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ABSTRACT 

 

Due to its low share of energy-related emissions, energy systems models have overlooked 

the implications of technological transition in the agricultural sector and its interaction in 

the wider energy system. This paper explores the role of agriculture intensification by 

using a novel agricultural-based energy systems model. The aim is to explore the future 

role of Brazil’s agriculture and its dynamics with other energy sectors under two carbon 

constraint scenarios. The main focus has been to study resource competition between 

sugarcane and natural gas at a country level. Results show that in order to meet the future 

food and bioenergy demand, the agricultural sector would start intensifying by 2030, 

improving productivity at the expense of higher energy demand; however, land-related 

emissions would be minimised due to freed-up pasture land and reduction in deforestation 

rates. Additionally, the development of balanced bioenergy and natural gas markets may 

help limit the sugarcane expansion rates, preserving up to 12.6 million hectares of forest 

land, with significant emissions benefits. 
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INTRODUCTION 

At the COP21 conference, 195 countries have agreed to limit global warming to well 

below 2°C [1]. Currently, there is a 50% chance that the remaining budget for an increase 

of 1.5°C (~36 GtCO2) will be depleted before the end of next decade; thus, cross-sectoral 

low-carbon strategies need to be implemented as soon as possible.  

 

The agriculture, forestry and land use (AFOLU) is responsible for the demand of 8.2 

EJ year-1 of energy, with diesel (4.1 EJ year-1) and electricity (2.0 EJ year-1) as the main 

energy sources [3]. However, if the whole supply chain is considered plus the effects of 

agricultural practices and land use, the AFOLU sector is directly responsible of 24% of 

anthropogenic greenhouse gas (GHG) emissions [4]. Thus, the introduction of modern 

technology and practices is central to limit the sector’s role in climate change [5]. With 

the aim of limiting an increase in temperature below 1.5 °C, the AFOLU sector could 

play an important role in achieving this target, mainly by i) reducing CH4 and N2O from 

agricultural practices, ii) reducing CO2 from direct energy use, iii) limiting deforestation 

rates, and iv) by large-scale implementation of carbon sequestration activities in soil and 

above ground biomass pools.  
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Uncertain future climate, increase in food demands (mainly meat-based), unsuitable 

biofuel programmes, and income inequality could pose a risk for the sustainable future 

of the agricultural sector [6, 7]. Abrupt changes and rise in agricultural commodity prices 

could also have major macroeconomic effects [8]. Due to high economic growth rates in 

developing countries, the AFOLU sector together with the energy system are 

experiencing abrupt transitions. Additionally, as emissions from developed economies 

are not being reduced rapidly enough to meet mitigation targets, together are causing 

major disruptions over terrestrial emissions, with high probability of being the main cause 

of global warming [9].  

 

Nowadays, the average energy required to supply 1 kJ of food in developing 

countries, is approximately 1 kJ, while in modern economies is about 4 kJ to produce 1 

kJ of food [10]. Projections in agricultural commodities (food, bioenergy and forestry 

products) suggest that either intensification/mechanisation or land use expansion aiming 

at higher productivity will be required to meet future demands [11].  

 

Review: AFOLU and energy systems models (ESMs) 

 

For energy planning, energy system models are typically used to provide insights into 

energy technology implementation as well as socio-economic and environmental 

implications. Similar to other sectors, agricultural production and land use systems can 

be modelled as a collection of discrete physical processes [12]. On the other hand, several 

agricultural system models have been developed, with high multidisciplinary and impacts 

in policy-making [13]. Currently, there is a wide range of open source and commercially 

available agricultural and land use models (IMAGE [14], GLOBIOM [15], MAgPie 

[16]). Nevertheless, Integrated Assessment Models (IAM) and studies considering the 

synergy between agricultural productivity and land use dynamics combined with energy 

systems studies have been limited. These models have to be soft-linked to external energy 

systems models adding complexity and a fragile internal model coherence due to different 

technical and economic approaches between sectors. On the other hand, the Global 

Change Assessment Model (GCAM) [17], which provides an integration between energy 

and terrestrial systems, the agriculture sector lacks a representation of agricultural energy 

technologies. 

 

Other models have been presented with limited development or just to answer specific 

questions. Elobeid et al. [18] presented a modelling framework based on CARD U.S. and 

MARKAL models to capture the links between agricultural and energy markets. They 

focused on bioenergy expansion and related environmental impacts and illustrated the 

importance of integrating agricultural systems into ESMs to avoid an underestimation or 

overestimation of the impacts either from the energy or the agricultural sector. Rochedo 

[19] proposed an approach to integrate a land system model into the MESSAGE model 

aiming to assess the role of land use in a long-term carbon constrained world. Miljkovic 

et al. [20] developed a simplified two-input two-output model to study the effects of 

bioenergy policies on energy and land use. The authors reported an increase of energy 

consumption (gas and fertilizers) in the agriculture sector, especially for corn production, 

contrasting with the objectives of bioenergy policies to decarbonise the energy system. 

Al-Mansour and Jejcic [21] presented the AgrFootprint model, capable of calculating the 

carbon footprint of different agricultural commodities (such as fruits, grains, meats), by 

defining average of fuel consumption for the different processes found in the production 



of these commodities. Chiodi et al. [22] used TIMES to understand the role of bioenergy 

in meeting future demands for a low carbon Ireland economy. Although the authors 

envisioned that bioenergy could cover up to 40% of domestic energy demand, land use 

would have to increase 142-fold, posing severe risk to the country’s ecosystem. 

Gonzalez-Salazar et al. [23] presented an integrated model considering energy systems, 

land use, and climate modelling aiming at exploring the impacts of bioenergy production 

growth. The model, based on LEAP and Microsoft Excel, provided a robust framework 

to forecast the implications of bioenergy growth with the limitation of not being able to 

model explicit technological uptake as well as providing a full life cycle emissions 

assessment of the analysed scenarios.  

 

Typically, the limited number of ESMs that model the agriculture sector, select energy 

services similar to those found in the building sector (e.g. heating, refrigeration, drying, 

lighting, etc.). In this way, although it is straightforward to establish processes that cover 

those service demands, this approach is incapable to properly establish a relationship 

between productivity and land use requirements as a function of the performance of the 

technologies. As novel technologies could easily impact the sectors land and energy 

dynamics [24], innovative modelling frameworks are needed to gain an understanding 

into the future role of the sector in the economy, the energy system and, more importantly, 

in the environment. Generally, agricultural models suffer from two main limitations: 1) 

lack of robust data and 2) ineffective communication of outputs to society [13]. 

Additionally, other issues remain in the field. The main one is the lack of formal 

procedure to establish a strong relationship between agricultural technologies and their 

impacts on agricultural service demands (mainly food demand) and land use.  

 

To the best of the authors’ knowledge there is still a lack of appropriate, transparent 

and robust energy systems models that deliver more realistic interactions of agricultural 

energy technologies and their implications in the wider energy system. The objective of 

the paper is to apply a novel agricultural energy systems modelling framework (MUSE-

Ag&LU) using Brazil as a case study. The model uses intensification/extensification 

processes, based on mechanisation levels, to calculate agricultural technology 

productivity. With special attention to study the dynamics between agriculture, land and 

energy, the study intends to identify the best uses of Brazilian gas reserves and sugarcane 

in a systems context as well as evaluate the effects of energy use and agricultural 

emissions under carbon constraint scenarios.  

 

The paper is organized as follows. First, an overview of the materials and methods as 

well as the development of the MUSE-Ag&LU model will be presented. Secondly, to 

present the case study, Brazil’s energy, agriculture and land use context will be discussed 

alongside the proposed modelling scenarios. Then, the paper will show the results 

obtained for the selected case study, followed by discussions and conclusions. 

 

MATERIALS AND METHODS 

 

MUSE is a new Python-based bottom-up energy system model developed at the 

Imperial College London, aiming to explore long-term decarbonisation scenarios of 

energy systems [25]. MUSE is a partial equilibrium simulation model with 

microeconomic foundations where equilibrium is reached via a market clearing algorithm 

(MCA). The model includes all supply, conversion and demand sectors where the MCA 

iterates between sector modules until price and quantity of each energy and industrial 
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commodity converge. MUSE’s main strength is its flexibility, allowing to represent each 

sector specific characteristics. Originally, MUSE is classified into 28 regions [25]. 

MUSE-Ag&LU model 

 

The MUSE-Ag&LU (agriculture and land use) [2] is a technology-rich bottom-up 

demand and supply model that spatially and timely simulates energy and land use demand 

in the medium and long-term (up to 2050 or 2100). Additionally, it endogenously 

simulates the supply of bioenergy determined by the requirements from the rest of the 

energy sectors (power, industry, transport, etc.).  The model aims to produce a time series 

of fuel, agrochemicals and land demand to meet four general agricultural services: a) 

crops, b) animal food, c) forestry products and d) bioenergy. This first categorisation can 

be considered broad, as for example, meat-based products could be further separated into 

pasture based livestock versus grain fed livestock, or crop production could be 

differentiated as rain-fed versus irrigated production; however, this was done to reduce 

model complexities and computing times.  

Simulation workflow 

 

Similar to other demand modules, MUSE-Ag&LU dynamically exchanges a set of 

variables (Figure 1) with the MCA by sending information regarding fuel demand and 

emissions per region, time period and timeslice.  

 

 

 
 

Figure 1. Integration of the Ag&LU module into MUSE and data flow with MCA [2] 

 

The model is based on a two-step simulation approach. 

 

1. First, the demand for energy services demand is dynamically calculated using 

selected macrodrivers, such as GDP per capita and population. Then, exogenous 

parameters for the techno-economic and environmental characterisation of 

technologies are uploaded.  



2. Secondly, to model technological diffusion, a merit order approach based on Net 

Present Value (NPV) is used to model investment decisions, thus defining the 

technological market share and the fuel mix. The model ranks technologies based 

on its capital and operational costs, efficiency and environmental impact. Based 

on the market share, MUSE-Ag&LU would calculate per region, time period and 

timeslice the following metrics: fuel demand, agrochemicals demand, running 

operating costs (OPEX), land use demand, greenhouse gas emissions, and 

bioenergy and residual crop supply. At the next iteration, updated fuel and carbon 

prices information from the MCA will be receive by the module, thus repeating 

the simulation.  

 

Demand Projection and Data Sources 

 

The model projects the demand by energy content of crops, animal products, forestry 

products and bioenergy products in agreement with similar studies [7, 26, 27]. As 

mentioned, the sector’s regional service demands are projected using regression models 

using GDP and population as macrodrivers [28]. For crops, meat and forestry products, 

the demands are projected based on historical regional diets and consumption trends [3]. 

From FAOSTAT [3], data for the period 1970-2010 for diets (kJ person-1 from crops and 

animal-based products), forestry products and bioenergy crops (tonnes of production) has 

been collected. After comparing a set of suggested models from the literature, the Engel’s 

function (log-log function) has been identified as the most convenient to estimate the 

agricultural services demand: 

 

             ln(𝑑(𝑇)) =  𝑎 + 𝑏 ∗ ln (𝐺𝐷𝑃𝑐𝑎𝑝)                   (1) 

 

The function shows that as income increases, demand for agricultural products would 

increase; nevertheless, the increase is under-proportional with income. Data from 

economies with high levels of income per capita show saturation level in demand, and in 

some extreme cases, a demand decrease, especially for meat-based products. For 

validation purposes, future projections have been cross-checked and validated against 

long-term projections reported from the FAO [29].  

 

Technology Representation 

 

In MUSE-Ag&LU, the energy consumption in agriculture is associated to a specific 

level of mechanisation of the technologies used to supply a specific service. The energy 

use share for each process (i.e. a combination of a technology and each mechanisation 

level) has been modelled, extending the qualitative method proposed by Opio et al. [30] 

and integrating it with data analysis techniques. First, data on yields were collected for 

every agricultural service (crops, animal, and forestry products) as well as on energy 

requirements and land use have been obtained for each region [3]. By relating service 

production to land demand, a region mechanisation level over different yields can be 

categorised. Appendix A (Figure A.1) shows the yield distribution per agricultural 

commodity on a global scale. 

 

Based on these distributions, three mechanisation levels have been defined using the 

quartiles, as detailed in Table 1.   
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Table 1. Description of mechanisation levels in MUSE-Ag&LU 

 

Mechanisation 

level 
Quartile Description 

Traditional 
Below the 

1st quartile 

Original method of farming with minimum 

mechanized equipment. 

e.g. Traditional cropping countries: 

Nicaragua, Cameroon, Haiti [3]. 

Transitional 

Between the 

1st and 3rd 

quartiles 

Mechanisation in some parts of the 

agricultural production chain. Typical 

equipment examples are tractors, tilling, 

mechanical drying and irrigation. Also the use of 

agrochemicals is common practice.  

e.g. Transitional cropping countries: India, 

Russia, Brazil [3]. 

Modern$ 
Above the 

3rd quartile 

 Most of the supply chain is fully mechanized 

supply chain, with high requirements in energy, 

water irrigation, and fertilizers.  

e.g. Modern cropping countries: United 

States, Netherlands, Japan [3]. 
$ Modern-renewable mechanisation level has added to represent renewable-based technology  

 

Although the FAO[3] and IEA[31] energy balances provide energy demand and fuel 

share for the sector, there is no information separated by agricultural service (crops, 

animal, forestry and bioenergy). To provide a share of fuel per mechanisation level, the 

non-hierarchical method approach has been used [32]. The aim is to classify a country or 

region within a set of groups looking for high within-class homogeneity and as much 

variability as possible between groups. Therefore, country-level data by input/output ratio 

and yield have been grouped, and based on cluster segregation at different levels of 

distance between measurements, heterogeneous technological groups have been defined. 

For each mechanisation level, variation in energy use, agrochemicals demand, yields and 

investment parameters have been characterised. Based on the studied yields and the level 

of economic development, a different percentage of mechanisation level is allocated to 

every region. This means every country and region would have some level of 

mechanisation level to greater or lesser extent.  

 

As previously mentioned, for the selection of future mechanisation adoption the 

model uses NPV as the main indicator for ranking technologies; therefore, cost values for 

each mechanisation level must be defined. For the definition of economic costs, Baruah 

and Bora [11] provided capital and operational costs ($ ha-1) for three strategic 

mechanisation scenarios. In the low-mechanisation scenario (traditional), more than 90% 

of the total cost is spent on muscle power, whereas in the partial mechanised scenario 

(transitional) this is about 59%. Machinery ownership and machinery operation including 

diesel are the major costs for the 'transitional' and 'modern' mechanisation scenarios (87% 

and 90% of the total operational cost) considered in the present study. Additionally, cost 

estimates data from the USDA [33] has been collected. This data details the cost per 

hectare for each agricultural product according to its yields. Based on the yields 

illustrated in Figure A.1, cost per mechanisation level for each agricultural product can 

be defined. The values used in this study are shown in Appendix B (Table B.1).  
 



Technology Calibration 

 

To obtain installed capacities for each mechanisation level per region and solve the 

calibration problem, an optimisation model has been implemented in GAMS [34]. The 

model aims to minimise the gap between estimated emissions and the historical values 

for 2010. The problem has been formulated as follows: 

 

min 𝑍 =  ∑ |𝐷𝑎𝑡𝑎𝑒𝑚𝑖 𝑟 − (∑ 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑟,𝑓,𝑡 ∗ 𝐹𝑢𝑒𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑓  

𝑓,𝑡

)|

𝑟

+ ∑|𝑠𝑙𝑎𝑐𝑘𝑟,𝑓|

𝑟,𝑓

(2) 

 

 

subject to:                                                                                       

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟,𝑡

𝑡∈𝑇𝑆𝑠

> 𝐷𝑒𝑚𝑎𝑛𝑑𝑟,𝑠                                                                  (3)  

                                          

∑ 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑟,𝑓,𝑡

𝑡

<  (𝐹𝑢𝑒𝑙 𝐷𝑒𝑚𝑎𝑛𝑑𝑟,𝑓 + 𝑠𝑙𝑎𝑐𝑘𝑟,𝑓) 

 

where 𝑟  refers to region, 𝑓  refers to fuel type, 𝑡  to technology, 𝑠  to service and 

𝑇𝑆𝑠 are the technologies available for service s. A slack variable has been added to fulfil 

fuel constraints. By solving the optimisation problem, all structural alternatives are 

evaluated and the capacities for each technology corresponding to the optimal solution 

are used as an estimate of the base year stock. In the periods after the base year, the 

MUSE-Ag&LU applies the simulation algorithm previously described to model capital 

and investment decisions in order to meet the demand and balance the decommissioned 

stock. 

Land Use Demand and Land Use Change Emissions 

 

The integration of mechanisation levels into the agricultural production system 

provides a straightforward element to link installed capacity, commodity productivity and 

land demand per service (Figure 2). Depending on the demand and production levels per 

mechanisation level technology, MUSE will calculate the land requirement specifically 

for that process. Processes with a selected output service will require same type of land. 

This means that, for example, the cropping processes will be allocated to cropland only. 

Then, land values are aggregated per land type, region, and period to obtain a final 

agricultural land requirement.  

 

 
 

Figure 2. Basic representation of agricultural mecjansiation technology considering fuel 

input, production and land use demand 

 

In MUSE-Ag&LU, seven different land types have been modelled:  
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• Cropland: land for crop cultivation. 

• Pasture land: land for grazing livestock 

• Forestry products: land for silviculture  

• Energy crops: land for bioenergy crops 

• Natural forest: primary and secondary forest land 

• Non-arable land: unsuitable farming land (desert, ice, tundra, rock) 

• Urban/Infrastructure: land for human settlements  

The model calculates land use change when the actual land to meet certain agricultural 

demand is not sufficient. Land becomes available either via deforestation or via a change 

in the destination of other land types in case of demand reduction or technology 

improvements (e.g. pasture land converted to energy crops).  

 

To calculate land use emissions, the method is based on the non-spatially IPCC Tier 

1 approach [35]. The approach calculates net land use changes over a period in time 

considering CO2 emissions based on disruptions from each pool for each land use 

category†. The four carbon pools considered are: i) above ground biomass, ii) below 

ground biomass, iii) dead organic matter (DOM), and iv) soil organic carbon (SOC).  

 

First, the stock-difference method is used to calculate carbon stocks differences for 

each carbon pool for a given land at two points of time.  

 

∆𝐶𝑙 =
(𝐶𝑙,𝑡2 −  𝐶𝑙,𝑡1)

(𝑡2 − 𝑡1)
                                                                (4) 

 

where ∆𝐶𝑙 is the carbon change between periods for pool l,  𝐶𝑙,𝑡1 is the carbon stock 

at period 1 and 𝐶𝑙,𝑡2  is the carbon stock at the following period.  

 

To account for carbon stock changes in each period: 

 
𝛥𝐶𝐿𝑈𝑖 =  𝛥𝐶𝐴𝐵 +  𝛥𝐶𝐵𝐵 +  𝛥𝐶𝐷𝑂𝑀 +  𝛥𝐶𝑆𝑂𝐶                           (5)   

 

where 𝛥𝐶𝐿𝑈𝑖 is the carbon stock change for land type i, and subscripts AB, BB, DOM 

to SOC refer to above ground biomass, below ground biomass, dead organic matter  and 

soil organic carbon respectively. 

 

Finally, to account for AFOLU emissions, aggregated carbon stock changes is 

calculated as follows: 

 

∆𝐶𝑡𝑜𝑡 =  ∑ 𝛥𝐶𝐿𝑈𝑖                                                           (6)

𝑖

 

where ∆𝐶𝑡𝑜𝑡 is the aggregated carbon stock change and ∆𝐶𝑖 is carbon stock difference 

land type i.  

 

 

 

 
† Changes in C stock are converted to CO2 emissions by multiplying by 44/12. This is based on the ratio of 

molecular weights. 



CASE STUDY 

 

Brazil, the world’s seventh largest economy and the eighth largest energy consumer 

(10.9 EJ year-1 in 2016 [36]) has been used as a case study. By 2026, energy use is 

expected to rise by 18.6% (12.9 EJ year-1) [37]. In the last years, the energy system has 

experience high dynamism. For example, on the demand side, the government has 

implemented large-scale programs improving electricity access to marginal groups, 

especially in regions such as the Amazons [38].  However, other sectors has experienced 

negative effects due to climate effects. For example, the power system, which mainly 

relies on hydroelectricity (>60%), has become more vulnerable to blackouts due to water 

shortages [39, 40]. To minimise the blackout risks, other power sources, such as wind, 

have been extensively installed. For instance, wind installed capacity has grown from 1.4 

GW in 2011 to 8.1 GW in 2016, with important technical and socio-economic benefits 

[41].  

Brazil: Agriculture Energy Use and Land Use Demand 

 

Specifically, the Brazilian agriculture sector represents about 4% of the national 

energy consumption (481 PJ year-1 and 31.1 MtCO2 year-1), with diesel, firewood, and 

electricity responsible of 99.7% of the total sector energy share. In the last decades, due 

to a steady increase in per capita income, Brazil’s population has experienced major diet 

changes. According to data from the United Nations Food and Agriculture Organization 

(FAO) [3], between 1990 and 2015, per capita food energy consumption in Brazil grew 

from 9.5 MJ day-1 and 1.9 MJ day-1 from crop and animal-based products, to 10.3 MJ 

day-1 and 3.2 MJ day-1 respectively. Combined with an increase in population of about 

25%, this represented an increase from 622 to 1,016 PJ year-1 in total food energy content 

(an increase of 63.3%). In the same period, cropland has increased 50.8%, from 57.4 to 

86.6 Mha (including 9.0 Mha for dedicated energy crops), while pasture land and 

secondary forest have increased by 6.4% (from 184 to 196 Mha) and 52.2% (from 4.9 to 

7.6 Mha) respectively. Both food-related land use types (cropland and pasture) have 

lower percentage increase than total food demand due to intensification in agricultural 

systems. Nowadays, cropland and pasture land combined are accountable for 265 Mha or 

31% of the country land (Figure 3a).  

 

Conversely, Brazil is one of the biggest promoters of bioenergy production and 

utilisation in the world. In 2016, bioenergy (mainly ethanol and bagasse from sugarcane) 

represented 16.9% of the domestic energy supply (2,121 PJ) [36]. Although the South-

East region is the area with the largest production, the Centre-West region has become 

the main place for sugarcane expansion where land use patterns have changed since the 

introduction of dedicated energy crops [6]. For example, between 2003 and 2013, only 

in Goias and the Federal District, sugarcane area expanded six-fold (from 0.14 to 0.85 

Mha) [42], pushing food crops to new lands. However, outside the most developed 

regions in Brazil, information is still scarce about land use change dynamics of new 

sugarcane and other bioenergy cultivations [42].  

 

Both, food and energy crops are the main drivers of deforestation in Brazil which has 

become critical to any decarbonisation scenario. High rates of deforestation can 

drastically alter the storage and cycles of carbon and nitrogen pools [43]. On a global 

scale, tropical deforestation alone is responsible between 7-14% of global GHG 

emissions [44]. Currently, 20% of the global tropical deforestation is located in Brazil 

and is responsible for 0.43 GtCO2 year-1 [45]. Between 1990 and 2014, the forest area in 
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Brazil went from 541.7 Mha to 486.9 Mha [3]. The loss of 54.8 Mha (including 37 Mha 

of the Amazon forest) represented 6.6% of total land, a size similar to France. On the 

positive side, in the last decade programmes and regulatory policies have been put in 

place to reduce deforestation rates, declining from an average rate of 2.7 Mha year-1 

(1990-2004) to 1.6 Mha year-1 (2005-2014) [3]. If pre-2005 deforestation rates would not 

have been improved (combined with low agriculture intensification), by 2056, about 62 

Mha of forest would have been lost (Figure 3b).  

 

 

 
 

Figure 3. a) Current land share in Brazil (Total: 836 Mha). b) Brazil land projection for 

agricultural and forest land based on 1990-2004 and 2005-2014 deforestation rates [3]. 

The role of sugarcane and natural gas in Brazil 

 

Overall, sugarcane products and natural gas represent 16.9% and 13.7% of the gross 

domestic energy supply respectively, with higher growing rates expected in the following 

decades. Brazil has a tradition of generating varieties of high-yielding sugarcane 

combined with expertise in process optimisation for ethanol production. As a matter of 

fact, it remains the largest producer of sugar ethanol with 29 billion L year-1, mainly 

coming from 9 Mha of sugarcane plantations [46]. Although bioenergy could 

simultaneously address energy security and climate change concerns, the associated 

global warming potential should account for LUC, agrochemical inputs, soil organic 

carbon (SOC) changes, and the auxiliary energy consumption of processes [47]. 

Emissions from biofuel indirect land use change (iLUC) is the most uncertain component 

when assessing emissions induced by the expansion of energy crops; for example, ethanol 

production estimated emissions from iLUC could be in the range of 10-340 gCO2 MJ-1 

(central 95% interval: 21-142 gCO2 MJ-1) [48].  

 

Although the country counts with large amounts of natural gas reserves (388-453 

billion cubic meters (bcm)), with a current daily production of 103.8 mcm (million cubic 

meters) (1,477 PJ year-1) and imports of 32.1 mcm (456 PJ year-1) [36], natural gas still 

plays a modest role. Up to a quarter of the national gas production (mostly offshore 

associated gas) is consumed upstream, or either used for gas processing or fertiliser 

production. Power generation required around 716 PJ year-1. In the demand sectors, the 

industry is the highest consumer, with a demand of 417 PJ year-1, while the domestic and 

commercial sectors’ consumption (concentrated in the South-East region) is relatively 

low, accounting for only 19.6 PJ year-1 [36].  This low reliance on the use of gas is mainly 

due to the predominant role of hydroelectricity and sugarcane products, the 

underdeveloped gas infrastructure, the lack of heating demand, and high subsidies for 



LPG. The importance of natural gas in the Brazilian mix, though, is expected to grow 

considerably [49, 50] ensuring universal energy access to the population, and supporting 

the share increase of renewable energy and energy efficiency programmes in the country. 

Only in the last two decades, thanks to an increasing local production and imports from 

the Bolivian pipeline, natural gas consumption has seen a steady annual grow of 10.4% 

[51]. Between 1990 and 2013, gas users grew from 0.5 million to 2.44 million, while 

energy consumption went from 40 PJ to 1,296 PJ.  

 

SCENARIOS 

 

In this study, the model has been applied to simulate transitions in the Brazilian 

agricultural energy system and land use between 2010 and 2050 under two different two-

degree scenarios (2DS). Based on the research from Rochedo et al. [52], a carbon budget 

of 40 GtCO2 has been considered accounting only for the energy and land systems. The 

selected value is located on the higher end of the range proposed by the authors (16.0-

41.4 GtCO2), as in this study, carbon negative technologies such as carbon capture and 

storage, direct/air capture, and/or reforestation have not been considered. The proposed 

two scenarios differ in terms of the assumptions made for the bioenergy production 

growth (Figure 4): 

 

• Two degree scenario with sugarcane expansion (2DS+SugC): Explores a 

two-degree scenario that incentivises larger production of sugarcane and 

soybean assuming a blending mandate according to which the biofuels 

production grows steadily from a 2010 production rate of 0.59 EJ year-1 (0.54 

PJ year-1 ethanol and 0.05 EJ year-1  biodiesel [53]) to 5.0 EJ year-1 in 2050 

and the production of local natural gas is limited to current levels (around 100 

mcm day-1). It is assumed that the same share ethanol-biodiesel is maintained 

through to the time analysed. The assumed biofuels growth occurs by about 

6% per year and in line with the “New Policies Scenario” from the 2010 IEA 

World Energy Outlook [53].  

 

• Two degree scenario with  natural gas expansion (2DS+NG): Explores a 

two-degree scenario that incentivises natural gas production and infrastructure 

expansion as well as limits bioenergy expansion by taxing land use emissions 

from bioenergy crops growth. It contemplates that biofuels would grow by 

about 3% per year. This means that bioenergy production will only increase 

from the current rate of 0.59 EJ year-1 in 2010 to 2.50 EJ year-1 in 2050.  
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Figure 4. Projections of bioenergy production for both simulated scenarios 

 

Brazil Agriculture Demand Projection 

 

IIASA SSP2‡  scenario on GDP and population has been used for food demand 

projections [54].  The data suggest that by 2050, Brazil will have a per capita income of 

about $22,617 (2005 USD) and a population of 232 million inhabitants. Using Eq. 1, 

Figure 5 illustrates actual data for average daily food intake (both crop and meat based)§. 

The Engel’s curves shows that by 2050, each person in Brazil will consume about 10.5 

MJ day-1 of crop-based diet and 3.6 MJ day-1 of meat-based diet. In aggregated values, 

this means that the total energy in food demand will grow from of 732 PJ year-1 and 229 

PJ year-1 of crop and animal-based food respectively in 2010 to about 889 PJ year-1 and 

308 PJ year-1 by 2050: a 25% increase in total food demand compared to 2010. 

 

 
 

Figure 5. Projections between food intake and average GDP per capita in Brazil. Source 

data: FAO [3]. 

Technology characterisation and land use representation 

 

Based on analysed global yields and mechanisation definitions, Brazil can be regarded 

as having mainly transitional mechanisation as it was found that crops have an average 

yield of 10.49 PJ Mha-1, while meat production of 1.16 PJ Mha-1 and silviculture of 7.66 

PJ Mha-1 [3]. This could also be explained by the share of agricultural production to the 

national GDP, which stands at 4.3% [3]. By using the optimisation process (Eq. 2 and 3), 

base-year installed capacities for each agricultural service have been obtained. The 

outputs are shown in Appendix C (Table C.1).  

 

Conversely, regional land demand characterisation has been one of the most 

challenging task due to the lack of public available data at the desired granularity. Main 

data on land use demand from agricultural, pasture and urban land has been obtained 

from the Brazilian Institute of Geography and Statistics (IBGE) [55] and FAOSTAT [3]. 

Land demand for different Land data on Brazilian forest and forestry production by biome 

 
‡ The SSP2 narrative describes a middle-of-the-road development in mitigation and adaptation 
§ Same function has been used to regress forestry products and bioenergy crops. 



has been gathered from the Ministry of Environment (MME) [56]. Finally from the Sugar 

Cane Industry Union (UNICA) [57], regional land demand from sugarcane production 

has been collected. As shown in Figure 6, for the characterisation of the Brazilian forest 

land, all six biomes have been considered (Amazonia, Caatinga, Cerrado, Mata Atlántica, 

Pampa and Pantanal).  

 

  

Figure 6 Brazil’s main geopolitical regions (left) and biomes (right) 

 

Some biomes can be found in two or more regions. For instance, the Amazonas is located 

in the North (305.4Mha), North-East (2.7 Mha) and Centre-West (33.4 Mha) regions. 

This data has been considered and separated between the different regions as necessary. 

This has implications in the assumed carbon pools of the different geopolitical regions; 

therefore, biome shares for each region and related C stocks per unit area have been 

considered to calculate regional C stocks. To account for carbon emissions or 

sequestration from land use, Brazil’s carbon densities  have been taken from the  IPCC 

[35] and other studies [30, 58, 59] (Table 2).  

 
Table 2. Estimated Brazilian land area in 2010 [3] and stocks for each carbon pool  

 

Land type Land 

Area 

(Mha) 

Above 

Ground 

(Mg C ha -1) 

Below 

Ground 

(Mg C ha -1) 

Dead 

Organic 

Matter 

(Mg C ha -1) 

Soil Organic 

Carbon& 

(Mg C ha -1) 

Total 

 

(Mg C ha -1) 

Cropland 67.8 5.0 1.4 1.0 53.1 60.5 

Pasture 277.0 7.6 1.1 0 78.9 87.6 

Forestry prod.+ 6.7 62.0 12.8 1.8 42.0 118.6 

Bioenergy*  

Forest 

9.7 16.0 14.3 1.0 33.5 64.8 

Amazonia 341.6 78.2 28.9 5.2 44.0 156.3 

Cerrado 41.4 39.9 7.9 5.2 65.0 118 

Caatinga 40.3 42.5 8.5 11.7 38.0 100.7 

Mata 

Atlántica 

24.1 61.8 14.8 4.1 47.0 
127.7 

Pantanal 2.8 60.2 15.2 5.2 44.0 124.6 

Pampa 8.9 61.8 14.8 4.1 47.0 127.7 

Non- arable 21.2 - - - - 0 

Urban 13.5 - - - - 0 
&Estimations from the topsoil layer (0-20 cm in depth) 
*Sugarcane, considering an average productivity (yield) of 60 ton/ha 
+Eucalyptus plantation 
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RESULTS 

 

The results section has been separated into three parts: i) technological diffusion and 

energy use in the agricultural sector, ii) land demand projections and emissions related to 

land use and iii) country-level primary energy use and emissions considering all sectors 

in the energy system as well as emissions from land and agricultural production.  

Agriculture technology diffusion and energy use 

 

Figure 7 shows a projection for both scenarios of the aggregated agricultural service 

demand (crops, meat, forestry products and bioenergy) in energy units (PJ) highlighting 

the share of production in terms of mechanisation levels. 

 

 
 

Figure 7. Share of different agriultural mechanisation levels for both scenarios 

 

By 2050, service demand in 2DS+SugC is higher than 2DS+NG as sugarcane 

production increases to satisfy the higher assumed demand for biofuels in the transport 

sector. 2DS+SugC is expected to reach a total agricultural service demand of 9,634 PJ 

year-1 (891 PJ year-1 for crops, 307 PJ year-1 for meat-based, 3,423 PJ year-1 for forestry 

products and 5,013 PJ year-1 for bioenergy), representing an increase of 78% compared 

to 2010 (5,425 PJ year-1). Results show that modern mechanisation is expected to increase 

its share from 31% in 2010 to 42% in 2050, with a high share of renewable-based modern 

mechanisation. A change in the technological preference can be noted as the model 

installs up till 2025 fossil-based modern technology. As soon as modern renewable 

technologies becomes more accessible after 2025 due to more competitive energy 

renewable prices, these technologies become the preferred choice over fossil-based 

modern mechanisation. If only the food production is considered, the food energy content 

(output) per energy input decreases due to a more mechanised and energy intensive 

sector, meaning than more energy is required to produce one unit of food. In the base 

year, this index is around 2.64 kJ/kJ, and by 2050 it reaches 2.11 kJ/kJ, approximating 

current energy output/input ratios of developed economies [32]. 

 

In 2DS+NG, the total service demand is expected to reach 6,974 PJ year-1, an increase 

of 29% compared to 2010. As mentioned, the service demand difference compared to 

2DS+SugC mainly comes from the lower bioenergy production. In this scenario, modern 



mechanisation represents 38% of the total share by 2050, where renewable-based modern 

mechanisation is only responsible for 2%, due to the limit availability of bioenergy for 

renewable-based on-farm processes. By the end of the time horizon, the food energy 

output/input indicator reaches 2.26 kJ/kJ, which represents a 7.1% less mechanised sector 

compared to 2DS+SugC. 

 

Figure 8 shows the energy demand by fuel projections as well as fuel-related 

emissions exclusively from the Brazilian agriculture sector.  

 

 
 

Figure 8. Fuel demand projections and aggregated energy-related emissions for both 

scenarios 

 

By 2050, in 2DS+SugC, the agriculture sector is expected to consume 725 PJ year-1 

(73% increase compared to 2010). Results show that diesel (282 PJ year-1), biodiesel (195 

PJ year-1) and biomass (147 PJ year-1) are responsible of 86% of the total fuel share. On 

the other hand, the use of electricity grows from 64 to 85 PJ year-1, but its total share 

decreases from 15% to 12%. Direct energy-related emissions reach 37.8 MtCO2 year-1 

and the emissions intensity (emissions per unit service) decreases from 5.54 MtCO2 PJagr
-

1 in 2010 to 3.92 MtCO2 PJagr
-1 in 2050.  

 

In 2DS+NG, the total energy demand is expected to reach 599 PJ year-1 by 2050. This 

is lower than 2DS+SugC (125 PJ year-1 lower) due to a smaller bioenergy industry. In 

this case, diesel (205 PJ year-1), and biomass (137 PJ year-1) are responsible for 57% of 

the total share. Biodiesel uptake occurs at a much slower rate compared to 2DS+SugC, 

only representing 96 PJ year-1 by 2050. Additionally, electricity grows from 64 PJ year-1 

to 111 PJ year-1 representing 19% of the total share, while demand for natural gas grows 

from 0.09 PJ year-1 to 42.3 PJ year-1 (supposedly to cover processes such as drying and 

machinery). In 2050, the direct energy-related emissions is lower than 2DS+SugC, 

reaching 33.2 MtCO2, but the emission intensity is higher (4.77 MtCO2 PJagr
-1) due to 

higher demand of fossil fuels per unit of agricultural service.  
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Land use and related emissions 

 

Figure 9 illustrates land use requirements for both analysed scenarios. As seen, the 

amount of land devoted to growing all agricultural services increases by a simultaneous 

decrease in other lands such as forest. 

 

 
 

Figure 9. Land use demand projections for both scenarios 

 

For both cases, a demand increase in meat-based products, causes a constant increase 

in pasture land until 2030, reaching around 228 Mha (+32 Mha) to later stabilise due to 

intensification of animal farming. On the other hand, crop land constantly increases until 

2050. This takes place at an annual rate of 0.9% between 2010 and 2030, and reducing to 

0.3% year-1 between 2030 and 2050. Crop land demand reaches around 87 Mha (+18 

Mha) by 2050. The largest differences are in land dedicated to bioenergy. While for 

2DS+SugC, growth rates were found at 5.3% between 2010 and 2030 and 4.5% between 

2030 and 2050, reaching 31.0 Mha of land, for 2DS+NG, growth rates were at 2.1% 

between 2010 and 2030 and 1.4% between 2030 and 2050, reaching 14.5 Mha.  In 

general, for 2DS+SugC, land demand to cover all four agricultural services grows from 

280.4 to 351.7 Mha. Results suggest that future service demands will be met 66.6 % by 

intensification implying improved mechanisation and 33.4% by land use increase.  In 

2DS+NG, land demand for agricultural services increases to 339.1 Mha, where the new 

future service demand will be covered 71.7 % by intensification and 28.3% by land use 

increase. The results on land demand indicate that compared to 2DS+SugC (6% annual 

growth of bioenergy), 2DS+NG (developing gas infrastructure combined with 3% annual 

growth rate of bioenergy) could save around 12.6 Mha of forest by 2050 by limiting 

energy crops production that normally has an indirect land use change impact due to crop 

and pasture expansion in other land types.  

 

Finally, by using Eq. 4-6 in the model, Figure 10 illustrates the projected Ag&LU 

sector CO2 flux estimations for both scenarios. Besides emissions from direct energy use, 

releases and uptake of C from land use and land use change have been calculated for all 

four carbon pools.  

 



 
Figure 10. CO2 emissions/sequestration rates from energy consumption in agriculture and 

land use dynamics 

 

If compared, emissions due to agricultural energy use are insignificant compared to 

emissions due to land use change. The largest emissions arise from above ground biomass 

and SOC pools removal due to deforestation, while the largest sequestration rates come 

from SOC pools turning land into pasture land. Results also demonstrate that by 2050, 

the carbon pool from forest could be reduced by almost 20%, mainly due to deforestation, 

but with high increases in the biomass carbon pools due to large bioenergy developments.  

 

For 2DS+SugC, modelling results project a net release rate of about 608 MtCO2 year-

1 in 2015 slowing to 344 MtCO2 year-1 in 2050. By the end of the modelling period, 

2DS+SugC would have released to the atmosphere 5.1% of the actual Brazilian land 

carbon stock (16.0 GtCO2),  

 

For 2DS+NG emissions rates have been found at 580 MtCO2 year-1 in 2015 and 

reduced to 96 MtCO2 year-1 in 2050. By 2050, 2DS+NG would have released 4.1% of 

the current Brazilian land carbon stock (12.8 GtCO2). At the end of the modelling period, 

emissions’ rates are lower for the natural gas expansion scenario due to lower forest land 

conversion rates. Consequently, there is a more evident declining rate in carbon 

emissions, as less sugarcane lands are necessary and natural gas has a more important 

share in the energy system. It is important to mention that by having a much smaller 

bioenergy industry in 2DS+NG, the lower sectoral emissions compared to 2DS+SugC 

can be explained. If emissions from natural gas production, transportation and utilisation 

were to be considered, 2DS+NG would present higher values; however, this is out of the 

scope of this study as it is modelled in other modules in the MUSE framework.  

Country-level energy use and emissions 

 

Figure 11 illustrates the projected primary energy supply for both scenarios. The main 

differences are defined by the contrasting share of bioenergy, natural gas and renewable 

energy sources. For instance, in the 2DS+SugC, bioenergy (considering both sugarcane 

and firewood/charcoal) would grow from 4,910 PJ year-1 in 2015 to 9,843 PJ year-1 by 

2050. This would results in a share increase of bioenergy in the energy matrix from 

current 25% to about 49%. On the other hand, in this scenario natural gas is expected to 

decrease its share from 12% in 2015 to 8% in 2050, with an annual demand of 1,586 PJ 
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year-1. For the 2DS+NG scenario, bioenergy would increase at a lower rate, reaching 

7,242 PJ year-1 in 2050, representing 36% of the country’s primary energy supply. 

However, natural gas demand would experience almost a four-fold increase, from 1,380 

PJ year-1 in 2015 to 4,187 PJ year-1 in 2050, increasing its share in the energy matrix from 

12% to 21%. One important difference between scenarios is the share of “other 

renewable” energy, mainly represented by solar and wind. As it is expected that the 

2DS+SugC would have larger emissions from land use, this scenario would require a 

larger share of clean energy sources to lower its energy-related emissions. As illustrated 

(Figure 11), by 2050 energy-related emission from the 2DS+SugC (0.47 GtCO2 year-1) 

would be 32% lower compared to those from the 2DS+NG (0.62 GtCO2 year-1). In both 

scenarios, the combined share of coal and oil would be reduced from 55% in 2015 to 25% 

by 2050, with almost a complete retirement of coal from the energy matrix.   

 

  
Figure 11. Brazil’s primary energy supply for both analysed scenarios 

 

Finally, Figure 12 illustrates the aggregated GHG emmissions separated by source 

(energy, agriculture (non-CO2) and land use). As aforementioned, the higher agricultural 

activity in the 2DS+SugC causes higher emissions from land use and agriculture. Only 

considering energy and land use emmisions, the 2DS+SugC depletes 38.8 GtCO2 

between 2015 and 2050, while for the 2DS+NG this value is around at 36.8 GtCO2. By 

reducing land use emissions in the 2DS+NG by 2050, the total country’s emissions rate 

are found to be 6% lower compared to the 2DS+SugC (1.36 vs 1.45 GtCO2 year-1). 

 
Figure 12. Brazil’s total GHG emissions projections for both analysed scenarios considering 

energy, agriculture and land use 



 

DISCUSSION 

 

The results show the importance of the AFOLU sector in reaching carbon mitigation 

targets, especially by controlling emissions from land use. Modern technological 

diffusion is expected in the Brazilian agricultural sector in order to meet future demand 

for energy and food. Although energy demand and related emissions from farm 

equipment is minimal compared with the whole energy system, modern mechanisation 

levels could improve productivity rates, thus having a major impact in land use related 

emissions. In both scenarios, an increase in energy demand in agriculture would be 

required to produce a unit of agricultural product, bringing energy index values closer to 

those found in developed economies. 

 

If biofuel production is to be increased ten-fold by 2050, increasing land productivity 

would be fundamental to keep a sustainable bioenergy policy that would have marginal 

implications on crop competition and deforestation rates. However, intensification comes 

with larger amounts of embodied emissions in the form of agrochemicals. Improved land 

productivity could also have an adverse reaction, as it could motivate producers to spread 

production to new lands; however, these land use dynamics are difficult to foresee in 

presence of different stakeholders.  

 

Natural gas is abundant in Brazil, however, mechanisms must be put in place for a 

sustainable infrastructure development and use of this resource. Off-shore natural gas has 

the potential to significantly reduce Brazil’s demand for wood energy and promote a more 

sustainable production of sugarcane and land management. As shown by the 2DS+NG, 

reducing sugarcane expansion and therefore deforestation would eventually minimise 

ecosystems depletion, with substantial socio-economic benefits. However, the analysis is 

incomplete if the whole energy system is not considered, as emissions from natural gas 

could be considerable in other sectors in the economy (e.g. power, industry, refinery, 

extraction and distribution) as well as leakage methane emissions from the supply chain.  

 

Nevertheless, the analysis of both scenarios has shown that balancing resource 

utilisation and infrastructure development is necessary. As demonstrated in this study, 

new sugarcane lands, especially if their expansion comes from either direct or indirect 

deforestation, could have substantial impacts on regional carbon emissions. 

 

CONCLUSION 

 

Decarbonisation pathways are not widely discussed in agricultural sector modelling 

due to its small direct energy consumption; however, the sector is of greater importance 

in the wider energy system. Integrating the agriculture and land use sector into ESMs is 

still a challenge. This paper has shown an application of the recently developed MUSE-

Ag&LU model. The model has been able to characterise intensification processes while 

simulating mechanisation diffusion, including agrochemical inputs (fertilisers and 

pesticides), energy and land demand.  

 

The presented case study explored the complex relationship between sugarcane 

production, deforestation and fossil fuel resource exploitation under two different two-

degree scenarios for Brazil. One scenario explored the effect of sugarcane expansion (ten-
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fold production increase) by 2050, while limiting the production of natural gas to current 

levels. A second scenario explored a higher production and utilisation of natural gas while 

halving bioenergy production. Both scenarios have demonstrate the importance of 

agricultural technological investment and sector intensification in Brazil. Results have 

shown that the agriculture sector is likely to move from transitional to modern agricultural 

practices. This trend implies an increase in the energy consumption, but it is a necessary 

step to intensify the production processes, fulfil demands of food, forestry products and 

energy crops with limited amount of land. Also, depending on the chosen path, renewable 

energy sources could have a larger share in the energy system if emissions need to be 

reduced to reach pre-defined carbon abatement targets.   

 

Deforestation still represent an important source of emissions. In both scenarios, 

deforestation occurs at different rates; however, the promotion of expanding natural gas 

while limiting bioenergy production to 2.5 EJ year-1 instead of 5.0 EJ year-1 by 2050, has 

resulted in forest land savings of 12.6 Mha, thus sequestering 3.2 GtCO2  in wood and 

soil pools and reducing land use emissions rates to around 0.10 GtCO2 year-1. Thus, 

emissions from natural gas can be compensated by the capture and sequestration potential 

of the Brazilian forests. Although the natural gas scenario showed that the resource could 

help manage deforestation rates, a large infrastructure with potentially high economic 

costs would be necessary. Policy targets have to be consistent considering energy and 

land use emissions. On one hand, future bioenergy production could lead to unfeasible 

land use demand aiming to reach fossil fuel displacement target. On the other hand, an 

over exploitation of fossil fuel resources such as natural gas could also lead to undesired 

environmental implications.  

 

The proposed results are to be considered as scenarios of development of the domestic 

agricultural sector in Brazil dealing with a limited resource such as land. In doing so, the 

effect of trade was not considered. In the future work, the model will be expanded to 

consider different carbon abatement scenarios, providing an integrated view of the energy 

systems and the cross sectoral effects of agriculture and land use change.  
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NOMENCLATURE 

AB  above ground biomass 

AFOLU agriculture, forestry, and land use 

Ag&LU agriculture and land use 

BB below ground biomass 

DOM dead organic matter 

𝐺𝐷𝑃𝑐𝑎𝑝 gross domestic product per capita 

𝐶 carbon 

𝑓 fuel 

𝑙 carbon pool 

MCA Market clearing algorithm 

MUSE ModUlar energy Systems Environment 

𝐿𝑈 land use 

𝑡 time 

𝑟 region 



𝑠 service 

SOC soil organic carbon 
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APPENDICES 

Appendix A. Global yields distribution per agricultural service 

 

 

 
Figure A.1 Global distribution of agricultural services yields (2010). Source: FAO [3] 

 

Appendix B. Mechanisation levels economic cost 

Table B.1 Capital and operational cost per mechanisation level 

Service Mechanisation 
Capital Cost Operational cost 

( MUS$ PJ-1) ( MUS$ PJ-1) 

Crops 

Traditional 1.3 1.3 

Transitional 2.2 1.1 

Modern (Fossil-based) 2.8 1.0 

Modern (Renewable-based) 2.9 0.8 

Meat-based 

Traditional 2.8 1.2 

Transitional 6.3 2.0 

Modern (Fossil-based) 6.6 2.1 

Modern (Renewable-based) 6.9 1.8 

Forestry products 

Traditional 3.6 0.9 

Transitional 14.4 1.8 

Modern (Fossil-based) 13.5 2.3 

Modern (Renewable-based) 18.0 3.0 

Bioenergy 

Traditional 3.8 2.1 

Transitional 5.3 2.1 

Modern (Fossil-based) 6.3 2.0 

Modern (Renewable-based) 8.0 1.7 

 Appendix C. Mechanisation levels baseline installed capacities 

Table C.1 Installed capacity and fuel share for the calibration base year in Brazil 

Summary Crops 

(PJ/Mha) 

Animal 

(PJ/Mha) 

Forestry 

(PJ/Mha) 

Min. 2.06 0.11 0.23 

1st Qu. 8.01 0.52 3.88 

Median 14.73 1.89 12.91 

3rd Qu. 24.58 10.12 32.83 

Max. 91.41 67.46 68.40 

Mean 22.10 11.61 19.09 

SD 23.98 19.10 18.04 



 

Mechanisation 

Installed 

Capacity 

(GW) 

Biomass 

(PJ/PJ) 

Biogas 

(PJ/PJ) 

Biodiesel 

(PJ/PJ) 

Diesel 

(PJ/PJ) 

Electricity 

(PJ/PJ) 

Gas 

(PJ/PJ) 

Heavy 

fuel oil 

(PJ/PJ) 

Yield 

(Mha/

PJ) 

Crops Traditional 3.49 0.090 0.000 0.000 0.000 0.000 0.000 0.030 0.173 

 Transitional 10.90 0.129 0.000 0.000 0.040 0.010 0.000 0.000 0.105 

 
Modern  

(Fossil-based) 

8.72 0.000 0.000 0.000 0.200 

(0.060)* 

0.102 

(0.142)* 

0.010 

(0.090)* 

0.000 0.053 

 
Modern 

(Renewable-based) 

0.00 0.000 0.010 0.500 0.000 0.082 0.000 0.000 0.053 

Animal Traditional 0.69 0.245 0.000 0.000 0.000 0.000 0.000 0.016 3.599 

 Transitional 3.09 0.258 0.000 0.000 0.160 0.023 0.000 0.000 1.100 

 
Modern  

(Fossil-based) 

3.46 0.000 0.000 0.000 1.198 

(0.360)* 

0.205 

(0.564)* 

0.001 

(0.479)* 

0.000 0.094 

 
Modern 

(Renewable-based) 

0.00 0.000 0.048 3.000 1.198 0.205 0.000 0.000 0.094 

Forestry 

products 

Traditional 1.29 0.006 0.000 0.000 0.000 0.000 0.000 0.001 0.004 

 Transitional 6.46 0.006 0.000 0.000 0.004 0.001 0.000 0.000 0.002 

 
Modern  

(Fossil-based) 

3.23 0.000 0.000 0.000 0.012 

(0.004)* 

0.004 

(0.008)* 

0.001 

(0.005)* 

0.000 0.001 

 
Modern 

(Renewable-based) 

0.00 0.000 0.003 0.030 0.000 0.004 0.000 0.000 0.001 

Bioenergy Traditional 0.38 0.006 0.000 0.000 0.000 0.000 0.000 0.001 0.015 

 Transitional 1.89 0.006 0.000 0.000 0.004 0.001 0.000 0.000 0.009 

 
Modern  

(Fossil-based) 

0.95 0.000 0.000 0.000 0.012 

(0.004)* 

0.004 

(0.008)* 

0.001 

(0.005)* 

0.000 0.004 

 
Modern 

(Renewable-based) 

0.00 0.000 0.003 0.030 0.000 0.004 0.000 0.000 0.004 

*Values for gas expansion scenario 


