

PELST M.^a, HÖBART C.^a, KRIKILION E.^a, COX E.^a

^aLaboratory of veterinary immunology, faculty of veterinary medicine, Ghent university, Merelbeke, Belgium

ALLERGEN EXTRACTS AND CALCITRIOL AFFECT IL-8 AND TGF- β 1 SECRETION IN A CELL LINE OF CANINE ORAL KERATINOCYTES

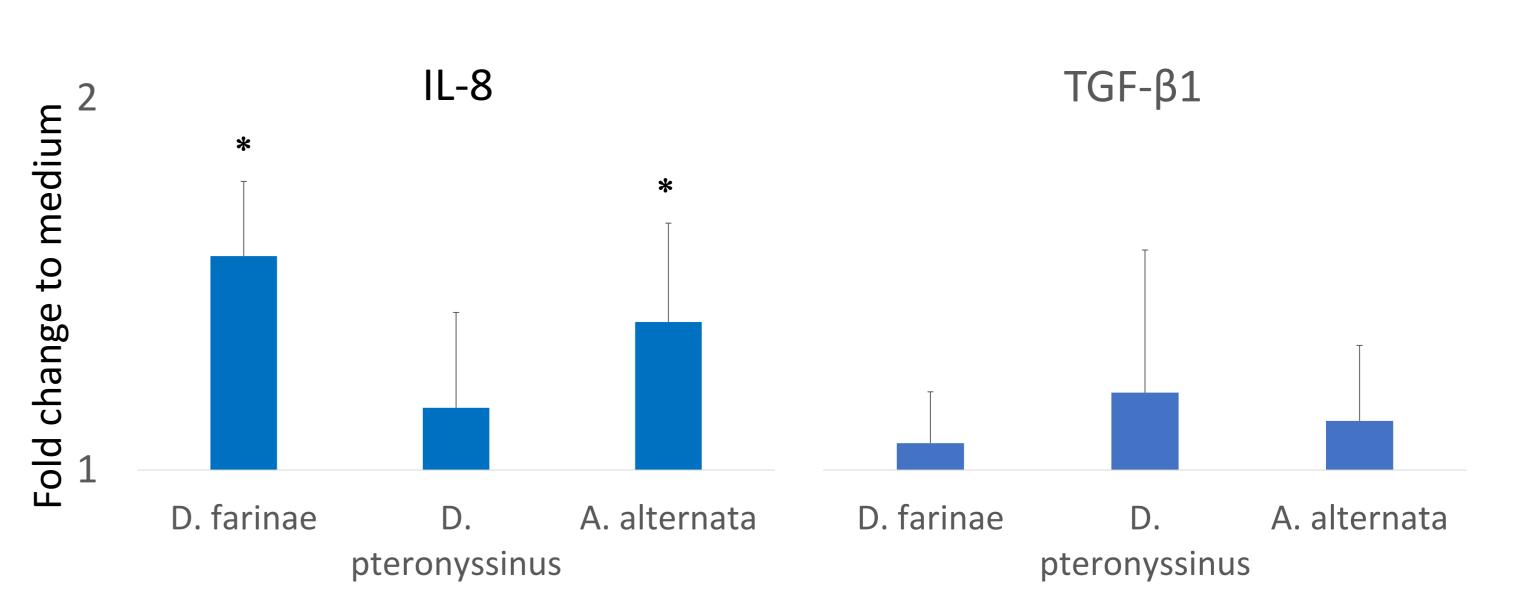
Anti-inflammatory

 $(TGF-\beta 1)$

Background

Allergen immunotherapy only has a moderate efficacy, both in humans and animals. During sublingual immunotherapy, the oral

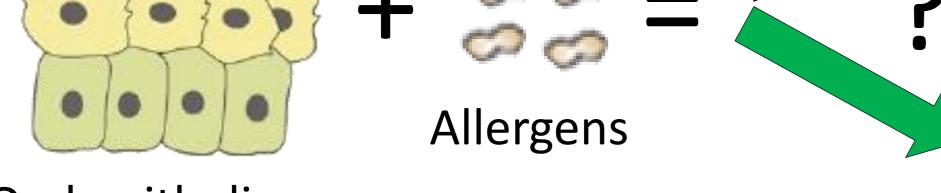
Results


1. Influence of allergens on oral epithelial cells' IL-8 and TGF-β1 cytokine secretion

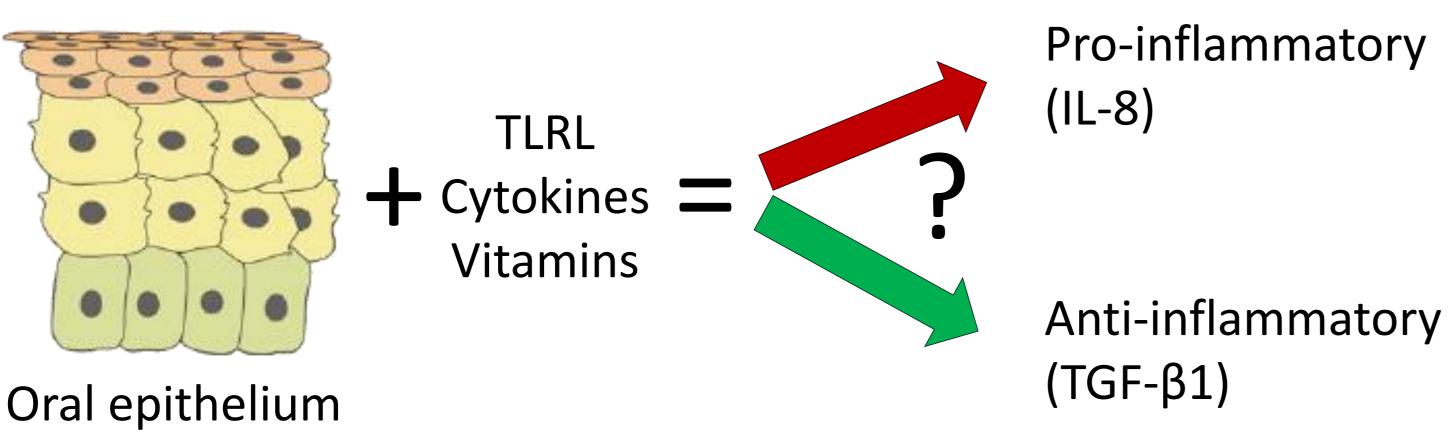
mucosa is an easily accessible, immunologically active tissue which could provide the opportunity to modify the local immune response. In humans and mice, oral dendritic cells¹ and the draining lymph nodes of the oral mucosa² are known to play an important role in the promotion of tolerance during therapy. Skin and lung epithelial cells can influence the co-stimulatory signal of antigen-presenting cells³. Whether oral epithelial cells are capable of immunologically recognizing allergens and could be modulated in playing a tolerance-promoting role has not been specifically investigated.

Objectives of the study

1. To look at the influence of allergens on oral epithelial cells' cytokine secretion


Pro-inflammatory (IL-8)

2. Effect of TLRL, cytokines and vitamins on IL-8 and


TGF-β1 cytokine secretion in oral epithelial cells

Substance	IL-8	TGF-β1	Substance	IL-8	TGF-β1
TLRL			Cytokines		
Pam3CSK4	10	ns	IL-17A	1.7	ns
FSL-1	9	ns	IL-4	1.7	ns
ST-FLA	2.8	ns	IL-10	1.5	ns
Poly I:C	1.6	ns	IFN-γ	ns	ns
HKLM	1.6	ns	IL-6	ns	ns
ODN2006	ns	0.7	Vitamins		
Imiquimod	ns	ns	9-cis-retinoic acid	ns	ns
ssRNA40	ns	ns	Calcitriol	0.6	0.8
LPS	ns	ns	values = fold change to medium ns = not significant		
LTA	ns	ns			

Oral epithelium

2. To identify substances capable of suppressing the pro-inflammatory immune response in oral epithelial cells

Methods

A cell line of canine oral keratinocytes was incubated with allergen extracts (*Dermatophagoides farinae*, *D. pteronyssinus* and *Alternaria alternata*), different toll-like receptor ligands, canine recombinant cytokines and vitamins (9-cis-retinoic acid and calcitriol). After 24 hours incubation, cytokine production (IL-8 and TGF- β 1) was measured with ELISA.

Conclusion

Just as in skin keratinocytes, house dust mite antigens seem to be capable to induce pro-inflammatory signals in oral epithelial cells. Calcitriol on the other hand seems to downregulate cytokine production in this cell type. The effect of allergens and

calcitriol on oral epithelial cytokines that are specifically involved in Th2 immunity should be further investigated. A better understanding of the different substances that can modulate immune responses at the level of the epithelium will allow the selection of specific adjuvants that could enhance the efficacy of local allergen immunotherapy.

References

¹Allam et al. (2010). Phl p 5 resorption in human oral mucosa leads to dose-dependent and time-dependent allergen binding by oral mucosal Langerhans cells, attenuates their maturation, and enhances their migratory and TGF-β1 and IL-10–producing properties. *Journal of Allergy and Clinical Immunology*, *126*(3), 638-645. ²van Wilsem et al. (1995). Oral tolerance is determined at the level of draining lymph nodes. *Immunobiology*, *194*(4-5), 403-414.

³Deckers et al. (2017). Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. *Immunological reviews*, 278(1), 131-144.