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Abstract

Given recent requirements for ensuring the robustness of algorithmic trading strategies laid
out in the Markets in Financial Instruments Directive II, this paper proposes a novel agent-
based simulation for exploring algorithmic trading strategies. Five different types of agents
are present in the market. The statistical properties of the simulated market are compared
with equity market depth data from the Chi-X exchange and found to be significantly similar.
The model is able to reproduce a number of stylised market properties including: clustered
volatility, autocorrelation of returns, long memory in order flow, concave price impact and
the presence of extreme price events. The results are found to be insensitive to reasonable
parameter variations.

Keywords Agent-based model - MIFiD II - Limit order book - Stylised facts - Algorithmic
trading

1 Introduction

Over the last three decades, there has been a significant change in the financial trading
ecosystem. Markets have transformed from exclusively human-driven systems to predomi-
nantly computer driven. These machine driven markets have laid the foundations for a new
breed to trader: the algorithm. According to Angel et al. (2010), algorithmically generated
orders are now thought to account for over 80% of volume traded on US equity markets, with
figures continuing to rise.

The rise of algorithmic trading has not been a smooth one. Since its introduction, recurring
periods of high volatility and extreme stock price behaviour have plagued the markets. The
SEC and CFTC (2010) report, among others, has linked such periods to trading algorithms,
and their frequent occurrence has undermined investors confidence in the current market
structure and regulation. Indeed, Johnson et al. (2013) reports that so called extreme price
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movement Flash Crashes are becoming ever more frequent with over 18,000 of them occurring
between 2006 and 2011 in various stocks.

Thus, in this paper, we describe for the first time an agent-based simulation environment
that is realistic and robust enough for the analysis of algorithmic trading strategies. In detail,
we describe an agent-based market simulation that centres around a fully functioning limit
order book (LOB) and populations of agents that represent common market behaviours and
strategies: market makers, fundamental traders, high-frequency momentum traders, high-
frequency mean reversion traders and noise traders.

The model described in this paper includes agents that operate on different timescales
and whose strategic behaviours depend on other market participants. The decoupling of
actions across timescales combined with dynamic behaviour of agents is lacking from pre-
vious models and is essential in dictating the more complex patterns seen in high-frequency
order-driven markets. Consequently, this paper presents a model that represents a richer set
of trading behaviours and is able to replicate more of the empirically observed empirical reg-
ularities than any other paper. Such abilities provide a crucial step towards a viable platform
for the testing of trading algorithms as outlined in MiFID II.

We compare the output of our model to depth-of-book market data from the Chi-X equity
exchange and find that our model accurately reproduces empirically observed values for:
autocorrelation of price returns, volatility clustering, kurtosis, the variance of price return
and order-sign time series and the price impact function of individual orders. Interestingly,
we find that, in certain proportions, the presence of high-frequency trading agents gives rise
to the occurrence of extreme price events. We asses the sensitivity of the model to parameter
variation and find the proportion of high-frequency strategies in the market to have the largest
influence on market dynamics.

This paper is structured as follows: Sect. 2 gives a background on the need for increased
regulation and the rise of MiFID II. Section 3 gives an overview of the relevant literature
while Sect. 4 provides a description of the model structure and agent behaviours in detail.
In Sect. 5 the results are summarised while Sect. 6 gives concluding remarks and discusses
potential future work.

2 The need for improved oversight and the scope of MiFID Il

One of the more well known incidents of market turbulence is the extreme price spike of the
6th May 2010. At 14:32, began a trillion dollar stock market crash that lasted for a period
of only 36 min (Kirilenko et al. 2014). Particularly shocking was not the large intra-day
loss but the sudden rebound of most securities to near their original values. This breakdown
resulted in the second-largest intraday point swing ever witnessed, at 1010.14 points. Only
2 weeks after the crash, the SEC and CFTC released a joint report that did little but quash
rumours of terrorist involvement. During the months that followed, there was a great deal of
speculation about the events on May 6th with the identification of a cause made particularly
difficult by the increased number of exchanges, use of algorithmic trading systems and speed
of trading. Finally, the SEC and CFTC released their report on September 30th concluding
that the event was initiated by a single algorithmic order that executed a large sale of futures
contracts in an extraordinarily short amount of time from fund management firm Waddell
and Reed (W&R) (SEC 2010).

The report was met with mixed responses and a number of academics have expressed
disagreement with the SEC report. Menkveld and Yueshen (2013) analysed W&Rs orderflow

@ Springer



Annals of Operations Research (2019) 282:217-244 219

and identified an alternative narrative. They did not conclude that the crash was simply the
price W&R were required to take for demanding immediacy in the S&P. Instead, they found
that cross-market arbitrage, which provided e-mini sellers with increased liquidity from S&P
buyers in other markets, broke down minutes before the crash. As a result of the breakdown,
W&R were forced to find buyers only in E-mini and so they decelerated their selling. An
extreme response (in terms of price and selling behaviour) then resulted in W&R paying a
disproportionately high price for demanding liquidity.

Easley and Prado (2011) show that major liquidity issues were percolating over the days
that preceded the price spike. They note that immediately prior to the large W&R trade,
volume was high and liquidity was low. Using a technique developed in previous research
(Easley et al. 2010), they suggest that, during the period in question, order flow was becoming
increasingly toxic. They go on to demonstrate how, in a high-frequency world, such toxicity
may cause market makers to exit - sowing the seeds for episodic liquidity. Of particular note,
the authors express their concern that an anomaly like this is highly likely to occur, once
again, in the future.

Another infamous crash occurred on the 23rd March 2012 during the IPO of a firm called
BATS. The stock began trading at 11:14 a.m. with an initial price of $15.25. Within 900 ms of
opening, the stock price had fallen to $0.28 and within 1.5 s, the price bottomed at $0.0007.
Yet another technological incident was witnessed when, on the 1st August 2012, the new
market-making system of Knight Capital was deployed. Knight Capital was a world leader
in automated market making and a vocal advocate of automated trading. The error occurred
when testing software was released alongside the final market-making software. According
to the official statement of Knight Capital Group (2012):

Knight experienced a technology issue at the open of trading...this issue was related
to Knights installation of trading software and resulted in Knight sending numerous
erroneous orders in NYSE-listed securities...which has resulted in a realised pre-tax
loss of approximately 440 million [dollars].

This 30 min of bogus trading brought an end to Knights 17 year existence, with the firm
subsequently merging with a rival.

The all-too-common extreme price spikes are a dramatic consequence of the growing
complexity of modern financial markets and have not gone unnoticed by the regulators. In
November 2011, the European Union (2011) made proposals for a revision of the Markets in
Financial Instruments Directive (MiFID). Although this directive only governs the European
markets, according to the World Bank (2012) (in terms of market capitalisation), the EU
represents a market around two thirds of the size of the US. In the face of declining investor
confidence and rapidly changing markets, a draft of MiFID II was produced. After nearly
three years of debate, on the 14th January 2014, the European Parliament and the Council
reached an agreement on the updated rules for MiFID II, with a clear focus on transparency
and the regulation of automated trading systems (European Union 2014).

MiFID II came to be as a result of increasing fears that algorithmic trading had the potential
to cause market distortion over unprecedented timescales. Particularly, there were concerns
over increased volatility, high cancellation rates and the ability of algorithmic systems to
withdraw liquidity at any time. Thus, MiFID II introduces tighter regulation over algorithmic
trading, imposing specific and detailed requirements over those that operate such strategies.
This increased oversight requires clear definitions of the strategies under regulation.

MiFID II defines algorithmic trading as the use of computer algorithms to automatically
determine the parameters of orders, including: trade initiation, timing, price and modifica-
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tion/cancellation of orders, with no human intervention. This definition specifically excludes
any systems that only deal with order routing, order processing, or post trade processing
where no determination of parameters is involved.

The level of automation of algorithmic trading strategies varies greatly. Brokers and large
sell side institutions tend to focus on optimal execution, where the aim of the algorithmic
trading is to minimise the market impact of orders. These algorithms focus on order slic-
ing and timing. Other institutions, often quantitative buy-side firms, attempt to automate
the entire trading process. These algorithms may have full discretion regarding their trading
positions and encapsulate: price modelling and prediction to determine trade direction, initi-
ation, closeout and monitoring of portfolio risk. This type of trading tends to occur via direct
market access (DMA) or sponsored access.

Under MIFID II, HFT is considered as a subset of algorithmic trading. The European
Commission defines HFT as any computerised technique that executes large numbers of
transactions in fractions of a second using:

— Infrastructure designed for minimising latencies, such as proximity hosting, collocation
or DMA.

— Systematic determination of trade initiation, closeout or routing with-out any human
intervention for individual orders; and

— High intra-day message rates due to volumes of orders, quotes or cancellations.

Specifically, MiFID II introduces rules on algorithmic trading in financial instruments.
Any firm participating in algorithmic trading is required to ensure it has effective controls in
place, such as circuit breakers to halt trading if price volatility becomes too high. Also, any
algorithms used must be tested and authorised by regulators. We find the last requirement
particularly interesting as MiFID II is not specific about how algorithmic trading strategies
are to be tested.

Given the clear need for robust methods for testing these strategies in such a new, relatively
ill-explored and data-rich complex system, an agent-oriented approach, with its emphasis on
autonomous actions and interactions, is an ideal approach for addressing questions of stability
and robustness.

3 Background and related work

This section begins by exploring the literature on the various universal statistical properties
(or stylised facts) associated with financial markets. Next, modelling techniques from the
market microstructure literature are explored before discussing the current state of the art in
agent-based modelling of financial markets.

3.1 The statistical properties of limit order markets

The empirical literature on LOBs is very large and several non-trivial regularities, so-called
stylised facts, have been observed across different asset classes, exchanges, levels of liquidity
and markets. These stylised facts are particularly useful as indicators of the validity of a
model (Buchanan 2012). For example, Lo and MacKinlay (2001) show the persistence of
volatility clustering across markets and asset classes, which disappears with a simple random
walk model for the evolution of price time series, as clustered volatility suggests that large
variation in price are more like to follow other large variations.
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3.1.1 Fat-tailed distribution of returns

Across all timescales, distributions of price returns have been found to have positive kurto-
sis, that is to say they are fat-tailed. An understanding of positively kurtotic distribution is
paramount for trading and risk management as large price movements are more likely than
in commonly assumed normal distributions.

Fat tails have been observed in the returns distributions of many markets including: the
American Stock Exchange, Euronext, the LSE, NASDAQ), and the Shenzhen Stock Exchange
(see Cont 2001; Plerou and Stanley 2008; Chakraborti et al. 2011) but the precise form of
the distribution varies with the timescale used. Gu et al. (2008) found that across various
markets, the tails of the distribution at very short timescales are well-approximated by a
power law with exponent o« =~ 3. Drozdz et al. (2007) found tails to be less heavy (@ > 3) in
high-frequency data for various indices from 2004 to 2006, suggesting that the specific form
of the stylised facts may have evolved over time with trading behaviours and technology.
Both Gopikrishnan et al. (1998) and Cont (2001) have found that at longer timescales, returns
distributions become increasingly similar to the standard normal distribution.

3.1.2 Volatility clustering

Volatility clustering refers to the long memory of absolute or square mid-price returns and
means that large changes in price tend to follow other large price changes. Cont (2001), and
Stanley et al. (2008) found this long memory phenomenon to exist on timescales of weeks
and months while its existence has been documented across a number of markets, including:
the NYSE, Paris Bourse, S&P 500 index futures and the USD/JPY currency pair (Cont 2005;
Gu and Zhou 2009; Chakraborti et al. 2011). Lillo and Farmer (2004) formalise the concept
as follows. Let X = X(#1), X(©2), ..., X(#) denote a real-valued, wide-sense stationary
time series. Then, we can characterise long memory using the diffusion properties of the
integrated series Y':

1
V()= X(t) (1)
i=1

A stationary process Y; (with finite variance) is then said to have long range dependence
if its autocorrelation function, C(l) = corr(Y;, Yi4+.), decays as a power of the lag:

C) =corr(Yy, Yiye) ~ TH ()
T—inf
for some H € (0.5, 1). The exponent H is known as the Hurst exponent.

In the empirical research studies outlined above, the values of the Hurst exponent varied
from H ~ 0.58 on the Shenzhen Stock Exchange to H = 0.815 for the USD/JPY currency
pair. There are a number of potential explanations for volatility clustering and Bouchaud
et al. (2009) suggest the arrival of news and the splicing of large orders by traders.

3.1.3 Autocorrelation of returns

Stanley et al. (2008) and Chakraborti et al. (2011) observed that, across a number of markets,
returns series lacked significant autocorrelation, except for weak, negative autocorrelation
on very short timescales. This includes: Euronext, FX markets, the NYSE and the S&P500
index (Chakraborti et al. 2011; At-Sahalia et al. 2011). Cont (2001) explains the absence
of strong autocorrelations by proposing that, if returns were correlated, traders would use
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simple strategies to exploit the autocorrelation and generate profit. Such actions would, in turn,
reduce the autocorrelation such that the autocorrelation would no longer remain. Evidence
suggests that the small but significant negative autocorrelation found on short time-scales has
disappeared more quickly in recent years, perhaps an artefact of the new financial ecosystem.
Bouchaud and Potters (2003) report that from 1991 to 1995, negative autocorrelation persisted
on timescales of up to 20-30 min but no longer for the GBP/USD currency pair. Moreover,
Cont et al. (2013), discovered no significant autocorrelation for timescales of over 20 s in the
NYSE during 2010.

3.1.4 Long memory in order flow

The probability of observing a given type of order in the future is positively correlated with its
empirical frequency in the past. In fact, analysis of the time series generated by assigning the
value + 1 to incoming buy orders and — 1 to incoming sell orders has been shown to display
long memory on the NYSE, the Paris Bourse and the Shenzhen stock Exchange (Gu and
Zhou 2009). Study of the LSE has been particularly active, with a number of reports finding
similar results for limit order arrivals, market order arrivals and order cancellations, while
Axioglou and Skouras (2011) suggest that the long memory reported by Lillo and Farmer
(2004) was simply an artefact caused by market participants changing trading strategies each
day.

3.1.5 Long memory in returns

The long memory in order flow discussed above has lead some to expect long memory in
return series, yet has not been found to be the case. Studies on the Deutsche Bourse, the LSE
and on the Paris Bourse have all reported Hurst exponents of around 0.5, i.e. no long memory
(Carbone et al. 2004; Lillo and Farmer 2004). Bouchaud et al. (2004) have suggested that this
may be due to the long memory of market orders being negatively correlated with the long
memory of price changes caused by the long memory of limit order arrival and cancellation.

3.1.6 Price impact

The changes in best quoted prices that occur as a result of a trader’s actions is termed the price
impact. The importance of monitoring and minimising price impact precedes the extensive
adoption of electronic order driven markets. This paper will specifically focus on the impact
of single transactions in limit order markets (as opposed to the impact of a large parent order)
with volume v.

A Great deal of research has investigated the impact of individual orders, and has conclu-
sively found that impact follows a concave function of volume. That is, the impact increases
more quickly with changes at small volumes and less quickly at larger volumes. However, the
detailed functional form has been contested and varies across markets and market protocols
(order priority, tick size, etc.).

Some of the earliest literature found strongly concave functions though did not attempt to
identify a functional form (Hasbrouck 1991; Hausman et al. 1992). In a study of the NYSE,
Lillo et al. (2003) analysed the stocks of 1000 companies and divided them into groups
according to their market capitalisation. Fitting a price impact curve to each group, they
found that the curves could be collapsed into a single function that followed a power law
distribution of the following form:
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_n’
Y

where A p is the change in the mid-price caused by a traders action, v is the volume of the
trade, n takes the value 1 in the event of a sell and + 1 in the event of a buy and A allows
for adjustment for market capitalisation. They found the exponent 8 to be approximately 0.5
for small volumes and 0.2 for large volumes. After normalising for daily volumes, A was
found to vary significantly across stocks with a clear dependence on market capitalisation M
approximated by M =~ A%, with § in the region of 0.4.

Good approximations of the value for the exponent 8 have also been found by Lillo and
Farmer (2004) on the London Stock Exchange and Hopman (2007) on the Paris Bourse to
fall in the range 0.3-0.4. Consequently, all explorations have identified strongly concave
impact functions for individual orders but find slight variations in functional form owing to
differences in market protocols.

Ap 3)

3.1.7 Extreme price events

Though the fat-tailed distribution of returns and the high probability of large price movements
has been observed across financial markets for many years (as documented in Sect. 3.1.1),
the new technology-driven marketplace has introduced a particularly extreme kind of price
event.

Since the introduction of automated and algorithmic trading, recurring periods of high
volatility and extreme stock price behaviour have plagued the markets. Johnson et al. (2013)
define these so called price spikes as an occurrence of a stock price ticking down [up] at least
ten times before ticking up [down] and with a price change exceeding 0.8% of the initial
price. Remarkably, they found 18,520 crashes and spikes with durations less than 1500 ms
to have occurred between January 3rd 2006 and February 3rd 2011 in various stocks. One of
the many aims of recent regulation such as MiFID II and the DoddFrank Wall Street Reform
and Consumer Protection Act is to curtail such extreme price events.

3.2 Modelling limit order books

The financial community has expressed an active interest in developing models of LOB mar-
kets that are realistic, practical and tractable (see Predoiu et al. 2011; Obizhaeva and Wang
2013). The literature on this topic is divided into four main streams: theoretical equilibrium
models from financial economics, statistical order book models from econophysics, stochas-
tic models from the mathematical finance community, and agent-based models (ABMs) from
complexity science. Each of these methodologies is described below with a detailed discus-
sion of ABMs in Sect. 3.3.

Financial economics models tend to be built upon the idea of liquidity being consumed
during a trade and then replenished as liquidity providers try to benefit. Foucault et al. (2005)
and Goettler et al. (2005), for example, describe theoretical models of LOB markets with finite
levels of resilience in equilibrium that depend mainly on the characteristics of the market
participants. In these models, the level of resilience reflects the volume of hidden liquidity.
Many models are partial equilibrium in nature. taking the dynamics of the limit order book
as given. For example, Predoiu et al. (2011) provide a framework that allows discrete orders
and more general dynamics, while Alfinsi et al. (2010) implement general but continuous
limit order books. In order to operate in a full equilibrium setting, models have to heavily
limit the set of possible order-placement strategies. Rosu (2009), for example, allows only
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orders of a given size, while Goettler et al. (2005) only explore single-shot strategies. Though
these simplifications enable the models to more precisely describe the tradeoffs presented by
market participants, it comes at the cost of unrealistic assumptions and simplified settings.
It is rarely possible to estimate the parameters of these models from real data and their
practical applicability is limited (Farmer and Foley 2009). Descriptive statistical models, on
the other hand, tend to fit the data well but often lack economic rigour and typically involve
the tuning of a number of free parameters (Cont et al. 2010). Consequently, their practicability
is questioned.

Stochastic order book models attempt to balance descriptive power and analytical tractabil-
ity. Such models are distinguished by their representation of aggregate order flows by a
random process, commonly a Poisson process (as in Farmer et al. 2005; Cont et al. 2010).
Unfortunately, the high level statistical description of participant behaviour inherent in
stochastic order book models ignores important complex interactions between market partic-
ipants and fails to explain many phenomena that arise (Johnson et al. 2013). As such, a richer
bottom-up modelling approach is needed to enable the further exploration and understanding
of limit order markets.

3.3 Agent-based models

Grimm et al. (2006) provides a simple yet adept definition of ABMs as models in which a
number of heterogeneous agents interact with each other and their environment in a particular
way. One of the key advantages of ABMs, compared to the aforementioned modelling meth-
ods, is their ability to model heterogeneity of agents. Moreover, ABMs can provide insight
into not just the behaviour of individual agents but also the aggregate effects that emerge from
the interactions of all agents. This type of modelling lends itself perfectly to capturing the
complex phenomena often found in financial systems and, consequently, has led to a number
of prominent models that have proven themselves incredibly useful in understanding, e.g.
the interactions between trading algorithms and human traders (De Luca and Cliff 2011),
empirical regularities in the inter-bank foreign exchange market Chakrabarti (2000), the links
between leveraged investment and bubbles/crashes in financial markets (Thurner et al. 2012),
and the complexities of systemic risk in the wider economy (Geanakoplos et al. 2012).

The effectiveness of ABMs has also been demonstrated with LOBs. The first ABMs of
LOBs assume the sequential arrival of agents and the emptying of the LOB after each time
step (see e.g. Foucault 1999). Unfortunately, Smith et al. (2003) notes that approaches such as
this fail to appreciate the function of the LOB to store liquidity for future consumption. More
recently, ABMs have begun to closely mimic true order books and successfully reproduce a
number of the statistical features described in Sect. 3.

To this end, Cont and Bouchaud (2000) demonstrate that in a simplified market where
trading agents imitate each other, the resultant returns series fits a fat-tailed distribution and
exhibits clustered volatility. Furthermore, Chiarella and lori (2002) describe a model in which
agents share a common valuation for the asset traded in a LOB. They find that the volatility
produced in their model is far lower than is found in the real world and there is no volatility
clustering. They thus suggest that significant heterogeneity is required for the properties of
volatility to emerge.

Additionally, Challet and Stinchcombe (2003) note that most LOB mod-els assume that
trader parameters remain constant through time and explore how varying such parameters
through time affected the price time series. They find that time dependence results in the
emergence of autocorrelated mid-price returns, volatility clustering and the fat-tailed distri-
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bution of mid-price changes and they suggest that many empirical regularities might be a
result of traders modifying their actions through time.

Correspondingly, Preis et al. (2006) reproduced the main findings of the state-of-the-art
stochastic models using an ABM rather than and independent Poisson process, while Preis
et al. (2007) digs deeper and explores the effects of individual agents in the model. They
found that the Hurst expo-nent of the mid-price return series depends strongly on the relative
numbers of agent types in the model.

In similar vein, Mastromatteo et al. (2014) use adynamical-systems / agent-based approach
to understand the non-additive, square-root dependence of the impact of meta-orders in
financial markets. Their model finds that this function is independent of epoch, microstructure
and execution style. Although their study lends strong support to the idea that the square-
root impact function is both highly generic and robust, Johnson et al. (2013) notes that it
is somewhat specialised and lacks some of the important agent-agent interactions that give
rise to crashes that spikes and crashes in price that have been seen to regularly occur in LOB
markets.

Similarly, Oesch (2014) describes an ABM that highlights the importance of the long
memory of order flow and the selective liquidity behaviour of agents in replicating the concave
price impact function of order sizes. Although the model is able to replicate the existence
of temporary and permanent price impact, its use as an environment for developing and
testing trade execution strategies is limited. In its current form, the model lacks agents whose
strategic behaviours depend on other market participants.

Though each of the models described above are able to replicate or explain one or two of
the stylised facts reported in Sect. 3.1, no one model exists that demonstrates all empirically
observed regularities a clear requirement of a model intended for real-world validation.
Also, no paper has yet presented agents that are operate on varying timescales. Against this
background, we propose a novel modelling environment that includes a number of agents
with strategic behaviours that act on differing timescales as it is these features, we believe,
that are essential in dictating the more complex patterns seen in high-frequency order-driven
markets.

4 The model

This paper describes amodel ! that implements a fully functioning limit order book as used in
most electronic financial markets. By following the principle of Occam’s razor, “the simplest
explanation is more likely the correct one”, we consider a limited set of parameters that would
show a possible path of the system dynamics. The main objective of the proposed agent based
model is to identify the emerging patterns due to the complex/complicated interactions within
the market. We consider five categories of traders (simplest explanation of the market ecology)
which enables us to credibly mimic (including extreme price changes) price patterns in the
market. The model is stated in pseudo-continuous time. That is, a simulated day is divided
into 7" = 300,000 periods (approximately the number of 10ths of a second in an 8.5 h trading
day) and during each period there is a possibility for each agent to act a close approximation

! Note that the financial markets evolved from concentrated markets to fragmented Multilateral Trading
Facilities (MTFs). Recent studies by Upson and Ness (2017), Thierry and Albert (2014) and Félez-Vifias (2018)
verify that the market fragmentation is not the root cause for market instability and moreover, fragmentation
is associated with improved market liquidity. As there is no evidence that fragmentation is a likely cause of
extreme price spikes and the complexity introduced by including market fragmentation would make it harder
to find a stable viable agent based model, we consider only a concentrated single market in our model.
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to reality. The model comprises of 5 agent types: Market makers, liquidity consumers, mean
reversion traders, momentum traders and noise traders that are each presented in detail later
in this section.

To replicate the mismatch in the timescales upon which market participants can act [as
highlighted by Johnson et al. (2013)], during each period every agent is given the opportunity
to act based on probability, §;, that is determined by their type, , (market maker, trend
follower, etc.). In more detail, to represent a high-frequency trader’s ability to react more
quickly to market events than, say, a long term fundamental investor, we assigned a higher
delta providing a higher chance of being chosen to act. Importantly, when chosen, agents
are not required to act. This facet allows agents to vary their activity through time and in
response the market, as with real-world market participants. A more formal treatment of the
simulation logic is presented in Algorithm 1:

Algorithm 1 Simulation logic.
I: fort =0to T do

2:  for all agents do

3: if rand() < §; then

4: Agent may submit, modify or cancel an order or do nothing.
5: end if

6: All agents update their internal states.

7:  end for

8: end for

The probability of a member of each agent group acting is denoted §,,,,,, for market makers,
31 for liquidity consumers, &, for mean reversion traders, §,,; for momentum traders and
8y for noise traders. Upon being chosen to act, if an agent wishes to submit an order, it
will communicate an order type, volume and price determined by that agent’s internal logic.
The order is then submitted to the LOB where it is matched using price-time priority. If no
match occurs then the order is stored in the book until it is later filled or canceled by the
originating trader. Such a model conforms to the adaptive market hypothesis proposed by Lo
(2004) as the market dynamics emerge from the interactions of a number of species of agents
adapting to a changing environment using simple heuristics. Although the model contains
a fair number of free parameters, those parameters are determined through experiment (see
Sect. 5.1) and found to be relatively insensitive to reasonable variation. Below we define the
5 agent types.

As mentioned above, MiFID II characterises HFT as transactions executing in fractions
of a second. Since the model considers that the minimum possible time for execution of
transactions is approximately %th of a second, the artificial market with the agents rep-
resents HFT environment. The market ecology of traders is described by the participating
agents types, with the trading speed of the individual agent being determined by that agent’s
action probability ;. We set the parametric values for 6, such that the artificial market sum-
mary statistics most closely resembles those of the real market. For example, in Sect. 5, we
identify the required action probabilities in order to calibrate the agent based models are
Smm = 0.1, 68, = 0.1, 8, = 0.4, 86, = 0.4,35,; = 0.75. One can see that the chances of
participation of the noise traders at each and every tick of the market is high which means
that noise traders are very high frequency traders. Similarly, the trading speed of the traders
from the other categories can be verified. Lower action probabilities correspond to slower
the trading speeds.
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4.1 Market makers

Market makers represent market participants who attempt to earn the spread by supplying
liquidity on both sides of the LOB. In traditional markets, market makers were appointed but
in modern electronic exchanges any agent is able to follow such a strategy.> These agents
simultaneously post an order on each side of the book, maintaining an approximately neutral
position throughout the day. They make their income from the difference between their bids
and oers. If one or both limit orders is executed, it will be replaced by a new one the next
time the market maker is chosen to trade. In this paper we implement an intentionally simple
market making strategy based on the liquidity provider strategy described by Oesch (2014).
Each round, the market maker generates a prediction for the sign of the next period’s order
using a simple w period rolling-mean estimate. When a market maker predicts that a buy
order will arrive next, she will set her sell limit order volume to a uniformly distributed
random number between v;,;, and vy, and her buy limit order volume to v™. An algorithm
describing the market makers logic is given in Algorithm 2.

Algorithm 2 Market Maker logic.

1: if rand() < 8, then

Cancel any existing orders

if predicts next order is buy then
Submit sell at best price with volume = U (Vyiy, Vmax)
Submit buy at best price with volume = v~

else
Submit buy at best price with volume = U (vyiy» Unax)
Submit sell at best price with volume = v~

end if

10: end if

11: Update buy/sell prediction with w-period rolling mean

VRN p 2N

4.2 Liquidity consumers

Liquidity consumers represent large slower moving funds that make long term trading deci-
sions based on the rebalancing of portfolios. In real world markets, these are likely to be large
institutional investors. These agents are either buying or selling a large order of stock over
the course of a day for which they hope to minimise price impact and trading costs. Whether
these agents are buying or selling is assigned with equal probability. The initial volume A
of a large order is drawn from a uniform distribution between %,,;,, and &,y . To execute the
large order, a liquidity consumer agent looks at the current volume available at the opposite
best price, @;. If the remaining volume of his large order, 4, is less than @; the agent sets this
periods volume to v, = h;, otherwise he takes all available volume at the best price, v; = &;.
For simplicity liquidity consumers only utilise market orders. An algorithm describing the
Liquidity Consumer’s logic is given in Algorithm 3.

2 Although, at present, any player in a LOB may follow a market making strategy, MIFiD Il is likely to require
all participants that wish to operate such a strategy to register as a market maker. This will require them to
continually provide liquidity at the best prices no matter what.

@ Springer



228 Annals of Operations Research (2019) 282:217-244

Algorithm 3 Liquidity Consumer logic.
1: if Start of day then

2:  if rand() < 0.5 then

3: Buying

4:  else

5: Selling

6:  endif

7:  Initial order volume, ho = U (hyin, hinax)
8: end if

9: if rand() < §;. then
10: if h; < @; then

11: Submit market order with volume v; = h;
12:  else

13: Submit market order with volume v; = ®;
14:  endif

15: end if

16: ]’l[ = hf — U

4.3 Momentum traders

This group of agents represents the first of two high frequency traders. This set of agents
invest based on the belief that price changes have inertia a strategy known to be widely used
(Keim and Madhavan 1995). A momentum strategy involves taking a long position when
prices have been recently rising, and a short position when they have recently been falling.
Specifically, we implement simple momentum trading agents that rely on calculating a rate
of change (ROC) to detect momentum, given by:

roc; = Pt — P(t—n,) 4)

p (t—ny)
When roc; is greater than some threshold « the momentum trader enters buy market orders

of a value proportional to the strength of the momentum. That is, the volume of the market
order will be:

vy = [roc; | * Wg ©)

where W, ; is the wealth of agent a at time #. A complete description of the momentum
trader’s logic is given in Algorithm 4.

Algorithm 4 Momentum Trader logic.

1: if rand() < & then
2: if roc; > k then
3 Submit buy market order with v; = |roc;| % Wy ;
4 else if roc; < —« then

5: Submit sell market order with v; = |roc;| * Wy ¢
6:  endif
7:

8:

end if
Update ROC using Equation 4
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4.4 Mean reversion traders

The second group of high-frequency agents are the mean-reversion traders. Again, this is
a well documented strategy (Serban 2010) in which traders believe that asset prices tend
to revert towards their a historical average (though this may be a very short term average).
They attempt to generate profit by taking long positions when the market price is below the
historical average price, and short positions when it is above. Specifically, we define agents
that, when chosen to trade, compare the current price to an exponential moving average of
the asset price, ema,, at time ¢ calculated as:

ema; = emag—1) + a(pr — ema(,_l)) 6)

where p; is the price at time ¢ and « is a discount factor that adjust the recency bias. If the
current price, py, is k standard deviations above ema; the agent enters a sell limit order at a
single tick size improvement of the best price offer, and if it is k standard deviations below
then he enters a buy. The volume of a mean reversion trader’s order is denoted by v;,-. An
algorithm describing the mean reversion traders logic is given in Algorithm 5.

Algorithm 5 Mean Reversion Trader logic.

1: if rand() < &, then

2 if p; — ema; > ko; then

3 Submit sell limit just inside best ask with v; = vy
4 else if ema; — p; > ko; then

5: Submit buy limit just inside best bid with v; = vy
6

7

8

end if
: end if
: Update ema; using Equation 6

4.5 Noise traders

These agents are defined so as to capture all other market activity and are modelled very
closely to Cui and Brabazon (2012). There parameters are fitted using empirical order prob-
abilities. The noise traders are randomly assigned whether to submit a buy or sell order in
each period with equal probability. Once assigned, they then randomly place either a mar-
ket or limit order or cancel an existing order according to the probabilities A,,, A; and A,
respectively.
When submitting an order, the size of that order, v;, is drawn from a log-normal distribution
described by:
vy = exp( + ouy) @)

where 1 and o represent the mean and standard deviation of the v;s natural logarithm and
Uy is a uniformly distributed random variable between 0 and 1. If a limit order is required
the noise trader faces four further possibilities:

— With probability A the agent crosses the spread and places a limit order at the opposing
best ensuring immediate (but potentially partial) order fulfillment. If the order is not
completely filled, it will remain in the order book.

— With probability Ainsp: the agent places a limit order at a price within the bid and ask
spread, pinspr, that is uniformly distributed between the best bid and ask.
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— With probability Ly, the agent places a limit order at the best price available on their side
of the book.

— With probability Aoftspr the agent will place a limit order deeper in the book, at a price,
Doffspr» distributed with the power law:

1
Xminoffspr * (1 —ug) P77 ®)

where u( is a uniformly distributed random variable between 0 and 1 while xmingtspr
and B are parameters of the power law that are fitted to empirical data.

The sum of these probabilities must equal one (Acrs + Ainspr + Aspr + Aospr = 1). To
prevent spurious price processes, noise traders market orders are limited in volume such that
they cannot consume more than half of the total opposing side’s available volume. Another
restriction is that noise traders will make sure that no side of the order book is empty and
place limit orders appropriately. The full noise trader logic is described in Algorithm 6.

Algorithm 6 Noise Trader logic.
1: if rand() < &,,; then

2: if rand() < 0.5 then

3: Selling

4:  else

S: Buying

6:  endif

7 Generate U (0, 1) to determine action, A, A; and Ac.

8:  switch action do

9: case Submit Market Order

10: Submit market order with volume calculated by Equation 7

11: case Submit Limit Order

12: Generate U (0, 1) for action, Acrs, Ainsprs Aspr and Aospr

13: switch Limit Order do

14: case Crossing limit order

15: Submit limit order at opposing best price using Equation 7
16: case Inside spread limit order

17: Generate a random value, pingpr = U(BestBid, Best Ask)
18: Submit limit order at price pinspr using Equation 7

19: case Spread limit order

20: Submit limit order at the best price using Equation 7

21: case Off-spread limit order

22: Generate a random value, poffspr using Equation 8

23: Submit order at a price pofspr outside of spread using Equation 7.
24: case Cancel Limit Order

25: Cancel the oldest order previously submitted.

26: end if

We believe that our range of 5 types of market participant reflects a more realistically
diverse market ecology than is normally considered in models of financial markets. Some
traders in our model are uninformed and their noise trades only ever contribute random
perturbations to the price path. While other trader types are informed, it would be unrealistic
to think that that these could monitor the market and exploit anomalies in an unperturbed way.
In reality, there are always time lags between observation and consequent action between
capturing market data, deducing an opportunity, and implementing a trade to exploit it.
These time gaps may persist for only a few milliseconds but in todays most liquid assets,
many quotes, cancellations and trades can occur in a few milliseconds. Even in such small
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time intervals, a sea of different informed and uninformed traders compete with each other.
Among the informed traders, some perceived trading opportunities will be based on analysis
of long-horizon returns, while others will come into focus only when looking at short-term
return horizons. Traders will possess differing amounts of information, and some will make
cognitive errors or omissions. The upshot of all this is that some traders perceive a buying
opportunity where others will seek to sell. That conclusion should not be controversial.
Buyers and sellers must exist in the same time interval for any trading to occur. Real financial
markets are maelstroms of competing forces and perspectives, and the only way to model
them with any degree of realism is by using some sort of random selection process.

Our analysis shows that the standard models of market microstructure are too Spartan to be
used directly as the basis for agent-based simulations. However, by enriching these standard
market microstructure model with insights from behavioural finance, we develop a usable
agent based model for finance. OHara (1995) identifies three main market-microstructure
agent types: market-makers, uninformed (noise) traders and informed traders. The first two
agent-types are clearly identifiable in our framework. Our three remaining types of agent
are different types of informed agent. While the market microstructure literature does not
distinguish between different types of informed agent, behavioural finance researchers make
precisely this distinction e.g. Using a multi-month return horizon, Jegadeesh and Titman
(1993) showed that exploiting observed momentum (i.e. positive serial correlation) effects in
empirical data by buying winners and selling losers was a robust profitable trading strategy.
De Bondt and Thaler (1985) found the opposite effect at a different time horizon. They
showed how persistent reversal (negative serial correlation) observed in multi-year stock
returns can be profitably exploited by a similar, but opposite, buy-losers and sell-winners
trading rule strategy. A re-examination of the market microstructure literature bearing these
ideas in mind is revealing.

Almost all market microstructure models about informed trading, dating back to Bagehot
(1971), assume that private information is exogenously derived. This is consistent with our
liquidity consumer agent type and also with the view of information being based on fun-
damental information about intrinsic value but it is at odds with our momentum and mean
reversion traders. However, an empirical market microstructure paper by Evans and Lyons
(2002) opens the door to the idea that private information could be based on endogenous tech-
nical (i.e. price and volume) information, such as drives our momentum and mean-reversion
agents. Evans and Lyons (2002) show that price behaviour in the foreign exchange markets
is a function of cumulative order flow. Order flow is the difference between buyer-initiated
trading volume and seller-initiated trading volume. It can be thought of as a measure of net
buying (selling) pressure. Crucially, order flow does not require any fundamental model to
be specified. Endogenous technical price behaviour is sufficient to generate it. The preceding
enables us to conclude that while our 5 types of market participant initially seem at odds
with the standard market microstructure model, closer scrutiny reveals that all 5 of our agent
types have very firm roots in the market microstructure literature.

5 Results

In this section we begin by performing a global sensitivity analysis to explore the influence
of the parameters on market dynamics and ensure the robustness of the model. Subsequently,
we explore the existence of the following stylised facts in depth-of-book data from the Chi-X
exchange compared with our model: fat tailed distribution of returns, volatility clustering,
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autocorrelation of returns, long memory in order flow, concave price impact function and the
existence of extreme price events.

5.1 Sensitivity analysis

In this section, we asses the sensitivity of the agent-based model described above. To do so, we
employ an established approach to global sensitivity analysis known as variance-based global
sensitivity (Sobol 2001). In variance-based global sensitivity analysis, the inputs to an agent-
based model are treated as random variables with probability density functions representing
their associated uncertainty. The impact of the set of input variables on a model’s output mea-
sures may be independent or cooperative and so the output f (x) may be expressed as a finite
hierarchical cooperative function expansion using an analysis of variance (ANOVA). Thus,
the mapping between input variables x1, ..., x, and output variables f(x) = f(x1,...,x,)
may be expressed in the following functional form:

FO) = fo+ Y [iG)+ D fij@ix)+ o+ fia (X, x)  (9)
i i<j

where fj is the zeroth order mean effect, f; (x;) is a first order term that describes the effect of

variable x; on the output f(x),and f; ;(x;, x;) is a second order term that describes the coop-

erative impact of variables x; and x; on the output. The final term, f12,. . (x1, X2, ..., X;)

describe the residual nth order cooperative effect of all of the input variables. Consequently,

the total variance is calculated as follows:

szqm—mﬁMMx (10)

where p(x) is the probability distribution over input variables. Partial variances are then
defined as:

almzfﬁ .... o (i X)) p(x)dx (11)

.....

DI =3 "Dj il <s<n, (12)
where (i) refers to the summations over all D that contains i. Once the above is computed,
the total sensitivity indicies can be calculated as:

tot

D!
Sl = f; 0<S8 <1, (13)
It follows that the total partial variance for each parameter x; is
D{* =D —Var(E(f|x-)) = E(Var(f|x-)) (14)

In this paper, twenty three input parameters and four output parameters are considered.
The input parameters include: The probabilities of each of the five agent groups performing
an action (8,m» 8ics Smrs Omes Ont), the market makers parameters (w, the period length of
the rolling mean, and vy,,,, the max order volume for limit order), the upper limit of the
distribution from which liquidity consumers order volume is drawn (/1,4 ), the momentum
traders’ parameters (n,, the lag parameter of the ROC, and «, the trade entry point threshold),
as well as the following noise trader parameters:
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— Probability of submitting a market order, A,

— Probability of submitting a limit order, X;

— Probability of canceling a limit order, A,

— Probability of a crossing limit order, A..g

— Probability of a inside-spread limit order, A;psp,

— Probability of a spread limit order, Aspr

— Probability of a off-spread limit order, Aofrspr

— Market order size distribution parameters, i, and o;,,

— Limit order size distribution parameters, ©;, and oy,

Off-spread relative price distribution parameters, xmin,rrspr and Bosfspr

The following output parameters are monitored: the Hurst exponent H of volatility [as
calculated using the DFA method described by Peng et al. (1994)], the mean autocorrelation
of mid-price returns R(m), the mean first lag autocorrelation term of the order-sign series
R(0), and the best t exponent 8 of the price impact function as in Eq. 3.

As our model is stochastic (agents’ actions are defined over probability distributions),
there is inherent uncertainty in the range of outputs, even for fixed input parameters. In the
following, ten thousand samples from within the parameter space were generated with the
input parameters distributed uniformly in the ranges displayed in Table 1.

For each sample of the parameters space, the model is run for 300,000 trading periods
to approximately simulate a trading day on a high-frequency timescale. The global variance
sensitivity, as defined in Eq. 14 is presented in Fig. 1.

The global variance sensitivities clearly identify the upper limit of the distribution from
which liquidity consumers order volume is drawn (%, ) and the probabilities of each of the
agent groups acting (particularly those of the high-frequency traders, &, and §,,,) as the most
important input parameters for all outputs. The biggest influence of each of these parameters
was on the mean first lag autocorrelation term of the order-sign series R (o) followed by the
exponent of the price impact function S.

To find the set of parameters that produces outputs most similar to those reported in the
literature and to further explore the influence of input parameters we perform a large scale
grid search of the input space. This yields the optimal set of parameters displayed in Table 2.
With this set of parameters we go on to explore the model’s ability to reproduce the various
statistical properties that are outlined in Sect. 3.

5.2 Fat tailed distribution of returns

Figure 2 displays a side-by-side comparison of how the kurtosis of the mid-price return series
varies with lag length for our model and an average of the top 5 most actively traded stocks
on the Chi-X exchange in a period of 100 days of trading from 12th February 2013 to 3rd July
2013. A value of 1000 on the x-axis mean that the return was taken as log( p;+1000) —log(p;).
In our LOB model, only substantial cancellations, orders that fall inside the spread, and large
orders that cross the spread are able to alter the mid price. This generates many periods with
returns of 0 which significantly reduces the variance estimate and generates a leptokurtic
distribution in the short run, as can be seen in Fig. 2a.

Kurtosis is found to be relatively high for short timescales but falls to match levels of the
normal distribution at longer timescales. This not only closely matches the pattern of decay
seen in the empirical data displayed in Fig. 2b but also agrees with the findings of Cont (2001)
and Gu et al. (2008).
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Table 1 Parameter ranges for global sensitivity analysis

Symbol Setting
Parameter
Probability of Market Makers acting Smm [0.05, 0.95]
Probabilty of Liquidity Consumers acting 8lc [0.05, 0.95]
Probability of Momentum Traders acting Smr [0.05, 0.95]
Probability of Mean Reverters acting Smt [0.05, 0.95]
Probability of Noise Traders acting Snt [0.05,0.95]
Market maker (mm) parameters
Max order volume Umax [103, 10°]
Rolling mean period w [10, 103]
Liquidity consumer (/c) parameters
Max order volume hmax (10, 10%]
Momentum trader (mt) parameters
ROC lag ny [1, 100]
Trade entry threshold K [107°, 10711
Noise trader (nt) parameters
Market order probability Am [0, 1]
Limit order probability A [0, 1]
Cancel order probability Ae [0, 1]
Market order size Wmo [2, 10]
Market order size Omo [0, 1]
Limit order size Lo [2, 10]
Limit order size Ol [0, 1]
Off-spread relative price XMiNpffspr [0, 1]
Off-spread relative price Boftspr [0, 1]
Crossing limit order Aers [0, 1]
Inside-spread limit order Ainspr [0, 1]
Spread limit order Aspr [0, 1]
Off-spread limit order hoffspr [0, 1]

5.3 Volatility clustering

To test for volatility clustering, we compute the Hurst exponent of volatility using the DFA
method described by Peng et al. (1994). Figure 3 details the percentage of simulations runs
with significant volatility clustering defined as 0.6 < H < 1. Once again, in the shortest
time lags volatility clustering seems to be present at short timescales in all the simulations
but rapidly disappears for longer lags in agreement with Lillo and Farmer (2004).

5.4 Autocorrelation of returns
Table 3 reports descriptive statistics for the first lag autocorrelation of the returns series

for our agent based model and for the Chi-X data. In both instances, there is a very weak
but significant autocorrelation in both the mid-price and trade price returns. The median
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autocorrelation of mid-price returns for the agent-based model and the Chi-X data were found
to be — 0.0034 and — 0.0044, respectively. Using a non-parametric test, the distributions of
the two groups were not found to differ significantly (Mann—Whitney U = 300, P > 0.1
two-tailed).

This has been empirically observed in other studies (see Sect. 3.1.3) and is commonly
thought to be due to the refilling effect of the order book after a trade that changes the best
price. The result is similar for the trade price autocorrelation but as a trade price will always
occur at the best bid or ask price a slight oscillation is to be expected and is observed.

5.5 Long memory in order flow

As presented in Table 4, we find the mean first lag autocorrelation term of the order-sign
series for our model to be 0.2079 which is close to that calculated for the empirical data
and those reported in the literature. Most studies find the order sign autocorrelation to be
between 0.2 and 0.3 (see Lillo and Farmer 2004 for example). In Table 4, H order signs
shows a mean Hurst exponent of the order signs time series for our model of ~ 0.7 which
indicates a long-memory process and corresponds with the findings of previous studies
and with our own empirical results [see Lillo and Farmer (2004) and Mike and Farmer
(2008)].

@ Springer



236

Annals of Operations Research (2019) 282:217-244

Table 2 Parameter settings

@ Springer

Market parameters Setting
Initial Price 100
Initial Spread 0.05

Tick Size 0.01
Agent group Action probability
Smm 0.10

81 0.10

Smr 0.40

Smt 0.40

Snt 0.75
Market maker (mm) parameters Setting
Umin 1

Umax 200,000

v 1

w 50
Liquidity consumer (/c) parameters Setting
himin 1

hmax 100,000
Mean reversion (mr) parameters Setting
Umr 1

o 0.94
Momentum trader (mt) parameters Setting

ny 5

K 0.001
Noise trader (nt) parameters Setting
Buy or sell probability 0.5
Market order probability Am =0.03
Limit order probability A =054
Cancel order probability Ae =043

Market order size
Limit order size

Off-spread relative price

Mmo =T omo = 0.1
Hip =801 =07

xmineffgpr = 0.005
.Boffspr =272

NT limit order types Probability
Crossing limit order Aers = 0.003
Inside-spread limit order Ainspr = 0.098
Spread limit order Aspr = 0.173

Off-spread limit order

hoffspr = 0.726
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5.6 Concave price impact

Figure 4a illustrates the price impact in the model as a function of order size on a log-log
scale. The concavity of the function is clear. The shape of this curve is very similar t that of
the empirical data from Chi-X shown in Fig. 4b. The price impact is for the model is found
to be best fit by the relation A p oc v%-28, while the empirically measured impact was best fit
by Ap o 1933, Both of these estimates of the exponent of the impact function agree with the
findings of Lillo et al. (2003), Lillo and Farmer (2004) and Hopman (2007) but the model
is sensitive to the volume provided by the market makers. When the market order volume
is reduced, the volume at the opposing best price reduces compared to the rest of the book.
This allows smaller trades to eat further into the liquidity stretching the right-most side of
the curve.

Figure 5 demonstrates the effects of varying consumers’ volume parameter /,,,, on the
price impact curve. This parameter appears to have very little influence on the shape of the
price impact function. However, it does appear to have an effect on the size of the impact.
Although h,,, is relatively insensitive to minor changes, when the volume traded by the
liquidity consumers is reduced dramatically, the relative amount of available liquidity in the
market increases to the point where price impact is reduced. Very similar results are seen as
the market makers’ order size (V) 18 increased.

Figure 6 shows the effects on the price impact function of adjusting the relative probabil-
ities of events from the high frequency traders. It is clear that strong concavity is retained
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Table 3 Return autocorrelation statistics

Stats Min. Ist Q. Mean 3rd Q. Max.

Agent-based model

AC mid-price returns —0.0208 —0.0071 —0.0031 0.0009 0.0366
AC trade price returns 0.5734 0.6029 0.6115 0.6209 0.6476
Empirical data

AC mid-price returns —0.0233 —0.0169 —0.0044 0.0081 0.0436
AC trade price returns 0.5287 0.5353 0.5678 0.6000 0.6346

Table 4 Order sign statistics Stats Min. 15t Q. Mean 3rd Q. Max.

Agent-based model

ACordersigns  0.1983  0.2059  0.2079  0.2104  0.2172
H order signs 0.6734  0.7029  0.7115  0.7209  0.7476
Empirical data

AC order signs ~ 0.2000  0.2544  0.2629  0.2701 0.3013
H order signs 0.7681 0.8053  0.8444  0.8780  0.8849
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Fig. 4 Log-log price impact. a Log—log price impact function for the agent-based model. b Log—log price
impact function for the Chi-X data

across all parameter combinations but some subtle artefacts can be seen. Firstly, increasing
the probability of both types of high frequency traders equally seems to have very little effect
on the shape of the impact function. This is likely due to the strategies of the high frequency
traders restraining one another. Although the momentum traders are more active—jumping
on price movements and consuming liquidity at the top of the book—they are counterbal-
anced by the increased activity of the mean reversion traders who replenish top-of-book
liquidity when substantial price movements occur. In the regime where the probability of
momentum traders acting is high but the probability for mean reversion traders is low (the
dotted line) we see an increase in price impact across the entire range of order sizes. In this
scenario, when large price movements occur, the activity of the liquidity consuming trend
followers outweighs that of the liquidity providing mean reverters, leading to less volume
being available in the book and thus a greater impact for incoming orders.
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Fig.6 Price impact for various values for the probability of the high frequency traders acting

5.7 Extreme price events

We follow the definition of Johnson et al. (2013) and define an extreme price event as an
occurrence of a stock price ticking down [up] at least ten times before ticking up [down]
and with a price change exceeding 0.8% of the initial price. Figure 7 shows a plot the mid-
price time-series provides with an illustrative example of a flash occurring in the simulation.
During this event, the number of sequential down ticks is 11, the price change is 1.3%, and
the event lasts for 12 simulation steps.

Table 5 shows statistics for the number of events for each day in the Chi-X data and per
simulated day in our ABM. On average, in our model, there are 0.8286 events per day very
close to the average average number observed in empirical data.

Upon inspection, we can see that such events occur when an agent makes a particularly
large order that eats through the best price (and sometimes further price levels). This causes
the momentum traders to submit particularly large orders on the same side, setting off a
positive feedback chain that pushes the price further in the same direction. The price begins
to revert when the momentum traders begin to run out of cash while the mean reversion
traders become increasingly active.

Figure 8 illustrates the relative numbers of extreme price events as a function of their
duration. The event duration is the time difference (in simulation time) between the first and
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Table 5 Price spike statistics Stats Min. Median Mean Max.
Events per day in ABM 0 1 0.8286 3
Events per day in Chi-X 0 1 1.0066 6
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last tick in the sequence of jumps in a particular direction. It is clear that these extreme price
events are more likely to occur quickly than over a longer timescale. This is due to the higher
probability of momentum traders acting during such events. It is very rare to see an event
that lasts longer than 35 time steps.

Figure 9 shows the relative number of crash and spike events as a function of their duration
for different schemes of high frequency activity. The solid line shows the result with the
standard parameter setting from Table 2. The dashed line shows results from a scheme with
an increased probability of both types of high frequency trader acting. Here, we see that there
is an increased incidence of short duration flash events. It seems that the increased activity
of the trend follows causes price jumps to be more common while the increased activity of
the mean reverts ensures that the jump is short lived. In the scenario where the activity of
the momentum followers is high but that of the mean reverts is low (the dotted line) we see
an increase in the number of events cross all time scales. This follows from our previous
analogy.
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6 Conclusion

In light of the requirements of the forthcoming MiFID II laws, an interactive simulation
environment for trading algorithms is an important endeavour. Not only would it allow
regulators to understand the effects of algorithms on the market dynamics but it would also
allow trading firms to optimise proprietary algorithms. The agent-based simulation proposed
in this paper is designed for such a task and is able to replicate a number of well-known
statistical characteristics of financial markets including: clustered volatility, autocorrelation
of returns, long memory in order flow, concave price impact and the presence of extreme
price events, with values that closely match those identified in depth-of-book equity data
from the Chi-X exchange. This supports prevailing empirical findings from microstructure
research.

On top of model validation, a number of interesting facets are explored. Firstly, we find
that increasing the total number of high frequency participants has no discernible effect on
the shape of the price impact function while increased numbers do lead to an increase in price
spike events. We also find that the balance of trading strategies is important in determining
the shape of the price impact function. Specifically, excess activity from aggressive liquidity-
consuming strategies leads to a market that yields increased price impact.

The strategic interaction of the agents and the differing time-scales on which they act are,
at present, unique to this model and crucial in dictating the complexities of high-frequency
order-driven markets. As a result, this paper presents the first model capable of replicating
all of the aforementioned stylised facts of limit order books, an important step towards an
environment for testing automated trading algorithms. Such environment not only fulfills
a requirement of MiFID II, more than that, it makes an important step towards increased
transparency and improved resilience of the complex socio-technical system that is our brave
new marketplace.

Our model offers regulators a lens through which they can scrutinise the risk of extreme
prices for any given state of the market ecology. MiFID II requires that all the firms par-
ticipating in algorithmic trading must get tested and authorised by the regulators for their
trading algorithms. Our analysis demonstrates that there is a strong relationship between mar-
ket ecology and the size/duration of price movements (see Fig. 9). Furthermore, our agent
based model setting offers a means of testing any individual automated trading strategy or
any combination of strategies for the systemic risk posed, which aims specifically to satisfy
the MiFID II requirement . “ ..... that algorithms should undergo testing, and thus facilities
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will be required for such testing.” (p. 19, MiFID 2012). Moreover, insights from our model
and the continuous monitoring of market ecology would enable regulators and policy makers
to assess the evolving likelihood of extreme price swings. The proposed agent based model
fulfils one of the main objectives of MiFID II that is testing the automated trading strategies
and the associated risk.

While this model has been shown to accurately produce a number of order book dynamics,
the intra-day volume profile has not been examined. Future work will involve the exploration
of the relative volumes traded throughout a simulated day and extensions made so as to
replicate the well known u-shaped volume profiles (see Jain and Joh 1988; Mclnish and
Wood 1992).
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