
(3) 

avg. 
(4) 

SiO2   38.6 38.7 39.0 39.7 40.3 40.4 42.2 54.1 54.9 54.3 55.9 55.8 56.1 55.8 60.0 67.5 68.2 59.5 
TiO2   bdl bdl bdl bdl bdl bdl bdl 0.07 0.05 0.10 0.05 0.07 0.15 0.16 0.06 bdl 0.10 bdl 
Al2O3  bdl bdl bdl bdl bdl bdl bdl 1.01 0.56 0.92 0.38 0.46 0.99 1.16 0.11 20.2 21.4 25.8 
Cr2O3  0.71 0.47 0.76 0.74 0.57 0.44 0.17 1.20 1.07 1.17 1.07 1.10 1.03 0.97 0.02 bdl bdl bdl 
FeO    22.6 20.1 19.5 15.0 12.0 9.8 0.93 12.9 13.2 11.3 11.0 9.3 7.5 7.4 0.39 0.05 0.06 0.39 
MgO    38.7 39.8 41.2 44.6 47.4 47.9 55.2 24.9 26.2 25.5 28.4 28.6 29.4 31.2 39.5 0.01 0.01 0.11 
MnO    0.41 0.41 0.44 0.45 0.5 0.49 0.26 0.39 0.39 0.42 0.42 0.46 0.53 0.56 0.10 bdl bdl 0.02 
CaO    0.38 0.26 0.40 0.32 0.44 0.26 0.14 4.9 4.0 5.1 3.4 4.2 5.2 2.4 0.45 0.62 1.1 7.2 
Na2O   bdl bdl bdl bdl bdl bdl bdl 0.05 0.04 0.06 0.05 0.02 0.04 0.04 0.02 11.1 10.6 7.3 
NiO    bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl na bdl bdl 
K2O na na na na na na na na na na na na na na 100.7 0.56 0.72 0.06 
Total   101.4 99.7 101.3 100.8 101.2 99.3 98.9 99.5 100.4 98.9 100.7 100.0 100.9 99.7 0.01 100.0 102.0 100.4 
Mg# 75.3 78.0 79.0 84.1 87.5 89.7 99.1 77.5 77.9 80.0 82.2 84.5 87.5 88.3 99.5 

   Wo 
       

9.8 7.9 10.3 6.6 8.2 9.9 4.6 0.8 
   An 

               
2.9 5.2 35.2 

Or 
               

3.2 4.1 0.4 
Numbers in parentheses are number of analyses in the average. 
Mg# = 100×molar MgO/(MgO+FeO); Wo = 100×molar CaO/(CaO+FeO+MgO); An = 100×molar CaO/(CaO+Na2O+K2O); Or = 
100×molar K2O /(CaO+Na2O+K2O).  
ol = olivine; pyx = pyroxene; red = reduction; plag = plagioclase. 



Table. 5. Compositions of metal and sulfide in metal-sulfide clasts in AhS 91A and AhS 671 from EMPA.  
 clast1  chondrule #42  clast3  metal grain with inclusions4 

 ureilitic  kamacite troilite  kamacite taenite troilite  kamacite  
niningerite 
inclusions 

 
kamacite 

 
avg. (2)  

  
avg. (6) avg. (3) 

  
avg. (15) sd avg. (2) 

Mg bdl 
 

bdl bdl 
 

bdl bdl bdl 
 

bdl 
 

12.0 
Si 0.47 

 
0.05 0.04 

 
0.03 0.03 0.03 

 
3.0 0.1 0.27 

P 0.24 
 

bdl bdl 
 

bdl bdl bdl 
 

0.12 0.01 bdl 
S bdl 

 
bdl 36.1 

 
bdl bdl 37.0 

 
bdl 

 
40.9 

Ca bdl 
 

bdl bdl 
 

bdl bdl bdl 
 

bdl 
 

1.3 
Ti bdl 

 
bdl bdl 

 
bdl bdl bdl 

 
bdl 

 
0.06 

V bdl 
 

bdl bdl 
 

bdl bdl bdl 
 

bdl 
 

bdl 
Cr 0.23 

 
0.02 0.03 

 
0.03 0.08 0.04 

 
bdl 

 
1.6 

Mn bdl 
 

bdl bdl 
 

bdl bdl bdl 
 

bdl 
 

4.6 
Fe 92.5 

 
91.9 59.2 

 
93.0 79.0 61.2 

 
87.8 0.9 36.7 

Co 0.36 
 

0.46 0.19 
 

0.49 0.20 bdl 
 

0.33 0.02 0.02 
Ni 4.2 

 
6.9 2.5 

 
5.8 19.8 0.24 

 
8.2 0.1 0.26 

Total 98.0 
 

99.3 98.0 
 

99.4 99.1 98.5 
 

99.5 1.0 97.7 
1,4 AhS 91A_09 
2,3 AhS 91_01 



Table 6. Compositions of phases in chondrules in AhS 91_01 from EMPA. 
 chondrule 2  chondrule 3  chondrule 4  chondrule 5 

 

xtal 
cores  

xtal 
rim 

xtal 
rim                  

 
oliv  oliv oliv opx   oliv  opx   oliv  opx   oliv oliv opx  

 

avg. 
(24) sd   

avg. 
(8) sd  

avg. 
(8) sd avg. 

(18) sd  
avg. 
(10) sd avg. 

(28) sd    
avg. 
(3) sd 

SiO2 41.6 0.3 39.5 39.8 58.7 0.2 
 

39.0 0.3 58.0 0.4 
 

39.0 0.3 56.9 0.7 
 

42.1 40.5 58.4 0.1 
TiO2 bdl 

 
bdl bdl 0.10 0.02 

 
bdl 

 
0.04 0.02 

 
bdl 

 
0.04 0.02 

 
bdl bdl 0.24 0.05 

Al2O3 bdl 
 

bdl bdl 0.59 0.08 
 

bdl 
 

0.34 0.15 
 

0.04 0.06 0.38 0.25 
 

0.16 0.08 1.41 0.14 
Cr2O3 0.05 0.02 0.04 0.06 0.67 0.05 

 
0.05 0.01 0.60 0.14 

 
0.15 0.18 0.72 0.16 

 
0.11 0.11 0.28 0.01 

FeO 5.1 1.4 16.8 14.9 1.3 0.2 
 

18.7 1.5 3.5 0.7 
 

19.5 1.7 7.5 0.7 
 

0.93 10.5 0.65 0.04 
MgO 53.2 1.2 43.5 44.9 38.1 0.2 

 
41.7 1.2 36.4 0.7 

 
41.1 1.5 33.5 1.0 

 
55.8 48.4 38.3 0.1 

MnO 0.08 0.02 0.33 0.24 0.09 0.01 
 

0.46 0.03 0.39 0.09 
 

0.52 0.09 0.47 0.18 
 

0.04 0.17 0.06 0.01 
CaO 0.14 0.04 0.13 0.15 0.36 0.05 

 
0.13 0.01 0.30 0.10 

 
0.09 0.03 0.50 0.28 

 
0.53 0.36 0.52 0.03 

Na2O bdl 
 

bdl bdl bdl 
  

bdl 
 

0.05 0.07 
 

bdl 
 

0.01 0.01 
 

bdl bdl bdl  
NiO bdl 

 
bdl 0.05 bdl 

  
0.06 0.04 0.04 0.03 

 
bdl 

 
0.04 0.02 

 
bdl bdl bdl  

Total 100.2 
 

100.3 100.1 99.9 
  

100.1 
 

99.7 
  

100.4 
 

100.0 
  

99.7 100.1 99.9 
 Mg# 94.9 1.5 82.2 84.3 98.2 0.2 

 
79.9 1.7 94.9 1.0 

 
78.9 2.06 88.9 1.1 

 
99.1 89.2 99.1 0.1 

Wo 
    

0.7 0.1 
   

0.6 0.2 
   

1.0 0.6 
   

1.0 0.0 
Numbers in parentheses are number of analyses in the average. 
Mg# = 100×molar MgO/(MgO+FeO); Wo = 100×molar CaO/(CaO+FeO+MgO); An = 100×molar CaO/(CaO+Na2O+K2O); Or = 
100×molar K2O /(CaO+Na2O+K2O). 
xtal = crystal; oliv = olivine; opx = orthopyroxene. 



Table 7. Bulk oxygen isotope compositions for AhS 91A and AhS 671 

Sample 
 

δ17O' se δ18O' se ∆17O' se n= 

         AhS 91A_08 CC-like 9.185 0.008 13.872 0.016 1.872 0.004 6 
AhS 91A_08 CC-like 8.676 0.004 13.189 0.006 1.712 0.005 6 
average 

 
8.931 

 
13.531 

 
1.792 

  
      

0.113 
  AhS 91A_08 metallic? -0.671 0.005 -1.263 0.007 -0.004 0.005 6 

AhS 91A_08 metallic? -0.748 0.003 -1.399 0.006 -0.01 0.003 6 
average 

 
-0.710 

 
-1.331 

 
-0.007 

  
         AhS 671 01_A.1 CC-like 7.42 0.007 11.105 0.009 1.556 0.009 10 
AhS 671 01_A.2 CC-like 7.195 0.003 10.639 0.012 1.577 0.007 7 
average 

 
7.308 

 
10.872 

 
1.567 

  se = standard error. 



Table 8.  Oxygen isotope compositions of phases in AhS 91_01 analyzed by SIMS.* 

  N δ18O δ18O 
unc. δ17O δ17O 

unc. ∆17O ∆17O 
unc. 

Ureilitic  
      AhS 91_1 Area 1 (olivine) 4 6.73 0.38 2.18 0.25 -1.32 0.19 

AhS 91_1 Area 6 (olivine) 2 7.68 0.36 3.18 0.28 -0.81 0.23 
AhS 91_1 Area 6 (pigeonite) 2 6.97 0.36 3.50 0.41 -0.12 0.33 
AhS 91_1 Area 7 (plagioclase) 1 7.02 0.39 3.16 0.34 -0.49 0.28 
AhS 91_1 Area 9 (orthopyroxene) 2 6.71 0.36 2.53 0.28 -0.96 0.23 

        Chondrules 
       AhS 91_1 Area 2 chondrule Ol 4 4.92 0.69 3.35 0.33 0.80 0.23 

AhS 91_1 Area 2 chondrule pyx 1 3.86 0.39 2.67 0.34 0.66 0.28 
Mean AhS 91_1 Area 2 chondrule 5 4.71 0.71 3.22 0.40 0.77 0.21 

        AhS 91_1 Area 3 chondrule Ol 1 -1.47 0.75 -3.53 0.66 -2.76 0.41 
AhS 91_1 Area 3 chondrule pyx 3 5.42 0.46 4.26 0.50 1.44 0.43 

        AhS 91_1 Area 4 chondrule Ol 2 4.16 1.30 2.27 1.11 0.10 0.45 
AhS 91_1 Area 4 chondrule pyx 3 4.16 0.39 1.73 0.26 -0.44 0.20 
Mean AhS 91_1 Area 4 chondrule 5 4.16 0.53 1.94 0.49 -0.22 0.33 

        AhS 91_1 Area 5 chondrule Ol 2 -8.04 0.37 10.09 0.28 -5.91 0.23 
AhS 91_1 Area 5 chondrule pyx 1 -7.89 0.39 -9.98 0.34 -5.88 0.28 
Mean AhS 91_1 Area 5 chondrule 3 -7.99 0.35 10.06 0.26 -5.90 0.20 

        Carbonate (breunnerite) 
       AhS 91_1 Area 8 carbonate core 3 20.07 0.36 12.68 0.26 2.24 0.22 

AhS 91_1 Area 8 carbonate intermediate 1 20.71 0.23 13.27 0.25 2.50 0.27 
AhS 91_1 Area 8 carbonate rim 1 1 35.61 0.23 21.05 0.25 2.53 0.27 
AhS 91_1 Area 8 carbonate rim 2 1 33.51 0.23 19.62 0.25 2.20 0.27 
Mean AhS 91_1 Area 8 carbonate  6     2.33 0.21 

*Analysis areas are marked in figure 18a. 
unc. = uncertainty. 



Table 9. Helium and Ne concentrations (in 10-8 cm3/g) and isotopic ratios in three fragments of AhS 91A. 

# mass 4He 3He/4He 20Ne 20Ne/22Ne 21Ne/22Ne 21Necos 
mg    x 10000     

12 14.94±0.01  6505±50 11.42±0.10 21.62±0.15 4.25±0.03 0.518±0.003 2.579±0.019 
14 7.79±0.01  8699±88 6.19±0.07 54.7±0.4 7.96±0.05 0.2258±0.0013 1.394±0.016 
15 6.88±0.01  5922±48 9.01±0.08 21.83±0.20 5.08±0.05 0.454±0.003 1.887±0.017 

 
 
 
Table 10. Argon concentrations (in 10-8 cm3/g) and isotopic ratios in three fragments of AhS 91A. 

# 
36Ar 36Ar/38Ar 40Ar/36Ar 38Arcos

  40Arrad 
      

12 83.3±1.0 5.204±0.023 27.6±0.4 0.45±0.09 2300±43 
14 1064±18 5.302±0.022 1.59±0.03 1.4±1.1 1692±46 
15 114.5±1.9 5.310±0.022 14.5±0.3 n.d. 1660±46 

 
 
 
Table 11. Krypton concentrations and isotopic ratios in three fragments of AhS 91A. 

# 
84Kr 78Kr/84Kr 80Kr/84Kr 82Kr/84Kr 83Kr/84Kr 86Kr/84Kr 

10-10 cm3/g 84Kr = 100  
12 88.0±0.7 0.608±0.005 3.994±0.026 20.22±0.11 20.08±0.18 31.23±0.17 
14 272.3±2.3 0.599±0.005 3.873±0.027 19.97±0.12 19.90±0.09 30.33±0.15 
15 99.6±0.9 0.593±0.006 4.04±0.03 20.12±0.14 20.05±0.18 30.73±0.22 

 
 
 
Table 12. Xenon concentrations and isotopic ratios in three fragments of AhS 91A. 

# 
132Xe 124Xe/132Xe 126Xe/132Xe 128Xe/132Xe 129Xe/132Xe 130Xe/132Xe 131Xe/132Xe 134Xe/132Xe 136Xe/132Xe 

10-10 cm3/g 132Xe = 100  
12 108.8±2.6 0.466±0.004 0.412±0.004 8.14±0.06 105.1±1.0 16.08±0.10 81.9±0.5 38.51±0.29 32.40±0.22 
14 122.5±2.9 0.439±0.005 0.389±0.006 7.97±0.06 103.4±0.6 15.86±0.10 81.0±0.4 38.11±0.22 31.81±0.17 
15 113.5±2.8 0.453±0.008 0.421±0.009 8.16±0.08 106.7±1.2 16.24±0.15 82.6±0.8 38.5±0.4 32.4±0.3 

 
  



 
Table 13. Model production rates Px (Leya & Masarik, 2009) for 3He and 21Ne assuming 
chemistry to be (i) ureilitic (Welten et al. 2010) and (ii) CI chondritic (Lodders and Fegley, 
1998) and calculated as an average over the expected shielding depths in 2008 TC3. Two 
production rate and CRE age (Tx) sets are given.  
 P3 P21 P3 P21  
 ureilitic CI chondritic  
 1.62 0.394 1.52 0.220  
      
 T3 T21 T3 T21 T21, av 
 ureilitic CI chondritic  

12 4.6 6.6 4.9 12.0 9.3 
14 3.3 3.5 3.5 6.5 5.0 
15 3.3 4.8 3.5 8.7 6.8 

Production rates Px in 10-8 cm3/(g × Ma). Exposure ages Tx in Ma. 

 



Table 14. Physical Properties of AhS 91A_18 and AhS 91A_19 

 
AhS 91A_18 

 
AhS 91A_19 

 
AhS 91A_(18+19) 

      mass 130 ± 2 mg 
 

65.5 ± 2 mg (calculated) 
 

195.5 ± 2 mg 

      
bulk volume 0.0558 ± 0.0012 cm3 

 
0.0274 ±  0.0007 cm3 

 

0.0832 ±  0.0014 cm3 

(calculated) 

      bulk density = mass/bulk volume 2.330 ± 0.060 g/cm3 
 

2.391 ± 0.097 g/cm3 
 

2.350 ± 0.046 g/cm3 (calculated) 

      grain volume 
    

0.053 ± 0.0023 cm3 

      grain density = mass/grain volume 
    

3.686 ± 0.161 g/cm3 

      porosity = [1-(bulk density/grain density)] x 100% 
    

(36.2 ± 3.0) % 
 



 
Table 15. Classification of Almahata Sitta Non-Ureilites (#s of stones). 
  
  

all UoK  non UoK 
(16 stones)1,2 

 
(48 stones)3,4 

E-meteorites 8  
 

40  

 
EH  4 

 
 9 

 
EL  3 

 
 29 

 
unique E-achondrites  1 

 
 2 

Ordinary Chondrites 5  
 

6  

 
H  3 

 
 4 

 
L  1 

 
 1 

 
LL  1 

 
 1 

Carbonaceous Chondrites 3  
 

1  

 
C1-C2 hydrous  3 

 
 0 

 
metal-rich  0 

 
 1 

Rumuruti-type chondrites 0  
 

1 1 
1) Goodrich et al. 2018; 2) Zolensky et al. (2010); 3) Horstmann & 
Bischoff (2014); 4) Bischoff et al. (2015a, 2016, 2018b, 2019). 



Table 16. Properties of model spectral mixtures shown in Figure 21c,d 

 

% 91A % OC % ureilites RELAB files AhS 
stone type state incidence 

angle 

mix 2 

70.2 
  

C1MT320 #91A CC breccia chip 19 

 
7 

 
C1MT94 #25 OC chip 30 

  
19.3 C1MT113 #27 ureilite chip 30 

  
3.5 C1MT95 #7 ureilite chip 30 

         

mix 5 

41.9   
C1MT319B, 
BKR1MT319B #91A CC breccia 125-500 µm powder 19 

37.1   
C1MT319A, 
BKR1MT319A #91A CC breccia <125 µm powder 30 

  21 C1MT113B, 
BKR1MT319B #27 ureilite 125-500 µm powder 30 
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