
BIROn - Birkbeck Institutional Research Online

Mareschal, Denis and Blakeman, S. (2019) A Complementary Learning
Systems approach to Temporal Difference Learning. Neural Networks 122
, pp. 218-230. ISSN 0893-6080.

Downloaded from: http://eprints.bbk.ac.uk/29596/

Usage Guidelines:
Please refer to usage guidelines at http://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/237012579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/29596/
http://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Neural Networks 122 (2020) 218–230

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A complementary learning systems approach to temporal difference
learning
Sam Blakeman ∗, Denis Mareschal
Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, Malet Street, WC1E 7HX, United
Kingdom

a r t i c l e i n f o

Article history:
Received 8 May 2019
Received in revised form 21 August 2019
Accepted 17 October 2019
Available online 26 October 2019

Keywords:
Complementary learning systems
Reinforcement learning
Hippocampus

a b s t r a c t

Complementary Learning Systems (CLS) theory suggests that the brain uses a ’neocortical’ and a
’hippocampal’ learning system to achieve complex behaviour. These two systems are complementary
in that the ’neocortical’ system relies on slow learning of distributed representations while the
’hippocampal’ system relies on fast learning of pattern-separated representations. Both of these
systems project to the striatum, which is a key neural structure in the brain’s implementation
of Reinforcement Learning (RL). Current deep RL approaches share similarities with a ’neocortical’
system because they slowly learn distributed representations through backpropagation in Deep Neural
Networks (DNNs). An ongoing criticism of such approaches is that they are data inefficient and
lack flexibility. CLS theory suggests that the addition of a ’hippocampal’ system could address these
criticisms. In the present study we propose a novel algorithm known as Complementary Temporal
Difference Learning (CTDL), which combines a DNN with a Self-Organizing Map (SOM) to obtain the
benefits of both a ’neocortical’ and a ’hippocampal’ system. Key features of CTDL include the use of
Temporal Difference (TD) error to update a SOM and the combination of a SOM and DNN to calculate
action values. We evaluate CTDL on Grid World, Cart–Pole and Continuous Mountain Car tasks and
show several benefits over the classic Deep Q-Network (DQN) approach. These results demonstrate
(1) the utility of complementary learning systems for the evaluation of actions, (2) that the TD error
signal is a useful form of communication between the two systems and (3) that our approach extends
to both discrete and continuous state and action spaces.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Reinforcement Learning (RL) (Sutton & Barto, 1998) repre-
sents a computational framework for modelling complex reward-
driven behaviour in both artificial and biological agents. For
cognitive scientists it is of continuing interest to explore how
RL theory maps onto neural structures in the brain (Lee, Seo,
& Jung, 2012; Niv, 2009). One of the most influential findings
in this regard is the encoding of Temporal Difference (TD) er-
ror by phasic midbrain dopaminergic neurons (Schultz, 2016;
Schultz, Dayan, & Montague, 1997). One of the major projection
sites of these neurons is the striatum (Bray & Doherty, 2007;
Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Mcclure, Berns,
& Montague, 2003) and it has been proposed that the striatum is
responsible for evaluating states and actions for decision mak-
ing (Houk, Adams, & Barto, 1995; Roesch, Singh, Brown, Mullins,
& Schoenbaum, 2009; Schultz, 1998; Schultz, Apicella, Scarnati, &

∗ Corresponding author.
E-mail addresses: sblake03@mail.bbk.ac.uk (S. Blakeman),

d.mareschal@bbk.ac.uk (D. Mareschal).

Ljungberg, 1992; Setlow, Schoenbaum, & Gallagher, 2003). Inter-
estingly, the striatum receives inputs from both cortical areas and
the hippocampus, suggesting that it is responsible for evaluating
different forms of information.

Complementary Learning Systems (CLS) theory posits that the
neocortex and hippocampus have complementary properties that
allow for complex behaviour (Kumaran, Hassabis, & McClelland,
2016; McClelland, McNaughton, & O’Reilly, 1995). More specif-
ically, the hippocampus relies on fast learning of conjunctive,
pattern-separated memories. These memories then support the
learning of a second system, the neocortex, which slowly learns
distributed representations that support generalization across
features and experiences. The purpose of the present study is
to explore how the brain’s RL machinery might utilize these
opposing properties to achieve complex behaviour.

Much of the recent success of RL has been due to the combina-
tion of classical RL approaches with the function approximation
properties of Deep Neural Networks (DNNs), known as deep
RL (François-lavet et al., 2018). Typically in deep RL, the action-
value function Q (s, a) is represented using a DNN that takes the
state st as input and outputs the corresponding action values

https://doi.org/10.1016/j.neunet.2019.10.011
0893-6080/© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2019.10.011
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2019.10.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:sblake03@mail.bbk.ac.uk
mailto:d.mareschal@bbk.ac.uk
https://doi.org/10.1016/j.neunet.2019.10.011
http://creativecommons.org/licenses/by/4.0/

S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230 219

for that state. Despite impressive results, such as super human-
level performance on Atari video games (Mnih et al., 2015),
deep RL approaches are often criticized for being data inefficient
and adapting poorly to changes in the input distribution (Lake,
Ullman, Tenenbaum, & Gershman, 2017). From a CLS perspective,
the DNNs used in deep RL can be seen as sharing many common-
alities with a ‘neocortical’ learning system. In particular, both the
neocortex and DNNs rely on small learning rates and distributed
representations for efficient generalization.

CLS theory suggests that the addition of a ‘hippocampal’
learning system to deep RL approaches may improve our under-
standing of how RL is implemented in the brain and address the
aforementioned criticisms of deep RL. Ideally an agent should
be able to utilize the advantages of a ‘neocortical’ system (dis-
tributed representations and generalization) and a ‘hippocampal’
system (fast learning and pattern-separation) to perform complex
reward-driven behaviour. Indeed, many theoretical advantages
have been proposed for the use of hippocampal episodic infor-
mation in RL. In particular, it has been suggested that episodic
information can be used to approximate value functions, increase
data efficiency and reconcile long-range dependencies (Gershman
& Daw, 2017).

An alternative to using a DNN to represent the action-value
function is to represent it in a tabular manner (Sutton & Barto,
1998). Such an approach is more in line with a hippocampal
learning system as experiences are stored in a pattern-separated
manner and larger learning rates can be used. Importantly, the
tabular case means that every action value is stored as its own
memory, which eliminates the potential for interference. This is
in contrast to DNNs that naturally suffer from interference due
to their distributed representations. However, as the number of
states and/or actions increases, the tabular case will require more
experience to encounter each action-value and more computa-
tional resources to store the values. The distributed representa-
tions of DNNs then become advantageous because they allow for
efficient generalization over the state space. In an ideal scenario
a DNN would be responsible for generalization over certain areas
of the state space while a tabular method would store pattern-
separated memories that are crucial to behaviour and that violate
the generalizations of the network.

Previous work in deep RL has often touched upon CLS theory
and the benefits of a hippocampal learning system. Indeed, one of
the most influential deep RL approaches, the Deep
Q-Network (DQN) (Mnih et al., 2015), utilizes a secondary system
that tentatively mirrors a hippocampal learning system. More
specifically, the DQN has a table that stores past experiences in
a pattern-separated manner and then uses them to train a DNN
in an interleaved fashion. This process is tentatively compared
to ‘replay’; a biological phenomenon that appears to replay in-
formation from the hippocampus to the neocortex in biological
agents (Olafsdottir, Bush, & Barry, 2018). However, despite the
DQN having what appears to be two complementary learning sys-
tems, the decision making (calculation of Q values) is ultimately
based on the predictions of the DNN, which learns slowly via
distributed representations.

More recently, research in deep RL has begun to demonstrate
some of the advantages of an explicit ‘hippocampal’ learning sys-
tem that evaluates states and actions (Botvinick et al., 2019). Most
notably (Blundell, Pritzel, & Rae, 2016) proposed an algorithm
called ‘model-free episodic control’, which consisted of a table
containing the maximum return (sum of discounted rewards)
for each state–action pair experienced. The memory require-
ments for this table were kept constant by removing the least
recently updated table entry once the size limit had been reached.
Each observation from the environment was projected by an
embedding function (either a random projection or a variational

autoencoder) to a state value and actions were selected based on
a k-nearest neighbours method, which allowed for some degree
of generalization to novel states. Blundell et al. (2016) tested this
approach on the Arcade Learning Environment (Atari) (Bellemare,
Naddaf, Veness, & Bowling, 2013) and Labyrinth (Mnih et al.,
2016), which both require the use of visual information to learn
an optimal policy. The results of these simulations showed that
model-free episodic control was significantly more data efficient
than other classical deep RL approaches, suggesting that episodic
information is important for fast learning.

While taking a first step towards highlighting the benefits
of a ‘hippocampal’ learning system that utilizes fast learning of
pattern-separated information, the work of Blundell et al. (2016)
has several notable drawbacks. Firstly, the table recorded the
maximum return from any given episode and used this to inform
the policy of the agent. This naturally cannot handle stochas-
tic environments, where the expected return is the important
quantity and not the maximum return of an individual episode.
Secondly, this approach is likely to be highly inflexible. For ex-
ample if a state–action pair suddenly becomes highly aversive
then the entry in the table will not be updated because only the
maximum value is stored. A third criticism is that the approach
relies on the full return for each state–action pair and this is
only possible when the task has distinct finite episodes. Some
of these criticisms have been addressed in subsequent work,
for example Pritzel et al. (2017) propose a fully differentiable
version of ‘model-free episodic control’ that learns the embedding
function in an online fashion using N-step Q-learning.

The above issue not withstanding, what is most pertinent to
the present study is that ‘model-free episodic control’, and its
various derivatives, do not rely on two complementary learning
systems that operate in parallel to evaluate actions. The em-
bedding function may be tentatively compared to a ‘neocortical’
learning system but it operates before the ‘hippocampal’ learning
system and as a result only the output of the ‘hippocampal’
learning system is used to evaluate action values. This means
that any advantages that may be conferred from the additional
predictions of a ‘neocortical’ learning system are lost. In essence,
the aforementioned approaches cannot arbitrate between the
predictions of a ‘neocortical’ and a ‘hippocampal’ learning system,
but are instead restricted to using episodic predictions. This is
inconsistent with the finding that the striatum receives inputs
from both cortical areas and the hippocampus and needs to
arbitrate between the two (Pennartz, Ito, Verschure, Battaglia, &
Robbins, 2011).

With these criticisms in mind, we present a novel method
for imbuing a deep RL agent with both a ‘neocortical’ and a
‘hippocampal’ learning system so that it benefits from both types
of learning system. Most importantly these two systems: (1) learn
in parallel, (2) communicate with each other using a biologically
plausible signal, and (3) both make action value predictions. We
represent the ‘neocortical’ system as a DNN and the ‘hippocampal’
system as a Self-Organizing Map (SOM). Importantly, the size of
the SOM is significantly smaller than the state space experienced
by the agent so as to replicate the restricted computational re-
sources experienced by biological agents. The SOM is tasked with
storing pattern-separated memories of states that the DNN is
poor at evaluating. To achieve this we use the TD error from a
DNN in order to train the SOM. Critically, this novel CLS approach
demonstrates how the TD error of a ‘cortical’ system can be
used to inform a ‘hippocampal’ system about when and what
memories should be stored, with both systems contributing to the
evaluation of action-values. This allows the agent to utilize the
benefits of both a neocortical and hippocampal learning system
for action selection. We call our novel algorithm Complementary
Temporal Difference Learning (CTDL) and demonstrate that it can
improve the performance and robustness of a deep RL agent on
Grid World, Cart–Pole and Continuous Mountain Car tasks.

220 S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230

2. Methods

2.1. The reinforcement learning problem

The general goal of a reinforcement learning agent is to select
actions based on perceived states in order to maximize future
expected rewards. In simple terms the agent chooses an action at
given a state st . The environment then responds to this decision
and produces the next state st+1 and a reward rt+1. This agent-
environment loop continues either indefinitely or until a terminal
state is reached. Typically future rewards are discounted so that
more immediate rewards are worth more than distant rewards.
This is done using a discount factor γ ∈ (0, 1) which is applied at
each time step. The return Rt at time t is defined as the discounted
sum of future rewards:

Rt =

T∑
t ′=t

γ t ′−t rt ′ (1)

where rt ′ is the reward value at time t ′ and T is the time-step
at which the task or episode finishes. Solving the RL problem
equates to learning a policy π that maps from states to actions
(π : s ↦→ a) and achieves the greatest possible expected return
from every state. This is known as the optimal policy π∗. One
possible method of finding π∗ is to learn the optimal action-value
function Q ∗(s, a), which provides the expected return of taking
action a in state s and following π∗ thereafter.

Q ∗(s, a) = max
π

Q π (s, a)

= max
π

Eπ [Rt | st = s, at = a]
(2)

Once an agent has learnt the optimal action-value function it
can act optimally by picking the action with the largest Q value
given the state it is in (argmaxa Q (s, a)). Importantly the opti-
mal action-value function can be defined recursively using the
Bellman equation:

Q ∗(s, a) = Es′ [r + γ max
a′

Q ∗(s′, a′)|s, a] (3)

This recursive definition of the action-value function forms the
basis for many learning algorithms. One such algorithm is
Q-learning, which is a form of Temporal Difference (TD) learning.
Q-learning utilizes the following update rule to learn the optimal
action-value function:

Q (st , at)← Q (st , at)+ α[rt+1 + γ max
a

Q (st+1, a)− Q (st , at)] (4)

where [rt+1 + γ maxa Q (st+1, a) − Q (st , at)] is known as the TD
error, which has been proposed to exist in biological agents (Do-
herty et al., 2003; Schultz et al., 1997). Importantly the action-
value function can be represented in a tabular manner or with a
function approximator such as a DNN. In the case of a DNN, the
state is provided as input and each output unit corresponds to
the value of a single action. The parameters of the network θ are
updated so that Q (s, a) moves closer to r + γ maxa Q (st+1, a). In
order to achieve this the objective function of the neural network
is set to the mean squared error between the two values i.e. the
mean square of the TD error:

J(θ) = Est ,at ,rt+1,st+1 [((rt+1 + γ max
a

Q (st+1, a; θ))− Q (st , at; θ))2]

(5)

2.2. Complementary Temporal Difference Learning (CTDL)

Our novel approach combines a DNN with a SOM to imbue an
agent with the benefits of both a ‘neocortical’ and ‘hippocampal’

Table 1
Grid world hyper-parameter values used for all simulations.
Parameter Value Description

W 10 Width of grid world
H 10 Height of grid world
E 1000 Number of episodes for learning
T 1000 Maximum number of time steps per episode

learning system. The DNN is a simple feed-forward network that
takes the current state as input and outputs the predicted action
values for each action. The network is trained using the same
training objective as Mnih et al. (2015) and a copy of the network
is made every C time steps in order to improve training stabil-
ity. The optimizer used was RMSProp and the hyper-parameter
values can be seen in Table 2. Importantly, unlike in Mnih et al.
(2015), no memory buffer is used to record past experiences,
which saves considerable memory resources. The SOM compo-
nent is represented as a square grid of units, with each unit
having a corresponding action-value Q (u, a) and weights βu that
represent a particular state.

A general outline of the algorithm detailing how the DNN and
SOM interact can be seen in Algorithm 1. In simple terms, the TD
error produced by the DNN is used to update the SOM and both
systems are used to calculate Q values for action selection. When
the agent observes the state st , the closest matching unit in the
SOM ut is calculated based on the euclidean distance between the
units weights βu and st . This distance is also used to calculate
a weighting parameter η ∈ {0, 1}, which is used to calculate
a weighted average of the action values from the SOM and the
DNN. If the best matching unit is close to the current state then
a larger weighting will be applied to the Q value produced by
the SOM. A free parameter τη acts as a temperature parameter to
scale the euclidean distance between βu and st when calculating
the weighted average.

For learning in both the DNN and the SOM, the TD error is
calculated using the difference between the target value and the
predicted Q value of the DNN. The TD error is used to perform
a gradient descent step with respect to the parameters θ of
the DNN, which ensures that the predictions of the DNN move
towards the weighted average of the SOM and DNN predictions.
After updating the DNN, the TD error is also used to update
the SOM. More specifically, the TD error is used to create an
exponentially increasing value δ ∈ {0, 1}, which scales the stan-
dard deviation of the SOM’s neighbourhood function and the
learning rate of the SOM’s weight update rule. Again a tem-
perature parameter τδ is used to scale the TD error. Next, the
action value of the closest matching unit from the previous time
step Q SOM (ut−1, at−1) is updated using the learning rate ρ, the
weighting from the previous time step ηt−1 and the difference
between Q SOM (ut−1, at−1) and the target value yt . The inclusion
of ηt−1 ensures that the action value only receives a large update
if the closest matching unit is similar to the state value.

To aid in the training of the DNN and to mimic biological
‘replay’, the contents of the SOM are replayed to the DNN as
a training batch for gradient descent. To construct the training
batch the actions at are sampled randomly, the states st are set to
a random sample of the SOM weights βu and the target values yt
are set to the corresponding Q values stored in the SOM. Finally,
the agent’s actual action is chosen in an ϵ-greedy manner with
respect to the weighted average of the predicted DQN and SOM
Q values.

The aforementioned algorithm has several interesting proper-
ties. Firstly, the calculation of Q values involves the contribution
of both the DNN and the SOM. The size of their respective con-
tributions are controlled by the parameter η, which ensures that

S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230 221

Algorithm 1 - CTDL. Highlighted lines are unique to CTDL when compared to DQN
Initialize probability of selecting a random action ϵ = 1
Initialize SOM weights β to random locations in the grid world
Initialize SOM action-values Q SOM

= 0
Initialize action-value function Q DNN with random weights θ

Initialize target action-value function Q̃ DNN with weights θ− = θ

for e = 1, E do
If ϵ > ϵend then decrease ϵ by ϵend/Eϵ

for t = 1, T do
Observe current state st and reward rt
Retrieve SOM unit ut that is closest to st
ut = argminu||βu − st ||2

Calculate weighting η based on distance
η = exp (−||βut − st ||2/τη)
Calculate Q (st , a′) as weighted average of SOM and DNN values
Q (st , a′) = ηQ SOM (ut , a′)+ (1− η)Q̃ DNN (st , a′; θ−)

set yt =
{
rt if episode is over
rt + γ maxa′ Q (st , a′) otherwise

Perform gradient descent step on (yt − Q DNN (st−1, at−1; θ))2 with
respect to the network parameters θ

Calculate δ based on the TD error produced by the DNN
δ = exp (|yt − Q DNN (st−1, at−1; θ)|/τδ)− 1
Calculate the neighbourhood function based on ut−1

Tuj,ut−1 = exp (−||luj − lut−1 ||
2/2(σc + (δ ∗ σ)))

Update the weights β of SOM
∆βji = α ∗ δ ∗ Tuj,ut−1 (st−1,i − βji)
Update the action value ∆Q SOM (ut−1, at−1) =
ρ ∗ ηt−1 ∗ (yt − Q SOM (ut−1, at−1))
Replay contents of SOM to DNN using a random sample of actions
at and unit weights βu. yt is set to Q SOM (βu, at)
Select random action with probability ϵ, else at =
argmaxa′ ηQ SOM (ut , a′)+ (1− η)Q DNN (st , a′; θ)
Every C steps reset Q̃ DNN

= Q DNN

If the goal has been reached then break and end episode
end for

end for

if the current state is close to one stored in SOM memory then
the Q value predicted by the SOM will have a larger contribution.
This is akin to retrieving a closely matching episodic memory and
using its associated value for action selection. Secondly, because
the SOM is updated using the TD error produced by the DNN,
it is biased towards storing memories of states that the DNN is
poor at evaluating. Theoretically this should allow the DNN to
learn generalizations across states, while the SOM picks up on
violations or exceptions to these generalizations and stores them
in memory along with a record of their action values. If after
many learning iterations the DNN converges to a good approxi-
mation of the optimal action-value function then no TD error will
be produced and the SOM will be free to use its resources for
other tasks. Finally, the SOM can use much larger learning rates
than the DNN because it relies on a tabular approximation of the
action-value function, which should improve data efficiency.

2.3. Simulated environments

2.3.1. Grid world task
To evaluate our approach we generated a set of symmetric

2D grid worlds (Fig. 1). Each cell in the grid world represents
a state s ∈ R2 that is described by its x and y position. If N is

the number of cells in the grid world, then N
5 negative rewards

(−1) are randomly placed in the grid world along with a single
positive reward (+1) and the agents starting position. The agent’s
task is to reach the positive reward, at which point the episode
is over and a new episode begins. The agent’s action space is
defined by four possible actions (up, down, left and right), each
of which moves the agent one cell in the corresponding direction
with probability 1. If the agent chooses an action that would move
it out of the grid world then it remains where it is for that time
step. Table 1 shows the hyper-parameter values used in all grid
world simulations.

2.3.2. Cart–Pole
In addition to the grid world task we also evaluated CTDL

on the Cart–Pole environment as provided by the OpenAI Gym
(Brockman et al., 2016). The Cart–Pole problem consists of a cart
with a pole attached by a single un-actuated joint. The goal of the
agent is to control the velocity of the cart on a linear friction-less
track so that the pole stays up-right. The state observed by the
agent is made up of four values which correspond to the position
of the cart [−4.8, 4.8], the velocity of the cart [−∞,∞], the angle
of the pole [∼ −41.8,∼ 41.8] and the velocity of the end of the
pole [−∞,∞]. Two actions are available to the agent; push the

222 S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230

Fig. 1. A: First example grid world, dark blue cells represent negative rewards (−1), the green cell represents the goal (+1) and the yellow cell represents the agents
starting position. B: Performance of CTDL and DQN on the first example gird world in terms of cumulative reward and ‘ideal’ episodes over the course of learning.
An ‘ideal’ episode is an episode where the agent reached the goal location without encountering a negative reward. Both CTDL and DQN were run 30 times on each
maze. C: Second example gird world. D: Performance of CTDL and DQN on the second example grid world. E: Scatter plots comparing the performance of CTDL
and DQN on 50 different randomly generated grid worlds. Both CTDL and DQN were run 30 times on each maze and the mean value at the end of learning was
calculated. Blue points indicate grid worlds where CTDL out-performed DQN and red points indicate grid worlds where DQN out-performed CTDL. The pie charts to
the lower right indicate the proportions of blue and red points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

cart left and push the cart right. The agent receives a reward of+1
at every time step and an episode ends either when the angle of
the pole is greater than 15 degrees, the cart moves off the screen
or the episode length is greater than 500.

2.3.3. Continuous mountain car
To explore the applicability of CTDL to continuous control

problems we also performed simulations using the continuous
mountain car environment as provided by the OpenAI Gym
(Brockman et al., 2016). The continuous mountain car environ-
ment is a 2D problem consisting of a car that starts in-between
two hills. The goal of the agent is to drive the car to the top
of the right-hand hill. This problem is complicated by the fact
that the cars engine has insufficient power to drive straight up
the hill. The agent therefore needs to learn to drive forwards
and backwards in order to gain momentum and traverse the
hill. The state observed by the agent is defined by the cars
position [−1.2, 0.6] and velocity [−0.07, 0.07]. Importantly the

action space is continuous; the agent must choose to apply a
force between 1 and −1 to the car at each time step. The agent
receives a reward of +100 for reaching the target location but
also receives a negative reward that is equal to the squared sum
of the actions it has chosen. An episode terminates either when
the car reaches the target location or the episode length is greater
than 1000.

3. Results

In our first simulation we compare CTDL to the standard DQN
described by Mnih et al. (2015) on a range of grid worlds. Both
CTDL and DQN utilize the same DNN architecture (see Table 2
for hyper-parameter values) but there are two key differences
between the two approaches. Firstly, a standard DQN stores a
memory buffer of size N that is used to replay past experiences
whereas CTDL relies on the contents of a SOM for replay. For
our simulations we set the memory buffer size M of the DQN

S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230 223

Table 2
Hyper-parameter values used for the DNN component of DQN and CTDL in the
grid world simulations.
Parameter Value Description

L 3 Number of layers
U [128, 128, 4] Number of units
C 10,000 Number of steps before updating the

target network
B 32 Batch size for training
λ .00025 Learning rate for RMSProp
κ .95 Momentum for RMSProp
φ .01 Constant for denominator in RMSProp

Table 3
Hyper-parameter values unique to CTDL. τη , τδ , σ , σc , α and ρ were selected by
using a random grid search on a single grid world.
Parameter Value Description

U 36 Number of units in SOM
τη 10 Temperature for calculating η

τδ 1 Temperature for calculating δ

σ .1 Standard deviation of the SOM neighbourhood
function

σc .1 Constant for denominator in SOM neighbourhood
function

α .01 Learning rate for updating the weights of the SOM
ρ .9 Learning rate for updating the Q values of the

SOM

to 100,000 while the size of the SOM was set to 36 units. This
represents a significant decrease in memory resources between
the two approaches. The second key difference is that a standard
DQN only uses the DNN for calculation of Q values whereas CTDL
also incorporates the predictions of a SOM. This allows CTDL to
utilize the benefits of a ‘hippocampal’ learning system during
decision making, namely pattern-separated memories and larger
learning rates. Hyper-parameter values specific to CTDL can be
seen in Table 3. Both models learned from 1000 episodes, with
a maximum episode length of 1000. The probability of randomly
selecting an action ϵ was linearly decreased from 1.0 to 0.1 over
the first 200 episodes. The discount factor for future rewards was
set to 0.99 for all simulations.

Fig. 1 demonstrates the results of the two approaches on
a random selection of grid worlds. CTDL outperforms the DQN
in terms of cumulative reward and the cumulative number of
‘ideal’ episodes. An ideal episode is classified as an episode where
the agent avoids all negative rewards and reaches the positive
reward. These findings suggest that the inclusion of a second ‘hip-
pocampal’ system, which explicitly contributes to the calculation
of Q values, is beneficial in our simple grid world task. This gain in
performance is achieved at a much lower cost in terms of memory
resources. Fig. 2 shows an example maze along with the weights
of each unit in the SOM and the location they represent in the
maze at the end of learning.

To improve our understanding of the mechanisms underlying
CTDLs performance we isolated the contribution of the SOM to
the calculation of the Q values from the replaying of the con-
tents of the SOM to the DNN. Fig. 3A shows the performance of
CTDL both with and without replay. CTDLs performance was only
marginally reduced by the removal of replay suggesting that the
improvements over the DQN are due to the contribution of the
SOM to the calculation of Q values. A key component of CTDL is
the updating of the SOM using the TD error from the DNN. To
investigate the importance of this interaction, we compared CTDL
to a version of CTDL that did not update the SOM based on the
TD error from the DNN. This was achieved by setting the learning
rate of the SOM to 0 so that the weights βu were not updated
during learning. Fig. 3B shows the results of this comparison.
Removal of the interaction between the DNN and the SOM via the

TD signal had a significant impact on the performance of CTDL,
suggesting that it is a critical component of the model.

One interpretation of these results is that the SOM is able
to store and use experiences that violate generalizations made
by the DNN and that this confers a significant advantage during
learning. To test this hypothesis we ran CTDL and DQN on three
new mazes (Fig. 4). The first maze had no negative rewards
between the start and goal locations and the agent simply had
to travel directly upwards. We predict that such a maze should
favour the DQN because it can rely upon the generalization that
an increase in y corresponds to an increase in expected return.
The second and third mazes introduced negative rewards that
violate this generalization. For these mazes we predict that CTDL
should perform better because it can store states that violate the
generalization in its SOM and when these states are re-visited
CTDL can consult the Q values predicted by the SOM. Fig. 4 shows
the results of CTDL and DQN on these three mazes. To help visu-
alize the locations encoded by the SOM we reduced the SOM size
to 16 units. The results provide support for our predictions, with
the DQN out-performing CTDL in the first maze but not in the
second and third mazes. Interestingly, over the course of learning
the locations encoded by the SOM appeared to reflect regions of
the maze that correspond to violations in the ‘move upwards’
generalization. We take these findings as evidence that the SOM
is encoding states that violate generalizations made by the DNN
and that this is responsible for CTDLs improved performance.

If the SOM does encode states that violate generalizations
made by the DNN, then this should translate to improved be-
havioural flexibility in the face of environmental changes. For
example if an obstacle appears in one of the grid worlds then this
should lead to a large TD error and instruct the SOM to encode the
position of the obstacle using its large learning rate. Subsequently,
since the SOM keeps track of action values independently from
the DNN, CTDL should be able to quickly adapt its behaviour in
order to avoid the obstacle. To investigate this hypothesis we ran
CTDL and DQN on the grid world in Fig. 4A immediately followed
by the grid world in Fig. 4C. Fig. 5 shows the results of these
simulations. As previously described, the DQN out-performed
CTDL on the first grid world in terms of cumulative reward and
the number of ideal episodes. Switching to the second grid world
impacted the performance of both the DQN and CTDL. However,
this impact was more pronounced for the DQN, with a larger
decrease in cumulative reward and a plateauing of the number of
ideal episodes. This suggests that CTDL is better equipped to han-
dle changes in the environment. As before the locations encoded
by the SOM appeared to reflect states immediately preceding
the obstacle. This is consistent with the notion that the TD error
from the DNN allows the SOM to identify regions that violate the
generalizations made by the network and subsequently improve
learning.

One of the strengths of RL algorithms is that they can be
applied to a wide array of tasks. If one can describe a task using
a state space, an action space and a reward function then often
it can be solved using RL techniques, especially if the states
satisfy the Markov property. We therefore wanted to investigate
whether the performance of CTDL was specific to grid worlds or
whether it could be applied to other tasks. We chose to test CTDL
on the Cart–Pole and Continuous Mountain Car environments
from OpenAI Gym.

We chose to test CTDL on the Cart–Pole environment from
OpenAI Gym. We chose the Cart–Pole environment because it is
a common benchmark task in the RL literature and it involves
a continuous state space, unlike the discrete state space of the
grid world environments. The parameter values used for all Cart–
Pole simulations were the same as in the grid world simulations
with two exceptions. Firstly, the number of time steps C between

224 S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230

Fig. 2. A: Randomly generated grid world, dark blue cells represent negative rewards (−1), the green cell represents the goal (+1) and the yellow cell represents
the agents starting position. B: Image showing the locations encoded by the SOM component of CTDL (yellow cells) at the end of learning in A. C: CTDLs value
function at the end of learning in A, the value is calculated as the weighted average of the predictions from the SOM and DNN. Each state has four possible values,
corresponding to each of the four possible actions (up, down, left and right). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. A: Scatter plots comparing the performance of CTDL and CTDL without replay on 50 different randomly generated grid worlds. Both CTDL and CTDL without
replay were run 30 times on each maze. Blue points indicate grid worlds where CTDL out-performed CTDL without replay and red points indicate grid worlds
where CTDL without replay out-performed CTDL. The pie chart to the lower right indicate the proportions of blue and red points. B: Scatter plots comparing the
performance of CTDL and CTDL without TD learning in 50 different procedurally generated grid worlds. Both CTDL and CTDL without TD learning were run 30 times
on each maze. Blue points indicate grid worlds where CTDL out-performed CTDL without TD learning and red points indicate grid worlds where CTDL without TD
learning out-performed CTDL. The pie charts to the lower right indicate the proportions of blue and red points. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230 225

Fig. 4. A: Top-Left: Grid world where the agent only has to travel upwards to reach the goal. Dark blue cells represent negative rewards (−1), the green cell
represents the goal (+1) and the yellow cell represents the agents starting position. Bottom-Left: Locations encoded by the SOM component of CTDL at the end of
learning, results are averaged over 30 runs. Top-Right: Locations encoded by the SOM component of CTDL at the start of learning for a single run. Bottom-Right:
Locations encoded by the SOM component of CTDL at the end of learning for a single run. B: The performance of CTDL and DQN on the grid world from A in terms
of cumulative reward and ‘ideal’ episodes. The solid line represents the mean and the shaded region represents the standard deviation. C: Same as A but an obstacle
is introduced, in the form of negative rewards, that the agent must circumnavigate. D: The performance of CTDL and DQN on the grid world from C. E: Same as
C but with two obstacles for the agent to circumnavigate. F: The performance of CTDL and DQN on the grid world from E. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

updates of the target network was changed to 500 in order to
account for the shorter episodes experienced in the Cart–Pole
task. Secondly, the size of the SOM was increased from 36 units
to 225 units, which is still considerably smaller than the size of
the replay buffer used by the DQN (100,000).

An important component of CTDL is the calculation of the
euclidean distance between the current state st and the weights
of each unit βu. In the case of the Cart–Pole task this will cause
the velocity values in the state representation to dominate the
distance calculations because their values cover a much greater
range. To account for this we maintain an online record of the

largest and smallest values for each entry in the state repre-
sentation and use these values to normalize each entry so that
they lie in the range [0, 1]. This ensures that each entry in the
state representation contributes equally to any euclidean distance
calculations.

Fig. 6 shows the results of both CTDL and DQN on the Cart–
Pole task. While the DQN appeared to learn faster than CTDL, it
did so with greater variance and the stability of the final solution
was poor. In comparison, CTDL learnt gradually with less variance
and there were no significant decreases in performance. These
results demonstrate that CTDL can be applied to continuous state

226 S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230

Fig. 5. A: Top-Left: First grid world presented to the agent for 500 episodes. Bottom-Left: Locations encoded by the SOM component of CTDL at the end of learning
in the first grid world, results are averaged over 30 runs. Top-Right: Second grid world presented to the agent for 500 episodes immediately after the first grid
world. Bottom-Right: Locations encoded by the SOM component of CTDL at the end of learning in the second grid world, results are averaged over 30 runs. B: The
performance of CTDL and DQN on the successive grid worlds from A. The solid line represents the mean and the shaded region represents the standard deviation.
The dashed line indicates the change in grid worlds and the introduction of the obstacles. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. Episode reward achieved by CTDL and DQN on the Cart–Pole environment
over the course of learning. Both CTDL and DQN were run 100 times on the Cart–
Pole environment. The solid line represents the mean and the shaded region
represents the standard deviation.

problems and is not restricted to discrete grid world problems.
They also suggest that CTDL’s use of dual learning systems may
confer a stability advantage that improves the robustness of
learning.

While the Cart–Pole environment uses a continuous state
space it restricts the agent to a small discrete action space. We
therefore explored whether CTDL could be applied to problems
that require a continuous action space as well as state space.
To this end we applied CTDL to the Continuous Mountain Car
environment from OpenAI Gym. The DNN used in both DQN and
CTDL has a single output unit for each action that outputs the
Q value for that particular action. This is infeasible for contin-
uous control problems and so a different underlying network
architecture is required. A common approach to combining value
estimates with continuous control problems is to use an actor-
critic framework (Konda & Tsitsiklis, 2000; Sutton, McAllester,
Singh, & Mansour, 2000). Under the actor-critic framework, the
‘critic’ is responsible for calculating value estimates and the ‘actor’
is responsible for choosing actions and updating the policy based
on the values estimated by the critic. The benefit here is that the
critic can calculate state values rather than action values and the
actor can output a continuous distribution over possible actions.

In our simulations we represent both the actor and critic
components as feed-forward neural networks and adopt an Ad-
vantage Actor-Critic (A2C) approach (synchronous version of
Asynchronous Actor-Critic (A3C) (Mnih et al., 2016)). The hyper-
parameters for our A2C implementation can be seen in Table 4.
Our implementation of A2C shares many common properties

S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230 227

Table 4
A2C hyper-parameter values used for the continuous mountain car simulations.
Parameter Value Description

Lcritic 3 Number of layers in critic network
Ucritic [128, 128, 1] Number of units in critic network
αcritic .0001 Critic learning rate for Adam
Lactor 3 Number of layers in actor network
Uactor [128, 128, 2] Number of units in actor network
αactor .00001 Actor learning rate for Adam

Fig. 7. Episode reward achieved by CTDLA2C and A2C on the Continuous
Mountain Car environment over the course of learning. Both CTDLA2C and A2C
were run 50 times on the Continuous Mountain Car environment. The solid line
represents the mean and the shaded region represents the standard deviation.

with DQN in that it relies upon the slow learning of distributed
representations. We therefore hypothesized that the fast pattern-
separated learning of CTDL should confer the same advantages to
A2C as it did to DQN.

In order to augment A2C with the advantages of CTDL we
used the same approach as before except the SOM recorded state
value estimates rather than action value estimates. The state
value estimates of the SOM were combined with the estimates
of the A2C ‘critic’ using the same weighted sum calculation and
the TD error from the ‘critic’ was used to update the weights of
the SOM. A2C is inherently an online algorithm and so weight
and value updates were simply applied at each time step in an
online fashion with no replay or target networks. We shall denote
the CTDL version of A2C as CTDLA2C and a full outline of the
algorithm can be seen in Algorithm 2. The hyper-parameters used
for CTDLA2C are the same as those in Table 3.

Fig. 7 shows the results of A2C and CTDLA2C on the Continuous
Mountain Car task. CTDLA2C outperformed A2C on the Continuous
Mountain Car task and also demonstrated much greater stability
as training progressed. The high variability in reward obtained is
due to the fact that if the agent does not find the target location
quickly enough then it will learn to minimize negative rewards
by staying still. This suggests that the fast learning of pattern-
separated representations in the SOM component of CTDLA2C may
allow the agent to either explore more efficiently or better utilize
information about states that are rarely visited. In general these
results suggest that the dual learning systems of CTDLA2C are
advantageous for problems consisting of continuous state and
action spaces.

4. Discussion

According to CLS theory, the brain relies on two main learning
systems to achieve complex behaviour; a ‘neocortical’ system that
relies on the slow learning of distributed representations and a

‘hippocampal’ system that relies on the fast learning of pattern-
separated representations. Both of these systems project to the
striatum, which is believed to be a key structure in the evaluation
of states and actions for RL (Houk et al., 1995; Roesch et al., 2009;
Schultz, 1998; Schultz et al., 1992; Setlow et al., 2003). Current
deep RL approaches have made great advances in modelling
complex behaviour, with DNNs sharing several similarities with
a ‘neocortical’ learning system. However these approaches tend
to suffer from poor data efficiency and general inflexibility (Lake
et al., 2017). The purpose of the present study was to explore how
a ‘neocortical’ and ‘hippocampal’ learning system could interact
within an RL framework and whether CLS theory could alleviate
some of the criticisms of deep RL.

Our novel approach, termed CTDL, used a DNN as a ‘neocor-
tical’ learning system and a SOM as a ‘hippocampal’ learning
system. Importantly the DNN used a small learning rate and
distributed representations while the SOM used a larger learning
rate and pattern-separated representations. Our approach is novel
in that the SOM contributes to action value computation by
storing action values independently from the DNN and uses the
TD error produced by the DNN to update its state representations.
More specifically, the TD error produced by the DNN is used to
dynamically set the learning rate and standard deviation of the
neighbourhood function of the SOM in an online manner. This
allows the SOM to store memories of states that the DNN is poor
at predicting the value of and use them for decision-making and
learning. Importantly the size of the SOM is smaller than the state
space encountered by the agent and so it requires less memory
resources than the purely tabular case.

We compared the performance of CTDL to a standard DQN on
a random set of 2D grid worlds. CTDL out-performed the DQN
on the majority of grid worlds, suggesting that the inclusion of
a ‘hippocampal’ learning system is beneficial and confirming the
predictions of CLS theory. Removal of replay between the SOM
and DNN appeared to have marginal impact upon the perfor-
mance of CTDL suggesting that the SOMs contribution to the
calculation of action values is the predominant benefit of CTDL.
Future work should explore how information from the SOM may
be replayed to the DNN in a more principled fashion (e.g. Mattar
and Daw (2018)) instead of random sampling. We proposed that
the SOM was able to contribute to the calculation of the action
values in a targeted manner by using the TD error of the DNN to
encode states that the DNN was poor at evaluating. We provided
evidence of this by demonstrating that the removal of the TD
signal between the DNN and SOM had a negative impact upon
the performance of CTDL.

Our interpretation of these results is that, particularly early
on in learning, the DNN is able to represent generalizations of
the state space while the SOM is able to represent violations of
these generalizations. In combination these two systems can then
be used to formulate policies in both a general and specialized
manner. We tested this hypothesis by presenting CTDL and DQN
with a grid world consisting of a general rule and two other grid
worlds consisting of violations of this rule. As our interpretation
predicted, CTDL out-performed the DQN when violations of the
general rule were present, presumably because the SOM was
able to store states that were useful for circumnavigating these
violations. This hypothesis was further supported by a simulation
that ran both CTDL and DQN on sequential grid worlds. CTDL
appeared to be better equipped to deal with the change in envi-
ronment compared to the DQN. In addition, the SOM component
of CTDL encoded states close to the change in the environment,
providing further evidence of its ability to represent violations of
predictions.

This ability of the SOM to encode violations of the generaliza-
tions made by the DNN has interesting parallels to imaging work

228 S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230

Algorithm 2 - CTDLA2C . Highlighted lines are unique to CTDLA2C when compared to A2C

Initialize SOM weights β according to a standard normal distribution
Initialize SOM state-values V SOM

= 0
Initialize Critic V A2C with random weights θV

Initialize Actor π with random weights θπ

for e = 1, E do
for t = 1, T do

Observe current state st and reward rt
Retrieve SOM unit ut that is closest to st
ut = argminu||βu − st ||2

Calculate weighting η based on distance
η = exp (−||βut − st ||2/τη)
Calculate V (st) as weighted average of SOM and Critic values
V (st) = ηV SOM (ut)+ (1− η)V A2C (st; θV)

set yt =
{
rt if episode is over
rt + γV (st) otherwise

Calculate the advantage/TD error A(st−1, at−1) = yt − V A2C (st−1; θV)
Update the Actor parameters θV

θV
← θV

+ αactorA(st−1, at−1)▽θπ log(π (at−1|st−1; θπ))
Update the Critic parameters θπ

θπ
← θπ

+ αcriticA(st−1, at−1)▽θV V A2C (st−1; θV)
Calculate δ based on the TD error produced by the Critic
δ = exp (|A(st−1, at−1)|/τδ)− 1
Calculate the neighbourhood function based on ut−1

Tuj,ut−1 = exp (−||luj − lut−1 ||
2/2(σc + (δ ∗ σ)))

Update the weights β of SOM
∆βji = α ∗ δ ∗ Tuj,ut−1 (st−1,i − βji)
Update the state value ∆V SOM (ut−1) =
ρ ∗ ηt−1 ∗ (yt − V SOM (ut−1))
Sample action from Actor at ∼ π (at |st; θπ)
If the goal has been reached then break and end episode

end for
end for

in rodents demonstrating that CA3 neurons appear to encode
decision points in T-mazes that are different from the rodents
current position (Johnson & Redish, 2007). Such decision points
can be viewed as obstacles or important deviations from the
animals general direction and we therefore predict that they
would be encoded by the SOM component of CTDL. In the future,
application of CTDL to other reinforcement learning tasks may
provide testable predictions about the regions of the state space
that should be encoded by the hippocampus. In addition, the fact
that the SOM encode states close to obstacles in order to account
for changes in the environment suggests that the hippocampus
may be important for adapting to changes in the environment
and is consistent with recent studies that have implicated the
hippocampus in reversal learning (Dong et al., 2013; Vila-Ballo
et al., 2017).

To investigate the generality of CTDL we also applied it to the
Cart–Pole and Continuous Mountain Car problems. The Cart–Pole
problem is fundamentally different to the grid world problem
because the state space observed by the agent is continuous. We
found that in comparison to the DQN, the learning of CTDL was
more gradual but also more robust. This is perhaps a surprising
result given that the DQN has a perfect memory of the last
100,000 state transitions whereas CTDL has no such memory.
Indeed, one would expect the SOM component of CTDL to have
less of an effect in continuous state spaces because generalization
from function approximation becomes more important and the

probability of re-visiting the same states decreases. With this
being said, Blundell et al. (2016) demonstrated that even when
the probability of re-visiting the same state is low, episodic infor-
mation can still be useful for improving learning. Generalization
of episodic information in CTDL is likely controlled by the tem-
perature parameter τη that scales the euclidean distance between
the states and the weights of the SOM units.

The Continuous Mountain Car problem consists of both a
continuous state and action space. In order to apply deep RL to
the Continuous Mountain Car problem we used an A2C architec-
ture, with two separate DNNs representing an actor and critic
respectively. As with the original implementation of CTDL, we
augmented A2C with a ‘hippocampal’ learning system in the form
of a SOM and termed the resulting algorithm CTDLA2C . CTDLA2C
both outperformed the standard A2C approach and demonstrated
more robust learning with no substantial decreases in perfor-
mance. A defining feature of the Continuous Mountain Car prob-
lem is that the agent will learn not to move unless it experiences
the positive reward of the target location and then utilizes this
information efficiently. It is possible that the addition of a learn-
ing system that quickly learns pattern-separated representations
helps to alleviate this problem by storing rare and surprising
events in memory and incorporating them into value estimates,
rather than taking a purely statistical approach. More generally,
these results demonstrate the applicability of CTDL to continuous
control problems and further highlight the benefits of using TD
error to inform the storage of episodic information.

S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230 229

The reduced benefit of CTDL on the Cart–Pole problem com-
pared to the Grid World and Continuous Mountain Car problems
may allude to interesting differences in task requirements. In
particular, both the Grid World and Continuous Mountain Car
problems appear to rely on rare discrete events that are highly
informative for learning a policy e.g. both tasks involve a goal
location. In comparison, the Cart–Pole task relies on a range of re-
warded events or states to inform the policy and so the utilization
of episodic information may be less valuable. From a biological
perspective, it is perhaps unsurprising that CTDL performs better
on Grid World problems given that they represent spatial naviga-
tion tasks which are thought to heavily recruit the hippocampus
in biological agents (Burgess, Maguire, & Keefe, 2002). In com-
parison, the Cart–Pole problem can be seen as a feedback-based
motor control task which involves learning systems such as the
cerebellum in addition to any cortical-hippocampal contributions.
CTDL may therefore represent a useful empirical tool for predict-
ing the utilization of hippocampal function in biological agents
during RL tasks.

Future work will need to investigate whether the increased ro-
bustness and performance of CTDL in continuous state and action
spaces is a general property that extends to more complex do-
mains. In particular, it would be of interest to run CTDL on maze
problems such as ViZDoom (Kempka, Wydmuch, Runc, Toczek,
& Ja, 2016), which are rich in visual information. Indeed, deep
RL approaches using convolutional neural networks are at the
forefront of RL research and these could be easily incorporated
into the CTDL approach. In the case of ViZDoom, each state is rep-
resented by a high-dimensional image and so the generalization
capabilities of a DNN are crucial. From a biological perspective,
it is worth noting that the hippocampus operates on cortical
inputs that provide latent representations for episodic memory.
This is captured in ‘model-free episodic control’, which relies on
an embedding function to construct the state representation for
episodic memory (Blundell et al., 2016; Pritzel et al., 2017). An
embedding function therefore represents a biologically plausible
method of scaling CTDL up to complex visual problems such as
VizDoom. The embedding function could be pre-trained in an
unsupervised manner or sampled from the DNN component of
CTDL. We leave this interesting avenue of research to future work.

In addition to relatively low complexity, one consistent feature
of the tasks presented in the present study was a low degree
of stochasticity. As with discrete state spaces, low stochasticity
means that events re-occur with high probability and the episodic
component of CTDL can exploit this. It is likely that in more
stochastic environments the benefits of CTDL will be reduced
as the DNN is required to generalize over several outcomes. It
is therefore an open question how well CTDL will perform on
tasks that have a high degree of stochasticity, which are also
supposedly harder for biological agents.

One interesting element of CTDL that was not explored in the
present study was the temporal evolution of pattern-separated
representations in the SOM. Logically as the DNN improves its
ability to evaluate the optimal value function its TD errors should
reduce in magnitude and therefore free up the SOM to represent
other episodic memories. If part of the environment changes then
a new episodic memory will form based on the new TD error and
it will remain in episodic memory until the ‘neocortical’ learning
system has learnt to incorporate it. CTDL therefore suggests that
the transfer of information from the hippocampus to neocortex
is based to the ‘need’ for an episodic memory as encoded by TD
errors. This can be viewed as a form of ‘consolidation’ whereby
memories stored in the hippocampus are consolidated to the
neocortex over time (Olafsdottir et al., 2018).

As a concluding remark, we have only demonstrated the ben-
efits of a ‘hippocampal’ learning system from a purely model-free

perspective. A growing body of research however, is implicat-
ing the hippocampus in what has historically been considered
model-based behaviour. For example, it has been proposed that
the hippocampus encodes a predictive representation of future
state occupancies given the current state of the agent (Stachen-
feld, Botvinick, & Gershman, 2017). This predictive representa-
tion has been termed the Successor Representation (SR), and
has been shown to imbue agents with model-based behaviour
using model-free RL mechanisms in a range of re-evaluation
tasks (Russek, Momennejad, Botvinick, Gershman, & Daw, 2017).
Therefore the inclusion of a ‘hippocampal’ learning system may
have additional benefits above and beyond those demonstrated
by CTDL.

5. Conclusions

Taken together, we believe that our work highlights CTDL as a
promising avenue for achieving complex, human-like behaviour
and exploring RL within the brain. Having a ‘neocortical’ and
‘hippocampal’ learning system operating in parallel conferred a
learning advantage over a single ‘neocortical’ system. This ad-
vantage was attributable to two main properties of CTDL. Firstly,
both the ‘neocortical’ and ‘hippocampal’ system contributed to
the calculation of action values for decision-making, with the
arbitration between the two dependent on the memory content
of the ‘hippocampal’ system. Secondly, the contents of the ‘hip-
pocampal’ system were dynamically updated using the TD error
from the ‘neocortical’ system. This allowed the ‘hippocampal’
system to target regions of the state space that the ‘neocortical’
system was poor at evaluating or that violated generalizations
made by the ‘neocortical’ system.

These key properties of CTDL represent promising avenues
for future research both computationally and empirically. From a
computational perspective, it will be interesting to explore how
embedding functions can be utilized to reflect the fact that the
hippocampus receives latent representations from cortical areas
as input. This may be a key component for scaling up CTDL
to complex problems with high dimensional state spaces. With
respect to future empirical work, CTDL can be used to make
predictions about which tasks should utilize the hippocampus
and which regions of the state space should be encoded by it.
CTDL also predicts that TD errors should promote the formation
of episodic memories in the hippocampus and so we highlight
this as a key area for further investigation and clarification.

Acknowledgements

This work was funded by the UK Biotechnology and Biological
Sciences Research Council (BBSRC). We thank NVIDIA for a hard-
ware grant that provided the Graphics Processing Unit (GPU) used
to run the simulations.

Code

All source code can be found at:
https://github.com/SamBlakeman/CTDL

References

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning
environment : An evaluation platform for general agents. (pp. 253–279).
arXiv 47, arXiv:arXiv:1207.4708v2.

Blundell, C., Pritzel, A., & Rae, J. (2016). Model-free episodic control. arXiv
arXiv:arXiv:1606.04460v1.

Botvinick, M., Ritter, S., Wang, J. X., Kurth-nelson, Z., Blundell, C., & Hassabis, D.
(2019). Reinforcement learning , fast and slow. Trends in Cognitive Sciences,
1–15.

https://github.com/SamBlakeman/CTDL
http://arxiv.org/abs/arXiv:1207.4708v2
http://arxiv.org/abs/arXiv:1606.04460v1
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb3
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb3
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb3
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb3
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb3

230 S. Blakeman and D. Mareschal / Neural Networks 122 (2020) 218–230

Bray, S., & Doherty, J. O. (2007). Neural coding of reward-prediction error signals
during classical conditioning with attractive faces. Journal of Neurophysiology,
97(4), 3036–3045.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et
al. (2016). OpenAI gym. (pp. 1–4). arXiv arXiv:arXiv:1606.01540v1.

Burgess, N., Maguire, E. A., & Keefe, J. O. (2002). The human hippocampus and
spatial and episodic memory. Neuron, 35(4), 625–641.

Doherty, J. P. O., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003).
Temporal difference models and reward-related learning in the human brain.
Neuron, 38(2), 329–337.

Dong, Z., Bai, Y., Wu, X., Li, H., Gong, B., Howland, J. G., et al. (2013).
Neuropharmacology Hippocampal long-term depression mediates spatial
reversal learning in the Morris water maze. Neuropharmacology, 64, 65–73.

François-lavet, V., Henderson, P., Islam, R., Bellemare, M. G., François-lavet, V.,
Pineau, J., et al. (2018). An introduction to deep reinforcement learning. arXiv
arXiv:arXiv:1811.12560v2.

Gershman, S. J., & Daw, N. D. (2017). Reinforcement learning and episodic
memory in humans and animals : An integrative framework. Annual Review
of Psychology, 68, 101–128.

Houk, J. C., Adams, J. L., & Barto, A. G. (1995). A model of how the basal ganglia
generate and use neural signals that predict reinforcement. Computational
Neuroscience. Models of Information Processing in the Basal Ganglia, 249–270.

Johnson, A., & Redish, D. A. (2007). Neural ensembles in CA3 transiently encode
paths forward of the animal at a decision point. Journal of Neuroscience,
27(45), 12176–12189.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., & Ja, W. (2016). ViZDoom : A
doom-based AI research platform for visual reinforcement learning. arXiv
arXiv:arXiv:1605.02097v2.

Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-critic algorithms. Advances in Neural
Information Processing Systems, 10–12, arXiv:1607.07086.

Kumaran, D., Hassabis, D., & McClelland, J. L. (2016). What learning systems do
intelligent agents need? Complementary learning systems theory updated.
Trends in Cognitive Sciences, 20(7), 512–534.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building
machines that learn and think like people. The Behavioral and Brain Sciences,
40.

Lee, D., Seo, H., & Jung, M. W. (2012). Neural basis of reinforcement learning
and decision making. Annual Review of Neuroscience, 35, 287–308.

Mattar, M. G., & Daw, N. D. (2018). Prioritized memory access explains planning
and hippocampal replay. Nature Neuroscience, 21(11), 1609–1617.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there
are complementary learning systems in the hippocampus and neocortex:
Insights from the successes and failures of connectionist models of learning
and memory. Psychological Review, 102(3), 419–457.

Mcclure, S. M., Berns, G. S., & Montague, P. (2003). Temporal prediction errors
in a passive learning task activate human striatum. Neuron, 38(2), 339–346.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., et al.
(2016). Asynchronous methods for deep reinforcement learning. 48, arXiv
arXiv:arXiv:1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et
al. (2015). Human-level control through deep reinforcement learning. Nature,
518, 529–533.

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical
Psychology, 53(3), 139–154.

Olafsdottir, F. H., Bush, D., & Barry, C. (2018). Review the role of hippocampal
replay in memory and planning. Current Biology, 28(1), 37–50.

Pennartz, C. M. A., Ito, R., Verschure, P. F. M. J., Battaglia, F. P., & Robbins, T.
W. (2011). The hippocampal – striatal axis in learning, prediction and
goal-directed behavior. Trends in Neurosciences, 34(10), 548–559.

Pritzel, A., Uria, B., Srinivasan, S., Badia, A. P., Vinyals, O., Hassabis, D., et al.
(2017). Neural episodic control. arXiv arXiv:arXiv:1703.01988v1.

Roesch, M. R., Singh, T., Brown, P. L., Mullins, S. E., & Schoenbaum, G. (2009).
Rats deciding between differently delayed or sized rewards. Journal of
Neuroscience, 29(42), 13365–13376.

Russek, E. M., Momennejad, I., Botvinick, M. M., Gershman, S. J., & Daw, N.
D. (2017). Predictive representations can link model-based reinforcement
learning to model-free mechanisms. PLoS Computational Biology, 13(9),
1–35.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of
Neurophysiology, 80(1), 1–27.

Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues in
Clinical Neuroscience, 18(1), 23–32.

Schultz, W., Apicella, P., Scarnati, E., & Ljungberg, T. (1992). Neuronal activity
in monkey ventral striatum related to the expectation of reward. Journal of
Neuroscience, 12(12), 4595–4610.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction
and reward. Science, 275(5306), 1593–1599.

Setlow, B., Schoenbaum, G., & Gallagher, M. (2003). Neural encoding in
ventral striatum during olfactory discrimination learning. Neuron, 38(4),
625–636.

Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus
as a predictive map. Nature Neuroscience, 20(11), 1643–1653.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (p. 1).
Cambridge: MIT press.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation richard.
Advances in Neural Information Processing Systems, 12, 1057–1063, arXiv:
1706.06643.

Vila-Ballo, A., Mas-Herrero, E., Ripolles, P., Simo, M., Miro, J., Cucurell, D., et al.
(2017). Unraveling the role of the hippocampus in reversal learning. Journal
of Neuroscience, 37(28), 6686–6697.

http://refhub.elsevier.com/S0893-6080(19)30333-8/sb4
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb4
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb4
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb4
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb4
http://arxiv.org/abs/arXiv:1606.01540v1
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb6
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb6
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb6
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb7
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb7
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb7
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb7
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb7
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb8
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb8
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb8
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb8
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb8
http://arxiv.org/abs/arXiv:1811.12560v2
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb10
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb10
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb10
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb10
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb10
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb11
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb11
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb11
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb11
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb11
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb12
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb12
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb12
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb12
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb12
http://arxiv.org/abs/arXiv:1605.02097v2
http://arxiv.org/abs/1607.07086
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb15
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb15
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb15
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb15
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb15
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb16
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb16
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb16
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb16
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb16
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb17
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb17
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb17
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb18
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb18
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb18
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb19
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb19
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb19
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb19
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb19
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb19
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb19
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb20
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb20
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb20
http://arxiv.org/abs/arXiv:1602.01783
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb22
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb22
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb22
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb22
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb22
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb23
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb23
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb23
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb24
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb24
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb24
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb25
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb25
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb25
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb25
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb25
http://arxiv.org/abs/arXiv:1703.01988v1
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb27
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb27
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb27
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb27
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb27
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb28
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb28
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb28
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb28
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb28
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb28
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb28
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb29
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb29
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb29
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb30
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb30
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb30
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb31
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb31
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb31
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb31
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb31
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb32
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb32
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb32
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb33
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb33
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb33
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb33
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb33
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb34
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb34
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb34
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb35
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb35
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb35
http://arxiv.org/abs/1706.06643
http://arxiv.org/abs/1706.06643
http://arxiv.org/abs/1706.06643
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb37
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb37
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb37
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb37
http://refhub.elsevier.com/S0893-6080(19)30333-8/sb37

	A complementary learning systems approach to temporal difference learning
	Introduction
	Methods
	The reinforcement learning problem
	Complementary Temporal Difference Learning (CTDL)
	Simulated environments
	Grid world task
	Cart–Pole
	Continuous mountain car

	Results
	Discussion
	Conclusions
	Acknowledgements
	Code
	References

