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Abstract 12 

Human-induced environmental changes in temperature, light availability due to forest canopy 13 

management, nitrogen deposition, and land-use legacies can alter ecosystem processes such as litter 14 

decomposition. These influences can be both direct and indirect via altering the performance of 15 

understorey vegetation. To identify the direct and indirect effects of environmental changes on litter 16 

decomposition, we performed an experiment with standardised green and rooibos teas. The 17 

experiment was conducted in a temperate mixed deciduous forest, and treatments (temperature, light, 18 

and nitrogen) were applied to mesocosms filled with ancient and post-agricultural forest soil. Both 19 

green tea and rooibos teas were more rapidly decomposed in oligotrophic soil than in eutrophic soil. 20 

The direct effects of the treatments on litter decomposition varied among the two litter types, 21 

incubation times, and soil fertility groups. Warming and agricultural legacy had a negative direct 22 

effect on the decomposition of the green tea in the high soil fertility treatment during the early 23 

decomposition stage. In contrast, agricultural legacy had a positive direct effect on the decomposition 24 

of rooibos tea. Soil enriched with nitrogen had a negative direct effect on the decomposition of green 25 

tea in mesotrophic soil in the early decomposition stage and on rooibos tea in later stage. The indirect 26 
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effects of the treatments were consistently negative, as treatments (especially the temperature and 27 

light treatments in the early decomposition stage) had a positive effect on plant cover, which 28 

negatively affected litter decomposition. Our results indicate that warming, increased nitrogen 29 

deposition, and land use legacy can directly stimulate the decomposition of labile litter on more fertile 30 

soils. Furthermore, warming and increased light had stronger positive direct effects on understorey 31 

herbaceous cover, which leads to slower decomposition rates, especially in more fertile soils. 32 

Therefore, the indirect effects of environmental changes related to the understorey layer on litter 33 

decomposition can be more important than their direct effects, thus should not be overlooked.  34 

 35 

1. Introduction 36 

Litter decomposition is the dominant process of the carbon and nutrient cycles in forest ecosystems, 37 

which contributes to approximately 60 Pg yr-1 of the annual soil and atmospheric carbon input 38 

globally (Wang, et al., 2010; Pan, et al., 2011; Van Groenigen, et al., 2014). There is a wealth of data 39 

showing that litter quality (e.g., the carbon to nitrogen ratio, lignin and cellulose content) determines 40 

litter decomposition rates and, ultimately, the dynamics and stocks of soil carbon (Thiessen, et al., 41 

2013; Fernandez, et al., 2016). Environmental drivers play a major role in litter decomposition 42 

processes and can strongly influence litter decomposition rates. For instance, according to Parton et 43 

al. (2007), climate variables can explain up to 68% of the variability in litter decomposition rates on 44 

a global scale. Hence, changes in environmental conditions may have a tremendous impact on litter 45 

decomposition processes via both direct and indirect pathways. For instance, herbaceous biomass 46 

production was estimated to increase under increasing temperature (Liu, et al., 2010); increasing 47 

biomass can reduce soil temperature, which may decelerate litter decomposition rates (Cornelissen, 48 

et al., 2007).  49 

Here, we focus on four environmental factors that are known to affect the function of temperate 50 

forest ecosystems and litter decomposition. We consider the effects of climate warming, increased 51 

light availability at the forest floor due to intensifying forest management, excess nitrogen due to 52 
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deposition and fertilization, and land-use legacies in forests that were planted on former agricultural 53 

land (Freeman, et al., 2007; Berg, et al., 2010; De Frenne, et al., 2010). Warming and agricultural 54 

legacy are considered factors that stimulate the decomposition of forest litter and soil organic matter 55 

because they generally lead to the growth of fungal hyphae and enhanced decomposer and enzyme 56 

activity (Davidson and Janssens, 2006; Dang, et al., 2009; Liiri, et al. 2012). Conversely, high levels 57 

of nitrogen in soil generally decreases litter decomposition rates, especially for low quality litter 58 

(typically high carbon to nitrogen ratio and lignin content) because of the negative effects on 59 

decomposer and enzyme activity (DeForest, et al., 2004; Treseder, 2008; Wu, et al., 2019).  60 

Changes in temperature, light, nitrogen, and land use additionally influence the biomass and 61 

composition of the herbaceous layer in forest ecosystems (Beaten, et al., 2010; Verheyen, et al., 2012; 62 

Perring, et al., 2017). Numerous studies have shown that climate warming, increasing light 63 

availability, and nitrogen enrichment, alone or in combination, generally increase understorey 64 

biomass, which is highly correlated with plant cover (Bonan, 2008; Maes, et al., 2014). Plant 65 

community feedback on these environmental changes may, in turn, adjust the soil microclimate, and 66 

further alter litter decomposition (Loon, et al., 2014). Therefore, we may expect important indirect 67 

effects on litter decomposition via the understorey herbaceous layer cover from changes in 68 

temperature, light, nitrogen, and land-use history. Understorey removal experiments have shown that 69 

litter decomposition rates were negatively correlated with understorey cover because the activity of 70 

decomposers and enzymes were inhibited by lower soil temperature, light availability, and soil 71 

nitrogen concentrations under plant cover (Wu, et al., 2011; Wang et al., 2014; De Long, et al., 2016; 72 

Fanin et al., 2019). Yet, we still know remarkably little about how these environmental changes 73 

indirectly, via altering understorey vegetation cover, impacts litter decomposition.  74 

The direct and indirect effects of these environmental changes on litter decomposition are not 75 

necessarily consistent between litter quality types (Coȗteaux et al., 1995), decomposition stages, and 76 

soil conditions (Delgado-Baquerizo et al., 2015; Frøseth and Bleken, 2015). It is widely accepted that 77 

recalcitrant litter is less sensitive to environmental changes compared to labile litter. For example, the 78 
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direct effects of warming and nitrogen enrichment on recalcitrant litter decomposition are 79 

considerably weaker than on labile litter, especially in the early stage of litter decomposition where 80 

most of the water-soluble substrates are released (De Long, et al., 2016; Christiansen, et al., 2017). 81 

Moreover, the sensitivity of decomposition rates to environmental changes is also expected to be 82 

modulated by soil physicochemical properties (Portillo-Estrada, et al., 2016). The direct and indirect 83 

environmental effects on litter decomposition may be stronger in nutrient-rich soils compared to 84 

nutrient-poor soils because nutrient-rich soils provide a more suitable environment (determined by 85 

nutrient availability, organic matter, pH, and soil moisture) for decomposers and enzymes. The 86 

indirect effects via plants cover on litter decomposition may be also stronger in nutrient-rich soil than 87 

in nutrient-poor soil, because the plant community may show better performance at the modification 88 

of the soil microclimate (Loon, et al., 2014).  89 

The main goal of the present study was to elucidate the direct and indirect effects, related to the 90 

understorey vegetation cover, of changes in temperature, light availability, atmospheric nitrogen 91 

deposition, and land-use history on the decomposition of two types of litter in different soil types and 92 

at different decomposition stages. To this end, we added standardised litter (green tea and rooibos tea, 93 

cf. Keuskamp et al., 2013; Djukic, et al., 2018) to a large-scale mesocosm experiment installed in 94 

Belgium. Understorey plant communities were grown on soils with contrasting characteristics (soil 95 

types and land use history), so that we could test for the consistency of environmental changes on 96 

decomposition in different soil contexts. We hypothesised that (i) the warming, enhanced light 97 

availability, and land-use legacy treatments will have positive effects on the decomposition of both 98 

types of litter, whereas nitrogen enrichment will limit tea decomposition (especially of the labile litter 99 

type). (ii) The direct effects of the treatments and the indirect effects via understorey plant cover on 100 

the decomposition of labile litter will be greater than that on the recalcitrant litter types. (iii). The 101 

direct and indirect effects of the treatments will be more important in the early stage of decomposition 102 

(shorter incubation), especially for the labile litter, compared to the later stage of decomposition. (iv) 103 
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The treatment effects on litter decomposition are stronger in nutrient-rich soil compared with nutrient-104 

poor soil. 105 

 106 

2. Material and methods 107 

2.1. Site description 108 

This study was conducted in the Aelmoeseneie forest (50º58.5´ N, 3º 48´ E, 16 m a.s.l.), which 109 

is a temperate mixed deciduous forest in Northern Belgium (Flanders). This forest is considered an 110 

ancient forest, that is, it has been continuously forested since at least the oldest land-use map of 1775. 111 

The forest has a total area of 28 ha and the dominant trees are about 90 years old (De Frenne, et al., 112 

2010). Annual precipitation is ca. 850 mm and is fairly evenly distributed throughout the year. The 113 

mean annual temperature is 11.3°C, with 5.0°C in the coldest month (February) and 18.5°C in the 114 

warmest month (July and August). The most common tree species are oak (Quercus robur), beech 115 

(Fagus sylvatica) and ash (Fraxinus excelsior). European rowan (Sorbus aucuparia), European 116 

hazelnut (Corylus avellana) and alder buckthorn (Frangula alnus) are commonly found in the shrub 117 

layer. The species rich understorey community includes Anemone nemorosa L., Ranunculus ficaria 118 

L. and Primula elatior Hill. Soils are Dystric podzoluvisol and Dystric cambisol (FAO classification) 119 

in this forest, which has a typical thin quaternary layer of sandy loam with a spotted texture B horizon 120 

on a shallow impermeable clay and sand complex of tertiary origin. The humus layer is of a mull and 121 

moder type (Staelens, et al., 2006). 122 

2.2. Soil collection and analysis of properties 123 

To understand how the environmental changes in temperature, light availability, atmospheric 124 

nitrogen deposition and land use influence decomposition of two types of litter in different 125 

decomposition stages and different soil types, an in situ mesocosm experiment was set up in the mixed 126 

mature temperate forest. The soils used in the mesocosms were collected from eight European regions 127 

(ranging from Central France to Southern Estonia), and from three ancient and post agricultural forest 128 

sites within each of those regions (48 sites in total, see Blondeel, et al., 2018a). Here, ancient forest 129 
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is defined as forest that has been continuously present on the oldest reliable land use maps (most of 130 

them pre-dated 1850), and the forests that recovered since the wave of land abandonment in the 1950s 131 

are considered as post-agricultural (Blondeel, et. al, 2018a). In each region, we selected three post-132 

agricultural (recent) forests and three ancient forests according to the land-use maps. A topsoil (0-15 133 

cm) sample with a surface of 70 x 100 cm was collected from each forest site (8 regions x 2 land use 134 

histories x 3 replicates). A subsample was taken from each of the 48 soils for the analysis of soil 135 

texture (% Clay, % Sand and % Silt) and soil chemical properties. Soil samples were dried and sieved 136 

through 1 mm mesh size sieve, then soil pH (in H2O), total carbon (TC, %) and nitrogen (TN, %), 137 

total phosphorus (TP, mg·kg-1) and calcium (Ca, μg·kg-1) were determined as described by Blondeel et 138 

al. (2018a). Based on soil texture and bedrock properties (Table 1), the soils were classified into three 139 

categorical groups using a cluster analysis and principal components analyses: Oligotrophic soil 140 

(Oligo, high sand content, low base saturation, and low pH), Mesotrophic soil (Meso, intermediate) 141 

and Eutrophic soil (Eu, with high clay content, high base saturation and high soil pH). These three 142 

resulting clusters were used as a categorical variable ‘‘Soil type’’ in the statistical analyses. See 143 

Blondeel et al. (2018a) for more information.  144 

2.3. Experimental design 145 

The collected soil from each of the 48 sites was sieved through 4 mm mesh size sieve (5 mm for 146 

heavy soils) for homogenization and distributed over eight mesocosms (2 temperature * 2 light * 2 147 

nitrogen levels of treatment). Then we placed 9 L of inert river sand in the bottom of the tray for 148 

drainage, and 13 L of sieved sample was added on top. After that, a community of herb layer species, 149 

including two ancient forest species, two fast-colonizing shade tolerant species and one nitrophilous 150 

species, were randomly planted four times in the tray according to a 4 x 5 grid during the spring of 151 

2016 (Table A1, A2 & A3; Fig. A1 & A2). See Appendix A for more information on the communities 152 

that were used. We randomly grouped four mesocosms in a ‘plot’, according to their assigned treatment 153 

combination of warming, increased light and nitrogen enrichment, which results in 96 experimental 154 

plots. These plots were randomly placed in groups of four under a tree canopy (95% cover) dominated 155 
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by Fagus sylvatica, Quercus robur, Acer pseudoplatanus, Fraxinus excelsior and Larix decidua (the 156 

light intensity and throughfall under the canopy are relatively homogeneous), and subjected to a full-157 

factorial combination of three treatments, including two levels of warming (T), increased light 158 

availability (L), and nitrogen-addition (N). All eight treatment combinations were replicated across 159 

the forty-eight soil origins making a total of 384 mesocosms. The temperature, light and nitrogen 160 

experimental treatments are as follows: 161 

T: With or without Open Top Chamber (OTC). The air temperature or the soil temperature were 162 

expected to increase approximately 2°C by the 75 cm-wide OTC in natural conditions (De Frenne, 163 

et al., 2015). In our experiment, we measured a significant increase (P < 0.05) in daily mean air 164 

temperature (at 15 cm height) of 1.13±0.36°C by the OTC between March and end of May, but 165 

insignificant increases after May 2017 (Fig. 1). Both soil surface temperature at 0 cm 166 

(0.39±0.36 °C) and soil temperature at 5 cm depth (0.39±0.36 °C) increased, but not significantly, 167 

during the tea bag incubation period (De Frenne, et al., 2015). 168 

L: With or without light installation. This treatment simulates the availability of light under a thin 169 

canopy of trees. A reading of ca 5-10 µmol m-2 s-1 PAR is expected when tree canopy is fully 170 

covered, while the cool-white fluorescent bulbs can increase the PAR up to 30 µmol m-2 s-1 at 75 171 

cm height (these most likely did not increase air and soil temperature. De Frenne, et al., 2015). 172 

During the experimental period, we measured that the illumination treatment added 23.98±4.40 173 

µmol m-2 s-1 PAR to the ambient light conditions (7.79±0.68 µmol m-2 s-1 PAR under fully closed 174 

canopy) by use of two 18 W fluorescent tubes suspended 75 cm above the ground level of each 175 

plot (Blondeel, et. al, 2018b). These lights were programmed to follow the natural photoperiod 176 

throughout the year (De Frenne, et al., 2015). 177 

N: With or without nitrogen addition. Nitrogen was enriched by adding 0.25 L of a 2.01 g/L solution 178 

of NH4NO3 (50 kg N ha-1 yr-1 eq.) per mesocosm and rinsing this with 0.25 L of demineralised 179 

water. This treatment was performed four times per year at the start of spring, summer, autumn 180 
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and winter season, with the control mesocosms receiving 0.5 L of demineralised water (De Frenne, 181 

et al., 2015). 182 

Lu: Land use history: mesocosms were filled with either ancient forest soil or post-agricultural forest 183 

soil. The soil physicochemical properties are shown in Table 1. 184 

In addition to litter decomposition (see below), we measured total vegetation cover (%), as this is 185 

tightly linked with productivity, leaf biomass and competition for light (Muukkonen et al. 2006). We 186 

measured total vegetation cover as the one sided projection of all leaf area in the tray with 0% being no 187 

vegetation and 100% the whole tray area covered by vegetation. We measured total cover two times 188 

during the experiment: the first week of May (4 May) and the second week of August (11 August). We 189 

used digital RGB photographs of the mesocosms taken perpendicular to the ground surface and the 190 

“Canopy Area” software tool that measures green pixels of vegetation and recalculates this into a cover 191 

percentage (Easlon and Bloom, 2014).  192 

The volumetric soil moisture content (m3.m-3) in all mesocosms (at centre and edge) was also 193 

measured by using Delta T ML3 Thetakit (Delta T, Cambridge UK) after a dry period (no rainfall for 7 194 

days) in September 2016 and after a rainfall event in October 2016 (see Appendix B for more 195 

information). The soil moisture content was significantly higher in mesotrophic and eutrophic soil 196 

compared with oligotrophic soil. Moreover, ancient forest soil had a significantly higher soil moisture 197 

content compared with post-agricultural forest soil. The treatments of temperature, light, and nitrogen 198 

generally led to lower soil moisture content, but the differences were not significant (Table B1). 199 

2.4. Tea bag litter 200 

According to Keuskamp et al. (2013) and Djukic (2018), green tea and rooibos tea represent two 201 

different litter qualities. The leaves of Lipton green tea (EAN no.: 8 722700 055525) with low C:N 202 

ratio (12.229 ± 0.129) represents a relatively labile litter, and the Lipton rooibos tea (EAN no.: 8 203 

722700 188438) with high C:N ratio (42.870 ± 1.841) represent a relatively recalcitrant litter. The 204 

bags are filled with 1.61±0.07 g and 1.75 ± 0.03 g of green tea and rooibos tea, respectively. The bags 205 

are made out of woven nylon, with a mesh size of 0.25 mm. This mesh excludes macrofauna, but 206 
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allows access of microorganisms to enter the bags. Before burying the tea bags into the soil, five extra 207 

green teas and rooibos teas were brought back to our laboratory to determine initial ash free dry mass 208 

(AFDM). In each mesocosm, two bags of green tea and two bags of rooibos tea, in total 1536 teabags, 209 

were installed in the upper 2-5 cm of the top soil on 5 April 2017. The teabags were collected after 210 

90 and 150 days of incubation (384 green teabags and 384 rooibos teabags each time). The teabags 211 

were oven-dried at 65°C until constant weight. Then, the remaining material was weighted and 212 

combusted at 550°C for 4-6 h and re-weighed. The remaining AFDM after the 90 or 150 days of 213 

incubation was calculated by subtracting the weight after combustion from the weight before 214 

combustion. 215 

2.5. Statistical analyses 216 

All statistical analyses were performed using R (R Core Team 2017), and graphs were made with 217 

the ggplot2 package (Wickham 2009). We first tested the differences in soil physicochemical 218 

properties (TC, TN, TP, Ca, pH, clay, silt, and sand content) between the three soil types with 219 

ANOVA (Table 1). Analyses were done separately for ancient and post-agricultural forest sites. We 220 

then performed post hoc analyses using Tukey’s honest significance test [HSD (package laercio)]. 221 

For the litter decomposition experiment, we used incubation data from 90 and 150 days for the 222 

analyses. Focusing on AFDM as the response, we used an ANOVA to test the effects of the four 223 

treatments (temperature, light, nitrogen, and land use) and the three design variables (tea type, 224 

duration of incubation, and soil type), including all two-way interactions between the treatments and 225 

design variables. The same effects (except for the tea type) were also tested on the understorey plant 226 

cover. A correlation analysis was performed to test whether the decomposition of green tea and 227 

rooibos tea was related to soil physicochemical properties. 228 

To understand direct and indirect relationships of the treatments (temperature, light, nitrogen and 229 

land-use history), understorey vegetation cover and litter decomposition in different litter types; and 230 

collection dates and soil fertility groups, we modelled a set of a priori assumed relationships (Fig. 2) 231 

using piecewise structural equation models (SEM). The direct effects of light on green tea and rooibos 232 
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tea were not included in the SEM because the tea bags were buried in the soil, so that light addition 233 

cannot have direct effects on tea mass loss. Here, we chose to use plant cover as a proxy for 234 

understorey biomass production, which plays an important role in the interception of energy and 235 

matter (Muukkonen et al. 2006). The piecewiseSEM package for R was used to implement the models 236 

(Lefcheck 2016). A Fisher’s C test was used to retain the hypothesised relationship structure 237 

(Lefcheck, 2016), the path model is considered to fit the data when the P-value for Fisher’s C statistic 238 

is >0.05 (Shipley, 20042009). Then standardised regression was used to calculate standardised 239 

coefficients, which were marked over the arrows. In addition, the indirect effects of the treatments 240 

(temperature, light, nitrogen and land use) were defined as the product of the standardised coefficients 241 

of the direct effects of plant cover on tea AFDM loss and the direct effect of the treatments on the 242 

cover of understorey plants. 243 

 244 

3. Results 245 

3.1. Loss of tea mass 246 

After 90 days of incubation, the AFDM of green tea and rooibos tea was significantly decreased 247 

by 64.32 ± 0.20% and 34.02 ± 0.37% of the initial AFDM content, respectively, across all treatments 248 

and soils (Table 2; P < 0.001). The AFDM of green tea and rooibos tea further significantly decreased 249 

by 4.8% and 8.3%, respectively, with an additional 60 days of incubation; therefore, the duration of 250 

incubation had a significant effect on decomposition (Table 2; Fig. C1). Also, we recorded a steadily 251 

decreasing trend of AFDM loss for green tea along the soil fertility gradients, but not for rooibos tea 252 

(Fig. 3). The AFDM loss of green tea was 69.17 ± 0.22%, 66.33 ± 0.27%, and 60.56 ± 0.29% of the 253 

initial mass in oligotrophic, mesotrophic, and eutrophic soil, respectively (P < 0.05). 254 

The environmental treatments (temperature, light, nitrogen, and land use) generally had a limited 255 

effect on mass loss for both tea types across soils (Table 2, Fig. 3). After 90 days of incubation on 256 

eutrophic soil, the loss of green tea mass under the treatment of warming was significantly lower (3%) 257 

than that of the control (P < 0.05), indicating a marginally slower decomposition with warming. As 258 
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shown in Table 2, the interaction between soil type and treatment was significant, suggesting that the 259 

effects of temperature, light, and land-use history on the loss of mass were variable with different soil 260 

fertility groups. Additionally, there was a significant interaction between the treatment of light and 261 

tea types (P < 0.05). The loss of green tea mass under the increased light treatment was generally 262 

lower than the control in oligotrophic and eutrophic soil, but after 150 days of incubation, while it 263 

was significantly higher in oligotrophic soil (P = 0.02). Nitrogen enrichment showed a significant 264 

effect on the loss of both green tea and rooibos tea mass (P = 0.026); the nitrogen enrichment 265 

consistently inhibited the loss of green tea and rooibos tea mass at the two incubation times and in 266 

the three soil types (Table 2). Furthermore, the loss of green tea and rooibos tea mass showed limited 267 

differences among the land use treatments, except the green tea on the post-agricultural eutrophic soil 268 

had a significantly lower mass loss than that of the ancient forest soil treatment after 90 days of 269 

incubation (P < 0.05, Fig. 3). 270 

3.2. Effects of treatments on understorey plant cover 271 

The average plant cover across all mesocosms was 62.27 ± 1.22% and 54.70 ± 1.29% in May and 272 

August, respectively (P < 0.001, Table 2). Soil type had a significantly positive effect on plant cover 273 

(P < 0.001, Table 2), which was approximately 10% higher in mesotrophic soil and eutrophic soil 274 

than that in oligotrophic soil. Light and land use treatments had significant positive effects on plant 275 

cover, with an increase of 16.70 ± 1.48% with increased light and increase of 6.71 ± 1.47% in post-276 

agricultural soil (Table 2; Fig. 4). We observed a significant interaction between temperature and 277 

incubation times, with an 11% and 5% increase with warming, respectively, in May and in August. 278 

In contrast, nitrogen did not show any significant effects on understorey plant cover at the two 279 

sampling points or in the three soil types. 280 

3.3. Direct and indirect effects of treatments and understorey vegetation cover on tea 281 

decomposition 282 

The P-values obtained from the Fisher's C tests were >0.05, indicating that the retained 283 

relationships were a valid description of the system. The exception to this was the SEM for green tea 284 
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on oligotrophic soil after 150 days of incubation. Increased light and temperature were more 285 

prominent drivers of decomposition than nitrogen enrichment and land-use legacy across soil types 286 

and incubation periods. Together, increased light and temperature explained the mainly changes in 287 

understorey plant cover (R² ranged from 0.22 to 0.60). Plant cover showed variability explaining the 288 

response of AFDM loss of green tea (R² between 0.07 and 0.42) and rooibos tea (R² between 0.06 and 289 

0.33) across soil types and incubation periods (Fig. 5). The explained variation for AFDM loss of 290 

both types of tea after 150 days of incubation was substantially lower than that in 90 days of 291 

incubation. The amount of variation explained for both types of tea mass loss and plant cover showed 292 

an increasing trend from oligotrophic soil to eutrophic soil after 90 days of incubation. The 293 

temperature and light treatments had a consistently and significantly positive direct effect on plant 294 

cover in the three types of soil (P < 0.05). Moreover, the effect of light remained after 150 days, while 295 

the effect of temperature only persisted in mesotrophic soil.  296 

Plant cover had a consistently and significantly negative effect on the AFDM loss of green tea and 297 

rooibos tea. The direct effects of all treatments on AFDM loss of both types of tea were limited on 298 

oligotrophic soil, while nitrogen enrichment directly inhibited AFDM loss of green tea (standardised 299 

estimate = -0.208) and rooibos tea (standardised estimate = -0.192) after 90 and 150 days of 300 

incubation on mesotrophic soil, respectively. Warming and agricultural legacy had a negative direct 301 

effect on AFDM loss of green tea, whereas agricultural legacy significantly promoted AFDM loss of 302 

rooibos tea. 303 

When partitioning the total effects of the treatments into direct and indirect effects, we found that 304 

temperature and light represented a lager part of indirect effect across tea types, soil fertility groups 305 

and incubation times (Fig. 6). The indirect effects of temperature and light on green tea and rooibos 306 

tea AFDM loss showed a decreasing trend from oligotrophic soil to eutrophic soil throughout the 307 

duration of the incubation. After 150 days of incubation, the indirect effects of the treatments were 308 

generally less than that of the early stage of decomposition, with the land use treatment showing an 309 

indirect effect on the loss of rooibos tea mass on mesotrophic soil.  310 
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 311 

4. Discussion 312 

Litter decomposition is generally controlled by both internal factors (such as litter quality) and 313 

external factors (such as decomposers and environmental factors; Rouifed, et al., 2010). In this study, 314 

we explored the direct and indirect effects, via the understorey herbaceous cover, of four important 315 

human-induced environmental changes on the decomposition of labile and recalcitrant litter, 316 

represented by two tea types used as standardised litter. Inconsistent with our hypothesis, warming, 317 

increased light, and agricultural legacy did not have the expected positive effects on the 318 

decomposition of the two litter types, but consistent with our first hypothesis, we did find a reduction 319 

in decomposition with nitrogen addition. Stronger direct and indirect effects were generally observed 320 

during the early-stage of decomposition of the labile litter than on the recalcitrant litter, especially in 321 

the nutrient-rich soil, which is consistent with the second and third hypotheses. Moreover, the direct 322 

and indirect effects of the treatments were considerably stronger in nutrient-rich soil compared with 323 

nutrient-poor soil. The understorey plant cover increased with warming, increased light availability, 324 

and on post-agricultural forest soils. Since the understorey plant cover had consistently negative 325 

effects on the decomposition of both types of litter, this shows that global environmental changes 326 

may have important indirect effects on litter decomposition via the response of the understorey 327 

community.  328 

4.1 The response of litter decomposition and plant cover to the treatments 329 

Consistent with previous researches (Didion, et al., 2016; Djukic, et al., 2018; Petraglia, et al., 330 

2019), we found that the loss of green tea mass was approximately twice as fast as that of rooibos tea, 331 

and was more strongly influenced by the treatments than the rooibos tea (Table 2). This is probably 332 

due to the fact that the green tea has higher concentrations of soluble compounds than rooibos tea 333 

(Fierer, et al. 2005), which increases the decomposition rates of green tea through leaching and the 334 

activity of microorganisms; hence, making green tea more reactive to environmental changes (Djukic, 335 

et al., 2018). Rooibos tea is possibly composed of more stable plant matter, which remained 336 
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unaffected during this short observation period (i.e., the vegetation period from April to September). 337 

This, in turn, implies that this short-term study could not capture sufficient information related to this 338 

recalcitrant material. Surprisingly, we observed a negative correlation between soil fertility groups 339 

and the loss of green tea mass, which was not displayed in the rooibos tea (Fig. 2). On one hand, this 340 

can be partly attributed to the negative effect of fine mineral particles on litter decomposition in clay 341 

soils (Sollins, et al., 1996), as it helps the litter organic components become water-stable soil 342 

aggregates (Angst, et al., 2017). On the other hand, the release and leaching of elements and smaller 343 

debris particles are easily lost through the pores of sandy (oligotrophic) soils, especially at the early-344 

stages of litter decomposition, when water soluble substances are primarily lost (Berg, 2014). This 345 

may also explain why the loss of rooibos tea mass (which has very low content of water-soluble 346 

substances) was not different in sandy (oligotrophic) soil or clay (eutrophic) soil (Fig. C1). 347 

In agreement with previous studies, we found that nitrogen enrichment could generally reduce 348 

decomposition rates though slowing microbial activities in soil (Treseder, 2008; Janssens, et al., 2010; 349 

Huang et al., 2011). However, we did not expect that warming, increased light availability, and 350 

agricultural legacy would have inhibitory effects on litter decomposition at the two incubation stages 351 

and in the three types of soil. These findings are inconsistent with previous studies that have shown 352 

that litter decomposition is stimulated by warming, increased light availability, and land-use legacy 353 

due to increases of enzyme and soil microbial activity (Fierer et al., 2005; Liiri et al., 2012). A 354 

possible explanation for these contrasting results is that the open top chambers had very limited 355 

warming effects on soil temperatures after the leaf-flushing period of overstorey trees. In our study, 356 

the chambers only successfully increased the air temperatures between 1–1.5°C before the leaves 357 

opened on overstorey trees, which can be important to understorey development (De Frenne et al 358 

2010), and thus also for decomposition rates. When the canopy closes in late spring and summer, 359 

solar radiation is almost completely intercepted by the canopy, so the effects of warming became 360 

weaker. Thus, warming during the incubation period had a large effect on the understorey, but not on 361 

soil temperatures. Moreover, litter degradation generally has lower sensitivity to environmental 362 
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change when the mean annual temperature is lower than 10°C (Prescott, 2010). The average air 363 

temperature at our study site was approximately 10°C during the incubation period, and we were only 364 

able to increase the mean air temperature by 1°C with passive warming. Moreover, the soil 365 

temperature was much lower than the air temperature, which might have led to an opposite effect 366 

(slower rate of decomposition) on litter decomposition. Saura-Mas et al. (2012), Almagro et al., 367 

(2015), and Petraglia et al., (2019) also observed that warming inhibited litter decay when the mean 368 

annual air temperature was increased by less than 3°C.  369 

Understorey plant cover showed a positive response to the treatments. Temperature, light, and 370 

land-use significantly increased plant cover by 7% to 17% during the incubation period. This is in 371 

line with the results from De Frenne et al. (2015), indicating that understorey plants have stronger 372 

responses to warming and increased light availability compared with nitrogen enrichment. Moreover, 373 

plant cover increased (especially for the understorey plants in the temperature and light treatments in 374 

May) with the increase of soil fertility. This indicates that the understorey plants exploit the additional 375 

warmth and light when the soil can supply sufficient nutrients (for example, in eutrophic soil and with 376 

agricultural legacy). The understorey plant communities growing in nutrient-rich soil may show a 377 

stronger response to warming and increased light availability than plants growing in nutrient-poor 378 

soil, especially during the growing season.  379 

4.2 Direct and indirect effects of environmental changes on litter decomposition 380 

The indirect effects of environmental changes, via understorey plant cover, were calculated by 381 

multiplying the standardised direct effects of the treatments on understorey plant cover by the direct 382 

effects of plant cover on litter decomposition (García-Palacios et al., 2013). The indirect effects were 383 

most apparent for temperature and light and were the strongest in the early stage of decomposition. 384 

Due to the changes of rainfall, light interception, and water evapotranspiration, increased plant cover 385 

is expected to slow the rate of increasing in soil temperature, which may also influence the water 386 

balance in the soil (Wahren et al., 2005; Niinemets, 2010; Myers-Smith et al., 2011; Loon, et al., 387 

2014). Consequently, the higher plant cover might foster a less favourable soil environment (such as 388 
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maintaining a lower temperature, light, and soil nutrients) for decomposers and enzymes (De Long, 389 

et al., 2016; Li et al., 2018). 390 

The stronger (in)direct treatment effects on the decomposition of labile litter compared with 391 

recalcitrant litter are likely to be related to differences in litter chemistry. The higher content of water-392 

soluble substances and cellulose/hemicellulose released in the early-stage of decomposition probably 393 

led to a higher sensitivity to environmental changes in the labile litter compared to the recalcitrant 394 

litter (Portillo-Estrada et al., 2016). The higher absolute value of direct and indirect effects of the 395 

treatments on rooibos tea compared to green tea after 150 days of incubation also supports this, since 396 

the rooibos tea might have higher concentrations of easily decomposing substrates in the later stage 397 

of litter decomposition. In this study, the direct effects of agricultural legacies were opposite for green 398 

tea and rooibos tea in three types of soil; the effects were also observed in eutrophic soil in the later 399 

stages of the incubation period (Fig. 6). We found a significantly negative direct effect of land use on 400 

the decomposition of green tea on eutrophic soil, while the reverse was true for rooibos tea (Fig. 5). 401 

The higher concentrations of phosphorus, which generally promotes microbial degradation processes 402 

when systems are less N-limited, in the post-agricultural forest soils and the eutrophic soils likely led 403 

to higher decomposition rates of recalcitrant litter (De Long, et al., 2016). Because higher 404 

concentrations of phosphorus may have also stimulated decomposition of the recalcitrant carbon 405 

substances by increasing microbial abundance and stimulating enzyme activities (Luo et al., 2019).  406 

Significant direct and indirect effects of the treatments were primarily observed in the early-stage 407 

of decomposition compared to the later stage of decomposition. This may have been due to the 408 

response of decomposers and enzymes to the changes in temperature and agricultural legacies in the 409 

early stage of incubation, which plays a dominant role during the decaying and leaching of most of 410 

labile and soluble substances (Berg, et al., 2010). However, this pattern was not found for the nitrogen 411 

treatment. This is likely because nitrogen enrichment mainly affected the decomposition of tea in 412 

mesotrophic soil, and the effects of nitrogen enrichment were also related to the tea type and 413 

incubation time (Fig. 6). Knorr et al. (2005) reported that nitrogen enrichment could inhibit litter 414 



17 

 

decomposition when the litter quality was low. Here, we also found that nitrogen enrichment had a 415 

direct negative effect on recalcitrant litter in the later stage of decomposition. Similarly, 416 

decomposition of green tea in early stage of decomposition was also inhibited by nitrogen enrichment. 417 

It is possible that this is due to the rapid decomposition of labile substances at the beginning (about 418 

30 days) of the incubation period; thus, the additional nitrogen could slow the decomposition of the 419 

remaining recalcitrant components.  420 

We found that warming, nitrogen enrichment, and agricultural legacy had stronger inhibitory effects 421 

on decomposition in more fertile soil (eutrophic soil) than that in low fertility soil (oligotrophic soil). 422 

These results are inconsistent with previous studies which have shown that litter decomposition is 423 

generally positively influenced by soil nutrient status (Vesterdal, 1999; Sariyildiz, and Anderson, 424 

2003). The higher temperature, soil moisture and nutrient availability in eutrophic soil might provide 425 

a suitable growing environment for fungi and plant roots (which were difficult to completely remove 426 

from the bags during sampling). In contrast, in oligotrophic soil, physical losses of organic 427 

compounds from leaching and other processes might have dominated the loss of tea mass due to the 428 

porous structure in these soils. On the other hand, the drier environment also hosted fewer growth of 429 

fungi and plant roots. The indirect effects of increased temperature and light were similar in the three 430 

types of soil (Fig. 6). A possible explanation is that the increased temperature and light led to a higher 431 

nitrogen uptake of plants, because of competition for nitrogen, which might intensify the activity of 432 

nitrogen-limited soil microbes in nutrient-poor soil (De Long, et al., 2016). Consequently, the positive 433 

direct effect of vegetation cover on loss of tea mass were stronger in oligotrophic soil than in eutrophic 434 

soil, even though the direct effects of temperature and light on plant cover were weaker in oligotrophic 435 

soil than in eutrophic soil (Fig. 5).  436 

In summary, our results provided evidence that human-induced environmental changes may have 437 

important direct effects on litter decomposition, especially for labile litter. However, the nature of 438 

these effects are impacted by the responses of the understorey plant community to the same 439 

environmental drivers, which are, in turn, mediated by inherent soil conditions such as soil fertility 440 
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and texture. Furthermore, as our short-term experimental results imply, the decomposition rates of 441 

labile and recalcitrant litter differ strongly in the early stages of decomposition. This difference in 442 

decomposition can be accelerated by the presence of an understorey. Therefore, to further unravel the 443 

mechanisms that underlie the direct and indirect effects on litter decomposition in multiple global 444 

change contexts, additional research should be conducted on the soil microclimate. 445 
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Figure captions 663 

Figure 1. The daily minimum and maximum air temperature (gradient filled), monthly average 664 

ambient (dashed) and warming (solid line) air temperature and daily precipitation (black filled) during 665 

the incubation period (April to September 2017) in Aelmoeseneie forest.  666 

Figure 2. A priori conceptual structural equation model depicting pathways by which temperature, 667 

light, nitrogen, land use and plant cover may influence AFDM loss of green tea and rooibos tea after 668 

90 and 150 days of incubation in three types of soil. For each arrow, the standardised regression 669 

coefficients and overall variance explained (r2) is calculated and shown in Fig. 5. 670 

Figure 3. Ash free dry mass (AFDM) loss of green tea and rooibos tea in response to four treatments 671 

applied to mesocosms: temperature, light, nitrogen and land use. Tea bags were collected after 90 672 

days and 150 days of incubation. The experiment was performed using three soil types (oligotrophic 673 

soil (Oligo), mesotrophic soil (Meso) and eutrophic soil (Eu)). Values are means with SE. Different 674 

letters (lowercases for controls and capitals for treatments) indicate significant differences among soil 675 

types (P < 0.05), asterisks show significant differences between the control and treatment (ns, *, **, 676 

*** indicated significance at the P > 0.05, P < 0.05, P < 0.01 and P < 0.001 levels, respectively). 677 

Figure 4. Plant cover of mesocosm plant communities in response to four treatments: temperature, 678 

light, nitrogen and land use. Plant cover was measured 45 (spring vegetation cover, May) and 120 679 

days (summer vegetation cover, August) after the tea bags were buried.  680 

Figure 5. Direct and indirect influences of temperature, light, nitrogen, land use and understorey plant 681 

cover on AFDM loss of green tea or rooibos tea after 90 (a, c, e) and 150 (b, d, f) days of incubation. 682 

Models were fitted for tea bags collected in three soil types: oligotrophic (Oligo; a, b), mesotrophic 683 

(Meso; c, d) and eutrophic (Eu; e, f) soils. The dashed and solid arrows represent the significant 684 

negative and positive effects, respectively. The number next to each arrow is the value of the 685 

standardised regression weights. Bold values are significant, and *, **, *** indicates significance at 686 
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the P < 0.05, P < 0.01 and P < 0.001 levels, respectively. Non-significant paths were omitted from 687 

the graph, but included in the model when fit was tested. 688 

Figure 6. Standardised direct effects(open) of temperature, light, nitrogen, and land use and their 689 

indirect effects (solid grey) via understorey plant cover on AFDM loss of green tea and rooibos tea 690 

in oligotrophic soil (Oligo) and mesotrophic soil (Meso) and eutrophic soil (Eu) after 90 days and 691 

150 days of incubation. Note that the direct effects are highlighted in Fig. 5, the indirect effects are 692 

calculated as a product of the direct effect of treatments on plant cover and direct effects of plant 693 

cover on tea decomposition. The omitted columns had represented insignificant pathways (p < 0.05). 694 

 695 
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Tables 696 

Table 1 Physicochemical properties of soils used in this study. Measurements are the average (±SE) 697 

of oligotrophic (Oligo), mesotrophic (Meso) and eutrophic (Eu) soils from ancient forest and post-698 

agricultural forest in Europe. 699 

Land use  Ancient forest 

 

Post-agricultural forest 

Soil type  Oligo (n = 12) Meso (n = 9) Eu (n = 3)   Oligo (n = 11) Meso (n = 8) Eu (n = 5) 

TC (%)  4.00±0.48 a 3.09±0.55 a 3.78±0.96 a   3.04±0.50 B 2.67±0.59 B 6.19±0.74 A 

TN (%)  0.25±0.03 a 0.26±0.03 a 0.31±0.06 a   0.19±0.03 B 0.24±0.03 B 0.44±0.04 A 

C/N ratio  16.10±0.75 a 12.00±0.87 b 11.90±1.50 b   14.40±0.78 A 11.40±0.92 A 13.90±1.16 A 

TP (mg·kg-1)  292.00±58.90 a 380.00±68.10 a 468.00±117.90 a   298.00±61.60 B 602.00±72.20 A 694.00±91.30 A 

Ca (mg·kg-1)  1.03±4.70 b* 
2.33±5.43 ab 4.25±9.40 a   0.71±4.91 B 2.84±5.76 B 40.90±7.28 A 

pH (H2O)  4.33±0.18 b 4.99±0.21 b 6.28±0.36 a   4.60±0.19 C 5.45±0.22 B 7.00±0.28 A 

Clay (%)  12.99±2.22 b 18.97±2.56 b 48.90±4.43 a   8.85±2.31 C 22.61±2.71 B 40.28±3.43 A 

Silt (%)  24.40±3.43 b 47.80±3.96 a 43.40±6.86 a   22.20±3.58 B 44.30±4.20 A 46.20±5.31 A 

Sand (%)  62.58±3.55 a 33.29±4.09 b 7.63±7.09 c   69.00±3.70 A 33.06±4.34 B 13.52±5.49 C 

TC, TN, TP and Ca indicate total carbon, nitrogen, phosphorus and calcium concentrations, 700 

respectively. Different letters (lowercases for ancient forest soil and capitals for post-agricultural 701 

forest soil) indicate significant differences among soil fertility type (P < 0.05) and asterisks show 702 

significant differences between two land use history soils (*, **, *** indicated significance at the P 703 

< 0.05, P < 0.01 and P < 0.001 levels, respectively). 704 

 705 
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 707 
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 713 

Table 2 Effects of tea type (green tea and rooibos tea), incubation day (90 and 150 days of incubation), 714 

soil type (oligotrophic, mesotrophic and eutrophic soil), the global environmental change treatments 715 

(temperature, light, nitrogen and land use) and their two-way interaction on litter decomposition 716 

(AFDM loss) and understorey plant cover. Effects were tested with analysis of variance. 717 

Factor 

Litter decomposition  Plant cover 

Sum-Sq Df F-Value P    Sum-Sq Df F-Value P   

Temperature 0.12 1 3.32 0.0688 .  23154 1 47.98 <0.001 *** 

Light 0.28 1 7.74 0.0055 **  106582 1 220.86 <0.001 *** 

Nitrogen 0.18 1 4.80 0.0286 * 
 655 1 1.36 0.2441  

Land use 0.05 1 1.31 0.2534   
 15534 1 32.19 0.0000 *** 

Tea type 135.26 1 3704.66 <0.001 *** 
           

Incubation days 9.04 1 247.46 <0.001 *** 
 22041 1 45.67 <0.001 *** 

Soil type 1.54 2 21.08 <0.001 ***  39549 2 40.98 <0.001 *** 

Tea type: Soil type 0.48 2 6.60 0.0014 **            

            

Temperature: Tea type <0.01 1 0.06 0.8089              

Temperature: Incubation days 0.01 1 0.22 0.6367    2896 1 6.00 0.0144 * 

Temperature: Soil type 0.27 2 3.65 0.0263 *  473 2 0.49 0.6126   

            

Light: Tea type 0.21 1 5.68 0.0173 *            

Light: Incubation days 0.04 1 1.02 0.3130    11 1 0.02 0.8804   

Light: Soil type 0.28 2 3.84 0.0217 *  1869 2 1.94 0.1445   

             

Nitrogen: Tea type 0.05 1 1.36 0.2431              

Nitrogen: Incubation days <0.01 1 0.04 0.8469    659 1 1.37 0.2428   

Nitrogen: Soil type 0.13 2 1.76 0.1729    2383 2 2.47 0.0850 . 

            

Land use: Tea type <0.01 1 0.00 0.9695              

Land use: Incubation days <0.01 1 0.00 0.9884    3 1 0.01 0.9334   

Land use: Soil type 0.27 2 3.68 0.0254 *  255 2 0.26 0.7681   

Residuals 55.10 1509      
 731578 1516       

 718 


