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Abstract: In recent years, several classes of new N-heterocyclic carbene (NHC) ligands were developed
around the concept of “flexible steric bulk”. The steric hindrance of these ligands brings stability to
the active species, while ligand flexibility still allows for the approach of the substrate. In this review,
the synthesis of several types of new classes, such as IBiox, cyclic alkyl amino carbenes (CAAC),
ITent, and IPr* are discussed, as well as how they move the state-of-the-art in palladium catalyzed
cross-coupling forward.
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1. Introduction

In recent years, interest on N-heterocyclic carbenes (NHCs) has been growing rapidly due to
their excellent stability, diversity and a possible tunability of steric and electronic properties [1–13].
Fine-tuning the steric hindrance led to major breakthroughs and improvements in catalysis [14–17].
Bulkier ligands stabilize the active species and disfavor bimolecular decomposition and other routes
of deactivation [18–21]. However, steric bulk disfavors the approach of the substrate, which might
diminish catalytic activity. Therefore, a delicate balance between skeletal flexibility and steric bulk is
required to enhance catalytic efficacy [18–22].

The focus of this review is on three different classes of bulky ligands: IBiox [23], cyclic alkyl
amino carbenes (CAAC) [24] and N,N’-bis(aryl)imidazolylidenes (such as the ITent-, IPr*- and
SICyoctNap series) [25–29]. Their synthesis is discussed, as well as their role in palladium-catalyzed
cross-coupling reactions.

2. IBiox

Glorius was the first to report on the concept of “flexible steric bulk” with his work on
bisoxazoline-derived N-heterocyclic carbene ligands (IBiox) [23,30]. The rigidity of these ligands comes
from their tricyclic backbone. These ligands can be easily prepared, starting from their corresponding
bisoxazolines [15,23,30] and tuning of steric bulk, flexibility, and chirality can be achieved by judicious
substitutions [31,32] (Scheme 1).
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Scheme 1. Synthesis of the IBiox ligand series [23,30,32–34].

The flexibility of the steric hindrance of these ligands can be demonstrated by the equilibrium
between various conformers of IBiox6 (Scheme 2) [30].
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Scheme 2. Equilibrium between conformations of IBiox6 (a–c) [30].

2.1. Suzuki–Miyaura Cross-Coupling

The steric flexibility of the IBiox series proved to be an important factor in enabling challenging
cross-coupling reactions, such as the formation of ortho-substituted biaryls via a Suzuki–Miyaura
coupling [15,23,30]. Screening of a series of IBiox ligands with cycloalkyl substituents showed that
the formation of highly hindered tetra-ortho-substituted biaryls requires increased steric hindrance
about the NHC ligand [23]. In that context, IBiox12 emerged as the desired catalyst for this reaction
(Scheme 3) [23].
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Scheme 3. Selected examples of Suzuki–Miyaura cross-coupling using IBiox12 [23].

While this system is produced in situ, the well-defined IBiox12-based dimer
[PdCl(µ-Cl)(IBiox12)]2 was subsequently isolated. The latter showed comparable results to its
in situ counterpart in cross-coupling reactions [23].

2.2. Alkyl Sonogashira Cross-Coupling

The Sonogashira cross-coupling [14,35,36] of alkynes with organic halides is an efficient method
of obtaining functionalized alkynes. However, aromatic halides are typically used. Coupling of
non-activated alkyl halides was always elusive due to problematic oxidative addition steps and
side-reactions such as β-hydride elimination. The first successful example of this reaction [37] was the
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palladium-catalyzed coupling of primary alkyl halides with terminal alkynes by Fu and co-workers.
Later, the first Sonogashira coupling of secondary bromides with 1-octyne was developed by Glorius
and co-workers [38], using the well-defined [PdCl(µ-Cl)(IBiox7)]2 pre-catalyst (Scheme 4).
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3. CAAC Series

Bertrand and co-workers recognized the concept of sterically flexible ligands in their development
of the novel class of cyclic (alkyl)(amino)carbenes (CAACs) [24,39,40]. These electron-rich ligands
are pyrrolidine-based and bear two quaternary carbons. They are prepared from the corresponding
imines [24] and after deprotonation of the CAAC·HOTf, under harsh conditions, using LDA (lithium
diisopropylamide), addition of palladium allyl chloride dimer leads to the formation of the well-defined
[PdCl(η3-allyl)(CAAC)] complex (Scheme 5).
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The reactivity of these [PdCl(η3-allyl)(CAAC)] complexes was tested in the α-arylation of aryl
chlorides with phenylethylketone [24]. It was found that the most sterically demanding ligand (CAACc)
was the most effective when using an unsubstituted aryl chloride, whereas the flexibility of CAACb

led to higher yields with more sterically hindered aryl chlorides.

4. ITent

Recent studies showed that up to a certain point, there is a proportional relationship between
the increase in the NHC steric bulk and the increase in catalytic activity [5,41]. This phenomenon
led to the implementation of flexible bulk into the design of one of the most commonly used NHCs:
IPr (N,N’-bis-[2,6-(di-iso-propyl)phenyl]imidazol-2-ylidene). This new series is known as ITent (after
its tentacular structure) and the synthesis of these IPr-mimicking ligands was described by Nolan
and co-workers (Scheme 6a) [42]. Analogues of these ligands with a chloro-substituted backbone
were described by Organ and co-workers in their PEPPSI (Pyridine-Enhanced Precatalyst Preparation
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Stabilization and Initiation) series [43] (Scheme 6b), and more recently, Liu and co-workers described
the synthesis of the acenaphthyl-substituted backbone analogue IPentAn (Scheme 6c) [44].
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The Nolan group used this ITent series for the synthesis of their “custom-made” pre-catalysts
[PdCl(η3-cin)(ITent)] (cin = cinnamyl) and [PdCl(acac)(ITent)] (acac = acetylacetonate) [42], while
Organ used them to further optimize the PEPPSI series [16,27].

4.1. Suzuki–Miyaura Cross-Coupling

The synthesis of tetra-ortho-substituted biaryls under mild conditions remains a challenge in the
Suzuki–Miyaura reaction. As shown above, the use of ligands with flexible bulk proved to be critical,
and the first example using NHC ligands was described by Glorius in 2004 [23]. Organ was able to
further optimize the reaction using the ITent series. More specifically, the well-defined PEPPSI-IPent
pre-catalyst was used to achieve a wider scope than previous reports [27].

The Nolan group used the well-defined [PdCl(η3-cin)(ITent)] pre-catalyst series to further advance
the state-of-the-art [42]. Of particular interest, [PdCl(η3-cin)(IPent)] was able to efficiently catalyze the
cross-coupling of highly hindered aryl chlorides with boronic acids at low catalysts loading (Scheme 7).
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Scheme 7. Selected examples of the Suzuki–Miyaura coupling using [PdCl(η3-cin)(IPent)] [42].

Organ and co-workers also used the [Pd-PEPPSI-IPent] pre-catalyst for the challenging coupling
of allylboronic acid with different aryl halides [45]. In this context, (hetero)aryl halides were successfully
coupled with high selectivity for the α-product (Scheme 8).
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Recently, Liu and co-workers showed that the [Pd-PEPPSI-IPentAn] precatalyst is efficient in
the the Suzuki-Miyaura coupling of a wide range of hindered arylboronic acids and hindered aryl
chlorides at 80 ◦C using a 1 mol % Pd loading [44].

4.2. Negishi Cross-Coupling

After the first Negishi coupling with the well-defined [Pd-PEPPSI-IPr] pre-catalyst [46], the
Organ group showed that the [Pd-PEPPSI-IPent] pre-catalyst was even more active, especially in the
synthesis of tetra-ortho-substituted biaryls [47,48]. The same palladium pre-catalyst also proved to be
highly efficient in the coupling of secondary alkylzinc substrates to aryl halides [49]. The flexible steric
bulk of the IPent ligand reduced the β-hydride elimination/migratory insertion considerably, limiting
the formation of the isomeric by-product. Later, Organ and co-workers improved this selectivity even
further by using [Pd-PEPPSI-IPentCl] (Scheme 9) [43].
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Recently, Organ and co-workers described a silica-supported pre-catalyst,
[Pd-PEPPSI-IPent-SiO2], and evaluated its activity in challenging Negishi cross-coupling
reactions under flow conditions [50]. The catalyst material was used in a packed-bed reactor at room
temperature and small residence times (10 min or less) were enough to obtain high conversions.

4.3. Stille Coupling

In 2010, Organ and co-workers reported a Stille coupling using [Pd-PEPPSI-IPent] (Scheme 10) [51].
While the method can be used for aryls and heteroaryl substrates, at relatively mild temperatures
(60–80 ◦C), high catalyst loadings are needed in all cases (4–8 mol %).
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4.4. Buchwald-Hartwig Cross-Coupling

After the first report of the use of palladium-NHC systems for the amination reaction by Nolan [52],
the concept of ligands with “flexible bulk” advanced the state-of-the-art. Organ reported the use
of [Pd-PEPPSI-IPent] [53] under milder conditions than the ones used with the [Pd-PEPPSI-IPr]
analogue, allowing for a greater tolerance of functional groups. The IPent derivative was even capable
of catalyzing some reactions that were previously unattainable using the IPr-based catalyst [54].
However, it must be noted that high catalyst loadings (4 mol %) were necessary to achieve good results.
More recently, the same group successfully achieved the coupling of various amides with aryl and
heteroaryl chlorides using [Pd(η3-cin)Cl(DiMeIHeptCl)] as catalyst, assisted by boron-derived Lewis
acids [55].

The Nolan group was able to reduce the catalyst loading by using [PdCl(acac)(ITent)] complexes
(Scheme 11) [42]. More specifically, the use of the IHept ligand permitted to lower the catalyst loading
to 0.1–0.2 mol %. This system allows for the use of otherwise difficult coupling partners, such as
electron-poor anilines.
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The Organ group investigated the coupling of 2-aminopyridine derivatives using
[Pd-PEPPSI-IPentCl] [56]. Such catalysts were successful in the coupling of such aminopyridines
with various aryl chlorides, but it must be mentioned that catalyst poisoning occurred due to metal
coordination of the aminopyridine.

Recently, Liu and co-workers showed that [Pd-PEPPSI-IPentAn] was an efficient pre-catalyst in
the amination of (hetero)aryl chlorides under aerobic conditions [57].

5. N-Naphthyl-Based NHCs

Another class of NHC ligands with naphthyl groups on the nitrogen atoms was synthesized
by Dorta and co-workers and used to prepare well-defined palladium pre-catalysts [29,58–60].
[PdCl(η3-cin){anti-(2,7)-SICyoctNap}], one of the most important complexes of the series, was the first
well-defined complex to promote the coupling of tetra-ortho-substituted biaryls via a Suzuki–Miyaura
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reaction at room temperature (Scheme 12) [29,60]. It showed that the success of this ligand lied with
the NHC being twisted around the metal center with two bulky faces and two less hindered faces.
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6. IPr* and Related NHCs

The IPr* ligand proved optimal for the balance between sterics and flexibility. This hindered
ligand, which was first synthesized by Markó and co-workers [28], triggered interest and a number of
congeners were developed [61–64]. Other manipulations of the IPr framework were investigated, such
as the IPr+C series by Holland and co-workers [65] and the substitution of the NHC backbone with
long alkyl chains by Glorius and co-workers [66] (Figure 1).
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6.1. Suzuki Miyaura Cross-Coupling

The [PdCl(η3-cin)(IPr*)] pre-catalyst proved to be efficient in the preparation of
tetra-ortho-substituted biaryls via Suzuki–Miyaura coupling at room temperature using 1 mol %
Pd loading [67].

Holland and co-workers reported the [PdCl(η3-cin)(IPr+C)] series in Suzuki–Miyaura coupling of
4-chloro(trifluoromethyl)benzene and phenylboronic acid [65]. When compared with the IPr analogue,
all complexes were found more active with a trend of increase in steric bulk directly proportional to
increase of activity up to a certain tipping point; this is where flexibility is compromised because of a
too large steric hindrance (Table 1).
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Table 1. Investigation of the [PdCl(η3-cin)(IPr+C)] series in Suzuki–Miyaura coupling [65].
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3 [PdCl(η3-cin)(IPr+C(4-Me-Ph)3)] 86%
4 [PdCl(η3-cin){IPr+C(4-tBu-Ph)3)] 85%
5 [PdCl(η3-cin)(IPr+Ad)] 69%

Recently, Qian and co-workers reported a polymer analogue to the IPr ligand (Figure 2, left) for
use as a recoverable catalyst [68]. This catalyst was tested in the cross-coupling involving activated
aryl bromides and chlorides. Reusability of the catalyst was shown over 6 runs—however, no kinetic
data was provided—thus the possibility of the system acting as a reservoir of active species cannot be
ruled out.

An alternative approach to catalyst separation using membranes was undertaken by Ormerod
and co-workers on IPr and related ligands. While early studies were carried out on IPr ligand [69],
modification of the latter by appending long chains at the para-position of the phenyl ring (Figure 2,
right) proved judicious for catalyst recovery through nanofiltration. This allowed the cross-coupling
reaction in a semicontinuous mode in a membrane-assisted reactor [70].
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Figure 2. Polymer-modified IPr-complex (left) [68] and para-tailed IPr ligands (right) for semicontinuous
reactions [70].

6.2. Buchwald Hartwig Cross-Coupling

The Nolan group investigated the use of [PdCl(η3-cin)(IPr*)] and [Pd-PEPPSI-IPr*] in the
Buchwald-Hartwig reaction [71–73] and found that they were the most active pre-catalysts for this
reaction to date. Both complexes showed similar activity, which indicates that the active species is the
same in both cases. The [PdCl(η3-cin)(IPr*)] pre-catalyst was also used in a solvent-free amination
using 1 mol % of the complex in neat condition [74]. This allowed for the use of primary amines at
room temperature, which was previously not possible.

The very easily prepared [PdCl(acac)(IPr*)] pre-catalyst was shown to be active in the same
reaction [71] and showed chemoselective arylamination of various dihalides resulting in mono-aminated
products. [PdCl(acac)(IPr*OMe)] was also tested and proved to be even more active, allowing for the
coupling of challenging electron-poor anilines (Scheme 13) [62].
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Glorius and co-workers used their series of long-carbon-chain-based palladium complexes in the
Buchwald-Hartwig amination [66]. Of this series, [PdCl(η3-allyl)(IPrC11H23)] (see Figure 1) proved to
be the most active (0.1 mol % Pd loading, 75 ◦C).

6.3. Other Palladium-Catalyzed Reactions

The IPr* ligand and its analogues were also used in the cross-coupling of Grignard reagents
leading to the formation of tetra-ortho-substituted compounds [75] in high yields. Finally, the same
ligand family was shown to lead to active catalysts in the formation of C–S bonds (Scheme 14) [76,77].
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7. Conclusions and Outlook

“Bulky yet flexible” ligands were recently investigated, greatly advancing the state-of-the-art,
particularly in reactions involving sterically congested coupling partners. The correlation between
flexible steric bulk and catalytic activity is not always straightforward, as is proven by the failure of
some extremely large ligands.

Advancements in this field not only benefited palladium chemistry but were also successfully
applied to other research areas and related metals such as nickel. Various reports on the design and
applications of IPr- and IPr*-based (among other related derivatives) nickel catalysts by Nolan [78–81],
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Nakamura [82], Ackermann [83], Sun [84], Cramer [85], Newman [86], and Matsubara [87] pioneered
the transfer of the “bulky yet flexible” concept from palladium to nickel-based coupling reactions. The
combination of nickel with other “bulky yet flexible” ligands such as CAACs [88,89] and abnormal
NHCs [90] also saw some success. Moreover, Montgomery [91], Louie [92] and Johnson [93] used this
concept to further investigate and consequently advance the synthesis and catalytic application of
styrene-based nickel complexes, thus building upon the work of Belderrain and Nicasio [94].

Future advances, in particular through mechanistic studies, will provide insights into the exact
role of electronic and steric parameters of NHC ligands on catalyst activity, thus guiding further
catalyst design efforts across the periodic table. Nonetheless, these “bulky yet flexible” NHCs have
already pushed the limits of highly hindered cross-coupling reactions, and hold great promise for
combined high activity and catalyst recycling for numerous other metal systems.
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