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Abstract 

In the last couple of decades, ultrasound-driven microbubbles have proven excellent candidates for 

local drug delivery applications.  Besides being useful drug carriers, microbubbles have demonstrated 

the ability to enhance cell and tissue permeability and as a consequence, drug uptake herein. 

Notwithstanding the large amount of evidence for their therapeutic efficacy, open issues remain. Due 

to the vast amount of ultrasound- and microbubble-related parameters that can be altered, and the 

variability in different models, the translation from basic research to (pre-)clinical studies has been 

hindered. This review aims at connecting the knowledge gained from fundamental microbubble 

studies to the therapeutic efficacy seen in in vitro and in vivo studies, with an emphasis on a better 

understanding of the response of a microbubble upon exposure to ultrasound and its interaction with 

cells and tissues. More specifically, we address the acoustic settings and microbubble-related 

parameters i.e. bubble size and physico-chemistry of the bubble shell that play a key role in 

microbubble-cell interactions and in the associated therapeutic outcome. Additionally, new 

techniques that may provide additional control over the treatment, such as monodisperse 

microbubble formulations, tunable ultrasound scanners and cavitation detection techniques, are 

discussed. An in-depth understanding of the aspects presented in this work could eventually lead the 

way to more efficient and tailored microbubble-assisted ultrasound therapy in the future. 

Introduction 

Over the last decades, ultrasound has become an essential tool in diagnostic imaging due to its cost-

effective, noninvasive and safe nature1,2. In ultrasound imaging, an ultrasound beam is transmitted 

through the body, where it is scattered and reflected at the different interfaces (e.g. fibers, bones…) 

present3. The tissue’s distinctive properties result in acoustic impedance mismatches between the 

tissues leading to different echo intensities, which are displayed in the resulting image as contrast 

differences. In contrary to other commonly used diagnostic techniques, such as MRI and PET, 

ultrasound does not need expensive and often stationary equipment, nor the injection of possibly 

harmful radioactive agents, which makes it an ideal tool for imaging of precarious cases such as 
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pregnancy1. However, standard (B-mode) ultrasound imaging suffers from poor contrast, which 

renders the images hard to interpret to an untrained eye. 

By serendipity, it was found that injecting saline containing a small dose of tiny gas bubbles 

tremendously improved the contrast in an ultrasound image4,5. Later, the first clinically approved gas-

filled microbubbles for diagnostic imaging were introduced. These micron-sized (1-10 micron in 

diameter) gas bubbles can be intravenously administered and consist of a gaseous core surrounded by 

a protective shell to extend their lifetime. To further prolong the microbubble lifetime, typically, the 

microbubbles are filled with high molecular weight gasses with a low aqueous solubility such as 

perfluorocarbons4,6. The microbubble shell can consist of a variety of materials such as proteins, lipids 

or polymers. The stabilizing shell has been shown to dramatically affect the response of a microbubble 

to a driving ultrasound pulse and different physical properties result in a different acoustic response7–

9. Bio-inspired phospholipid-coated shells are of particular interest since they provide a high flexibility 

while maintaining sufficient resistance to gas diffusion. Consequently, they are the main bubble type 

encountered both in research and in the clinic, and will therefore be the focus of this review. Apart 

from the commercial phospholipid-coated microbubble formulations, such as Definity® (Lantheus), 

Sonazoid® (GE Healthcare) and Sonovue® (Bracco), custom-designed lipid-shelled microbubbles are 

frequently used in in vivo and in vitro studies since they allow coupling of targeting agents10–13, drug 

carriers10–12,14,15 and multimodal imaging agents16–18.  

The compressibility of the gas core gives microbubbles the ability to contract and expand in response 

to an ultrasound field. These volumetric oscillations generate harmonic echoes much stronger than 

the (linear) tissue echoes19. This unique feature is at the origin of the “contrast mode” of clinical 

ultrasound machinery and boosts the microbubble signal to tissue ratio. Since microbubbles are blood 

pool agents, this feature also enables the visualization and quantification of organ and/or tumor 

perfusion. Contrast-enhanced ultrasound imaging has become indispensable in the field of 

echocardiography, and is proving its use in other imaging applications as well. For a more extensive 

overview of the use of microbubbles in ultrasound imaging, the reader is referred to other reviews20–

23.  

Volumetric microbubble oscillations are not only key for contrast-enhanced ultrasonic imaging, but are 

also crucial for drug delivery applications5,19,24,25. Microbubbles oscillating near a cell membrane 

generate streaming in the surrounding liquid, which puts mechanical stress on the nearby cell. This 

stress can result in cellular deformation and the creation of small, temporary openings in the cell 

membrane and in between cells26,27. These openings can lead to an enhanced uptake of drug molecules 

in the tissue when drugs are co-administered with microbubbles28. Drugs and other therapeutic agents 
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can also be directly loaded onto the microbubble shell and ultrasound triggering ensures that they are 

only released at the desired time and location, which gives the added benefits of preventing their 

leakage into unwanted tissue or premature degradation of the drug molecule2,11,29,30. This can be 

especially useful for drugs that have difficulties in reaching the target site in sufficiently high 

concentrations without inducing side effects, such as chemotherapeutic and anti-inflammatory drugs 

or in case of easily degradable drugs, such as gene and protein therapeutics. In this way, contrast agent 

microbubbles become theranostic tools that enable disease monitoring, drug carrier visualization and 

local drug delivery simultaneously, while strongly enhancing drug uptake into the target tissue.  

With this review we aim to connect the knowledge gained from fundamental microbubble studies with 

a focus on ultrasound-driven microbubble behavior and cellular interactions, to the therapeutic 

efficacy seen in in vitro and in vivo studies. In other words, we aim to connect the dots between 

ultrasound parameters and microbubble characteristics used in both the fundamental and clinical 

fields and provide a comprehensive account of the current knowledge. An in-depth biophysical 

understanding of microbubble-tissue interactions should ultimately lead to a more predictable, more 

controlled, and more efficient translation to the (pre)-clinical field. 

Part 1: Acoustic microbubble response and its importance for ultrasound-triggered drug 

delivery  

Understanding the response of a microbubble upon exposure to ultrasound is an essential prerequisite 

to an effective microbubble-assisted ultrasound therapy. Therefore, a vast amount of work has focused 

on elucidating the mechanical response of a microbubble to ultrasound in terms of the acoustic 

parameters on the one hand, and microbubble characteristics, i.e. bubble size and physico-chemistry 

of the bubble shell, on the other hand. In this part we describe what determines the dynamics of a 

microbubble in response to an ultrasound driving pulse and summarize which aspects are relevant for 

drug delivery.   

The characteristics of ultrasound-driven microbubble oscillations 

As already mentioned, microbubbles will respond to an incoming ultrasound wave through volumetric 

oscillations. The amplitude of these oscillations highly depends on the ultrasound frequency, pressure, 

and pulse duration and it is strongly influenced by the microbubble shell and microbubble size. The 

dynamics of a free microbubble in response to an ultrasonic field, are theoretically described by the 

Rayleigh-Plesset equation5,6. The equation is widely used since it can accurately represent the different 

microbubble oscillation regimes mentioned below. It can be modified to account for the viscoelastic 

coating31–34, the presence of a nearby substrate35 and non-spherical microbubble oscillations36. The 

Rayleigh-Plesset equation is a non-linear differential equation and for any driving pressure, it can be 



4 
 

solved to give the radius of a microbubble as a function of time6,37. To gain insight in microbubble 

resonance behavior, it can be linearized. Assuming a sinusoidal acoustic driving pulse, small amplitudes 

of oscillation with respect to the equilibrium radius, i.e. 𝑅 =  𝑅0(1 + 𝑥) where 𝑥(𝑡) ≪ 1, and by 

neglecting higher order terms, linearization of the Rayleigh-Plesset equation leads to the classic 

equation for a driven mass-spring system, in which the gas can be represented by the spring while the 

surrounding liquid can be regarded as the mass:  

𝑥̈ + 2𝑧𝜔0𝑥̇ + 𝜔0
2𝑥 =  

𝑝𝐴

𝜌𝑅0
𝑠𝑖𝑛𝜔𝑡                                                                    (1) 

With 𝑥 a small variation in the microbubble radius R, 𝑥̇ and 𝑥̈ the first and second time derivative of 𝑥 

respectively, 𝑧 the damping of the system, 𝜔0 the bubble oscillation eigenfrequency, 𝑝𝐴 the driving 

pressure amplitude, 𝜌 the liquid density, 𝑅0 the equilibrium bubble radius and 𝜔 the angular 

ultrasound frequency.  

A key characteristic of such a mass-spring system is that it contains a resonance frequency 𝑓0 =

𝜔0 2𝜋⁄  √1 − 𝑧2, where the oscillation amplitude will be maximal. Simply put, a gas bubble will 

oscillate in response to an ultrasound pulse, due to two phenomena that push the liquid-gas interface 

in opposite directions: the resistance against compression of the gas inside the microbubble on the 

one hand, and the inertia of the liquid on the other hand25,38. This competition corresponds to a specific 

timescale that, at a certain frequency, synchronizes with the ultrasound, resulting in a maximum radial 

response. This frequency is called the eigenfrequency of the microbubble. However, the microbubble 

system experiences damping resulting from a loss of energy due to viscous dissipation in the 

surrounding fluid, re-radiation of sound and thermal losses6. Owing to this damping (𝑧), the resonance 

frequency is slightly reduced (usually around 1 to 2%) compared to the eigenfrequency of the system. 

The damping also defines the range of frequencies over which the bubble will have a measurable 

response, which is typically 1 MHz around the resonant frequency. As a result, matching the incoming 

ultrasound frequency to the resonance frequency of the microbubbles as closely as possible, will be 

crucial to maximize the acoustic response5,19,24, as evident in figure 1A.  

𝜔0 can be defined as: 

𝜔0 =  √
3𝜅𝑃0

𝜌𝑅0
2                                                                            (2) 

with 𝜅 the polytropic exponent of microbubble filling gas, and 𝑃0 the ambient pressure. This shows 

that the resonance frequency is directly related to the microbubble size and therefore, the amplitude 

of microbubble oscillation is governed by the coupling between the incoming ultrasound frequency 

and the size of the microbubble. Equation 2 can be simplified by filling in the constants ( 𝜅= 1.1 for 
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heavy gasses, 𝜌 = 1000 kg/m3, 𝑃0 = 100 kPa) to yield equation 3, derived by Minnaert39 for uncoated 

bubbles, namely 

𝑓0 ∗ 𝑅0 = 3.3 µ𝑚 ∗ 𝑀𝐻𝑧                                                                (3) 

where 𝑓0 is the resonance frequency and 𝑅0 is the radius of the microbubble at rest5,38. Even though 

equation 3 describes uncoated gas bubbles and thus disregards coating effects and surface tension, it 

has proven to be a good estimate for the resonance frequency contrast microbubbles37.  

Yet, typical microbubble ultrasound contrast agents have a broad size distribution with bubble 

diameters ranging from 0.5 to 10 µm. Therefore, only a small fraction of the microbubbles will resonate 

at the acoustic driving frequency and subsequently, only a small fraction of the total bubble population 

is driven into (maximum) oscillation. To obtain a maximal response, the incident wave should match 

the resonance frequency of the majority of microbubbles in the population, i.e. the peak in the size 

distribution. While imaging pulses remain rather broadband (~70%) to allow for a good resolution, this 

matching becomes even more critical in drug delivery application where longer bursts (thus narrower 

bandwidth) are used to allow the bubble to exert a measurable effect on the target tissue. Another 

approach to maximize the response of a polydisperse suspension is to use frequency sweeps, also 

called chirps, where a range of frequencies is used within the same incident wave in order to drive all 

microbubbles within the population into oscillation5. Alternatively, efforts have been made to either 

sort polydisperse microbubbles according to size40–44, or to produce a monodisperse bubble population 

using microfluidic flow-focusing techniques45–47.  

Microbubbles subjected to an ultrasound field can change equilibrium size and therefore resonance 

behavior as well. Gas leakage out of the bubble through diffusion resulting in bubble shrinkage, can 

occur due to the changing permeability of the bubble shell during oscillations48. In contrast, rectified 

diffusion can promote bubble growth due to a net influx of gas into the microbubble as a result of both 

a larger surface area allowing for gas exchange during bubble expansion than during compression and 

a lower pressure in the expanded bubble, which temporarily decreases the saturation concentration 

at the bubble surface, thereby accelerating gas intake49. As a result, the resonance frequency can 

change over time. Furthermore, bubbles can cluster due to acoustic radiation forces (which are 

discussed in more detail later in this work). The resonance frequency of the bubble cluster is different 

from the single bubbles and will attain an effective resonance frequency of a large bubble with the 

total gas volume of the bubble cluster5,50. Even so, resonance is not based on bubble size alone. Other 

factors such as physico-chemical properties of the lipid coating and the presence of nearby structures 

can alter microbubble resonance as well, although the former is mostly important at low driving 
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pressure amplitudes (< 50 kPa, figure 1B), which are typically less relevant for drug delivery 

applications. 

 

Figure 1: Relative oscillation amplitude of a microbubble with a shell stiffness of 2.5 N/m, shell viscosity of 6*10-9 kg/s and an 

initial surface tension of 0.02 N/m, as derived from the non-linearized Rayleigh-Plesset equation. (A) Varying frequency and 

microbubble size, at a constant pressure of 100 kPa. Microbubbles of different sizes display their maximum amplitude of 

oscillation at different frequencies of insonation, corresponding to their resonance frequency. The maximum oscillation 

amplitude decreases for smaller microbubbles due to an increase in damping. (B) Varying microbubble size and acoustic 

pressure, at a constant ultrasound frequency of 2 MHz. The maximum amplitude of oscillation is obtained when the 

frequency of the incoming ultrasound wave matches the resonance frequency of the microbubble, which is dependent on its 

size and shell characteristics. When the pressure becomes larger than 50 kPa, the radius of maximal response remains the 

same, because the resonance frequency is no longer influenced by shell characteristics. 

The lipid coating surrounding the microbubble, while necessary to lower the microbubble’s surface 

tension and prevent gas dissolution in order to extend its lifetime under ultrasound exposure, also 

hinders the bubble’s ability to oscillate to a certain extent. Even though lipid coatings are more flexible 

than other types of coatings such as polymer coatings, they still add a substantial stiffness and viscosity 

to the bubble51. Practically, for acoustic driving pressures < 50 kPa, the presence of a stiff elastic shell 

increases the microbubble’s resonance frequency by a factor 2 to 4 8. This effect becomes negligible 

for the pressure ranges typically employed in imaging and drug delivery (> 50 kPa), since the shell can 

rupture at large amplitude oscillations. Consequently, the bubble can recover its free gas bubble 

surface tension and is no longer governed by the microbubble shell. Thus, for driving pressures 

exceeding 50 kPa, the resonance frequency of a coated microbubble can be accurately estimated using 

the Minnaert equation (Eq.2). The viscosity of the shell does not typically affect resonance frequency 

but dampens the microbubble oscillations significantly, since it dissipates energy through 

intermolecular friction between the lipid molecules. Since damping increases with increasing shell 

viscosity, changing the composition of the shell can have a significant effect on the microbubble 
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oscillation amplitude19,52. Hence, even bubbles that are the same size and consist of the same type and 

ratio of shell constituents can have significant variations in their acoustic response53–55.  

Microbubble oscillation regimes at varying driving pressures 

Various oscillation regimes can be distinguished based on the microbubble oscillation amplitude: (i) 

linear spherical oscillations such as those described by Eq. 1,  (ii) non-linear and/or non-spherical 

oscillations and (iii) inertial cavitation characterized by violent inertial collapses, bubble fragmentation, 

and the emission of broadband noise5,19. Regimes (i) and (ii) are also termed stable cavitation. It is 

important to keep in mind that the pressures mentioned below only apply to a microbubble driven at 

its resonance frequency. 

 

Figure 2: The frequency spectrum of echoes arising from a 3 µm microbubble (shell stiffness 2.5 N/m, shell viscosity 6*10-9 

kg/s and initial surface tension 0.02 N/m) cavitating at 10 kPa, at 100 kPa and at 1000 kPa under ultrasound of 1 MHz, as 

simulated using the Rayleigh-Plesset equation. The spectrum at 10 kPa contains mostly the fundamental driving frequency, 

while the spectrum of 100 kPa shows signs of nonlinear behavior with defined peaks at the harmonic frequencies. Both are 

examples of stable cavitation. Finally at 1000 kPa, the signal increases at the frequencies between the fundamentals, 

indicative of broadband inertial behavior.  

At very low excitation pressures (<15 kPa), microbubbles will oscillate along with the frequency of the 

incident wave and show stable, symmetrical and relatively small radial oscillations, governed by the 

microbubble coating5,19. Under these low excitation pressures, the echo that is re-radiated by the 

oscillating microbubble mainly contains the fundamental driving frequency, i.e. the frequency of the 

incoming ultrasound wave (figure 2, black curve).   

Increasing the excitation pressure above 15 kPa will increase the amplitude of the radial oscillations, 

at which point a threshold for non-linear and/or non-spherical microbubble oscillations is achieved. 

Nonlinearity is caused by the fact that the expansion phase and compression phase of the microbubble 

oscillations are no longer equal8,56,57, while both coating effects (i.e. buckling, stretching and 

breaking48,58,59; however only relevant for pressures < 50 kPa) and intrinsic gas core behavior (i.e. 
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surface modes60,61) can lead to a non-spherical response. In addition, the proximity of a rigid wall in 

studies where bubble dynamics are investigated against a substrate, can be a secondary source of non-

linear and non-spherical effects36,62–66. This nonlinear and/or non-spherical response is evident from 

the microbubble echo that now not only contains the fundamental driving frequency but also 

harmonics and subharmonics thereof (figure 2, blue curve). Non-linear and non-spherical behavior can 

lead to microstreaming patterns around the microbubbles since the fluid around the microbubbles will 

be affected in an inhomogeneous, asymmetric way31,38. Microstreaming can transport molecules to 

and away from the microbubbles, such as drugs for instance, and can generate shear stresses on 

structures around the microbubbles57,67. The ability to induce mechanical stress is particularly 

interesting for therapeutic applications since it can open cellular tight junctions68 and create pores in 

cell membranes69. Since the echoes from the microbubbles contain harmonics and subharmonics of 

the driving ultrasound frequency under this regime, it is especially useful for clinical ultrasound imaging 

as it allows the discrimination between the signal from the microbubbles and that scattered from 

surrounding tissues. The harmonics and subharmonics are interesting to discern stable from inertial 

cavitation during drug delivery experiments as well.   

If the excitation pressure increases even further (approx. > 300 kPa), the microbubble behavior 

becomes chaotic and the oscillation amplitude grows so large during rarefaction that the inertia of the 

surrounding fluid will eventually overcome the pressure inside the gas bubble, followed by bubble 

collapse and/or by fragmentation into smaller bubbles5,19. This regime is called inertial cavitation. In 

terms of therapy, the inertial cavitation regime can cause shock waves and jet formation that can have 

significant effects on surrounding cells ranging from pores in the cell membrane to cell death66,70. The 

regime no longer elicits well-defined harmonic echo signals but rather broadband noise over a broad 

range of frequencies19 (figure 2, red curve). Since the microbubbles are destroyed, resulting in loss of 

contrast, and since the violent collapses may cause hemorrhage and tissue necrosis in the 

surroundings, this regime is less suitable for imaging purposes. In practice, the threshold between 

inertial and stable cavitation is not well-defined and bubbles start to cavitate inertially over a range of 

acoustic pressures ranging from roughly 200 to 500 kPa.  

Since the ultrasound pressure is an important parameter to determine the oscillation regime, it stands 

to reason that this ultrasound parameter is most often reported in literature. However, as mentioned 

above, the relation between the acoustic pressure and microbubble dynamics only applies when 

microbubbles are excited near their resonance frequency. In reality, microbubbles are often driven out 

of resonance. Therefore, it proves difficult to make clear conclusions and comparisons between the 

results from different research groups solely based on the acoustic pressures reported. To find a more 

suitable parameter to compare microbubble behavior, other options could be explored such as the 
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relative amplitude of oscillation, Rmax-Rmin/R0, as used by Kooiman et al.71, Helfield et al27 and Luan et 

al72. This takes into account the size and coating-related factors as well as the impact of the ultrasound 

regime. Unfortunately, relative oscillation amplitudes can only be determined with ultra-high-speed 

imaging systems operating at an imaging frequency that must exceed the ultrasound frequency 

multiple times73 and is therefore not in reach for the majority of research groups working on 

microbubble-assisted drug delivery. Alternatively, the use of monodisperse microbubbles results in 

more controlled bubble dynamics due to a homogeneous acoustic response74 and therefore, 

comparing results based on such formulations will potentially be more straightforward.  

Microbubble shell shedding to release therapeutic payload of drug-loaded microbubbles 

As microbubbles can be designed to hold various therapeutic payloads on their surface, it is important 

to consider if, when and how this payload is being released. It was already suggested by Borden et al.48 

that due to the surface area reduction in the compression phase, excessive shell material could be 

expelled. This could result in the shedding of the lipid material and therefore the therapeutic payload 

will be shed as well. Subsequent studies have focused on the requirements for microbubble shell 

shedding in response to ultrasonic radiation and have found that shedding of the microbubble shell is 

strongly correlated with a reduction of the surface area leading to an oversaturation of the lipid shell 

material75–77. Later, a relative bubble oscillation amplitude of at least 30% was observed as the 

threshold for lipid shedding of DPPC coated microbubbles67,72. This could already be achieved with 

pressures around 200 kPa (figure 3)72. Below this shedding threshold, the shell material was not 

released but rather a rearrangement of the shell constituents and buckling was observed58,72.  

 

Figure 3: DPPC-based microbubbles with fluorescent DiI in the shell, to show the shedding events under ultrasound radiation 

at 1 MHz center frequency. (A) The shell material is released from the microbubble core under the influence of an ultrasound 

pulse of 170 kPa and 500 cycles, while in (B) no shell shedding could be observed at 255 kPa, 100 cycles. Instead shell budding 

was observed. In both cases the scale bar represents 5 µm. Reproduced from Luan et al72 with permission from Elsevier. 
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Shell shedding is again highly dependent on the microbubble shell composition. For example, Borden 

et al. showed that longer acyl chains resulted in coatings that were more resistant to acoustic 

dissolution, which in turn lowered their propensity to shedding48. This can be explained by the higher 

cohesiveness (intermolecular forces) and elasticity of these kind of shells. Van Rooij et al. confirmed 

this by showing that DPPC based-microbubbles are less acoustically stable then their DSPC (C18) 

variants78. Additionally, Kooiman et al.58 demonstrated that at a relative vibration amplitude of 30% 

was not enough to initiate shell shedding of DSPC bubbles, but rather resulted in enhanced lipid 

bucking and folding in the surface structure of the bubbles instead. The shedding of the shell 

components can be affected by loading therapeutic agents onto the surface of the microbubbles too, 

as had been found by Luan et al57. They saw that a higher pressure was needed for vibration and 

shedding when nanoparticles were covalently coupled onto the microbubble shell, due to a higher 

viscosity of the shell, in particular for larger microbubbles51. In conclusion, whereas the microbubble 

shell has little influence on the resonance frequency at the acoustic pressures used for therapy, it may 

have a dramatic effect on the shedding of therapeutic compounds loaded in or on the microbubble 

shell through shell damping. Hence, it is important to keep in mind that whenever alterations to the 

microbubble composition are made, for example to allow coupling of therapeutic agents or targeting 

agents, careful consideration of the effects on the acoustic response is required as well.  

Radiation forces leading to microbubble translation 

Apart from radial oscillations, microbubbles can also respond to an incoming ultrasound wave by 

translating under the influence of the so-called acoustic radiation forces, or Bjerkness forces19,24,25,38,79 

(figure 4). These forces arise at any acoustic pressure but their effects become increasingly important 

with longer acoustic pulses and higher intensities and result in a net time-averaged force directed away 

from the transducer24,25,38. Furthermore, since the microbubbles themselves act as a secondary source 

of ultrasound waves when cavitating, they will also exert secondary forces onto neighboring bubbles19. 

As a result, microbubbles oscillating in phase in close vicinity of each other will experience a net 

attractive force (figure 4B). This can  result in  microbubble aggregation and eventually lead to 

microbubble coalescence5,19,79,80. Primary radiation forces can be useful for molecular imaging 

purposes as they can be applied to push targeted microbubbles towards ligands lining the vessel wall, 

in order to stimulate microbubble binding81–83. Additionally, these forces can be involved in therapeutic 

applications since they can be used to push drug-loaded microbubbles towards their target in order to 

maximize drug delivery84,85, as shown in figure 4A86.  
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Figure 4: (A) Deposition of fluorescent model drugs attached to microbubble-like acoustically active lipospheres on an ex vivo 

capillary wall, after a specific acoustic radiation force - fragmentation ultrasound pulse sequence. The primary acoustic 

radiation force is used to push the microbubble-like vehicles in the direction of the distal wall, where the payload can be 

deposited using the fragmentation pulse. (B) Secondary radiation forces cause individual air bubbles (53 µm) to move towards 

each other under a single pulse of 110 kPa when their oscillations are in phase. The same mechanism applies for 

microbubbles. ©2018 IEEE. Reprinted, with permission, from Shortencarier et al.86 and Palanchon et al.87. 

The presence of nearby structures 

The presence of nearby substrates such as rigid membranes present in in vitro studies and even more 

compliant viscoelastic boundaries found in vivo, can influence the microbubble oscillation mode and 

as such acoustic radiation forces and microbubble shell shedding. In terms of microbubble oscillation 

dynamics, it is known that structures in the vicinity of an oscillating microbubble can affect the 

resonance frequency and maximum oscillation amplitude4. For example, microbubble vibrations were 

shown to be smaller in case of vascular confinement88. Depending on the mechanical properties of the 

substrate, theoretical studies have shown that the microbubble resonance frequency can either 

increase or decrease, however this still needs further investigation89,90.  

Secondly, when a microbubble is oscillating next to a membrane or wall with a higher acoustic 

impedance than the surrounding medium, this membrane will act as an ultrasound wave reflector and 

causes the creation of a virtual image bubble oscillating in phase with the real microbubble5,36. Due to 

secondary radiation forces the microbubble will be attracted to this image bubble and will move 

towards the membrane, as visualized in several in vitro experiments62,66.  This can affect the outcome 

of several in vitro drug delivery studies as these are often performed with membrane adherent cells. 
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Finally, numerical modeling and experimental studies have been performed to investigate microbubble 

shell shedding when a microbubble is oscillating asymmetrically in the presence of a nearby 

membrane36. Microbubbles that oscillate near a membrane will create axisymmetric microstreaming 

patterns since their vibration will be affected by the presence of that membrane31,36,91. Upon 

insonation, oversaturation of the lipids occurs in the shell region near the wall, where the lipids finally 

detach and are transported away from the membrane via microstreaming, as represented in figure 536. 

Considering this directional shedding can be important in drug delivery studies as it actually transports 

the drugs away from the cell-carrying membrane. Yet, it remains unclear what the impact on an in vivo 

situation can be, as these microstreaming patterns will depend on the mechanical properties of the 

nearby membrane, which differ greatly between in vitro studies and the more compliant walls present 

in vivo. 

 

Figure 5: (A) Schematic representation of shell shedding when a microbubble is in close proximity to an acoustically reflective 

wall. The red dots represent microbubble shell lipids while the black lines show the calculated streamlines. (B) Asymmetrical 

shell shedding as observed in side-view at a pressure of 331 kPa. The scale bar represents 10 µm. Reproduced from Lajoinie 

et al.36 under the Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0/. 

Part 2: Microbubble-cell interactions to release and deliver drugs to tissue 

Methods used to unravel microbubble-cell interactions 

Studying the microbubble-cell interactions that lead to intracellular delivery of drugs is challenging 

since they occur on various time scales, length scales and involve numerous physical, chemical and 

biological parameters4. Therefore simultaneous use of multiple techniques is required to obtain a 

complete overview. Microscopy-based techniques are ideal to manage the multiple time scales since 

imaging rates can vary from real-time imaging (a few frames per second) allowing evaluation of drug 

influx and cellular responses92; to high speed (150 000 fps) imaging which can resolve the release of 

model drugs from microbubbles and streaming effects72; and even to ultrahigh speed imaging (up to 

25 million fps) making it possible to resolve the microbubble oscillations during ultrasound 

exposure58,73. Other methods can be used to evaluate the consequences of microbubble-cell 

interactions during or after ultrasound treatment4. For example, the integrity of cell membranes and 

http://creativecommons.org/licenses/by/4.0/
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intercellular junctions can be measured using electrical sensing techniques (TMC, TEER)93,94. The 

proteomic and transcriptomic changes in the exposed tissue can be analyzed using western blots95–97, 

ELISA assays97 and PCR analysis96,97. The effects can be studied in further detail quantitatively using 

flow cytometry and qualitatively using electron and atomic force microscopy. Nevertheless, owing to 

this inherent complexity, the interpretation and integration of these different techniques remains a 

significant challenge. 

Mechanisms of ultrasound and microbubble-induced drug delivery at the single-cell level 

The best-known and most-studied microbubble-associated drug uptake mechanism is 

sonoporation24,26,27,69,98,99 (figure 6A). Sonoporation can be defined as the formation of transient 

openings in the cell membrane induced by microbubble oscillations, through which molecules can 

passively diffuse in and out of the intracellular space. These pores can range from ten nanometer to 

several hundred nanometers and even a few micrometers in size24,100,101. However, for a cell to remain 

viable, the pores should close within a reasonable time frame and should therefore be sufficiently 

small to completely reseal during that time. Studies that have looked into these aspects have found 

that pores should be smaller than 100 µm² and ideally even smaller than 30 µm² to reseal quickly and 

succesfully26, while resealing times were reported to be anywhere between a few seconds and 120 

seconds26,69,94,102.  

The disruption of the plasma membrane during sonoporation will have several bio-effects since this 

membrane is crucial in maintaining the balance between the intracellular and extracellular 

environment, which is indispensable for the normal function of the cell. These bio-effects may be 

caused by a direct mechanical effect of the microbubble oscillations but can also be triggered by 

chemical effects caused by oscillating microbubbles. These include the formation of reactive oxygen 

species that can alter cell membrane integrity and affect ion channels100,103. The direct connection 

between the intracellular and extracellular space during sonoporation allows molecules to leak into 

the cells, but will also result in the leakage of intracellular constituents. As a consequence, 

sonoporation can be detected through the influx of otherwise impermeable agents such as propidium 

iodide69,102, as well as through the loss of intracellular agents such as calcein or GFP from stably 

transfected GFP cell lines104. Moreover, it can lead to the influx and outflux of ions, which results in a 

disruption of the transmembrane potential105,106. One ion that has been of particular interest is 

calcium. Since the calcium concentration is higher in the cell surroundings than in the intracellular 

environment, sonoporation will lead to an influx of calcium, which can influence several intracellular 

processes and was found to play an important role in membrane recovery after sonoporation24,107–109. 

Moreover, both transmembrane potential variations and calcium concentration changes are not 

limited to the cells that experienced pore formation, but are passed on to neighboring cells in waves 
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propagating from the initially affected cells105,106,108. This indicates that even though the pores quickly 

reseal, cellular effects persist over longer time and over larger areas. Sonoporation can additionally 

lead to structural modifications such as shrinking of the cell110, formation of blebs111, changes in 

cytoskeletal orientation112 and changes in cellular proliferation105,113. Therefore, even though cells 

remain viable after successful resealing, they may still be altered over a longer term, and could 

progress towards apoptosis later on100,105.  

In some studies, enhanced delivery was seen to last during several hours114,115. However, membrane 

pores that stay open during such extended periods of time will surely result in cell death, which is why 

other mechanisms must be at play here. One potential mechanism is the opening of cellular tight 

junctions in between cells27,116,117. These temporal openings make the cell layer more permeable 

without affecting cellular integrity and have proven to prolong the transport over a confluent cell layer 

for up to 30 to 60 min27. They are thought to arise from changes in the cytoskeleton as a result of the 

shear stress induced by oscillating microbubbles and could be an indirect result of microbubble 

sonoporation27,117. Alternatively, protein-based studies have suggested that ultrasound is able to 

reduce the protein expression of efflux pumps such as P-glycoprotein, which is normally expressed by 

the cells that make up the blood-brain-barrier and by certain types of tumor cells118,119. Downregulation 

of P-glycoprotein due to ultrasound exposure will ultimately result in a prolonged intercellular 

presence of drugs as well. 

Another mechanism that enhances drug delivery using microbubbles and ultrasound and that could 

sustain drug influx over longer periods of time, is the increased incidence of endocytosis115,120–122 

(figure 6B). Endocytosis is a process that occurs naturally and allows cells to take up important 

macromolecules from their surroundings. Microbubble oscillations have been shown to promote this 

process as a result of cell membrane deformation that these oscillations can cause24,103,121. Enhanced 

endocytosis has shown to be more involved in the uptake of larger molecules (>155 kDa) that would 

have trouble entering the cell through sonoporation due to their low diffusivity120. However it has also 

been proposed that enhanced endocytosis could, in part, be due to membrane disruption by 

sonoporation, and that both phenomena are actually linked103,123. Indeed, studies have reported that 

small pores created in the cell membrane are often sealed through endocytosis24,123,124. Moreover, the 

calcium-influx resulting from sonoporation, induced the formation of endocytic vesicles as well125. 

Recently, a novel mechanism called sonoprinting was proposed92 (figure 6C). Sonoprinting is defined 

as the direct deposition of nanoparticles along with parts of the bubble shell onto cell membranes 

upon applying ultrasound to nanoparticle-loaded microbubbles. It was shown that these patches 

remain associated with the cell membrane over several hours before finally being internalized. This 

phenomenon was only seen when nanoparticles where physically coupled onto the bubble surface, 
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either via linking drug-loaded nanoparticles to the microbubble shell or via direct incorporation into 

that shell, and not simply co-administered. Various other studies have reported similar phenomena 

where they saw fragments of the bubble shell and attached nanoparticles remaining on cell 

surfaces30,85,126. In a follow-up study, high-speed imaging was used to elucidate this sonoprinting 

phenomena further and it was found that the occurrence of these patches on the cell membrane are 

most likely due to secondary radiation forces between microbubbles that drag nanoparticles along in 

their wake127. This mechanism can be useful to provide a local reservoir of drug-loaded nanoparticles 

in the vicinity of the target tissue from where the drugs can leak out and can be taken up by 

surrounding cells. 
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Figure 6. Mechanisms of microbubble-induced drug delivery at the single-cell level. (A) Sonoporation. Upon insonation with 

a 1.25 MHz frequency, 170 kPa acoustic pressure ultrasound wave for a total ultrasound duration of 8 μs, the microbubbles 

create small pores in the cell membrane allowing the otherwise impermeable PI to leak into the cells. In the top image, 2 

microbubbles create side-by-side pores, of which the larger of the two microbubbles (indicated with the yellow arrow) leads 

to more PI influx, presumably due to the creation of a larger pore. (B) Enhanced endocytosis. FITC dextrans are taken up 

trough endocytosis, evident from the co-localization with lysotracker (i.e.an endo-lysosomal marker), both with and without 

ultrasound. However applying ultrasound at center frequency of 1 MHz, a pulse length of 2000 cycles, a driving pressure of 

100 kPa and a repetition rate of 125 Hz for a total duration of 5 s, increases the amount of FITC dextrans inside the lysosomes, 

indicative of microbubble-induced enhanced endocytosis. (C) Sonoprinting. Sonoprinting can be seen when fluorescently 

labeled nanospheres are coupled onto microbubbles through chemical linking. After ultrasound radiation of 1 MHz center 

frequency, an acoustic pressure of 300 kPa, a pulse length of 1000 cycles and a repetition rate of 100 Hz for a total duration 

of 5 s, a patch of nanospheres is left on the surface of the cell. Adapted from Fan et al.106 for (A); De Cock et al.121 for (B) and 

De Cock et al.92 for (C) with permission from Elsevier. 

The potential of each of the above mentioned mechanisms to enhance the delivery of a therapeutic 

agent, will rely at first instance on the drug itself. Sonoporation can provide direct access to the cellular 

cytoplasm and, as such, circumvent several potential biophysical barriers. Nevertheless, since it relies 

on passive diffusion, this approach will only be suitable for drugs with a relatively small molecular 

weight, since it is unlikely that larger drugs such as nanoparticles, proteins and genetic drugs will be 

able to sufficiently diffuse into the cell before the pores have resealed. This was confirmed by studying 

the contribution of pore formation and enhanced endocytosis on the uptake of molecules of various 

sizes120,121. Indeed, endocytic uptake can theoretically occur for small and large molecules and even for 

nanoparticles. Larger drug constructs like nanoparticles can also be efficiently delivered via 

sonoprinting after coupling them to the microbubble surface. Uptake into the cells occurs through 

internalization of the local patch of nanoparticles. Alternatively, the drugs could leak out from the 

nanoparticles themselves before endocytosis of the drug-carrier occurs. At this point the drug should 

have the right physico-chemical characteristics to penetrate into the deeper layers of the tissue and 

through the cell membranes to exert its function. This approach could be particularly interesting for 

chemotherapeutic drugs that have sufficient potency but have dose constraints due to off-target 

effects.  

Acoustic settings influencing microbubble-cell interactions and drug uptake mechanisms 

Which of the above mentioned mechanism will be primarily at play will depend on the acoustic settings 

used, i.e. on the ultrasound frequency, the acoustic pressure, the pulse duration, the pulse repetition 

frequency, and the duration of insonation. Any one of this large number of ultrasound parameters will 

largely affect these drug delivery processes by influencing microbubble-cell interactions. Most studies 

report ultrasound center frequencies around 1 MHz, because it roughly matches the resonance 

frequency of the majority (volume weighted) of bubbles in standard microbubble formulations (± 3 µm 

in size).  

However in terms of acoustic pressures, pressures ranging from 80 kPa71 to 1.1 MPa101 are used to 

enhance drug uptake. These pressures span over both stable and inertial cavitation regimes. While the 
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frequency and acoustic pressure determines which cavitation regime will occur, the pulse duration 

controls the time period over which microbubbles can exert an effect. Understanding the interplay 

between both parameters is essential in tuning the desired drug delivery mechanism. Rather short 

pulses and high pressures are usually employed for sonoporation purposes27,109,128. Upon utilizing 

targeted microbubbles to ensure a close microbubble-cell contact, Kooiman et al.71 demonstrated that 

sonoporation is induced whenever the relative microbubble vibration amplitude exceeds 0.5. They 

showed that this could already be achieved in the stable cavitation regime. The disruption (temporary 

or permanent) of cell membrane during stable cavitation, is believed to be due to pushing and pulling 

of the vibrating microbubble on a cell membrane and to the formation of microstreaming that can 

exert shear stress on the cell membrane5,69. Larger shear stress have been shown to correlate with 

higher propidium iodide uptake, which shows that the pores either stay open longer or are larger.27 

Likewise, larger holes129, higher sonoporation efficiency40 and spatiotemporal control over pore 

formation106 can be achieved by using two successive sonoporation pulses with a different pressure. 

Furthermore, the direct creation of holes in the cell membrane by shockwaves and microjets was 

observed when higher pressures resulting in microbubble fragmentation were used66,70. To obtain a 

long-term drug delivery increase, enhancement of the endocytic pathway can be induced115,120,121. To 

elucidate which parameters leads to the most prominent endocytic uptake, De Cock et al.121 compared 

the contribution of endocytosis to that of sonoporation on uptake of FITC-dextrans under various 

acoustic pressures. They showed that when the acoustic pressure is rather low (100-200 kPa) enhanced 

endocytosis is the dominant mechanism whereas the fraction of sonoporated cells increases with 

increasing acoustic pressure. This was confirmed by studies using low acoustic pressures to promote 

endocytosis as well 115,130.  

Whenever the pulse length is increased, radiation forces will come into play. The primary radiation 

force can push the microbubbles towards target cells and ensure a closer cell-microbubble contact, 

which stimulates both sonoporation and endocytosis. Secondary radiation forces result in attractive 

forces between microbubbles, which lead to microbubble aggregation and coalescence129. The 

displacing forces can only move the microbubbles over a substantial distance when the microbubbles 

are under the influence of ultrasound during a sufficient amount of time, which is why this 

phenomenon is mostly observed during long pulses (>100 cycles)25. Secondary acoustic radiation 

forces have proven to be essential to achieve sonoprinting127. In an attempt to elucidate the impact of 

acoustic settings on sonoprinting, it was found that increasing the acoustic pressure (>300 kPa) and 

number of cycles (>100 cycles) will result in higher sonoprinting rates. This can be explained by the fact 

that the released nanoparticles are dragged along with translating microbubbles, resulting in 

nanoparticle accumulation on the cell membranes. However such translating microbubbles have 



18 
 

previously been related to cell death in in vitro studies102,129. In fact, both an increase in acoustic 

pressure and in ultrasound pulse length have been positively correlated with cell death98,128,129. It is 

therefore important to maintain a balance between toxicity and drug delivery efficacy and assess the 

risk-benefit for each treatment goal. 

Finally, other ultrasound parameters such as pulse repetition frequency and total exposure duration 

become increasingly important in the in vivo situation. The pulse repetition frequency will determine 

the time for microbubble replenishment in between pulses, while the total radiation time will 

determine which fraction of the microbubbles was able to reach the target site within the duration of 

the treatment13,131. Due to the dependency on blood flow velocity, the pulse repetition frequency as 

well as the total exposure time should be fine-tuned to the characteristics of the target site, to allow a 

maximal replenishment in between the ultrasound pulses and an optimal microbubble response in 

order to maximize therapy. 

The impact of microbubbles characteristics on drug delivery 

Often, the effect of microbubbles properties on the drug delivery mechanisms are largely overlooked. 

Yet, microbubble-related factors could be of equal importance as compared to the acoustic settings in 

the drug delivery outcome and are therefore also worth investigating. As discussed before, 

microbubble size is the crucial factor in determining the microbubble’s resonance frequency. The 

therapeutic contribution of microbubbles that do not oscillate at the same amplitude as the resonant 

bubbles is hard to predict and might affect the balance between inducing therapeutic effects and 

limiting tissue damage. This once again highlights the importance of more acoustically uniform 

microbubble formulations for drug delivery applications. 

Additionally, microbubble concentration will have a substantial impact, given that the complex 

interplay between microbubbles can influence the microbubble response. Indeed, higher microbubble 

concentrations lead to increased microbubble coalescence and aggregation under the influence of 

secondary radiation forces, while more microbubble translation in the direction of the traveling 

ultrasound wave due to primary acoustic radiation forces was seen at lower microbubble 

concentrations5,81,87. Furthermore higher microbubble concentrations yield acoustic shielding of 

microbubbles further away from the transducer, causing a variable microbubble response132. Several 

studies, performed with pressures aiming at inertial cavitation (600 kPa), investigated the impact of 

the bubble-to-cell ratio on sonoporation and have found that the sonoporation efficiency increased 

with a higher microbubble to cell ratio with a limit of 4 microbubbles per cell to avoid irreversible 

sonoporation129,133. Consequently, increasing the possibility for bubble-cell interactions augments the 

chances of efficient drug delivery, however there is a trade-off with cell viability at higher microbubble 
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concentrations98. Probably even more important than the amount of microbubbles per cell is the 

microbubble-cell distance, since this will determine the magnitude of the effect a cavitating 

microbubble can have on a cell. In this respect, studies have tried to elucidate how close the 

microbubble and the cell need to be and found that this distance should not exceed the microbubble 

radius94,133,134. Nonetheless, shock waves that occur during inertial cavitation can travel over longer 

distances and affect cells from further away24,135. 

In in vitro set-ups, a  close microbubble-cell contact is often ensured by allowing the microbubbles to 

float against a cell-carrying substrate14,71,136, which could explain why short ultrasound pulses are 

sufficient for intracellular uptake in these kinds of studies71,100. Even so, in more complex, free-flowing 

systems, longer pulses might be needed to increase the possibility of close microbubble-cell 

interactions. To ensure such close microbubble-cell proximity in vitro as well as in vivo, molecularly 

targeted microbubbles are most often utilized71,102,137. These microbubbles contain specific ligands on 

their shell, which bind to receptor molecules on target cells126,138. Note that, as discussed above, 

modifying the microbubble shell in this way may influence the microbubble’s acoustic properties. It 

was for instance seen that upon applying long pulses on targeted microbubbles that are bound to an 

underlying surface, secondary Bjerkness forces cause the microbubbles to deform to a prolate shape 

in the direction of neighboring bubbles at low pressures, before releasing from their target at higher 

pressures139. Other studies have confirmed that a smaller displacement occurred when targeted 

microbubbles are used102. Therefore, drug delivery and associated cell death might be significantly 

different when targeted microbubbles are used instead of non-targeted microbubbles under the same 

ultrasound conditions102. 

Part 3: Translation to preclinical and clinical studies 

Several in vivo studies have been utilizing microbubbles and ultrasound for drug delivery with 

promising results. However, the lack of optical transparency prevents the use of microscopy-based 

techniques that are commonly used to study microbubble behavior and microbubble-cell interactions. 

It is therefore not straightforward to determine the behavior of the microbubbles and how to maximize 

drug release in vivo, which is reflected in the plethora of different ultrasound parameters being used 

in these kinds of studies. Yet, a better understanding of the microbubble dynamics in the complex in 

vivo environment is of vital importance to maximize the therapeutic effects while minimizing adverse 

effects.  

The gap between the in vitro and in vivo situation 

Although a single-microbubble single-cell approach results in a better understanding of the biophysical 

mechanisms involved, more complex models are crucial to better represent the in vivo environment. 
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It is therefore important to comprehend the inherent differences between in vitro and in vivo that will 

affect microbubble behavior.  

1. Vascular confinement 

A major drug delivery barrier in vivo is the endothelial vessel wall since microbubbles are too large to 

extravasate through the endothelial fenestrae. Several studies have investigated the effects of vascular 

confinement on oscillating microbubbles in vitro and in vivo. Due to the damping effect of nearby 

vessel walls, the maximum oscillation amplitude of microbubbles is less than in free space under the 

same ultrasound driving conditions140–143. Since the maximum amplitude of oscillation has a direct 

impact on drug release as well as on the various microbubble-cell interactions, it will affect the entire 

mechanism underlying the drug delivery process. Moreover, the viscosity of blood is approximately 3 

to 4 times higher than the viscosity of water-based buffers, as a result the pressure threshold for 

inertial cavitation was reported to be higher in blood144.  

Additionally, blood flow velocity and viscosity varies greatly within different sized vessels, and even 

more in the strongly altered microcirculation of a tumor145. Even within a vessel, flow velocity generally 

decreases from the center to the edges of the vessel and braches within vessels will cause intricate 

flow patterns146, leading to regions of high and low probability of microbubble contact with the vessel 

wall and local microbubble accumulations. Consequently, the time a microbubble is exposed to 

ultrasound and therefore its potential to induce local bio-effects, may be different for each 

microbubble. Similarly, the microbubble concentration will fluctuate within the target area. Therefore, 

drug delivery mechanisms that rely on the interaction between adjacent microbubbles might be 

affected as well. It remains to be seen if targeting strategies can ensure the close contact needed for 

these kinds of interactions to occur. Moreover since nearby membranes create additional microbubble 

translation due to secondary radiation forces, the microbubbles behavior may vary when a 

microbubble is oscillating within a large vessel as compared to when it is closed in by nearby capillary 

walls.  

Ultrasound-mediated microbubble cavitation is furthermore able to locally alter tissue perfusion. 

Vasoconstriction and even a complete shut-down of microvascular blood flow has been reported when 

violent microbubble collapses are induced by relatively high ultrasound pressures of 1.6 MPa147. This 

temporary vascular shut-down can hamper drug influx and even lead to ischemic damage148. This has 

led to a growth delay in tumors, caused by the endothelial cell apoptosis and local inflammation 

resulting in platelet activation and occlusion of the microvasculature149–151. In contrast, an increased 

perfusion after microbubble-assisted ultrasound treatment was also described in literature152–154. Rix 

et al.153 reported augmented signal enhancement in tumors after repeated microbubble injections and 

mentioned cavitation-assisted mechanical opening of closed microvessels as one of the possible 
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reasons. Belcik et al.152 stated that microbubble cavitation could reverse tissue ischemia in the hind 

limb muscle of mice. Yet, it could not be completely ruled out that thermal ultrasound effects caused 

this enhanced perfusion. Likewise, since perfusion imaging was only performed 10 to 15 min after 

therapy, it is possible that the vasodilation resulted from a vascular rebound effect after an initial 

vasoconstriction148.  

2. Tissue structure 

Before reaching its in vivo target site, ultrasound will be subject to attenuation and reflection due to 

tissue viscoelasticity and inhomogeneity. Therefore, microbubbles within this target site will not 

receive the same ultrasound energy as they would in an in vitro setting. Furthermore, this attenuation 

is highly dependent on individual tissue structures and can hence vary between patients.  

Cells grown in a three-dimensional system instead of a two-dimensional monolayer will have altered 

phenotypes155–157 that can lead to variations in their response to ultrasound and microbubbles. Even 

on an in vitro level, it was already shown that endothelial cells grown under flow condition are less 

responsive to the same ultrasound regime than cells grown under static conditions109. The authors 

attribute this finding to alteration of the cell’s phenotype resulting in extended F-actin stress fibers, 

increase in cytoplasm viscosity and cell membrane rigidity that make the cell more resistant to external 

shear forces.  

Another major difference is the lack of rigid membranes in an in vivo setting which has been shown to 

alter the microbubbles acoustic response significantly. For example, microjets have been reported to 

occur due to a bubble collapse in the direction of the cell-carrying stiff wall, which were able to 

puncture the cells66,70,158. However, since soft tissue is much less elastic, some of the non-spherical 

effects seen in vitro may not be present to the same extent, or not at all in vivo5. Likewise, shedding of 

shell material was seen to be directed away from the supporting membrane36, which might not be the 

case in the clinical situation.  

In vivo reports of drug delivery enhancement using microbubbles and ultrasound 

Since the in vivo situation is often regarded as a black box system, especially in comparison to the 

highly controlled environment of an in vitro study, most studies only report on the outcome of the 

treatment. Even so, promising therapeutic results have already lead to a first clinical trial using 

gemcitabine, i.e. a small molecule chemotherapeutic, in combination with microbubbles and 

ultrasound in 10 patients with inoperable pancreatic tumors159. The results of this study indicated that 

the treatment was well tolerated, and that the tumor diameter decreased more compared to 

gemcitabine treatment alone (based on results from historical patients). Other clinical trials reported 

on the opening of the blood-brain barrier to allow chemotherapeutic treatment of brain tumors, and 
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their preliminary findings have indicated that the procedure is safe and well-tolerated in patients160–

162. Notwithstanding these encouraging results, they are only primary results on a selected group of 

patients and there are a lot of variables that remain undiscussed. Moreover, some results do not 

correlate well with what was previously established. For instance, the clinical study by Carpentier et 

al.160 reports safe opening at pressures that have been reported to cause extensive adverse effects in 

small laboratory animals and non-human primates161,163–165. They attributed this discrepancy to the 

size of the human skull which could limit the occurrence of standing waves, the nature of human 

microvessels or an anesthesia-related difference in physiological conditions160. To obtain a conclusive 

understanding of the significance of these effects, additional research is necessary.  

Nonetheless, (pre-)clinical models provide a unique opportunity to study cellular interactions that are 

difficult to replicate in vitro. These models cannot only confirm the mechanisms that are previously 

observed, but can also reveal new mechanisms of action. Yet, different evaluation methods are often 

required, which complicates the interpretation of results. To increase the knowledge on microbubble-

assisted drug delivery in vivo, methods to estimate the tissue distribution of the drug in small animals 

have been described, either on the entire animal using near-infrared fluorescence imaging15,166, or by 

harvesting the organs and extracting the drug separately167. MRI has been widely used to monitor  

blood-brain barrier opening, with the aid of MR contrast agents97,165,168–170. This has proven that even 

the tight-junctions that make up the blood-brain barrier can be opened by microbubble-assisted 

ultrasound treatment, giving this approach a unique opportunity to channel drugs into the cerebral 

fluids across this otherwise impermeable barrier68,161,171–173. A more detailed analysis of the 

physiological effects and drug uptake in different organs can be obtained via histology and 

immunohistochemistry. Using this approach, positive results have been obtained for numerous of 

microbubble-drug formulations and ultrasound in comparison to the delivery of drugs or nanoparticles 

alone10,15,167,174–176. Nevertheless, a number of adverse effects have also been reported, including 

hemorrhage15,171,175, local burns16, necrosis due to vascular shut-down, formation of thrombi148,177 as 

well as drug accumulation in lungs, liver and kidney. Furthermore, immunohistochemistry has 

confirmed the down-regulation of P-glycoprotein in endothelial cells and astrocytes that make up the 

blood-brain barrier due to microbubble-assisted ultrasound treatment 170,178. 

Other studies have  tried to retrieve the (model) drug or drug carrier inside the ultrasound-treated 

tissue using cryosectioning15,171,175,179, fluorescence molecular tomography (FMT)116,180 or two photon 

microscopy174. These techniques were used to investigate the drug distribution in the tissue and the 

ability of drugs and nanoparticles to reach more distant parts, beyond the blood vessel. For 

nanoparticles of approximately 100 nm in size, average penetration distances of 15 µm175 to maximally 

45-50 µm174,175 have been reported. Rather large (177 nm) nanoparticles have also been found to 
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penetrate the vessel wall in the brain, but remained just outside the vasculature in this case171. 

Furthermore, Burke et al116,180 showed that the nanoparticles can be retrieved inside endothelial cells, 

indicative of sonoporation, as well as in the extracellular space, indicative of enhanced permeability of 

the endothelial lining. Different studies have also compared the delivery efficiency of nanoparticle-

loaded microbubbles to the co-administration approach, and concluded that a higher nanoparticle 

delivery could be achieved when the nanoparticles are directly coupled onto microbubbles116,180. 

Furthermore, coupled nanoparticles were found to concentrate in discrete regions, as opposed to a 

more even distribution in case of co-administered nanoparticles180. This indicates that the 

nanoparticles remained grouped in clusters possibly delivered via a sonoprinting-like phenomenon. 

Another study by Kilroy et al.181 used an intravascular ultrasound probe to promote acoustic radiation 

forces and found fluorescently labeled microbubble shell fragments deposited on the vessel wall, even 

without the subsequent administration of a ‘delivery pulse’, i. e. a shorter ultrasound pulse at higher 

pressure to induce sonoporation. This again indicates that other phenomena than pore formation 

through sonoporation might be at play in vivo as well.  

Finally, the intricate intra- and intercellular signaling pathways that often lack in simple in vitro models, 

can lead to the uncovering of additional therapy-related effects. For example, the potential induction 

of sterile inflammation in the brain after blood-brain barrier opening was recently described97. Here, 

it was reported that although no microscopic tissue damage was observed, an increased presence of 

pro-inflammatory factors was present at the opening site. This acute inflammation was compatible 

with ischemia or mild traumatic brain injury and could potentially pose a safety treat. Conversely, it 

could also been linked to positive effects, such as the augmented removal of amyloid plaques, which 

play an important role in certain neurodegenerative diseases. Another drug delivery approach that 

was primarily investigated in vivo, is the injection of microbubble-microdroplet clusters that undergo 

a phase shift upon ultrasound radiation and create large bubbles, which can temporarily block 

capillaries182. This system was used in combination with numerous commercially available drug 

formulation and has shown enhanced therapeutic effects in small animal studies183–185. Yet, the exact 

mechanism behind this approach, as well as the safety in clinical translation has not yet been fully 

clarified. Likely, a variety of other factors will be involved in the complex in vivo situation, which is why 

it was very recently suggested to refer to ultrasound and microbubble-mediated enhanced drug 

delivery in general, as ‘sonopermeation’ 186. 

Acoustic parameters used in in vivo studies 

Similar to in vitro studies, a high variability in acoustic parameters can be found in in vivo studies. As 

compared to in vitro reports, in vivo studies are generally performed at higher acoustic pressures 

(hundreds of kPa to even 7 MPa15,116,175, as measured in pure water) and longer pulse durations 
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(hundreds to ten thousands of cycles15,187), rationalized by the higher level of attenuation and the lack 

of immediate microbubble-cell contact. Also, the overall exposure time is usually much longer (up to 

10 min174) to allow a maximum amount of microbubbles to be affected during treatment. Authors have 

suggested that inertial cavitation is needed to provide adequate intratumoral drug delivery in 

vivo175,188, but this has not yet been thoroughly examined. In contrast, stable cavitation is said to be 

sufficient for blood-brain barrier opening without tissue damage163,165,189,190. Furthermore, while the 

use of longer cycles may be crucial in vivo to elicit acoustic radiation forces and sonoprinting effects 

needed for delivery of larger drugs, short pulses (5 cycles) emitted at high pulse repetition frequencies 

(1.25 MHz) have shown to result in a more uniform distribution of small molecules taken up through 

thigh junctions187. Recently, follow-up studies on the report of Kovacs et al.97, which claimed that 

microbubble-assisted opening of the blood-brain barrier could lead to a sterile inflammatory response, 

have pointed out that the outcome greatly depends on both the microbubble- as the ultrasound 

parameters, and that strict control over these factors is crucial191–193. This highlights once again the 

importance of control over these parameters, and shows that variations herein may result in 

completely different interpretations of occurring phenomena.  Again, the optimal parameters for each 

application will depend on the drug itself, on the microbubble response and on the desired therapeutic 

application. 

Most studies have used a trial-and-error approach to optimize the acoustic parameters needed for 

drug delivery16,194, which didn’t always match the set of parameters found to be ideal in accompanying 

in vitro pre-screening studies10,194. This strategy is, a priori, ill-suited when dealing with such a large 

number of parameters. Additionally, many preclinical and clinical ultrasound devices do not allow 

modification of a number of important ultrasound parameters. The frequency can be changed within 

the limited bandwidth of the ultrasonic probe and the maximum intensity output can be adjusted, but 

pulse length is often fixed in clinical machines. Therefore, many in vivo studies report ultrasound 

output only in terms of mechanical index (MI) or ultrasound intensity in W/cm² 166, which does not 

reflect all  characteristics of an ultrasonic wave. In fact, MI is only determined by the frequency (f) and 

pressure (PNP) of the ultrasound wave (MI = PNP / √𝑓), while pulse length, pulse repetition frequency 

and total duration are disregarded despite the large impact they can have on the overall effect. 

Moreover, equal MI values do not necessarily result in equal microbubble behavior, as explained in 

section 2. Some studies report pulse length (PL) and pulse repetition frequency (PRF) in terms of duty 

cycle (DC = PL * PRF), but the same value for duty cycle can be obtained by a combination of these 

terms which will not affect the microbubble response in the same way as explained earlier on. 

Therefore, a thorough characterization of the ultrasound system is mandatory, as well as a detailed 

report of all acoustic settings (frequency, pressure, pulse length, pulse repetition frequency and total 
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duration of the treatment). This might allow a more straightforward comparison between research 

results from different groups and it might make the in vitro to in vivo translation more straightforward.  

As mentioned above, most clinical and preclinical ultrasound imaging systems have a few fixed 

settings, mostly in terms of pulse length, which are not ideal for drug delivery purposes. In a study with 

the Vevo 2100, the power doppler mode was employed to improve vascular permeability174. However 

this only allows very short pulses, at a frequency far from the resonance frequency in this case. Another 

study by Luo et al.10 used a flash mode on the Philips iU22 with similar issues. Nowadays, 

programmable ultrasound research systems, can be used to generate the longer pulses needed for 

drug delivery195. Clinical transducers often have a frequency range starting at 2 MHz, while for most 

microbubble formulations, 1 MHz ultrasound matches the overall resonance frequency the best. For 

preclinical small-animal scanners, this difference is even more profound, as these type of transducers 

typically only start at frequencies of 10 MHz to allow sufficient resolution on ultrasound scans of small 

laboratory animals. It would be possible to formulate monodisperse microbubbles that have an ideal 

size for the higher frequencies of commercial clinical scanners, yet, smaller microbubbles allow less 

loading of drug molecules and will be intrinsically less efficient due to reduced backscatter and higher 

damping.  

A unified approach to evaluate microbubble behavior and associated drug uptake in vitro and in vivo 

To monitor microbubble and ultrasound-assisted treatment in vivo, researchers have used 

conventional B-mode imaging to study the presence and destruction of microbubbles, thermocouples 

to evaluate temperature changes, MRI with MRI contrast agents to check biodistribution and CT and 

PET techniques to examine the biological effect13,131. However these techniques monitor either 

physical parameters or secondary biological effects while techniques to study direct biophysical 

aspects in vivo are lacking. Moreover, these techniques often have a rather poor resolution and cannot 

be used in real-time131.  

A more recent approach is to use passive cavitation detection (PCD)  to monitor microbubble cavitation 

behavior in real-time and this can be extended to form cavitation maps in 2D and 3D13,131,188,196,197. In 

PCD, a single-element transducer is used to detect scattered signals from the microbubbles which 

provides information on the microbubble dynamics in the treated region. Therapy monitoring using 

PCD is based on the hypothesis that the cavitation behavior of microbubbles in the target area is 

directly related to the overall therapeutic outcome198. In this way, therapeutic bio-effects could be 

linked to a certain cavitation dose, and the system can be used to monitor whether, when and where 

this dose is achieved. Since the microbubbles oscillate non-linearly, their backscattered signal will not 

only contain the incident frequency but also harmonics of the insonifying frequency. A frequency 
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spectrum can be derived from the acoustic signals received by the PCD transducer via a fast Fourier 

transform and can be used to determine the acoustic behavior of the microbubbles in the focus region. 

If the spectrum predominantly consists of harmonics and subharmonics, microbubbles are mostly in 

the stable oscillation regime. Contrarily, if broadband noise prevails, microbubbles are cavitating 

inertially. Since single-element transducers can only provide limited information on the location and 

amount of cavitation events, new techniques making use of array transducers have recently been 

introduced131,199. Array transducers allow to analyze the acoustic emissions from microbubbles in 

individual voxels within the ultrasound treatment zone independently, and can be used to form a 

cavitation map of the region of interest. This technique is called passive acoustic mapping (PAM) and 

is especially useful to determine where the regions of highest cavitational energy are13,131. One 

example where PAM can be beneficial is to assess patient-specific attenuations in ultrasound radiation 

of the brain, to ensure that the desired microbubble behavior is present within the treatment zone198.  

 

Figure 7: Murine tumors exposed to 80 pulses of 0.5 MHz ultrasound with a 100 ms pulse length, 1.2 MPa peak negative 

pressure and a 3 s pulse repetition period in the presence of systemically administered luciferin-containing liposomes, with 

(C&D) or without (A&B) Sonovue® microbubbles. A&C: Overlay between B-mode images and passive acoustic maps of the 

tumor volume showing the regions of cavitation. B&D: Bioluminescence measurements of the same location, indicating 

luciferin release from the liposomes. From C and D it is clear that inertial cavitation of the microbubbles, as evident from the 

source energy of broadband noise, corresponded to luciferin release from the cavitation-sensitive liposomes. Adapted from 

Choi et al.131 with permission from IOP Publishing. ©Institute of Physics and Engineering in Medicine. All rights reserved. 

Several studies have already used passive cavitation detection or passive acoustic mapping to link the 

cavitation behavior of microbubbles to therapeutic bio-effects, both in vitro13,175 as in vivo131,188,200. One 

study in particular showed that therapeutic activity of oncolytic viruses can only be detected when the 

microbubble emission spectra displayed signs of inertial cavitation200. Inertial cavitation was also 

required to stimulate liposomes break-up of specific drug-releasing liposomes co-administered with 
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microbubbles131,188 (figure 7). It was also shown that therapeutic activity was mostly present at sites 

where  the highest acoustic activity was measured, although this was not always at the focus of the 

transducer131. This was assumed to result from a non-uniform distribution of the microbubbles in the 

tumor owing to its irregular microvasculature, which is represented in the maps as well. Studying 

cavitation activity over time allowed the authors to monitor the impact of different ultrasound 

parameters in vivo. This revealed that a sufficiently long pulse repetition period (i.e. in the order of 

seconds) was advantageous as it ensured microbubble replenishment at the target area131. It was also 

shown that the cavitation life-time of the microbubbles is strongly shortened when higher pressures 

are applied which makes the use of longer pulse lengths redundant131,188,198,201. Recently, a real-time 

feedback system was developed to control the opening of the blood-brain barrier in-situ189,190. With 

this loop control, acoustic emissions from microbubbles at the target site could directly be used to 

tune the ultrasound parameters to precisely control the magnitude of blood-brain barrier opening and 

the resulting drug delivery. 

The implementation of passive acoustic mapping is nonetheless not straightforward. Only a limited 

number of clinical systems allow to implement this technique196. A high computational power and 

specially designed algorithms are required to process the data. As mentioned before, one would ideally 

use a second transducer to capture the echoes from the microbubbles at a higher frequency to study 

the harmonics and broadband content without interference from scatter at the fundamental 

frequency. Occasionally, a system of even 3 transducers is used, where one provides imaging, the 

second sends out the therapeutic ultrasound radiations and the third records the passive cavitation 

signals131,175. Synchronized passive recording using a single transducer should be possible but only if 

the pulses are sufficiently short196. Only very short pulses guarantee that the same microbubble 

population is still present, which could form a problem for the typically longer pulses needed in drug 

delivery. Another difficulty of longer pulses is the relatively poor axial resolution which makes it 

difficult to avoid interference from regions of high bubble density with regions of low bubble density 

along this axis. For example, imaging cavitation in the myocardium proved nearly impossible due to 

signal smearing from the highly perfused nearby ventricle198. Even though there are still some issues 

to be resolved here, passive cavitation detection would allow researchers to directly link microbubble 

dynamics to therapeutic effects in real-time and could help bridge the gap between studies focusing 

only on acoustic behavior of microbubbles on the one hand and studies focusing only at therapeutic 

outcome on the other hand.  

Concluding remarks  

Microbubble and ultrasound-driven drug delivery has been extensively studied with promising 

outcome which even resulted in the first clinical trials. A critical issue remains the prediction and 
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control of therapy in different models. Having a basic understanding of the physics of microbubble 

dynamics is necessary to understand why acoustic settings and microbubble characteristics are crucial 

and how they can affect microbubble behavior. However, from literature, it is obvious that a plethora 

of parameters are used, leading to an equal variety in bio-effects. Similarly, microbubble polydispersity 

can be the cause of inconsistent results since different sized microbubbles will respond differently to 

the same ultrasound driving pulse. The narrow bandwidth resulting from the long pulses needed for 

drug delivery makes this issue even more essential. Moreover, inherent features of in vitro set-ups may 

alter the microbubble behavior in ways that are not representative for the clinical situation. Hence, 

translating microbubble dynamics and therapeutic outcome from in-depth in vitro studies to in vivo 

results from has proven to be very challenging.   

 

Figure 8: Future directions. Left panel: Expanding the fundamental understanding of microbubble behavior and the cellular 

response to treatment in vitro as well as in vivo, will remain crucial for future development. For example, protein analysis of 

several pro-inflammatory factors in rat brain following treatment with microbubbles and ultrasound by Kovacs et al., revealed 

that this treatment can lead to a sterile inflammatory response compatible with ischemia or mild traumatic brain injury, 

raising possible safety questions for clinical translation. Middle panel: For therapeutic purposes, commercial microbubble 

preparations will be far outperformed by custom microbubbles specifically tailored for targeting, drug loading, multimodal 

imaging, etc. (top panel) and monodisperse microbubble preparations that result in more robust and predictable microbubble 

behavior (bottom panel). Right panel: Progress in ultrasound equipment and in-situ monitoring of treatment may lead the 

way to a more effective and controlled therapy. Figures adapted from Kovacs et al.97 (left); Wu et al.18 with permission from 

RSNA (middle panel - top); from Segers et al.202 with permission from The Royal Society of Chemistry (middle panel - bottom) 

and from O’Reilly et al.190 with permission from RSNA (right panel - bottom). 

Figure 8 shows recent developments and future directions that can help overcome these issues and 

may eventually pave the way to a more efficient and tailored microbubble-assisted ultrasound therapy. 

Expanding the fundamental understanding of microbubble behavior and the cellular response to 

treatment in vitro as well as in vivo, will remain crucial in obtaining new perspectives on previously 

established concepts. For example, exploring functional effects of microbubble treatment such as 
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changes in protein expression, can provide additional insights on the interaction of cavitating 

microbubbles with cells and tissues. Furthermore, newer models and techniques like monodisperse 

microbubble formulations, tunable ultrasound scanners and cavitation detection techniques have 

provided us with different tools to obtain more uniform microbubble responses and to monitor 

treatment. This could eventually lead to more controllable and predictable microbubble responses and 

thereby, to more efficient and measurable therapy in the future. Despite these promising 

developments, implementing these new techniques requires specific knowledge of various fields of 

expertise, highlighting the need for interdisciplinary partnerships between biologists, chemists, 

engineers, physicists, programmers, etc. Future work should therefore focus on merging the 

knowledge from these subdomains to develop an ideal therapeutic agent, together with a clinical 

ultrasound system that allows simultaneous imaging, treatment and monitoring within one single 

device useable by all research groups.  
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